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Bilinear Probabilistic Principal Component Analysis
Jianhua Zhao, Philip L. H. Yu, and James T. Kwok

Abstract— Probabilistic principal component analysis (PPCA)
is a popular linear latent variable model for multi-layer perform-
ing dimension reduction on 1-D data in a probabilistic manner.
However, when used on 2-D data such as images, PPCA suffers
from the curse of dimensionality due to the subsequently large
number of model parameters. To overcome this problem, we
propose in this paper a novel probabilistic model on 2-D data
called bilinear PPCA (BPPCA). This allows the establishment of
a closer tie between BPPCA and its nonprobabilistic counterpart.
Moreover, two efficient parameter estimation algorithms for
fitting BPPCA are also developed. Experiments on a number
of 2-D synthetic and real-world data sets show that BPPCA is
more accurate than existing probabilistic and nonprobabilistic
dimension reduction methods.

Index Terms— 2-D data, dimension reduction, expectation
maximization, principal component analysis, probabilistic model.

I. INTRODUCTION

MANY REAL-WORLD applications involve high-
dimensional data. However, the interesting structure

inside the data often lies in a low-dimensional space. Dimen-
sion reduction, which aims to find a compact and meaningful
data representation, is thus a useful tool for data visualization,
interpretation, and analysis [1], [2].

Probabilistic modeling of dimension reduction is an impor-
tant research topic in data mining, pattern recognition, machine
learning, and statistics [3]. Compared with its nonprobabilistic
counterparts, probabilistic models enable different sources of
data uncertainty to be well studied by means of probability
theory. Consequently, statistical inference and Bayesian (or
variational Bayesian) methods can be performed, and missing
data can be handled in a principled way. Moreover, proba-
bilistic models can be easily extended in various ways. For
example, they can be extended to probabilistic mixture models
to accommodate for heterogeneous data [4], can be modified to
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accommodate for discrete data [5], and can also be robustified
to handle outliers with the incorporation of a heavy-tailed
noise distribution (such as the student t-distribution) [6].

Principal component analysis (PCA) [7] is one of the
most popular techniques for dimension reduction. While the
standard PCA is nonprobabilistic, Moghaddam and Pentland
[8] extended it to a probabilistic framework, and Tipping and
Bishop [4] derived the probabilistic PCA (PPCA) from the
classical linear latent variable model. In particular, PPCA is
an important development since it inherits all the advantages
of a probabilistic model while including PCA as a special case.

However, PPCA, like its nonprobabilistic counterpart, is
formulated for the 1-D data where observations are vectors. To
apply PPCA to 2-D data where the observations are matrices
(such as images), one possible solution is to first vectorize
the data and then apply PPCA to the resultant 1-D data.
However, vectorization destroys the natural matrix structure
and may lose potentially useful local structure information
among columns/rows [9]. Moreover, for 2-D data such as
images, the resultant vectorized data is very high-dimensional
(typically over tens of thousands of pixels) and thus suffers
from the curse of dimensionality [10].

Instead of using vectorization, several nonprobabilistic mod-
els have been proposed in recent years that extend PCA
directly for 2-D data. Examples include the generalized low-
rank approximation of matrices (GLRAM) [11] and 2-DPCA
[12]. This overcomes the curse of dimensionality and sig-
nificantly reduces the computation cost. Moreover, GLRAM
achieves a high compression ratio (i.e., much fewer space
is needed for storing the data), which is particularly impor-
tant for large-scale high-dimensional data. Empirically, these
methods can achieve competitive or even better recognition
performance than PCA, especially when the sample size is
small relative to feature dimensionality. Inspired by these
encouraging results, attempts have been made to formulate
a probabilistic model for GLRAM so that it can enjoy similar
advantages as PPCA has over PCA [10], [13], [14]. Following
the classical linear latent variable model as in PPCA, they
formulated the same model (which is called probabilistic
second-order PCA (PSOPCA) in [13]), but with different
learning algorithms.

Despite all these successes, the relationship between
PSOPCA and GLRAM, unlike that between PPCA and PCA
[4], has not been well established. For example, it is shown
that the factor loading matrix in PPCA spans the principal
subspace of the covariance matrix. However, a similar result
for PSOPCA has only been obtained in the special case of
zero-noise limit [14]. Moreover, parameter estimation in PPCA
can be easily performed by either including the latent variables
(i.e., missing data) or not, as closed-form updates are available
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for the constituent steps in both cases. In contrast, parameter
estimation in PSOPCA [10], [13] requires the inclusion of
latent variables. Otherwise, it is unclear if a closed-form
update is still possible. This can be of practical significance
as estimation algorithms not involving latent variables usually
converge faster, as the convergence rate of the expectation
maximization (EM) algorithm is determined by the portion
of missing information in the complete data [15].

Motivated by PPCA, we proposed in this paper a novel prob-
abilistic model called bilinear PPCA (BPPCA) that addresses
these problems. While both BPPCA and PSOPCA are proba-
bilistic models for 2-D data, BPPCA is more advantageous in
that it bears closer relationships and similarities with PPCA. In
particular: 1) BPPCA performs PPCA in the row and column
directions alternately; 2) similar to PPCA, the maximum
likelihood estimators (MLE) of BPPCA’s model parameters
span the principal subspaces of the column and row covariance
matrices; and 3) as in PPCA, efficient closed-form expressions
are available for the parameter update steps in BPPCA, with
or without the use of latent variables.

The remainder of this paper is organized as follows.
Section II reviews some related works. Section III proposes
the BPPCA model and Section IV is devoted to the maximum
likelihood estimation of BPPCA. Section V gives some empir-
ical studies to compare BPPCA with some related methods.
Section VI closes this paper with some concluding remarks.

In this paper, the transpose of vector/matrix is denoted by
the superscript ′, and the identity matrix by I. Moreover, ‖·‖F

denotes the Frobenius norm, tr(·) is the matrix trace, vec(·) is
the vectorization operator, ⊗ is the Kronecker product, and
Nd (μ,�) is the d-dimensional normal distribution with mean
μ and covariance matrix �.

II. RELATED WORKS

A. Minimum-Error Formulation of PCA

Let {xn}Nn=1 (where each xn ∈ R
d ) be a set of observations.

We assume that the data has been centered. In the minimum-
error formulation [1], PCA finds the optimal projection matrix
U ∈ R

d×q (where the latent dimensionality q < d and
the projection vectors are orthonormal U′U = I) and low-
dimensional representations tn ∈ R

q (n = 1, . . . , N) that
minimize the mean squared error (MSE) of the reconstructed
observations (1/N)

∑N
n=1 ‖xn−Utn‖2. The U solution consists

of, up to an arbitrary rotation, the q leading eigenvectors of
the sample covariance matrix

S = 1

N

N∑

n=1

xnx′n (1)

and the tn solution is U′xn .
As ‖x1 − x2‖ � ‖Ut1 − Ut2‖ = ‖t1 − t2‖, the Euclidean

distance ‖x1− x2‖ in the d-dimensional space can be approx-
imated by the distance ‖t1 − t2‖ in the lower q-dimensional
space. This reduces the amount of computation from O(d) to
O(q). In addition, classification using the reduced representa-
tions usually leads to improved performance.

B. Maximum-Variance Formulation of PCA

In the maximum-variance formulation [7], PCA tries to
sequentially find the projections u1, u2, . . . , uq (where each
‖uk‖ = 1) such that the variance of the projected data u′kx
(k = 1, . . . , q) is maximized

max
uk

cov(u′kx) = max
uk

u′k�uk . (2)

Here, � = cov(x) = E[xx′] is the population covariance
matrix of the (centered) observations x. Again, the U =
[u1, u2, . . . , uq ] solution consists of the q leading eigenvectors
of �. If � is estimated by its MLE, which is the sample covari-
ance matrix S, then both the minimum-error and maximum-
variance formulations lead to the same U solution (up to an
arbitrary rotation).

C. Probabilistic Principal Component Analysis (PPCA)

PPCA [4] is a restricted factor analysis model
{

x = Cz+ μ+ ε,

z ∼ Nq(0, I), ε ∼ Nd(0, σ 2I)
(3)

where C ∈ R
d×q is the factor loading matrix, z ∈ R

q is
the latent representation independent of ε, μ ∈ R

d is the
mean vector, and σ 2 > 0 is the isotropic noise variance. Both
the probability density distribution of x and the conditional
probability density distribution of z given x are the multivariate
normal distribution

x ∼ Nd(μ,�),

z|x ∼ Nq

(
M−1C′(x − μ), σ 2M−1

)
(4)

where
� = CC′ + σ 2I, M = C′C+ σ 2I. (5)

Given a set of observations X = {xn}Nn=1, the MLE of μ is
simply the sample mean x̄. As in Section II-A, we assume that
x̄ is zero, and the sample covariance matrix is then given by
(1). The MLE of θ = (C, σ 2) can be obtained by maximizing
the log likelihood,1 which is, up to a constant

L(θ |X ) = −N

2

{
ln |�| + tr

(
�−1S

)}
. (6)

Setting its derivative with respect to θ to zero, and assuming
that rank(S) > q , we obtain

C = U
(
�− σ 2I

) 1
2

V′ (7)

σ 2 = 1

d − q

d∑

i=q+1

λi (8)

where V is an arbitrary orthogonal matrix, U = [u1, . . . , uq ],
and � = diag(λ1, . . . , λq), with {ui }di=1, {λi }di=1 (λ1 ≥ λ2 ≥
· · · ≥ λd ) being the eigenvectors and eigenvalues of S.

Alternatively, (6) can be maximized by using the well-
known EM algorithm [15]. This requires the introduction of
missing data and consists of an E-step and a M-step.

1For an alternative Bayesian framework for PPCA, interested readers are
referred to [16] and [17].
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E-Step: Let the missing data be Z = {zn}Nn=1. The complete
data log likelihood is

∑N
n=1 ln {p(xn|zn)p(zn)}. Its expectation

(up to a constant) with respect to the distribution p(Z|X ) leads
to the so-called Q-function

Q(θ ) = −1

2

N∑

n=1

{
d ln σ 2 + σ−2

E

[
‖xn − Czn‖2|xn

]}

where the involved expectations E[zn |xn] and E[znz′n|xn] can
be easily obtained from (4) as

E[zn|xn] = M−1C′xn, (9)

E[znz′n|xn] = σ 2M−1 + E[zn |xn]E[z′n|xn].
M-Step: We maximize Q with respect to C and σ 2, yielding

C̃ =
∑N

n=1
xnE[z′n|xn]

(∑N

n=1
E[znz′n]

)−1

,

σ̃ 2 = 1

Nd

∑N

n=1

(
‖xn‖2 − E[z′n|xn]C̃′xn

)
.

Similar to the maximum-variance formulation of PCA,
we may classify observations based on the expected latent
representation E[z|x]. Note that since the small eigenvalues of
the covariance matrix � tend to be underestimated [18], PPCA
regularizes � automatically by increasing its small eigenvalues
to σ 2 in (5). Consequently, a regularized latent representation
E[z|x] = (C′C+ σ 2I)−1C′x is produced in (9).

D. Minimum-Error Formulation for Bilinear Dimension
Reduction

Inspired by the minimum-error formulation of 1-D PCA,
several techniques have been proposed in recent years that
perform dimension reduction on the 2-D data directly. Exam-
ples include the GLRAM [11] and 2-DPCA [12].

Let {Xn}Nn=1 (where each Xn ∈ R
dc×dr ) be a set of 2-D

centered observations. GLRAM finds the optimal transforma-
tion matrices Uc ∈ R

dc×qc , Ur ∈ R
dr×qr (where the columns

are orthogonal and qc < dc, qr < dr ) and low-dimensional
representations Tn ∈ R

qc×qr (n = 1, . . . , N) such that
the MSE

1

N

N∑

n=1

‖Xn − UcTnU′r‖2F (10)

of the reconstructed observations {UcTnU′r }Nn=1 is minimized.
Given an initial Ur , (10) can be minimized by iterating the
following two steps until convergence.

1) Uc ← the qc leading eigenvectors of

Gc = 1

N

N∑

n=1

XnUr U′r X′n. (11)

2) Ur ← the qr leading eigenvectors of

Gr = 1

N

N∑

n=1

X′nUcU′cXn . (12)

After convergence, Tn is obtained as U′cXnUr .
On the other hand, 2-DPCA only applies a linear transfor-

mation on the right side of the data matrix. Hence, it can be
viewed as a special case of GLRAM.

E. Probabilistic Extensions of GLRAM

Recently, several works attempt to formulate a probabilistic
model for GLRAM so that it can enjoy similar advantages as
PPCA has over PCA [10], [13], [14]. Following the classical
linear latent variable model as in PPCA, they formulate the
following model, which is called PSOPCA in [13]:

{
X = CZR′ +W + ε,

Z ∼ Nqc,qr (0, I, I), ε ∼ Ndc,dr (0, σ 2I, σ 2I)
(13)

where Nqc,qr and Ndc,dr are matrix-variate normal distribu-
tions,2 C ∈ R

dc×qc and R ∈ R
dr×qr are the column and row

factor loading matrices, respectively, W ∈ R
dc×dr is the mean

matrix, and σ 2 > 0 is the noise variance. Different learning
algorithms for this model are proposed in [10], [13], and [14].

As mentioned in Section I, the relationship between
PSOPCA and GLRAM is not as well-established as that
between PPCA and PCA. For example, for PPCA, it can
be seen from (7) that the factor loading matrix C spans the
principal subspace of the covariance matrix. In the special case
of zero-noise limit, a similar result for PSOPCA is obtained
in [14]. Specifically, they showed that the column and row
factor loading matrices C and R span the principal subspaces
of the respective covariance matrices in GLRAM. However,
it is unclear how to extend this for the general noise case.
Moreover, as seen in Section II-C, parameter estimation in
PPCA can be efficiently performed by either including the
latent variables (i.e., missing data) or not, as closed-form
updates are available for the constituent steps in both cases. In
contrast, parameter estimation in PSOPCA [10], [13] requires
the inclusion of latent variables. Otherwise, it is unclear if a
closed-form update will still be available.

III. BPPCA

A. Proposed Model

In this section, we extend PPCA in (3) to 2-D data. The
proposed model, which will be called BPPCA, is defined as

⎧
⎨

⎩

X = CZR′ +W+ Cεr + εcR′ + ε,

Z ∼ Nqc,qr (0, I, I), εr ∼ Nqc,dr (0, I, σ 2
r I),

εc ∼ Ndc,qr (0, σ 2
c I, I), ε ∼ Ndc,dr (0, σ 2

c I, σ 2
r I)

(14)

where Z is the latent matrix, εc ∈ R
dc×qr is the column noise,

εr ∈ R
qc×dr is the row noise, ε ∈ R

dc×dr is the common
noise (which are assumed to be independent of each other),
C ∈ R

dc×qc and R ∈ R
dr×qr are the column and row factor

loading matrices, respectively. σ 2
c > 0 and σ 2

r > 0 are the
column and row noise variances, respectively. W ∈ R

dc×dr

is the mean matrix. Obviously, when dr = 1 or dc = 1, the
BPPCA model in (14) reduces to the PPCA model in (3).
Similarly, if we remove the εc and εr terms, (14) reduces to
the PSOPCA model in (13) when σc = σr . As will be seen
in Section IV, the introduction of the εc and εr terms enables
the model to have a number of interesting characteristics that
are not available under PSOPCA.

2A review on matrix-variate normal distributions is in Appendix VI.
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From (14), it is easy to obtain that

CZR′ ∼ Ndc,dr (0, CC′, RR′),
Cεr ∼ Ndc,dr (0, CC′, σ 2

r I),

εcR′ ∼ Ndc,dr (0, σ 2
c I, RR′).

Consequently, X follows the matrix-variate normal distribution
Ndc,dr (W,�c,�r ), where

�c = CC′ + σ 2
c I; �r = RR′ + σ 2

r I. (15)

Thus, as in PPCA, BPPCA is characterized by a normal
distribution on X and a low-rank covariance structure [see (5)
and (15)]. Note that this can be extended to other constrained
covariance structures and nonnormal distributions. Another
characteristic of BPPCA is the use of a separable covariance
structure via the CZR′ term in (14). This will be studied in
more detail in Section III-B.

Similar to PPCA [4], not all the BPPCA parameters can be
uniquely identified. However, as a subspace learning method
[19], the subspaces of interest (that are spanned by the columns
of C and R) can still be uniquely identified up to: 1) orthogonal
rotations of the factor loading matrices, latent matrix, column
and row noise matrices; and 2) scaling of the column and
row factor loading matrices. Interested readers are referred to
Appendix VI for details.

B. Bilinear Transformation and Separable Covariance

In the BPPCA model (14), the observed 2-D data is related
to a lower-dimensional latent matrix Z via the transformation

X̃ ≡ CZR′. (16)

This is called a bilinear transformation as X̃ is linear with
respect to C (resp. R) when R (resp. C) is fixed. Note that
a similar modeling assumption is also used in (13) for the
PSOPCA model.

Proposition 1: The use of the bilinear transformation (16)
is equivalent to the assumption of a separable (Kronecker
product) covariance matrix on X̃

cov(vec(X̃)) = �r ⊗�c (17)

where �r ∈ R
dr×dr and �c ∈ R

dc×dc are the row and column
covariance matrices of X̃, respectively.

Proof: Since the covariance of vec(Z) is I, the covariance
of X̃ is given by (17), where �r = RR′ and �c = CC′.
Conversely, if the covariance matrix of X̃ is separable as in
(17), there exist C and R such that �c = CC′ and �r = RR′.
Then (16) holds with Z = C−1X̃R′−1.

The separable covariance assumption has been successfully
used in a variety of applications. Examples include the spatial-
temporal modeling of environmental data [20], channel mod-
eling in multiple-input multiple-output communications [21],
and signal modeling of MEG/EEG data [22]. This covariance
structure arises when the variables can be cross-classified
by two (or, in general, three or more) vector-valued factors
[23], [24]. For the 2-D data considered here, this corresponds
to vec(X̃) = a ⊗ b, where a and b are variables in the
row and column directions, respectively, and with cov(a) =
�r , cov(b) = �c.

Obviously, a separable covariance is more restrictive than
a full covariance matrix. For example, in the simplest case
where dr = dc = 2, it can be shown that separability imposes
the following constraints on the covariance matrix � = [σi j ]
and the associated correlation matrix ρ = [ρi j ] [23]:

σ11

σ33
= σ22

σ44
,

ρ12 = ρ34, ρ13 = ρ24, ρ23 = ρ14, and ρ14 = ρ12ρ13.

Despite such a restrictive covariance structure, separabil-
ity can significantly reduce the number of parameters in
the model (from 1/2dcdr (dcdr + 1) for the full covariance
to (1/2) (dc(dc + 1)+ dr (dr + 1)) for the separable covari-
ance3), leading to reduced algorithm complexity and often
more accurate estimators [24]. This can be attributed to the
bias-variance tradeoff [25], in which one can trade bias for
lower variance, leading to better generalization. As will be
seen in Section V-E, empirical results also confirm that our
BPPCA model (which is based on separable covariance) out-
performs PPCA (which uses a nonrestrictive covariance). Note
that the use of a restrictive covariance structure is common
in machine learning. For example, for linear discriminant
analysis (LDA), the even more restrictive diagonal covariance
assumption leads to the diagonal LDA [26], which is found to
perform well on high-dimensional microarray data.

Recently, Dryden et al. [27] proposed a related dimension
reduction technique for 2-D data called factored PCA (FPCA)
which also assumes separable covariance. Indeed, it can be
seen from (15) that FPCA can be regarded as a special case
of BPPCA with σ 2

c → 0, σ 2
r → 0 and qc = dc, qr = dr .

C. Probabilistic Graphical Models for BPPCA

To further understand model (14), it is helpful to rewrite it as
⎧
⎨

⎩

X = CYr +W+ Yr
ε,

Yr = ZR′ + εr ,
Yr

ε = εcR′ + ε

(18)

where Yr ∈ R
qc×dr and Yr

ε ∈ R
dc×dr are latent matrices. This

can be interpreted as a two-stage representation of BPPCA.
From the projection point of view, X is first projected onto Yr

in the column direction. Then Yr and residual Yr
ε are further

projected in the row direction onto Z and εc, respectively.
From the generative model point of view, Yr and Yr

ε are first
generated in the row direction and X is then generated in the
column direction.

Alternatively, by introducing another two latent matrices
Yc ∈ R

dc×qr and Yc
ε ∈ R

dc×dr , model (14) can be rewritten
as first projecting (resp. generating) in the row (resp. column)
direction and then projecting (resp. generating) in the column
(resp. row) direction

⎧
⎨

⎩

X = YcR′ +W + Yc
ε,

Yc = CZ+ εc,
Yc

ε = Cεr + ε.
(19)

3For example, when dc = dr = 20, the full covariance has 80, 200
parameters while the separable covariance has only 420.



496 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 3, MARCH 2012

X
n

C

σ2
c

R

σ2
r

Z
nN

W

(a)

X
n

C

σ2
c

R

σ2
r

Z
n

N

W

Yr
n

(b)

X
n

C

σ2
c

R

σ2
r

Z
n

N

W

Yc
n

(c)

Fig. 1. Probabilistic graphical models for BPPCA. (a) Original generative model (14). (b) Two-stage generative model (18), with row followed by column.
(c) Two-stage generative model (19), with column followed by row.

Fig. 1 shows the probabilistic graphical models of BPPCA
corresponding to the three ways of generating X [(14), (18),
and (19)].

D. Probability Distributions

In the following, we list the various probability distributions
that can be obtained from the BPPCA model. Derivations can
be found in Appendix VI

Yr ∼ Nqc,dr (0, I,�r ), Yr
ε ∼ Ndc,dr (0, σ 2

c I,�r ),

Yc ∼ Ndc,qr (0,�c, I), Yc
ε ∼ Ndc,dr (0,�c, σ

2
r I),

X ∼ Ndc,dr (W,�c,�r ) (20)

Z|Yr ∼ Nqc,qr (Y
r RM−1

r , I, σ 2
r M−1

r ) (21)

Yr |X ∼ Nqc,dr

(
M−1

c C′(X−W), σ 2
c M−1

c ,�r

)
(22)

Yc|X ∼ Ndc,qr

(
(X−W)RM−1

r ,�c, σ
2
r M−1

r

)
(23)

where �c and �r are given by (15) and

Mc = C′C+ σ 2
c I; Mr = R′R + σ 2

r I. (24)

IV. MAXIMUM LIKELIHOOD ESTIMATION OF BPPCA

In this section, we show how the BPPCA parameters are
estimated from a given set of observations X = {Xn}Nn=1.
From (20), the MLE of W is obviously the sample mean
(1/N)

∑N
n=1 Xn . As in PPCA, we assume that the data

has been centered. The MLE of the remaining parameters,
θ = (C, σ 2

c , R, σ 2
r ), can be obtained by maximizing the

(incomplete-data) log likelihood of the BPPCA model, which
is, up to a constant

L(θ |X ) = −1

2

N∑

n=1

{dr ln |�c|

+ dc ln |�r | + tr
(
�−1

c Xn�
−1
r X′n

)}
. (25)

Due to the bilinear nature of BPPCA, it is natural to develop
iterative procedures for the maximization of L. As in PPCA,
it will be seen that the parameter estimation here can be easily
performed by either including the latent variables (i.e., missing
data) or not. Specifically, we will first present in Section IV-
A a procedure based on the conditional maximization (CM)
algorithm [28], which does not require the inclusion of latent
variables. Then, in Section IV-B, an EM-type algorithm, which
involves latent variables, will be proposed.

A. CM Algorithm

The CM algorithm is a special case of the coordinate
ascent algorithm in the optimization literature [29], where the
objective function [which is the incomplete-data log likelihood
L (25) here] is maximized with respect to a subset of the
variables at each iteration. In the following, we divide the
parameters into two subsets, {C, σ 2

c } and {R, σ 2
r }.

1) CM-Step 1: We maximize L with respect to C and σ 2
c ,

with {R, σ 2
r } fixed. Equation (25) is then reduced to

Lc

(
C, σ 2

c |X
)
= −Ndr

2

{
ln |�c| + tr

(
�−1

c Sc
)}

(26)

where

Sc = 1

Ndr

N∑

n=1

Xn�−1
r X′n (27)

= 1

Ndr

∑N

n=1

dr∑

i=1

xni�
−1
r x′ni

is the sample covariance matrix of the columns of Xn’s.
Note that (26) is similar to (6). Hence, using the same
derivation as in Section II-C, we obtain

C̃ = Uc

(
�c − σ̃ 2

c I
) 1

2
V′c (28)

σ̃ 2
c =

1

dc − qc

dc∑

i=qc+1

λci (29)

where Uc, Vc, and �c are defined similarly as their
counterparts in Section II-C (i.e., Vc is an arbitrary
orthogonal matrix, Uc = [uc1, . . . , ucqc ] and �c =
diag(λc1, . . . , λcqc ), with {uci }dc

i=1, {λci }dc
i=1 (λc1 ≥

λc2 ≥ · · · ≥ λcdc ) being the eigenvectors and eigen-
values of Sc).

2) CM-step 2: We maximize L with respect to R and σ 2
r ,

with {C, σ 2
c } fixed. This maximization is analogous to

that in CM-step 1. Define the sample covariance matrix
of the rows of Xn’s as

Sr = 1

Ndc

∑N

n=1
X′n�̃−1

c Xn. (30)

Then (25) becomes

Lr (θ |X ) = −Ndc

2

{
ln |�r | + tr

(
�−1

r Sr
)}
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Algorithm 1 CM algorithm for BPPCA

Input: Data X and (random) initialization of R, σ 2
r .

1: Compute the sample mean X̄ and center the data as Xn ←
Xn − X̄.

2: repeat
3: CM-step 1: Compute Sc via (27). Update C and σ 2

c via
(28) and (29).

4: CM-step 2: Compute Sr via (30). Update R and σ 2
r via

(31) and (32).
5: until change of L is smaller than a threshold.

Output: (C, R, σ 2
c , σ 2

r ).

and the optimal solution is

R̃ = Ur

(
�r − σ̃ 2

r I
) 1

2
V′r (31)

σ̃ 2
r =

1

dr − qr

d∑

i=qr+1

λri (32)

where Ur , Vr , and �r are defined similarly as in
CM-step 1 (but based on (30)).

The whole CM algorithm is shown in Algorithm 1. Since the
CM algorithm is based on coordinate descent, both CM-steps
1 and 2 will increase the log likelihood L. Moreover, it can
be easily seen that the so-called “space filling” condition4

is satisfied here. Hence, the CM algorithm is guaranteed to
converge to a stationary point of L under the same convergence
conditions as for standard EM [30].

1) Remarks: Note that the two CM-steps are
equivalent to performing PPCA. Recall from (20) that
Xn ∼ Ndc,dr (0,�c,�r ). In CM-step 1, with R and
σ 2

r fixed, Xn�
−1/2
r ∼ Ndc,dr (0,�c, I) and its columns

{xni�
−1/2
r }i=1,...,dr ,n=1,...,N are i.i.d. and follow Ndc(0,�c).

The covariance of these Ndr transformed observations is
Sc in (27). Thus, CM-step 1 performs PPCA on these
transformed observations. Similarly, CM-step 2 performs
PPCA on the transformed rows of Xn (Ndc i.i.d. transformed
observations). On the other hand, PSOPCA fails to provide
such an important connection.

Moreover, similar to PPCA, (28) and (31) show that the
MLE of the factor loading matrices C and R are principal
subspaces of the column and row covariance matrices Sc and
Sr , respectively (up to scaling and rotation).

Comparing (11), (12), (27), and (30), we can find that Gc

and Gr are different from Sc and Sr . Therefore, the principal
components by BPPCA and GLRAM are in general different.

2) Computational Complexity: The most expensive compu-
tations are on the formations of Sc in (27), Sr in (30) and their
eigen-decompositions. Using

�−1
c =

1

σ 2
c

(I − CM−1
c C′). (33)

4Loosely speaking, this means unconstrained maximization is allowed over
the whole parameter space [30].

Sc can be computed as

Sc = 1

Ndrσ 2
c

∑

n

[
XnX′n − (XnC)M−1

c (XnC)′
]
.

Computing XnX′n and XnC take O(d2
c dr ) and O(dcdr qc)

time, respectively. Given XnC, computing (XnC)M−1
c (XnC)′

takes O(d2
c qc) time. Let t be the number of CM itera-

tions. The total cost of forming all the Sc’s is O(Nd2
c dr ) +

O(Nt (dcdr qc + d2
c qc)). Similarly, the cost of computing

all the Sr ’s is O(Nd2
r dc) + O(Nt (dr dcqr + d2

r qr )). Eigen-
decompositions of Sc and Sr take O(td3

c ) and O(td3
r ),

respectively. Hence, the total cost is O(N[dcdr (dc + dr )]) +
O(Nt[(dc+dr)

2max(qc, qr )])+O(t[d3
c +d3

r ]). This is similar
to that of GLRAM [11] except for the extra first term.

B. Alternating Expectation Conditional Maximization (AECM)
Algorithm

In this section, we fit the BPPCA model by an EM-type
algorithm called AECM algorithm [31]. Compared to the CM
algorithm developed in Section IV-A, EM-type algorithms
often enjoy lower computation complexity [14], though their
convergence can be slower due to the inclusion of missing
information [15].

The AECM algorithm is a flexible and powerful general-
ization of the standard EM [31]. It is well-known that EM
performs an E-step to obtain the so-called Q function followed
by a M-step to maximize Q with respect to all parameters.
In some cases, the M-step in EM is difficult to solve while
it is possible to sequentially and conditionally maximize Q
(CMQ) with respect to subsets of parameters. This yields the
ECM algorithm [30] that replaces the M-step by a sequence
of CMQ steps. In some cases, instead of maximizing Q, some
CMQ steps can be performed through less data augmentation
with the advantage of faster convergence. This leads to the
AECM algorithm that replaces the E-step by several E-steps.
The salient feature of AECM is that the augmented complete
data is allowed to vary between E-steps yet convergence is
guaranteed [31]. A specific application of ECM and AECM
to mixtures of factor analyzers can be found in [32].

The AECM algorithm for BPPCA consists of two cycles,
each with its own E-step and CM-step. As in Section IV-A,
we divide the parameters into the two subsets θ1 = (C, σ 2

c )
and θ2 = (R, σ 2

r ).
1) In cycle 1, its E-step treats (X ,Yr ) = {Xn, Yr

n}Nn=1 as
the complete data, which is then maximized with respect
to θ1 (given θ2) in its CM-step.
E-Step: The complete data log likelihood is

Lcom,c(θ1|X ,Yr ) =
N∑

n=1

ln
{

p(Xn|Yr
n)p(Yr

n)
}
.

Given θ = (θ1, θ2), we compute the expected Lcom,c (up
to a constant) with respect to the distribution p(Yr |X , θ)

Qc(θ1) = −1

2

N∑

n=1

{
dr dc ln σ 2

c

+σ−2
c tr{E[(Xn − CYr

n)�−1
r (Xn − CYr

n)′|Xn]}
}
.
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From (22), it is easy to obtain the required expectations

E[Yr
n |Xn] =M−1

c C′Xn (34)

and

E[Yr
n�
−1
r Yr

n
′|Xn]

= drσ
2
c M−1

c + E[Yr
n |Xn]�−1

r E[Yr
n
′|Xn]. (35)

CM-Step: Given θ2, we maximize Qc with respect to θ1
and obtain

C̃ =
N∑

n=1

Xn�
−1
r E[Yr

n
′|Xn]

·
(

N∑

n=1

E[Yr
n�−1

r Yr
n
′|Xn]

)−1

(36)

σ̃ 2
c =

1

Ndr dc
tr

{∑N

n=1
Xn�

−1
r X′n

−Xn�
−1
r E[Yr

n
′|Xn]C̃′

}
. (37)

2) In cycle 2, its E-step treats (Xn,Yc
n ) = {Xn, Yc

n}Nn=1 as
the complete data, which is then maximized with respect
to θ2 (given θ1) in its CM-step.
E-Step: The complete data log likelihood is

Lcom,r (θ2|X ,Yc) =
N∑

n=1

ln {p (
Xn|Yc

n

)
p(Yc

n)}.

Given the updated θ1, we compute the expected Lcom,r

with respect to the distribution p(Yc|X , θ̃1, θ2), up to a
constant, as

Qr (θ2) = −1

2

N∑

n=1

{
dr dc ln σ 2

r +

σ−2
r tr{E[(Xn − YcR′)′�̃−1

c (Xn − YcR′)|Xn]}
}
.

From (23), the required expectations can be obtained as

E[Yc
n|Xn] = XnRM−1

r (38)

and

E[Yc
n
′�̃−1

c Yc
n |Xn]

= dcσ
2
r M−1

r + E[Yc
n
′|Xn]�̃−1

c E[Yc
n |Xn]. (39)

CM-Step: Given θ̃1, we maximize Qr with respect to θ2
and obtain

R̃ =
∑N

n=1
X′n�̃−1

c E[Yc
n|Xn]

·
(∑N

n=1
E[Yc

n
′�̃−1

c Yc
n |Xn]

)−1

(40)

σ̃ 2
r =

1

Ndr dc
tr

{∑N

n=1
X′n�̃−1

c Xn

−X′n�̃−1
c E[Yc

n |Xn]R̃′
}
. (41)

The whole algorithm is summarized in Algorithm 2. It can
be observed that cycles 1 and 2 are guaranteed to increase the
log likelihood L of BPPCA. Under standard regularity condi-
tions and the space-filling condition, the AECM algorithm is
also guaranteed to converge to a stationary point of L [31].

Algorithm 2 AECM algorithm for BPPCA

Input: Data X and (random) initialization of (C, R, σ 2
c , σ 2

r ).
1: Compute the sample mean X̄ and center the data as Xn ←

Xn − X̄.
2: repeat
3: E-step of cycle 1: Compute the conditional expectations

E[Yr
n |Xn] and E[Yr

n�
−1
r Yr

n
′|Xn] via (34) and (35).

4: CM-step of cycle 1: Update C and σ 2
c via (36) and (37).

5: E-step of cycle 2: Compute the conditional expectations
E[Yc

n |Xn] and E[Yc
n
′�̃−1

c Yc
n|Xn] via (38) and (39).

6: CM-step of cycle 2: Update R and σ 2
r via (40) and (41).

7: until change of L is smaller than a threshold.
Output: (C, R, σ 2

c , σ 2
r ).

1) Computational Complexity: The most expensive
computations are on the formations of matrices∑N

n=1 Xn�
−1
r E[Yr

n
′|Xn] in (28) and

∑N
n=1 X′n�̃−1

c E[Yc
n|Xn]

in (31). The cost of E[Yr
n
′|Xn] is O(dcdr qc). Using

(33), computation of Xn�
−1
r E[Yr

n
′|Xn] can be reduced

to O(dcdr (qc + qr )). Hence, the total cost of AECM is
O(Ntdcdr (qc + qr )). Note that its per-iteration complexity
is typically lower than that of the CM algorithm, especially
when one or both data dimensionalities (dc and dr ) is high.

C. Compression and Reconstruction

In this section, we compare the compressed representations
and reconstructions under PPCA [4] and the proposed BPPCA.
The key difference is that the operators in PPCA are linear
while those in BPPCA are bilinear.

In the following, we let θ̂ be the MLE of θ , x̂ and X̂ be the
reconstructed values of x and X, respectively.

1) PPCA:

a) Compression: Given an observation x, we take E[z|x]
in (9) in the low-dimensional latent space as the
compressed representation.

b) Linear reconstruction: Given the compressed repre-
sentation E[z|x], we can reconstruct x̂ = ĈE[z|x]+μ̂

from (3). Using (9), x̂ − μ̂ = ĈM̂−1Ĉ′(x − μ̂). In
general, ĈM̂−1Ĉ′ is not a projection matrix [25],
except when σ 2 → 0.

c) Orthogonal linear reconstruction: We can also recon-
struct as x̂orth = Ĉ(Ĉ′Ĉ)−1M̂E[z|x] + μ̂ [4]. Using
(9), we have x̂orth − μ̂ = Ĉ(Ĉ′Ĉ)−1Ĉ′(x − μ̂), in
which Ĉ(Ĉ′Ĉ)−1Ĉ′ is a projection matrix [4].

2) BPPCA:

a) Compression: Similar to PPCA, we take E[Z|X] as
the compressed representation. Using (21) and (22),
this can be computed as

E[Z|X] = E[E[Z|Yr ]|X] = M̂−1
c Ĉ′(X− Ŵ)R̂M̂−1

r
(42)

where the inner expectation is with respect to the
distribution p(Z|Yr ) and the outer one is with respect
to p(Yr |X).

b) Bilinear reconstruction: Given the compressed repre-
sentation E[Z|X], we can reconstruct X from (14) as
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Fig. 2. Arc length distance between the estimated and true principal
subspaces at different sample sizes.

X̂ = ĈE[Z|X]R̂′+Ŵ. Using (42), we have X̂−Ŵ =
ĈM̂−1

c Ĉ′(X − Ŵ)R̂M̂−1
r R̂. In general, this is not a

biorthogonal projection since ĈM̂−1
c Ĉ′ and R̂M̂−1

r R̂
are not projection matrices, except when σ 2

c → 0
and σ 2

r → 0.
c) Biorthogonal bilinear reconstruction: We

can also reconstruct X as X̂orth =
Ĉ(Ĉ′Ĉ)−1M̂cE[Z|X]M̂r (R̂′R̂)−1R̂ + Ŵ. Using
(42), we have X̂orth − Ŵ = Ĉ(Ĉ′Ĉ)−1Ĉ′(X −
Ŵ)R̂(R̂′R̂)−1R̂′, which is a biorthogonal projection
since Ĉ(Ĉ′Ĉ)−1Ĉ′ and R̂(R̂′R̂)−1R̂′ are projection
matrices.

V. EXPERIMENTS

In this section, we perform experiments on a number of
synthetic and real-world data sets. Unless otherwise stated, the
CM algorithm with fast convergence (Section IV-A) is used
for BPPCA. For BPPCA and GLRAM, iteration is stopped
when the relative change in the objective (|1 − L(t)/L(t+1)|)
is smaller than a threshold tol (= 10−5 in the experiments)
or the number of iterations exceeds a certain maximum tmax
(= 20). For PSOPCA, we use the variational EM learning
algorithm in [14] for the general noise case and follow their
experimental setting to set tmax = 20.

A. Accuracies of the Estimators

In this experiment, we sample a 2-D synthetic data
set from a 10×10-D matrix-variate normal distribution.
The column and row covariance matrices have differ-
ent eigenvalues (5, 4.5, 4, 1, . . . , 1 and 10, 9, 8, 2, . . . , 2,
respectively, of which the first three are dominant),
and their leading principal components are the same
([1/
√

2,−1/
√

2, 0, . . . , 0]′, [0, 0, 1/
√

2,−1/
√

2, 0, . . . , 0]′
and [0, 0, 0, 0, 1/

√
2,−1/

√
2, 0, . . . , 0]′).

We compare the accuracies of the following methods in
estimating the dominant principal subspace of the data.

1) BPPCA, with qc = qr = 3;
2) PSOPCA [14], with qc = qr = 3; and
3) PPCA [4] on the vectorized 1-D data, with

q = qcqr = 9.

The subspaces of BPPCA and PSOPCA are spanned by
the columns of R ⊗ C in (14) and (13), respectively.

TABLE I

NEGATIVE LOG-LIKELIHOOD VALUES AND ARC LENGTH DISTANCES

OBTAINED FOR TEN DIFFERENT INITIALIZATIONS OF CM

Iteration

Trial 1 2 3 4 Distance

1 76714.2 60168.4 60168.0 60168.0 0

2 71073.9 60168.2 60168.0 60168.0 7.74e–08

3 73446.2 60168.2 60168.0 60168.0 7.15e–08

4 72262.2 60168.2 60168.0 60168.0 1.00e–07

5 72716.3 60168.2 60168.0 60168.0 1.17e–07

6 72890.9 60168.2 60168.0 60168.0 1.50e–07

7 73390.6 60168.2 60168.0 60168.0 8.94e–08

8 70523.1 60168.2 60168.0 60168.0 1.10e–07

9 72355.2 60168.2 60168.0 60168.0 1.29e–07

10 72554.5 60168.2 60168.0 60168.0 1.30e–07

The performance criterion is the arc length distance between
the estimated subspace and the true one [33]. Let P̂, P ∈
R

100×9 be the orthogonal bases of the two subspaces, respec-
tively. The arc length between them is defined as ‖θ‖2, where
θ = [θ1, . . . , θ9]′, with {cos(θi )}9i=1 being the singular values
of P̂′P. To reduce statistical variability, results for all the
methods are averaged over 50 repetitions.

Fig. 2 shows the arc length distances obtained at different
sample sizes (N). It can be observed that: 1) as N increases,
the principal subspaces obtained by all three methods all
converge to the true one; and 2) with limited sample size,
BPPCA performs best, which is then followed by PSOPCA,
and (as expected) PPCA is the worst.

B. Sensitivity to Initialization

Recall that random initialization is used in the CM and
AECM algorithms (Algorithms 1 and 2). Our experience
suggests that such a simple scheme works well in practice, and
almost identical stationary points of the likelihood are obtained
with different random initializations. To illustrate this, we
report in the following an experiment on sensitive analysis,
using the data set in Section V-A (with sample size N = 200).
The setup follows that used for the GLRAM in [11]. In the
first trial for CM, R is initialized as [I, 0′]′ and σ 2

r as 0.01.
For the other nine trials of CM and all ten trials of AECM, the
initializations are random. To measure the differences among
solutions obtained with different initializations, we measure
the arc length distance between the principal subspace for the
solution obtained with CM’s first trial and those from the other
random initializations.

Results for CM and AECM are shown in Tables I and II,
respectively. As can be seen, different initializations converge
to the same log-likelihood value and almost identical principal
subspace (up to rotation).

C. Convergence of CM and AECM

In this experiment, we compare the convergence speeds
of the CM algorithm (Section IV-A) and AECM algorithm
(Section IV-B) for BPPCA. We use the same data set (with
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Fig. 3. Changes in log likelihood L for the CM (solid) and AECM (dotted) algorithms (a) with the number of iterations on the first synthetic data set,
(b) with CPU time on the first synthetic data set, and (c) with CPU time on the second high-dimensional synthetic data set.

TABLE II

NEGATIVE LOG-LIKELIHOOD VALUES AND ARC LENGTH DISTANCES

OBTAINED FOR TEN DIFFERENT INITIALIZATIONS OF AECM

Iteration

Trial 1 3 50 150 Distance

1 10360469819.2 72888.0 60169.5 60168.0 1.22e–07

2 10617967930.8 77084.8 60169.0 60168.0 1.46e–07

3 10912126971.6 78603.7 60172.2 60168.0 1.44e–07

4 9460828603.7 73512.5 60169.8 60168.0 1.44e–07

5 10091592873.6 74570.0 60168.5 60168.0 1.53e–07

6 11040349303.6 75792.0 60168.0 60168.0 1.49e–07

7 11432559741.1 72319.0 60168.7 60168.0 1.67e–07

8 10429865860.2 75821.6 60168.9 60168.0 1.69e–07

9 10818886067.2 73340.7 60168.3 60168.0 1.37e–07

10 10995998085.1 73546.0 60168.9 60168.0 1.59e–07

sample size N = 500) from Section V-A. Again, we fit the
data with qc = qr = 3. For demonstration purpose, we set
tol = 10−8. Moreover, C or R are initialized randomly and
σ 2

c , σ 2
r are set to 0.01.

Fig. 3(a) plots the evolution of the log likelihood value
versus the number of iterations. It can be observed that CM
converges in a few iterations while AECM requires around
60 iterations to achieve comparable likelihood value. This
is consistent with the theoretical result that the inclusion of
missing information may yield slower convergence [15].

However, as the per-iteration complexity of AECM is lower
than that of CM, it is interesting to investigate whether AECM
could actually be more efficient. Fig. 3(b) plots the evolution of
their log likelihood values versus CPU time. It can be observed
that CM is indeed more efficient than AECM on this data set.
In general, this is to be expected when the data dimensionality
is not high.

When one/both of the data dimensionalities (dc and dr ) is
high, AECM can become more efficient, as is demonstrated in
the following experiment. We sample a data set (with sample
size 50) from a 500× 20-D matrix-variate normal distribution
with latent dimensions qc = qr = 3. Again, we fit the data
with the true latent dimensions. Fig. 3(c) plots the evolution of
their log likelihood values versus CPU time. It can be observed
that AECM is more efficient than CM on this high-dimensional
data set.

TABLE III

METHODS USED ON THE FACE DATA SETS

Method Compressed representation
BPPCA E[Z|X] in (42)

PSOPCA [10] E[Z|X]
PPCA [4] E[z|x] in (9)

GLRAM [11] U′cXUr
PCA [11] U′vec(X)

FPCA [27] U′cXUr
2-DPCA [12] XUr

D. Classification Performance on Face Data Sets

In this section, we perform face recognition experiments on
two real-world image data sets.

1) XM2VTS5, which contains images for 295 individuals.
Each individual has eight images taken over a period of
four months. The image size is 51× 55.

2) AR, which contains 126 individuals. Each individual has
26 images. As in [34], we use a subset containing 100
individuals (50 men and 50 women), and each person
has 14 nonoccluded images with variations in expression
and illumination. The image size is 100× 100.

The data is randomly split into training and test sets, such
that each class has two, three, or four training samples. The
classification error rate, averaged over 20 such repetitions, will
be reported. Table III lists the dimension reduction methods
to be compared and their corresponding representations in
the reduced-dimensional space. After the compressed rep-
resentations by each method are obtained, the one-nearest-
neighbor classifier is then used to obtain the error rates. For all
these methods, all possible dimensionalities of the compressed
representation are tried and with the best results reported.

Table IV shows the error rates obtained by the various
methods. The following can be seen.

1) BPPCA and PPCA substantially outperforms GLRAM,
PCA and FPCA.

2) BPPCA is better than PPCA, and this can be attributed
to the use of the underlying 2-D data structure.

3) BPPCA is significantly better than PSOPCA. This indi-
cates that the features obtained by BPPCA are signifi-
cantly superior than those by PSOPCA.

5Available from http://www.face-rec.org/databases/.
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TABLE IV

AVERAGED ERROR RATES (MEAN±STD %) OBTAINED BY THE VARIOUS

METHODS ON THE FACE DATA SETS. THE METHOD THAT IS

STATISTICALLY SIGNIFICANTLY BETTER (WITH A P-VALUE OF 0.05

USING THE TWO-SAMPLE ONE-TAILED t-TEST) THAN THE OTHER

METHODS IS MARKED 	

Number of training images per individual
Data set Method 2 3 4

XM2VTS

BPPCA 	19.8±2.7 	15.3±2.2 	11.3±1.8
PSOPCA 31.8±2.8 25.1±2.2 19.9±2.1

PPCA 25.5±3.2 19.0±2.1 14.5±2.1
FPCA 26.2±3.0 20.9±2.2 16.3±2.1

GLRAM 26.5±3.1 21.1±2.1 16.5±2.1
PCA 26.6±3.1 21.2±2.0 16.6±2.0

2DPCA 26.7±3.1 21.1±2.0 16.6±2.0

AR

BPPCA 	36.1±5.8 	25.3±6.0 24.1±6.2
PSOPCA 44.0±7.5 29.2±7.3 27.4±6.8

PPCA 44.6±10.1 27.3±5.4 24.5±5.9
FPCA 58.8±11.6 42.0±4.5 41.8±10.3

GLRAM 58.8±11.6 42.0±4.5 41.8±10.3
PCA 58.9±11.6 42.2±4.4 41.9±10.2

2DPCA 58.9±11.6 42.1±4.5 41.8±10.3

TABLE V

AVERAGED ERROR RATES (MEAN±STD %) OBTAINED BY BPPCA AND

PPCA ON THE IRIS DATA SET. THE METHOD THAT IS STATISTICALLY

SIGNIFICANTLY BETTER (WITH A p-VALUE OF 0.05 USING THE

TWO-SAMPLE ONE-TAILED t-TEST) THAN THE OTHER METHOD IS

MARKED 	

Number of training samples per class
Method 5 15 25 35

BPPCA 	5.2±2.2 	3.5±1.1 	3.2±1.2 3.2±1.8
PPCA 9.4±3.0 7.1±2.1 5.6±1.8 4.3±2.9

E. Performance on Data With Nonseparable Covariance

Recall that BPPCA relies on the assumption of separable
covariance (Section III-B). For low-dimensional data, Lu and
Zimmerman [23] proposed a likelihood ratio test for separabil-
ity. However, for high-dimensional data sets such as those used
in Section V-D, this test is impractical as the data covariance
matrix becomes singular [35].

To study how nonseparability affects BPPCA, we will
examine its performance on the classical iris data set, which
is known to have a nonseparable covariance structure [23].
The iris data set has four variables: sepal length, sepal width,
petal length, and petal width. In [23], they considered the two
crossing factors: “plant part” (sepal or petal) and “physical
dimension” (length or width). Using the likelihood ratio test
in [23], it is shown that these two factors are not separable.

Table V compares the error rates for BPPCA and PPCA,
using the one-nearest-neighbor classifier as in Section V-D.
As can be seen, even though BPPCA relies on the separable
covariance assumption, it is still significantly better than PPCA
(which uses a nonrestrictive covariance). The difference is
especially prominent on small training sets. This thus supports
the observation in Section III-B that separability can trade bias
for lower variance, leading to better generalization even on
data sets with nonseparable covariance structure.

VI. CONCLUSION

In this paper, we proposed a bilinear probabilistic model
called BPPCA for probabilistic dimension reduction on 2-D
data. This signals a breakthrough from the classical 1-D latent
variable model to the 2-D case. We developed two maximum
likelihood estimation algorithms for BPPCA, one is based on
CM while the other is based on AECM. The CM algorithm has
faster convergence but higher per-iteration complexity, while
the AECM algorithm has slower convergence but scales better
on high-dimensional data. Similar to PPCA, we showed that
the MLE of the BPPCA parameters (C and R) are principal
subspaces of the column and row covariance matrices (up to
scaling and rotation). In contrast, PSOPCA fails to provide
such an important connection. Moreover, empirical results
on synthetic data and real-world data sets demonstrate the
usefulness of BPPCA over existing methods.

Nowadays, many real-world data sets are in the form of 3-D
or even higher-order tensor [36]. For example, color images
and grayscale video sequences can be regarded as 3-D data,
while color video sequence can be regarded as 4-D. Recently,
GLRAM has been extended to MPCA for the handling of
tensor data [37]. In the future, we will also consider extending
BPPCA, and the accompanying CM and AECM algorithms,
along this direction.

APPENDIX A

MATRIX-VARIATE NORMAL DISTRIBUTION

The matrix-variate normal distribution is a normal distri-
bution with separable covariance matrix (17) [38]. It is a
generalization for the multivariate normal distribution in 1-D.
Formally, it is defined as follows.

Definition 1: A random matrix X ∈ R
dc×dr is said to fol-

low matrix-variate normal, denoted Ndc,dr (W,�c,�r ), with
mean matrix W, column covariance matrix �c ∈ R

dc×dc

and row covariance matrix �r ∈ R
dr×dr , if vec(X) ∼

Ndc×dr (vec(W),�r ⊗�c). The pdf of X is given by

p(X) = (2π)−
1
2 dr dc |�c|− 1

2 dr |�r |− 1
2 dc

etr

{

−1

2
�−1

c (X−W)�−1
r (X−W)′

}

(43)

where etr(·) = exp(tr(·)).
The pdf (43) of the matrix-variate normal is obtained by

rewriting the pdf of vec(X) in vector form into the equivalent
matrix form. If dr = 1 or dc = 1, the matrix-variate normal
degenerates to multivariate normal.

APPENDIX B

ROTATION AND SCALING INDETERMINACIES OF BPPCA

The BPPCA model is unique up to the following transfor-
mations.

1) Orthogonal rotations of the factor loading matrices,
latent matrix, column and row noise matrices: For any
orthogonal matrices Vc ∈ R

qc×qc and Vr ∈ R
qr×qr , it is
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easy to see that

CZR′ +W+ Cεr + εcR′ + ε

= (CV′c)(VcZV′r )(Vr R′)+W + (CV′c)(Vcεr )

+(εcV′r )(Vr R′)+ ε.

As a subspace learning method, we are interested in the
subspaces spanned by the columns of C and R and hence
this rotation indeterminacy is not a matter of concern.

2) Scaling of the column and row factor loading matrices.
By multiplying (C, σc) by a positive constant a and
(R, σr ) by a−1 simultaneously, it is easy to see that

CZR′ +W+ Cεr + εcR′ + ε

= aCZR′a−1+W+ aCεr a−1+aεcR′a−1+aεa−1.

This is not a problem as we are usually interested in:
1) the Kronecker product of the column and row para-
meters (instead of either one of them); and 2) the
column and row principal subspaces, and the variance
ratios contained in these subspaces. For 1), clearly,
the effect of scaling can be eliminated. For 2), the
scaling effect is also eliminated as follows. It can be
seen from (30) that the change C → aC and σ 2

c →
aσ 2

c leads to Sr → a−1Sr and hence its eigenvalues
λri → a−1λri , i = 1, . . . , dr . Consequently, Ur remains
unchanged, �r → a−1�r , R → a−1R in (31) and
σ 2

r → a−1σ 2
r in (32). Thus, the row principal subspace

spanned by Ur is unchanged and the variance ratio∑qr
i=1 a−1λri/

∑dr
i=1 a−1λri is unchanged as well. A

similar conclusion can be drawn for the column principal
subspace and its variance ratio. Thus, the scaling effect
is eliminated.

APPENDIX C

DERIVATIONS FOR THE PROBABILITY DISTRIBUTIONS

IN SECTION III-D

From (18) and (43), the probability density of Yr given Z
can be obtained as

p(Yr |Z) = (2πσ 2
r )−

1
2 dr qc

etr

{

−1

2
(Yr − ZR′)σ−2

r (Yr − ZR′)′
}

(44)

and the prior density of the latent matrix Z is

p(Z) = (2π)−
1
2 qr qc etr

{

−1

2
ZZ′

}

. (45)

From (44) and (45), we have the marginal density of Yr

p(Yr ) =
∫

p(Yr |Z)p(Z)dZ

= (2π)−
1
2 dr qc etr

{

−1

2
Yr�−1

r Yr ′
}

(46)

where �r is given by (15). Using the Bayes’ rule, the
conditional density of Z given Yr is

p(Z|Yr ) = (2π)−
1
2 qr qc

etr

{

−1

2
(Z− Yr RM−1

r )σ−2
r Mr (Z− Yr RM−1

r )′
}

where Mr is given by (24). Similarly, from (18) and (43), the
conditional density of Yr

ε given εc is

p(Yr
ε |εc) = (2πσ 2

c σ 2
r )−

1
2 dr dc

etr

{

−1

2
σ−2

c (Yr
ε − εcR′)σ−2

r (Yr
ε − εcR′)′

}

(47)

and the prior distribution of the noise matrix εc is

p(εc) = (2πσ 2
c )−

1
2 qr dc etr

{

−1

2
σ−2

c εcε
′
c

}

. (48)

Using (47) and (48), we obtain

p(Yr
ε) =

∫

p(Yr
ε|εc)p(εc)dεc

= (2πσ 2
c )−

1
2 dr dc |�r |− 1

2 dc etr

{

−1

2
σ−2

c Yr
ε�
−1
r Yr

ε
′
}

. (49)

Substituting Yr
ε = X−CYr −W into (49) and using (46), we

have

p(X) =
∫

p(X|Yr)p(Yr )dYr

= (2π)−
1
2 dr dc |�c|− 1

2 dr |�r |− 1
2 dc

etr

{

−1

2
�−1

c (X−W)�−1
r (X−W)′

}

where �r is given by (15), and the conditional density of Yr

given X is

p(Yr |X) = (2π)−
1
2 dr qc

etr

{

−1

2
σ−2

c Mc(Yr −M−1
c C′X)�−1

r (Yr −M−1
c C′X)′

}

where Mc is given by (24).
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