4 research outputs found

    Variations of Boundary Surface in Chua’s Circuit

    Get PDF
    The paper compares the boundary surfaces with help of cross-sections in three projection planes, for the four changes of Chua’s circuit parameters. It is known that due to changing the parameters, the Chua’s circuit can be characterized in addition to a stable limit cycle also by one double scroll chaotic attractor, two single scroll chaotic attractors or other two stable limit cycles. Chua’s circuit can even start working as a binary memory. It is not known yet, how changes in parameters and conseqently in attractors in the circuit will affect the morphology of the boundary surface. The boundary surface separates the double scroll chaotic attractor from the stable limit cycle. In a variation of the parameters presented in this paper the boundary surface will separate even single scroll chaotic attractors from each other. Dividing the state space into regions of attractivity for different attractors, however, remains fundamentally the same

    Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2013 IEEE.In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also dependent on the Markovian jumping mode. By introducing novel Lyapunov-Krasovskii functionals and using some analytical techniques, sufficient conditions are derived to guarantee that the coupled networks are asymptotically synchronized in mean square. The derived sufficient conditions are closely related with the discrete-time delays, the distributed time delays, the mode transition probability, and the coupling structure of the networks. The obtained criteria are given in terms of matrix inequalities that can be efficiently solved by employing the semidefinite program method. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61074129, 61174136 and 61134009, and the Natural Science Foundation of Jiangsu Province of China under Grants BK2010313 and BK2011598

    On attracting basins of multiple equilibria of a class of cellular neural networks

    No full text
    In this paper, we study the distribution of attraction basins of multiple equilibrium points of cellular neural networks (CNNs). Under several conditions, the boundaries of the attracting basins of the stable equilibria of a completely stable CNN system are composed of the closures of the stable manifolds of unstable equilibria of (n - 1) dimensions. As demonstrations of this idea, under the conditions proposed in the literature which depicts stable and unstable equilibria, we identify the attraction basin of each stable equilibrium of which the boundary is composed of the stable manifolds of the unstable equilibria precisely. We also investigate the attracting basins of a simple class of symmetric 1-D CNNs via identifying the unstable equilibria of which the stable manifold is (n - 1) dimensional and the completely stable asymmetric CNNs with stable equilibria less than 2n
    corecore