58,696 research outputs found

    Representations of Spaces

    Full text link
    We explain how the notion of homotopy colimits gives rise to that of mapping spaces, even in categories which are not simplicial. We apply the technique of model approximations and use elementary properties of the category of spaces to be able to construct resolutions. We prove that the homotopy category of any monoidal model category is always a central algebra over the homotopy category of Spaces.Comment: Final version, almost as it will appear in "Algebraic and Geometric Topology"; 30 page

    Convergence between Categorical Representations of Reeb Space and Mapper

    Get PDF
    The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological data analysis and visualization suitable for the study of multivariate scientific datasets. First introduced by Edelsbrunner et al., it compresses the components of the level sets of a multivariate mapping and obtains a summary representation of their relationships. A related construction called mapper, and a special case of the mapper construction called the Joint Contour Net have been shown to be effective in visual analytics. Mapper and JCN are intuitively regarded as discrete approximations of the Reeb space, however without formal proofs or approximation guarantees. An open question has been proposed by Dey et al. as to whether the mapper construction converges to the Reeb space in the limit. In this paper, we are interested in developing the theoretical understanding of the relationship between the Reeb space and its discrete approximations to support its use in practical data analysis. Using tools from category theory, we formally prove the convergence between the Reeb space and mapper in terms of an interleaving distance between their categorical representations. Given a sequence of refined discretizations, we prove that these approximations converge to the Reeb space in the interleaving distance; this also helps to quantify the approximation quality of the discretization at a fixed resolution

    Weak Form of Stokes-Dirac Structures and Geometric Discretization of Port-Hamiltonian Systems

    Full text link
    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.Comment: Copyright 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0
    • …
    corecore