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Abstract
The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological
data analysis and visualization suitable for the study of multivariate scientific datasets. First
introduced by Edelsbrunner et al., it compresses the components of the level sets of a multivariate
mapping and obtains a summary representation of their relationships. A related construction
called mapper, and a special case of the mapper construction called the Joint Contour Net have
been shown to be effective in visual analytics. Mapper and JCN are intuitively regarded as
discrete approximations of the Reeb space, however without formal proofs or approximation
guarantees. An open question has been proposed by Dey et al. as to whether the mapper
construction converges to the Reeb space in the limit.

In this paper, we are interested in developing the theoretical understanding of the relationship
between the Reeb space and its discrete approximations to support its use in practical data
analysis. Using tools from category theory, we formally prove the convergence between the Reeb
space and mapper in terms of an interleaving distance between their categorical representations.
Given a sequence of refined discretizations, we prove that these approximations converge to the
Reeb space in the interleaving distance; this also helps to quantify the approximation quality of
the discretization at a fixed resolution.
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1 Introduction

Motivation and prior work. Multivariate datasets arise in many scientific applications,
ranging from oceanography to astrophysics, from chemistry to meteorology, from nuclear
engineering to molecular dynamics. Consider, for example, combustion or climate simulations
where multiple physical measurements (e.g. temperature and pressure) or concentrations of
chemical species are computed simultaneously. We model these variables mathematically
as multiple continuous, real-valued functions defined on a shared domain, which constitute
a multivariate mapping f : X → Rd, also known as a multi-field. We are interested in
understanding the relationships between these real-valued functions, and more generally, in
developing efficient and effective tools for their analysis and visualization.
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53:2 Convergence between Categorical Representations of Reeb Space and Mapper

Recently, topological methods have been developed to support the analysis and visualiza-
tion of scalar field data with widespread applicability. In particular, a great deal of work for
scalar topological analysis has been focused on computing the Reeb graph [21]. The Reeb
graph contracts each contour (i.e. component of a level set) of a real-valued function to a
single point and uses a graph representation to summarize the connections between these
contours. When the domain is simply connected, this construction forms a contour tree,
which has been shown to be effective in many applications including data simplification and
exploratory visualization [3]. From a computational perspective, both randomized [11] and
deterministic [18] algorithms exist that compute the Reeb graph for a function defined on a
simplicial complex K in time O(m logm), where m is the total number of vertices, edges
and triangles in K. Recent work by de Silva et al. [7] has shown that the data of a Reeb
graph can be stored in a category-theoretic object called a cosheaf, which opens the way for
defining a metric for Reeb graphs known as the interleaving distance. The idea of utilizing a
cosheaf over a simplicial complex has also been previously investigated, in particular in the
work of Curry [6].

Unlike for real-valued functions, very few tools exist for studying multivariate data
topologically as the situation becomes much more complicated. The most notable examples
of these tools are the Jacobi set [9] and the Reeb space [10]. The Jacobi set analyzes the
critical points of a real-valued function restricted to the intersection of the level sets of
other functions. On the other hand, the Reeb space, a generalization of the Reeb graph,
compresses the components of the level sets of the multivariate mapping (i.e. f−1(c), for
c ∈ Rd) and obtains a summary representation of their relationships. These two concepts are
shown to be related as the image of the Jacobi sets under the mapping corresponds to certain
singularities in the Reeb space. An algorithm has been described by Edelsbrunner et al. [10]
to construct the Reeb space of a generic piecewise-linear (PL), Rd-valued mapping defined
on a combinatorial manifold up to dimension 4. Let n be the number of (d− 1)-simplices in
the combinatorial manifold. Assuming d is a constant, the running time of the algorithm is
O(nd), polynomial in n [19].

A related construction called mapper [22] takes as input a multivariate mapping and
produces a summary of the data by using a cover of the range space of the mapping. Such
a summary converts the mapping with a fixed cover into a simplicial complex for efficient
computation, manipulation, and exploration [14, 17]. When the mapping is a real-valued
function (i.e. d = 1) and the cover consists of a collection of open intervals, it is stated
without proof that the mapper constrcution recovers the Reeb graph precisely as the scale of
the cover goes to zero [22]. A similar combinatorial idea has also been explored with the
α-Reeb graph [5], which is another relaxed notion of a Reeb graph produced by a cover of
the range space consisting of open intervals of length at most α. Recently, Dey et al. [8]
extended mapper to its multiscale version by considering a hierarchical family of covers and
the maps between them. At the end of their exposition, the authors raised an open question
in understanding the continuous object that the mapper construction converges to as the
scale of the cover goes to zero, in particular, whether the mapper construction converges to
the Reeb space. In addition, Carr and Duke [2] introduced a special case of mapper called
the Joint Contour Net (JCN) together with its efficient computation, for a PL mapping
defined over a simplicial mesh involving an arbitrary number of real-valued functions. Based
on a cover of the range space using d-dimensional intervals, the JCN quantizes the variation
of multiple variables simultaneously by considering connected components of interval regions
(i.e. f−1(a, b)) instead of the connected components of level sets (i.e. f−1(c)). It can be
computed in time O(kmα(km)), where m is the size of the input mesh, k is the total number
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of quantized interval regions, and α is the slow-growing inverse Ackermann function [2]. The
authors stated that the JCN can be considered as a discrete approximation that converges in
the limit to the Reeb space [2], although this statement was supported only by intuition and
lacked approximation guarantees.

Contributions. In this paper, we are interested in developing theoretical understandings
between the Reeb space and its discrete approximations to support its use in practical data
analysis. Using tools from category theory, we formally prove the convergence between
the Reeb space and mapper in terms of an interleaving distance between their categorical
representations (Theorem 1). Given a sequence of refined discretizations, we prove that
these approximations converge to the Reeb space in the interleaving distance; this also helps
to quantify the approximation quality of the discretization at a fixed resolution. Such a
result easily generalizes to special cases of mapper such as the JCN. Our work extends
and generalizes the tools from the categorical representation of Reeb graphs [7] to a new
categorical framework for Reeb spaces. In particular, we provide for the first time the
definition of the interleaving distance for Reeb spaces (Definition 2). We demonstrate that
such a distance is an extended pseudometric (Theorem 3) and it provides a simple and formal
language for structural comparisons. Finally in the setting of Reeb graphs (when d = 1),
we demonstrate that mapper converges to the Reeb graph geometrically on the space level
(Corollary 6). We further provide an algorithm for constructing a continuous representation
of mapper geometrically from its categorical representation.

2 Topological Notions

We now review the relevant background on the Reeb space [10, 19] and mapper1 [8, 22].
In theory, we assume the data given is a compact topological space X with an Rd-valued
function, f : X→ Rd, often denoted (X, f). In practice, we assume the data we work with is
a multivariate PL mapping f defined over a simplicial mesh; more restrictively (for easier
exposition of our algorithms and proofs), we consider a generic, PL mapping f from a
combinatorial manifold [20] to Rd.

Reeb Space. Let f : X → Rd be a generic, continuous mapping2. Intuitively, the Reeb
space of f parametrizes the set of components of preimages of points in Rd [10]. Two points
x, y ∈ X are equivalent, denoted by x ∼f y, if f(x) = f(y) and x and y belong to the same
path connected component of the preimage, f−1(f(x)) = f−1(f(y)). The Reeb space is the
quotient space obtained by identifying equivalent points, that is, R(X, f) = X/ ∼f , together
with the quotient topology inherited from X. A powerful analysis tool, the Reeb graph, can be
considered a special case in this context when d = 1. Reeb spaces have been shown to have
triangulations and canonical stratifications into manifolds for nice enough starting data [10].

Mapper. An open cover of a topological space X is a collection U = {Uα}α∈A of open sets
for some indexing set A such that

⋃
α∈A Uα = X. In this paper, we will always assume that

each Uα is path-connected and a cover means a finite open cover. We define a finite open cover
U to be a good cover if every finite nonempty intersection of sets in U is contractible. Given

1 Mapper was originally referred to as a method [22], however we refer to it as a topological construc-
tion/object in this paper.

2 For simplicity, assume f is a PL mapping defined on a combinatorial manifold.

SoCG 2016



53:4 Convergence between Categorical Representations of Reeb Space and Mapper

Figure 1 The data of a Reeb graph (on the left) can be stored as a functor. First, we give the
middle functor f−1 : Open(R)→ Top which sends each open set I to the topological space f−1(I);
and sends each inclusion map between open sets I ⊆ J to an inclusion map f−1(I)→ f−1(J). Then
the Reeb graph information is represented by composing this functor with the functor π0 : Top→ Set,
producing a functor on the right π0f

−1 : Open(R) → Set. Via π0, the inclusion maps on the
topological spaces become set maps.

a cover U = {Uα}α∈A of X, let Nrv(U) denote the simplicial complex that corresponds to the
nerve of the cover U , Nrv(U) =

{
σ ⊆ A |

⋂
α∈σ Uα 6= ∅

}
. Given a (potentially multivariate)

continuous map f : X→ Y where Y is equipped with a cover U = {Uα}α∈A, we write f∗(U)
as the cover of X obtained by considering the path connected components of f−1(Uα) for
each α. Given such a function f , its mapper construction (or mapper for short) M is defined
to be the nerve of f∗(U), M(U , f) := Nrv(f∗(U)) [22]. Intuitively, considering a real-valued
function f : X→ R and a cover Uε of image(f) ⊆ R consisting of intervals of length at most
ε, the corresponding mapper M(Uε, f) can be thought of as a relaxed Reeb graph that has
been conjectured to converge to the Reeb graph of f as ε tends to zero [8, 22], although no
formal proofs have been previously provided.

3 Categorical Notions

Category and opposite category. Category theory [15] can be thought of as a generalization
of set theory in the sense that the item of study is still a set (technically a proper class),
but now we are additionally interested in studying the relationships between the elements of
the set. Mathematically, a category is an algebraic structure that consists of mathematical
objects with a notion of morphisms (colloquially referred to as arrows) between the objects.
A category has the ability to compose the arrows associatively, and there is an identity
arrow for each object. Examples are abundant and those important to our exposition are:
the category of topological spaces (as the objects) with continuous functions between them
(as the arrows), denoted as Top; the category of sets with set maps, denoted as Set; the
category of open sets in Rd with inclusion maps, denoted as Open(Rd); the category of
vector spaces with linear maps, denoted as Vect; and the category of real numbers with
inequalities connecting them, denoted as R. In addition, any simplicial complex K induces a
category Cell(K) where the objects are the simplices of K, and there is a morphism σ → τ if
σ is a face of τ . Intuitively, we could think of a category as a big (probably infinite) directed
multi-graph with extra underlying structures (due to the associativity and identity axioms
obeyed by the arrows): the objects are the nodes, and each possible arrow between the nodes
is represented as a directed edge. One common example used extensively throughout this
paper is the idea of a poset category, which is a category P in which any pair of elements
x, y ∈ P has at most one arrow x → y. Categories such as Open(Rd) and R are poset
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Figure 2 The diagram for a natural transformation.

categories since there is exactly one arrow I → J between open sets if I ⊆ J and exactly one
arrow a→ b between real numbers if a ≤ b. We often abuse notation and denote arrows in
this category by the relation providing the poset structure, e.g. I ⊆ J instead of I → J and
a ≤ b instead of a→ b. In the graph description, a poset category can be thought of as a
directed graph which is not a multigraph. The opposite category (or dual category) Cop of
a given category C is formed by reversing the arrows (morphisms), i.e. interchanging the
source and target of each arrow.

Functor. A functor is a map between categories that maps objects to objects and arrows
to arrows. A functor F : C → D for categories C and D maps an object x in C to an object
F (x) in D, and maps an arrow f : x→ y of C to an arrow F [f ] : F (x)→ F (y) of D in a way
that respects the identity and composition laws. In the above graph allegory, a functor is a
map between graphs which sends nodes (objects) to nodes and edges (arrows) to edges in
a way that is compatible with the structure of the graphs. An example of a functor is the
homology functor Hp : Top→ Vect which sends a topological space X to its p-th singular
homology group Hp(X) (a vector space assuming field coefficients), and sends any continuous
map f : X→ Y to the linear map between homology groups, Hp[f ] := f∗ : Hp(X)→ Hp(Y).
Another functor used extensively in this paper is π0 : Top→ Set which sends a topological
space X to a set π0(X) where each element represents a path connected component of X, and
sends a map f : X→ Y to a set map π0[f ] := f∗ : π0(X)→ π0(Y).

Natural transformation. We can make any collection of functors of the form F : C → D
into a category by defining arrows between the functors. A natural transformation ϕ : F ⇒ G

between functors F,G : C → D is a family of arrows ϕ in D such that (a) for each object
x of C, we have ϕx : F (x) → G(x), an arrow of D; and (b) for any arrow f : x → y in C,
G[f ] ◦ ϕx = ϕy ◦ F [f ], that is, the diagram of Figure 2 commutes. Any collection of functors
F : C → D can thus be turned into a category, with the functors themselves as objects
and the natural transformations as arrows, notated as DC. This notation is used heavily
throughout this paper where always D = Set. If for every object x of C, the arrow ϕx is an
isomorphism in D, then ϕ is a natural isomorphism (equivalence) of functors. Two functors
F and G are (naturally) isomorphic if there exists a natural isomorphism from F to G.

Categorical Reeb graph. For a real-valued function f : X→ R, the data of its corresponding
Reeb graph can be stored as a functor F := π0f

−1 : Open(R)→ Set, defined by sending
each open set I to a set F (I) := π0f

−1(I) that contains all the path connected components
of f−1(I); and by sending an inclusion I ⊆ J to a set map F [I ⊆ J ] : F (I) → F (J)
induced by the inclusion f−1(I) ⊆ f−1(J). This is illustrated in Figure 1. The objects
F (I) store the connected components sitting over any open set; the information from the
arrows F (I) → F (J) gives the information needed to glue together all of this data. This
construction produces a categorical representation of the Reeb graph, referred to as the
categorical Reeb graph. It was used in [7] to define the interleaving distance for Reeb graphs
which we generalize to Reeb spaces in Section 5.

SoCG 2016
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Figure 3 Defining a colimit.

Figure 4 The diagram for connecting categorical representations of the Reeb space and the
mapper. Note that the diagram is not commutative. Theorem 1 measures the amount that this
diagram deviates from being commutative.

Colimit. The final category theoretic notion necessary for our results are colimits. The
cocone (N,ψ) of a functor F : C → D is an object N of D along with a family of ψ of arrows
ψx : F (x) → N for every object x of C, such that for every arrow f : x → y in C, we have
ψy ◦ F [f ] = ϕx. We say that a cocone (N,ψ) factors through another cocone (L,ϕ) if there
exists an arrow u : L→ N such that u ◦ϕx = ψx for every x in C. The colimit of F : C → D,
denoted as colimF , is a cocone (L,ϕ) of F such that for any other cocone (N,ψ) of F , there
exists a unique arrow u : L → N such that (N,ψ) factors through (L,ϕ). In other words,
the diagram of Figure 3 commutes. We often abuse notation by using colimF to represent
just the object L. The colimit is universal; in particular, this means that if the colimit (L,ϕ)
factors through another cocone (M, δ), then L is isomorphic to M and the isomorphism is
given by the unique arrow u′ : M → L that defines it. We will use this property in the proof
of Lemma 5.

Because we often wish to consider these colimits over a full subcategory A ⊆ C, we will
denote the restriction as colimA∈A F (A). The properties of a colimit also imply that if
we have nested subcategories A ⊆ B (⊆ C), then there is a unique map colimA∈A F (A)→
colimB∈B F (B) since we can consider colimB∈B F (B) as cocone over A.

4 Main Results Overview

The main focus of this paper is to provide a convergence result between the continuous Reeb
space and the discrete mapper. We define their distance as the interleaving distance between
their corresponding categorical representations and emphasize that neither the Reeb space
nor the interleaving distance must ever be computed for this result. Instead, we provide a
theoretical bound on the distance which requires only knowledge of the resolution of the cover.
To define the desired distance measure, we use the diagram in Figure 4 as our roadmap. The
remainder of this section is dedicated to describing the various categories at the nodes of the
diagram as well as the functors that connect them.

Data. In our context, data comes in the form of a topological space X with an Rd-valued
mapping, called an Rd-space. We store such data in the category Rd-Top. Specifically,
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Figure 5 An example of a Reeb space for d = 1 (a Reeb graph), denoted as R(X, f), is shown
on the left. Its associated data (X, f) is an object in Rd-Top with function f given by height. A
cover U is shown by the green intervals, and the corresponding mapper is shown to its right. The
mapper data is equivalently stored as the CK(X, f) functor defined on an abstract simplicial complex
K = Nrv(U). Note that although we draw K in the same plane as the other objects, it does not have
a geometric embedding, nor does it have a natural map to R. This is remedied with the geometric
representation of this data,MK(X, f) := DPKCK(X, f) which is shown at the far right. Corollary 6
asserts that the interleaving distance between the leftmost and rightmost graphs is bounded by
ε = res(U).

an object of Rd-Top is a pair consisting of a topological space X with a continuous map
f : X → Rd, denoted as (X, f). An arrow in Rd-Top, ν : (X, f) → (Y, g), is a function-
preserving map; that is, it is a continuous map on the underlying spaces ν : X → Y such
that g ◦ ν(x) = f(x) for all x ∈ X. Note that many nice constructions such as PL functions
on simplicial complexes or Morse functions on manifolds are objects in Rd-Top.

Categorical Reeb space and its contruction. Recall the categorical representation of a
Reeb graph is a functor Open(R)→ Set. In order to define a categorical representation of
the Reeb space, we need a higher dimensional analogue of Open(R), namely, Open(Rd).
Open(Rd) is a category with open sets I ⊆ Rd as objects, and a unique arrow I → J if
and only if I ⊆ J ; that is, Open(Rd) is a poset category. The data of the Reeb space
can be stored as a functor π0f

−1 : Open(Rd) → Set, defined by sending each open set I
to a set π0f

−1(I) representing the path connected components of f−1(I); and by sending
the inclusion arrow I ⊆ J to a set map π0f

−1(I) → π0f
−1(J) induced by the inclusion

f−1(I) ⊆ f−1(J). These functors, referred to as the categorical Reeb spaces, become objects
of the category of functors SetOpen(Rd).

Constructing a Reeb space from the data is now represented by the functor C : Rd-Top→
SetOpen(Rd) in Figure 4. In particular, C maps an object (X, f) in Rd-Top, representing
the data, to a functor F : Open(Rd)→ Set in SetOpen(Rd), representing its corresponding
Reeb space. The functor C restricts to the Reeb graph construction when d = 1 [7]. In
addition, from the generalized persistence module framework [1], we can also extend the idea
of the interleaving distance between Reeb graphs (in the case d = 1) to these categorical
Reeb spaces (in the case d ≥ 1). The definition of functor C and the Reeb space interleaving
distance are covered in Section 5.

SoCG 2016
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Categorical mapper and its construction. Instead of working with continuous objects,
we can instead choose a discretization represented by a simplicial complex K. Given a
cover U = {Uα}α∈A for image(f) ⊆ Rd, let K = Nrv(U). Through the machinery detailed
in Section 6, we create a categorical representation of the mapper (referred to as the
categorical mapper) as a functor F : Cell(K)op → Set (an object of SetCell(K)op

); and such
a construction is represented by the CK functor3.

Comparing Reeb space and mapper. It should be noted that the Reeb space and the
mapper are inherently different objects. The Reeb space comes equipped with an Rd-valued
function, while there is no such function built into the mapper even though its construction
is highly dependent on the functions chosen to partition the data set [22]. In particular, the
two objects are in completely different categories. So, to compare these objects, we study the
image of the categorical mapper under the functor PK , which turns the categorical mapper
(a discrete object) into a continuous one comparable with the categorical Reeb space. In
particular, for data given as (X, f) in Rd-Top, we compare its image in SetOpen(Rd) via
the functor C, to its image in SetOpen(Rd) via the functor PKCK . Symbolically, following
Figure 4, we are comparing PKCK(X, f) to C(X, f). This relationship and the construction
of functor PK are covered in Section 7.

We then prove our main result, the categorical convergence theorem below.

I Theorem 1 (Convergence between Categorical Reeb Space and Categorical Mapper). Given
a multivariate function f : X → Rd defined on a compact topological space4, the data is
represented as an object (X, f) in Rd-Top. Let U = {Uα}α∈A be a good cover of f(X) ⊆ Rd,
K be the nerve of the cover and res(U) be the resolution of the cover, that is, the maximum
diameter of the sets in the cover res(U) = sup{diam(Uα) | Uα ∈ U}. Then

dI(C(X, f),PKCK(X, f)) ≤ res(U).

Theorem 1 states that for increasingly refined covers, the image of the categorical mapper
converges to the categorical Reeb space in the interleaving distance. In other words, the
distance between the mapper and the Reeb space is bounded above by the resolution of
the discretization. Thus, we can make approximation guarantees about the accuracy of the
mapper based on a property of the chosen discretization.

Summary. The various categorical representations can be summarized in Figure 4, some of
which are illustrated in Figure 5 for the case when d = 1. The initial data received is an
object (X, f) in Rd-Top. Then we can either construct its categorical Reeb space through
the functor C, or construct its categorical mapper using the functor CK . In order to compare
these two objects in the same category, we push the mapper along using the PK functor,
and then compute the distance between C(X, f) and PKCK(X, f) in SetOpen(Rd). We should
stress before we continue that the diagram of Figure 4 does not commute. In a way, the
above distance is measuring how far the diagram is from being commutative. Making no
assumptions about U , Theorem 1 states that the interleaving distance between the results of
the two paths in the diagram is bounded by the resolution of U . Furthermore in Section 8,
for the special case when d = 1, we turn our categorical convergence theorem, Theorem 1,

3 A related but slightly different categorical mapper was introduced by Stovner [23], as a functor from
the category of covered topological spaces to the category of simplicial complexes.

4 For simplicity, we assume a combinatorial s-manifold; however this is not necessary for the proof.
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into the geometric convergence theorem, Corollary 6. Finally, we provide an algorithm for
producing a geometric representation of the image of categorical mapper, PKCK(X, f).

5 Interleaving Distance between Reeb Spaces

As described in Section 4, we start by generalizing the categorical Reeb graph to the categorical
Reeb space. Given the data received as a topological space X equipped with an Rd-valued
function f : X→ Rd, denoted as (X, f), we define the functor C : Rd-Top→ SetOpen(Rd) as
follows: C maps an object (X, f) in Rd-Top to a functor C(X, f) := π0f

−1 : Open(Rd)→ Set
in SetOpen(Rd), and an arrow ν : (X, f)→ (Y, g) to a natural transformation C[ν] induced
by the inclusion νf−1(I) ⊆ g−1(I). The functor C turns the given data into the categorical
representation of the Reeb space, and the functoriality of π0 makes it a well-defined functor.

Our first goal is to define the interleaving distance for these categorical Reeb spaces.
Denote the ε-thickening of a open set I ∈ Open(Rd) to be the set Iε := {x ∈ Rd | ‖x−I‖ < ε}.
Using this, we can define a thickening functor Tε : Open(Rd)→ Open(Rd) by Tε(I) := Iε,
and Tε[I ⊆ J ] := {Iε ⊆ Jε}. Let Sε be the functor from SetOpen(Rd) to itself defined
by Sε(F) := FTε, for every functor F : Open(Rd) → Set. Given the two functors F
and S2ε(F), both of which are defined on Open(Rd) → Set, there is an obvious natural
transformation η : F ⇒ S2εF defined by ηI = F [I ⊆ I2ε]. We write τ : G ⇒ S2ε(G) for the
analogous natural transformation for G.

I Definition 2 (Interleaving distance between Categorical Reeb spaces). An ε-interleaving
between functors F ,G : Open(Rd)→ Set is a pair of natural transformations, ϕ : F ⇒ Sε(G)
and ψ : G ⇒ Sε(F) such that the diagrams below commute.

Given two functors F ,G : Open(Rd)→ Set, the interleaving distance is defined to be

dI(F ,G) = inf{ε ∈ R≥0 | F ,G are ε-interleaved}.

We define dI(F,G) =∞ if the set on the right-hand side is empty.

We prove in the full version [16] the following property of dI using [1].

I Theorem 3. The interleaving distance dI , between two categorical representations of Reeb
spaces, is an extended pseudometric on SetOpen(Rd).

Special case for Reeb graphs. When d = 1 we have much more control of the situation.
In particular, [7] gives us that the category of Reeb graphs, defined to be finite graphs with
real valued functions that are strictly monotone on the edges, is equivalent to a well-behaved
subcategory of SetOpen(R). Theorem 4 (as a direct consequence of Corollary 4.9 in [7]) says
that the above defined interleaving distance dI is an extended metric, not just a pseudometric,
when restricted to these objects.

I Theorem 4 ([7]). When d = 1, dI(C(X, f), C(Y, g)) is an extended metric on the categorical
Reeb spaces.

SoCG 2016
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Theorem 4 means that for d = 1, if dI(C(X, f),PKCK(X, f)) = 0 (that is, when the
categorical mapper converges to the categorical Reeb graph), then C(X, f) and PKCK(X, f)
are isomorphic as functors. This implies that, in the special case when d = 1, mapper
converges to the Reeb graph as spaces, not just in the interleaving distance. While recent
work is beginning to elucidate the case where d > 1, the technical finesse needed to make a
similar statement to Theorem 4 is beyond the scope of this paper. Thus, we will stick to
statements about the categorical representations for Reeb spaces when d > 1, and make
concrete geometric statements when they are available for d = 1 (see Section 8).

6 Categorical Representation of Mapper and its Construction

The beauty of working with category theory is that we can store a categorical representation
of the mapper as sets over the nerve of a cover, rather than working directly with its
complicated topological definition (given in Section 2). Given a choice of finite open cover
for image(f) ⊆ Rd, U = {Uα}α∈A, let K = Nrv(U). In order to ensure that K faithfully
represents the underlying structure, we will assume that U is a good cover. This ensures
that the nerve lemma applies; that is, K has the homotopy type of image(f) ⊆ Rd (see, e.g.,
Corollary 4G.3 [12] or Theorem 15.21 [13]).

For simplicity of notation, we denote Uσ =
⋂
α∈σ Uα to be the open set in Rd associated

to the simplex σ ∈ K. One important property of this construction is that for σ ≤ τ in
K, the associated inclusion of spaces is reversed: Uσ ⊇ Uτ . So, if we wish to represent
the connected components for a particular Uσ for σ ∈ K, we can still consider π0f

−1(Uσ),
however, the face relation σ ≤ τ induces a “backwards” mapping π0f

−1(Uτ )→ π0f
−1(Uσ).

We keep track of this switch using the opposite category. Recall Cell(K) is a category with
simplices of K as objects and a unique arrow σ → τ given by the face relation σ ≤ τ . Then
the opposite category, Cell(K)op, has the simplices of K as objects and a unique arrow
τ → σ given by the face relation σ ≤ τ .

Thus, given an object (X, f) in Rd-Top, we have a functor CfK : Cell(K)op → Set that
maps every σ to CfK(σ) := π0f

−1(Uσ). We are required to use the opposite cell category so
that CfK maps the morphism σ ≤ τ (equivalently notated τ → σ in the opposite category) to
the set map π0f

−1(Uτ )→ π0f
−1(Uσ) induced by the inclusion Uτ ⊆ Uσ as discussed above.

This functor is used to represent the categorical mapper of (X, f) for the cover U .
Note that the functor CfK is an object of the category of functors SetCell(K)op

. The process
of building the mapper is thus represented itself by the functor CK : Rd-Top→ SetCell(K)op

,
which is defined as follows. For the objects, CK maps an Rd-space (X, f) in Rd-Top to the
functor CK(X, f) := CfK as given above. For the morphisms, it sends a function preserving
map ν : (X, f) → (Y, g) to a natural transformation (which is an arrow in SetCell(K)op

),
CK [ν] : CfK → C

g
K . Technical details in checking that CK [ν] is indeed a natural transformation

are deferred to the full version [16].

7 Convergence between Mapper and Reeb Space

In order to compare the discrete mapper with the continuous Reeb space, we must move
them both into the same category. At the moment, for data given as (X, f) in Rd-Top, we
have the categorical Reeb space representation C(X, f) in SetOpen(Rd), and the categorical
mapper representation CK(X, f) in SetCell(K)op

. Thus we must first define the functor PK
in order to push the mapper representation into the SetOpen(Rd) category, then prove the
convergence result there using the interleaving distance from Section 5. Here, we will give
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the definition of PK coming from the categorical setting, and then give an equivalent functor
F in Lemma 5 which is more intuitive to work with.

Given an abstract simplicial complex K which is the nerve of the cover U , we define KA for
a open set A ⊆ Rd to be the collection of simplices in K such that the associated intersection
Uσ intersects A, KA = {σ ∈ K | Uσ ∩A 6= ∅} (see the full version [16] for an example when
d = 2). Now we can construct the functor PK : SetCell(K)op

→ SetOpen(Rd) as follows.
Given a functor F : Cell(K)op → Set, PK sends it to a functor PK(F ) : Open(Rd)→ Set
by defining

PK(F )(I) = colim
σ∈KI

F (σ)

for every I in Open(Rd). Here, the colimit construction can be thought of as a set representing
the connected components over the collection of open sets Uσ for the simplices σ ∈ KI ,
or equivalently, over the union

⋃
σ∈KI Uσ. The morphisms in the two functor categories

SetCell(K)op
and SetOpen(Rd) are natural transformations; PK sends arrows to arrows in a

well-defined way via the colimit as discussed at the end of Section 3, since if I ⊆ J , then
KI ⊆ KJ . Additionally, we must check that PK sends a natural transformation η : F ⇒ G

to a natural transformation PK(F )→ PK(G); we omit this bookkeeping here. Since mapper
depends on the choice of a cover, it makes sense that the cover and, in particular, its resolution
will be a key factor in understanding the convergence. With all of this machinery, we have
our main result, Theorem 1.

Theorem 1 implies that if we have a sequence of covers Ui such that res(Ui)→ 0, then
the categorical representations of the associated mappers converge to the Reeb space in the
interleaving distance. Its proof relies on a main technical result, Lemma 5 below, which
relates the functor PKCK(X, f) to one which avoids the combinatorial structure of K as
much as possible and instead works with inverse images of subsets of Rd.

I Lemma 5. Let F : Open(Rd) → Set be a functor which maps an open set I to a
set π0f

−1(
⋃
σ∈KI Uσ) with morphisms induced by π0 on the inclusions. Then, the functor

PKCK(X, f) is equivalent to F .

Proof. The functor CK(X, f) = CfK : Cell(K)op → Set is given by sending a cell σ to
π0f

−1(Uσ), and its composition with PK is given by PKCK(X, f) = PK(CfK) : Open(Rd)→
Set defined by PK(CfK)(I) = colimσ∈KI C

f
K(σ). To establish a natural equivalence of functors,

we will construct a natural transformation ψ : F ⇒ PKCK(X, f) which is an isomorphism
for each ψI . As a roadmap, we can refer to the following diagram:

By definition of F , F(I) = π0f
−1(
⋃
σ∈KI Uσ) so there are obvious maps induced by inclusions

ϕσ : π0f
−1(Uσ)→ F(I) which all commute; this gives us a cone (F(I), ϕσ) for the diagram

{CfK(σ)}σ∈KI . The colimit of this same diagram is a cocone denoted by (PKCfK(I), ησ). We
will construct a map ψI : π0f

−1(
⋃
σ∈KI Uσ)→ colimσ∈KI C

f
K(σ) such that the colimit cocone

factors through the cocone (F(I), ϕσ) using ψI ; that is, ψI ◦ ϕσ = ησ for all σ ∈ KI . The
universality of the colimit then implies that ψI is an isomorphism.
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Figure 6 The diagram showing that ϕ = {ϕI} defines a natural transformation.

Figure 7 Communicative diagrams showing ϕ and ψ being natural transformations and ε-
interleaved.

To construct ψI , consider any u in π0f
−1(
⋃
σ∈KI Uσ). This set element represents a

connected component in f−1(
⋃
σ∈KI Uσ), and thus there is at least one σ with an element

v ∈ CfK(σ) such that ϕσ(v) = u. Now we define ψI(u) = ησ(v). Ensuring that ψI above is
well defined corresponds to ensuring that if there are v ∈ CfK(σ) and v′ ∈ CfK(σ′) with ϕσ(v) =
ϕσ(v′) = u, then ησ(v) = ησ′(v′). Note that v and v′ represent (path) connected components
in f−1(Uσ) and f−1(Uσ′) respectively. Let x and x′ be points in these respective connected
components. Since these points are in the same connected component of f−1(

⋃
σ∈KI Uσ),

there is a path connecting them, and thus a finite sequence of τi ∈ KI with τ0 = σ and
τn = σ′, such that f−1(Uτi) covers the path. We can additionally assume that the τi give the
maximal simplex containing the path at each location, so that τi ≤ τi+1 or τi ≥ τi+1 for each
i. Let vi ∈ π0f

−1Uτi represent the connected component of the path. Then we must have
CfK [τi ≤ τi+1](vi+1) = vi or CfK [τi+1 ≤ τi](vi) = vi+1 for each i. By the colimit properties,
this implies that ητi(vi) = ητj (vj) for all i and j, and thus that ησ(v) = ησ′(v′) as desired.

Finally, we prove that the collection {ψI} defines a natural transformation. Since if I ⊆ J ,
then KI ⊆ KJ . Then an exercise in colimit properties ensures that the diagram in Figure 6
commutes, where the arrow on the left is the map induced by inclusions, and the map on the
right is induced by the colimit definition. J

Proof of Theorem 1. Let ε = res(U). Combined with Lemma 5, we will construct, ϕ : F ⇒
C(X, f) ◦ Tε and ψ : C(X, f) ⇒ F ◦ Tε, and show that they constitute an ε-interleaving by
showing the diagrams of Figure 7 commute following Definition 2.

First, we prove the following statement: if Uσ ∩ I 6= ∅, then Uσ ⊂ Iε. Indeed, for any
x ∈ Uσ, if x ∈ I then x ∈ Iε. If x 6∈ I, then because there exists a y ∈ Uσ ∩ I, such that
‖x − y‖ ≤ diam(Uσ) ≤ res(U) = ε, so x ∈ Iε. This statement implies that we have the
inclusion

⋃
σ∈KI Uσ ↪→ Iε. We define ϕI : π0f

−1 (⋃
σ∈KI Uσ

)
→ π0f

−1(Iε).
We also have inclusions I∩f(X) ↪→

⋃
σ∈KI Uσ ↪→

⋃
σ∈KIε Uσ, since any point x ∈ I∩f(X)

is contained in some Uα, for some vertex α ∈ KI ⊆ KIε . Additionally, since f−1(I) =
f−1(I ∩ f(X)), we define ψI : π0f

−1(I) → π0f
−1
(⋃

σ∈KIε Uσ
)

to be the composition
of the ismorphism π0f

−1(I) ∼= π0f
−1(I ∩ f(X)) and the map induced by the inclusion

I ∩ f(X) ↪→
⋃
σ∈KIε Uσ.
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Figure 8 The diagram for connecting geometric representations of the Reeb graph and the
mapper.

The top left square of Figure 7 comes from applying the functor π0f
−1 to the inclusions⋃

σ∈KI Uσ ⊆ Iε ⊆ Jε and
⋃
σ∈KI Uσ ⊆

⋃
σ∈KJ Uσ ⊆ Jε for any I ⊆ J . Applying π0f

−1 to
the inclusions I ∩ f(X) ⊆

⋃
σ∈KIε Uσ ⊆

⋃
σ∈KJε Uσ and I ∩ f(X) ⊆ J ∩ f(X) ⊆

⋃
σ∈KJε Uσ

for I ⊆ J , then replacing π0f
−1(I ∩ f(X)) and π0f

−1(J ∩ f(X)) with the isomorphic C(I)
and C(J) respectively gives the diagram of the top right. A similar argument implies that
the diagrams in Figure 7 bottom also commute, hence ϕ and ψ are an ε-interleaving. J

8 Geometric Representations

We now leverage the results of [7] to make geometric statements connecting the mapper
and the Reeb space for d = 1. The main idea is to define a mapping that recovers the
geometric representation of the mapper from its categorical representation, and to establish
convergence between the mapper and the Reeb graph geometrically. Such a mapping relies
on well behaved data, made precise by the notion of constructibility.

Review of prior results. We will follow the notations of [7] which occasionally can be
technical. The categories and functors we will discuss can be summed up in the roadmap of
Figure 8. Notice its lower left triangle resembles that of Figure 4 with further restrictions.
Recall the notation from Section 4; when d = 1, the category R-Top is exactly the category
Rd-Top: an object of R-Top is an R-space (a pair of a topological space X and a continuous
map f : X→ R), and an arrow in R-Top is a function-preserving map.

Since the geometric Reeb graph of a general R-space may be badly behaved, we restrict
to special classes of spaces [7], that is, we focus on well behaved subcategories. In particular,
we define the full subcategory R-Topc of R-Top where the objects are constructible R-spaces
(see Section 2.2 and Figure 5 of [7] for illustrations and technical details). This collection
includes, e.g., PL functions on triangulations of manifolds and Morse functions. Then we
define the full subcategory Reeb of R-Topc (in the finite, discrete setting), which is exactly
the category of Reeb graphs, viewed as a graph with a real valued function which is monotone
on edges, with arrows given by function preserving maps. Subsequently, the construction of
a (geometric) Reeb graph from well behaved data (a constructible R-space) is captured by
the functor R : R-Topc → Reeb.

We can similarly restrict our objects of interest in SetOpen(R) to be well behaved. A
cosheaf is a functor F : Open(R) → Set such that for any open cover U of a set U , the
unique map colimUα∈U F (Uα)→ F (U) is an isomorphism. We further restrict the cosheaves
to constructible cosheaves; a cosheaf is constructible if there is a finite set S ⊂ R such that if
A,B ∈ Open(R) with A ⊆ B and S ∩ A = S ∩ B, then F (A) → F (B) is an isomorphism.

SoCG 2016
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In addition, we require that if A ∩ S = ∅ then F (A) = ∅. The category of constructible
cosheaves with natural transformations is denoted Cshc.

The work of [7] gives the equivalence of categories Reeb ≡ Cshc. In Figure 8, when
d = 1, the functor C : Rd-Top → SetOpen(Rd) (given in Figure 4) restricts to a functor
C : R-Topc → Cshc. Its further restriction C : Reeb → Cshc is exactly the functor
used in [7] to give the equivalence of categories. In addition, C has an “inverse” functor
D : Cshc → Reeb which can turn a constructible cosheaf back into a geometric object
through the display locale construction [24]. This construction also satisfies the equality
R = DC due to the commutativity of the upper right triangle in Figure 8 (as proved in
Section 3.5 of [7]). Therefore constructing the (geometric) Reeb graph from well behaved
data is the same as creating its categorical representation, and then turning it back into a
geometric object.

Our result. The above result implies that because we can turn any constructible cosheaf
back into a geometric Reeb graph, we can now turn the mapper, defined previously as a
categorical object, back into a geometric object. In this spirit, letMK(X, f) := DPKCK(X, f)
be the geometric representation of the mapper object, referred to as the geometric mapper
(following the rectangular diagram in Figure 8), and let R(X, f) be the geometric Reeb graph.
Then, the equivalence of categories gives us the following immediate corollary to Theorem 1.

I Corollary 6. Given a constructible R-space (X, f) with f : X→ R, let U = {Uα}α∈A be a
good cover of f(X) ⊆ R, and let K be the nerve of the cover. Then

dI(R(X, f),MK(X, f)) ≤ res(U).

In particular, because the interleaving distance is an extended metric when d = 1, this implies
that a sequence of mappers for more refined covers U converges to the Reeb graph geomet-
rically. Recent work has also investigated this convergence problem using the bottleneck
distance for the extended persistence diagrams [4]; instead, we use the interleaving distance.

Algorithm for geometric mapper. Constructing the geometric representation of
1-dimensional mapper from its categorical representation follows a simple algorithm (as
illustrated in Figure 5). For the purpose of exposition, we assume that the mapper is
constructed with a finite, connected, minimal cover (a cover with no subcover) and that
the number of connected components over each cover element is finite. We further as-
sume that the open sets (intervals) in U = {Ui = (ai, bi)}ni=1 can be ordered and satisfy
a1 < a2 < b1 < a3 < b2 < · · · < an−1 < bn−1 < bn. For ease of notation, we assume there
are extra intervals U0 = (a0, b0) with a0 < a1 < b0 < b1 and Un+1 = (an+1, bn+1) with
bn−1 < an+1 < bn < bn+1 and such that f−1(U0) = f−1(Un+1) = ∅. Let M := M(U , f) be
the mapper with the added property that for any cover element Ui, we store the vertices
corresponding to connected components of f−1(Ui) in the set F (i). Furthermore, let M [i]
be the subgraph of M induced by the collection of vertices F (i), and let M [i, i+ 1] be the
subgraph of M induced by the vertices F (i) ∪ F (i + 1). Note that for any small enough
interval I ⊂ (ai+1, bi), the colimit construction for I gives exactly the connected components
over the union Ui ∪ Ui+1, which is equivalently represented by the connected components of
M [i, i+1]. For any small enough interval I ⊂ (bi−1, ai+1), the colimit construction for I gives
the connected components over Ui, and thus is represented by the connected components of
M [i], which are just the vertices.

Thus, the geometric mapper,MK(X, f) = (X′, f ′), a graph X′ equipped with a function
f ′, can be constructed based on a combinatorial structure described below. For each interval
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[bi−1, ai+1], add an edge uv with two new pink vertices for each vertex in M [i] (see Figure
5 Algorithm). Set f ′(u) = bi−1 and set f ′(v) = ai+1. For each interval [ai+1, bi], add an
edge wx with two new yellow vertices for each connected component in M [i, i + 1]. Set
f ′(w) = ai+1 and f ′(x) = bi. Now, we have a combinatorial structure which consists of
a collection of disjoint edges spread across each of the intervals defined by the cover, and
each edge has a top vertex and a bottom vertex given by the function values. A pink and
a yellow vertex are called equivalent if the vertex sets corresponding to them in M [i] and
M [i, i+ 1] respectively have a nontrivial intersection. The graph X′ resulting from identifying
(i.e. gluing) equivalent vertices with the same function value of f ′ is the geometric mapper.
Such an algorithm relies on subroutines of union-find, therefore it inherits the complexity of
union-find that varies depending on naive or advanced implementations.

9 Discussion

The authors of [4] asked whether it is possible to describe the mapper as a particular
constructible cosheaf. We addressed this question for d = 1 in Section 8: we described
the mapper as a constructible cosheaf when it is passed to the continuous version. We
suspect that our geometric results hold in the case d > 1. That is, with the proper notion of
constructibility for Rd-spaces and cosheaves, we will have both an equivalence of categories,
and a proof that the interleaving distance is an extended metric, not just a pseudometric;
and therefore the mapper converges to the Reeb space on the space level. Our results are
first steps towards providing a theoretical justification for the use of discrete objects (mapper
and JCN) as approximations to the Reeb space with guarantees. Some future directions
include creating categorical interpretation of multiscale mapper [8] and studying distance
metrics between Jacobi sets in the categorical setting.
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