209,197 research outputs found

    Matrix positivity preservers in fixed dimension. I

    Get PDF
    A classical theorem proved in 1942 by I.J. Schoenberg describes all real-valued functions that preserve positivity when applied entrywise to positive semidefinite matrices of arbitrary size; such functions are necessarily analytic with non-negative Taylor coefficients. Despite the great deal of interest generated by this theorem, a characterization of functions preserving positivity for matrices of fixed dimension is not known. In this paper, we provide a complete description of polynomials of degree NN that preserve positivity when applied entrywise to matrices of dimension NN. This is the key step for us then to obtain negative lower bounds on the coefficients of analytic functions so that these functions preserve positivity in a prescribed dimension. The proof of the main technical inequality is representation theoretic, and employs the theory of Schur polynomials. Interpreted in the context of linear pencils of matrices, our main results provide a closed-form expression for the lowest critical value, revealing at the same time an unexpected spectral discontinuity phenomenon. Tight linear matrix inequalities for Hadamard powers of matrices and a sharp asymptotic bound for the matrix-cube problem involving Hadamard powers are obtained as applications. Positivity preservers are also naturally interpreted as solutions of a variational inequality involving generalized Rayleigh quotients. This optimization approach leads to a novel description of the simultaneous kernels of Hadamard powers, and a family of stratifications of the cone of positive semidefinite matrices.Comment: Changed notation for extreme critical value from C\mathfrak{C} to C\mathcal{C}. Addressed referee remarks to improve exposition, including Remarks 1.2 and 3.3. Final version, 39 pages, to appear in Advances in Mathematic

    Moment Problems with Applications to Value-At-Risk and Portfolio Management

    Get PDF
    Moment Problems with Applications to Value-At-Risk and Portfolio Management By Ruilin Tian May 2008 Committee Chair: Dr. Samuel H. Cox Major Department: Risk Management and Insurance My dissertation provides new applications of moment theory and optimization to financial and insurance risk management. In the investment and managerial areas, one often needs to determine some measure of risk, especially the risk of extreme events. However, complete information of the underlying outcomes is usually unavailable; instead one has access to partial information such as the mean, variance, mode, or range. In Chapters 2 and 3, we find the semiparametric upper and lower bounds for the value-at-risk (VaR) with incomplete information, that is, moments of the underlying distribution. When a single variable is concerned, bounds on VaR are computed to obtain a 100% confidence interval. When the sample financial data have a global maximum, we show that unimodal assumption tightens the optimal bounds. Next we further analyze a function of two correlated random variables. Specifically, we find bounds on the probability of two joint extreme events. When three or more variables are involved, the multivariate problem can sometimes be converted to a single variable problem. In all cases, we use the physical measure rather than the commonly used equivalent pricing probability measure. In addition to solving these problems using the traditional approach based on the geometry of a moment problem, a more efficient method is proposed to solve a general class of moment bounds via semidefinite programming. In the last part of the thesis, we apply optimization techniques to improve financial portfolio risk management. Instead of considering VaR, we work with a coherent risk measure, the conditional VaR (CVaR). As an extension of Krokhmal et al. (2002), we impose CVaR-related functions to the portfolio selection problem. The CVaR approach sets a β-level CVaR as the objective function and maximizes the worst case on the tail of the distribution. The CVaR-like constraints approach adds a set of CVaR-like constraints to the traditional Markowitz problem, reshaping the portfolio distribution. Both methods greatly increase the skewness of portfolios, although the CVaR approach may lose control of the variance. This capability of increasing skewness is very attractive to the investors who may prefer higher probability of obtaining higher returns. We compare the CVaR-related approaches to some other popular portfolio optimization methods. Our numerical analysis provides empirical support for the superiority of the CVaR-like constraints approach in terms of portfolio efficiency
    • …
    corecore