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ABSTRACT

Distributionally Robust Performance Analysis:
Data, Dependence and Extremes

Fei He

This dissertation focuses on distributionally robust performance analysis, which is an

area of applied probability whose aim is to quantify the impact of model errors. Stochas-

tic models are built to describe phenomena of interest with the intent of gaining insights

or making informed decisions. Typically, however, the fidelity of these models (i.e. how

closely they describe the underlying reality) may be compromised due to either the lack

of information available or tractability considerations. The goal of distributionally robust

performance analysis is then to quantify, and potentially mitigate, the impact of errors

or model misspecifications. As such, distributionally robust performance analysis affects

virtually any area in which stochastic modelling is used for analysis or decision making.

This dissertation studies various aspects of distributionally robust performance analysis.

For example, we are concerned with quantifying the impact of model error in tail estimation

using extreme value theory. We are also concerned with the impact of the dependence

structure in risk analysis when marginal distributions of risk factors are known. In addition,

we also are interested in connections recently found to machine learning and other statistical

estimators which are based on distributionally robust optimization.

The first problem that we consider consists in studying the impact of model specifica-

tion in the context of extreme quantiles and tail probabilities. There is a rich statistical

theory that allows to extrapolate tail behavior based on limited information. This body

of theory is known as extreme value theory and it has been successfully applied to a wide

range of settings, including building physical infrastructure to withstand extreme environ-

mental events and also guiding the capital requirements of insurance companies to ensure

their financial solvency. Not surprisingly, attempting to extrapolate out into the tail of a



distribution from limited observations requires imposing assumptions which are impossible

to verify. The assumptions imposed in extreme value theory imply that a parametric family

of models (known as generalized extreme value distributions) can be used to perform tail

estimation. Because such assumptions are so difficult (or impossible) to be verified, we

use distributionally robust optimization to enhance extreme value statistical analysis. Our

approach results in a procedure which can be easily applied in conjunction with standard

extreme value analysis and we show that our estimators enjoy correct coverage even in

settings in which the assumptions imposed by extreme value theory fail to hold.

In addition to extreme value estimation, which is associated to risk analysis via extreme

events, another feature which often plays a role in the risk analysis is the impact of de-

pendence structure among risk factors. In the second chapter we study the question of

evaluating the worst-case expected cost involving two sources of uncertainty, each of them

with a specific marginal probability distribution. The worst-case expectation is optimized

over all joint probability distributions which are consistent with the marginal distributions

specified for each source of uncertainty. So, our formulation allows to capture the impact of

the dependence structure of the risk factors. This formulation is equivalent to the so-called

Monge-Kantorovich problem studied in optimal transport theory, whose theoretical prop-

erties have been studied in the literature substantially. However, rates of convergence of

computational algorithms for this problem have been studied only recently. We show that

if one of the random variables takes finitely many values, a direct Monte Carlo approach al-

lows to evaluate such worst case expectation with O(n−1/2) convergence rate as the number

of Monte Carlo samples, n, increases to infinity.

Next, we continue our investigation of worst-case expectations in the context of multiple

risk factors, not only two of them, assuming that their marginal probability distributions

are fixed. This problem does not fit the mold of standard optimal transport (or Monge-

Kantorovich) problems. We consider, however, cost functions which are separable in the

sense of being a sum of functions which depend on adjacent pairs of risk factors (think of

the factors indexed by time). In this setting, we are able to reduce the problem to the

study of several separate Monge-Kantorovich problems. Moreover, we explain how we can

even include martingale constraints which are often natural to consider in settings such as



financial applications.

While in the previous chapters we focused on the impact of tail modeling or dependence,

in the later parts of the dissertation we take a broader view by studying decisions which

are made based on empirical observations. So, we focus on so-called distributionally robust

optimization formulations. We use optimal transport theory to model the degree of distri-

butional uncertainty or model misspecification. Distributionally robust optimization based

on optimal transport has been a very active research topic in recent years, our contribution

consists in studying how to specify the optimal transport metric in a data-driven way. We

explain our procedure in the context of classification, which is of substantial importance in

machine learning applications.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This dissertation focuses on distributionally robust performance analysis, which is an area

of applied probability whose aim is to quantify the impact of model errors. Stochastic

models are built to describe phenomena of interest with the intent of gaining insights or

making informed decisions. Typically, however, the fidelity of these models (i.e. how closely

they describe the underlying reality) may be compromised by either the lack of information

available or by tractability considerations. The goal of distributionally robust performance

analysis is then to quantify, and potentially mitigate, the impact of errors or model mis-

specifications. As such, distributionally robust performance analysis affects virtually any

area in which stochastic modelling is used for analysis or decision making.

More specifically, in a stochastic model, the performance evaluation can be represented

as EP [h(X)] for a given probability measure P , a random variable X and a function h. A

modeler faces the task of choosing a probability model P which is not only close to the

reality but is also tractable. However, this procedure will often suffer from model errors,

either due to the lack of data or due to the estimation errors.

A popular approach to address this problem is by considering the distributionally robust

bound as the optimal value of the optimization problem

sup
P∈U

EP [h(X)],

over a family of plausible alternative probability models U . A natural way to specify the

family U is by defining an uncertainty neighborhood {P : d(P, Pref ) ≤ δ}, where Pref is the
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chosen reference model and δ is a tolerance level. Here d is a metric which measures the

discrepancy between two probability measures. Popular choices for d are the KL-divergence

(Breuer and Csiszar (2013a), H.Lam (2013), Glasserman and Xu (2014a)) and the Wasser-

stein distances (Esfahani and Kuhn (2015), Wozabal (2012), Blanchet and Murthy (2016))

to quantify the model uncertainty. Despite the fact that KL-divergence is not a true metric,

KL-divergence is a popular choice due to its tractability. This approach provides a bound

for the performance evaluation regardless of the probability measure used as long as such

measures stay within a prescribed tolerance δ of an appropriate reference model.

� In Chapter 2 we study the distributional robustness in the context of the extreme

value theory (EVT). Our focus is closer in spirit to distributionally robust optimizations

as in, for instance, Dupuis et al. (2000), Hansen and Sargent (2001), Ben-Tal et al. (2013),

Breuer and Csiszár (2013b). However, in contrast to the literature on robust optimization,

the emphasis here is on understanding the implications of distributional uncertainty regions

in the context of EVT. As far as we know this is the first paper that studies distributional

robustness in the context of EVT. Here, our objective is to provide a robust bound for the

estimate of the value at risk of a risk factor X,

VaRp(X) = F←(p) := inf{x : P{X ≤ x} ≥ p}, for p ∈ (0, 1).

EVT provides reasonable statistical principles which can be used to extrapolate tail distri-

butions and then estimate this extreme quantiles. In particular, we focus on the classical

block maxima approach for the extrapolation, that is, we divide the i.i.d. data Xi into

several blocks, where each block contains n data points. Then we pick the maximum value

Mn from each block. The Fisher-Tippett-Gnedenko theorem ensures that under certain

assumptions of the underlying distribution of the Xi, the maximum Mn has some types

of limiting distribution PGEV , the so-called generalized extreme value distribution, and

produces P−1
GEV (pn) as an estimate for the quantile VaRp(X). However, as with any form

for extrapolation, extreme value analysis rests on assumptions that are rather difficult (or

impossible) to verify. Therefore, it makes sense to provide a mechanism to robustify the

inference obtained via EVT. Similarly we formulate the robust estimate through an un-

certainty neighborhood of the limiting distribution with radius δ and then give a robust
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estimate of VaRp(X) by

sup{G←(pn) : d(G,PGEV ) ≤ δ}.

Here, we choose d as the Rényi divergence, also called the α-divergence, which includes

KL-divergence as a special case for α = 1. We show that using KL-divergence to form the

uncertainty set around PGEV would include a probability measure whose tail probabilities

decay at an unrealistically slow rate and the parameter α gives modeler the freedom to

tune the uncertainty set and include distributions with tails are heavier than the reference

model but not prohibitively heavy. We give concrete algorithms to calculate this robust

estimate and we also provide some practical ways to specify the hyperparameters α and the

radius of the uncertainty set δ. We also give some examples where the standard EVT can

significantly underestimate the quantiles of interest while our estimator is quite robust and

at the same time not too conservative.

In addition to extreme value estimation, which is associated to risk analysis via extreme

events, another feature which often plays a role in the risk analysis is the impact of de-

pendence structure among risk factors. Chapter 3 and Chapter 4 are devoted to find the

lower or upper bounds among any dependence structure with two sources of uncertainty or

multiple sources of uncertainty, that is, measuring the impact of the joint distribution with

two or multiple fixed marginals.

� In Chapter 3 we study a direct Monte-Carlo-based approach for computing lower and

upper bounds among any dependence structure for a function of two random vectors whose

marginal distributions are assumed to be known.

More precisely, suppose that X ∈ Rd follows distribution µ and Y ∈ Rl follows dis-

tribution ν. We define Π (µ, ν) to be the set of joint distributions π in Rd×l such that

the marginal of the first d entries coincides with µ and the marginal of the last l entries

coincides with ν. In other words, for any probability measure π in Rd×l (endowed with the

Borel σ-field), if we let πX (A) = π
(
A× Rl

)
for any Borel measurable set A ∈ Rd, and

πY (B) = π
(
Rd ×B

)
for any Borel measurable set B ∈ Rl, then π ∈ Π (µ, ν) if and only if

πX = µ and πY = ν. We are interested in the quantity (focusing on minimization)

V = min{Eπ [c (X,Y )] : π ∈ Π (µ, ν)} (1.1)
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where c(·, ·) ∈ R is some cost function. Formulation (1.1) is well-defined as the class Π (µ, ν)

is non-empty, because the product measure π = µ × ν belongs to Π (µ, ν). The worst-case

expectation is optimized over all joint probability distributions which are consistent with the

marginal distributions specified for each source of uncertainty. So, our formulation allows

to capture the impact of the dependence structure of the risk factors. This formulation is

equivalent to the so-called Monge-Kantorovich problem studied in optimal transport theory,

whose theoretical properties have been studied in the literature substantially (Villani (2003),

Villani (2008)).

We focus on the setting where one of the marginals, say Y , has a distribution ν with

finite support {y1, ..., ym} ⊂ Rl and another, say X, has a multi-dimensional distribution µ

that can be continuous. Suppose we can i.i.d. sample Xi, i = 1, . . . , n from the distribution

µ then we approximate V by

Vn = min{Eπ [c (X,Y )] : π ∈ Π (µn, ν)} (1.2)

where µn is the empirical distribution of X constructed from the Xi’s, i.e.,

µn(A) =
1

n

n∑
i=1

I(Xi ∈ A)

for any Borel measurable A.

Our main result shows that the error of our procedure is O(n−1/2) where n is the sample

size, independent of the dimension d or l. We also identify the limiting distribution in the

associated CLT. The closest work to our results, as far as we know, is the recent work of

Sommerfeld and Munk (2016), which derives a CLT when both marginal distributions are

finitely discrete.

On the other hand, it is difficult to further generalize our procedure to the case when

both X and Y are continuous. The study on the rate of convergence in Wasserstein distance

of the empirical measure gives ideas that in this general case the convergence rate fail to

retain O(n−1/2) (Fournier and Guillin (2015)). For instance, suppose both X,Y ∼ U [0, 1]d,

i.e. µ = ν are d-dim uniform distributions, and c(x, y) = ‖x − y‖, the optimal value V

corresponds to the Wasserstein distance (of order 1) between X and Y , which is of course

0. It is well-known that sampling X and keeping Y continuous will give, for d ≥ 3, an
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expected optimal value of

Vn = min{Eπ [c (X,Y )] : π ∈ Π (µn, µ)} µn(·) :=
1

n

n∑
i=1

I(Xi ∈ ·)

is of order n−1/d, i.e., C1n
−1/d ≤ EVn ≤ C2n

−1/d for all n for some C1, C2 > 0 (see e.g.van

Handel (2014)).

� In Chapter 4 we study a discretization approach for computing lower and upper

bounds among any dependence structure for a function of multiple random vectors whose

marginal distributions are assumed to be known. Given d marginal distributions µ1, . . . , µd

on a common compact metric space X , we focus on the lower bound

inf
π∈Π(µ1,...,µd)

Eπ[c(X1, . . . , Xd)], (1.3)

where Π(µ1, . . . , µd) is the set of all joint distributions with marginals X1 ∼ µ1, . . . , Xd ∼ µd,

and c is a cost function. Note that when d = 2, the problem (1.3) is the standard optimal

transport problem. For d > 2, this problem has been studied by Gangbo and Swiech (1998)

and G.Carlier et al. (2008). Such problems often arise from risk management, where the

performance depends on d risk factors, and the marginal distributions of each risk factor is

known but the dependence structure is ambiguous.

We approach this problem by first create a partition of the compact space X with X =∑n
k=1Ak such that the diameter of every Ak does not exceed δ, with δ = O(n−1). Then we

choose a representative xk ∈ Ak for each k and form a discrete set Xδ = {xk : k = 1, . . . , n}

with an associated quantization map

T : X →Xδ

x 7→
n∑
k=1

xkI(x ∈ Ak).

In addition, we define the corresponding quantized measures as

µ1,δ(xk) = µ1(Ak), · · · , µd,δ(xk) = µd(Ak), for k = 1, · · · , n (1.4)
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Then the discretized approximate version of the problem is as follows:

min
π

n∑
i1,··· ,id=1

c(xi1 , · · · , xid)π(xi1 , · · · , xid)

s.t.

n∑
i2=1,··· ,id=1

π(xi1 , · · · , xid) = µ1,δ(xi1), i1 = 1, · · · , n,

· · ·

n∑
i1=1,··· ,id−1=1

π(xi1 , · · · , xid) = µd,δ(xid), id = 1, · · · , n,

n∑
i1=1,··· ,id=1

π(xi1 , · · · , xid) = 1, π(xi1 , · · · , xid) ≥ 0,

For d = 2, it is an assignment problem, which can be solved by various network algorithms

that are much faster than the general LP algorithms. For instance, with the successive

shortest path algorithm (see R.K.Ahuja et al. (2000) p.320) one can achieve O(n2 log(n)).

We will also quantify the error bounds for the difference between the true optimal value

and the optimal value of the discretized version. For d > 2 we can in general not transform

it to assignment problems except when the cost function c is separable, that is, c takes the

form of c(X1, · · · , Xd) =
∑d−1

k=1 ct(Xt, Xt+1), where ct, t = 1, · · · , d − 1 are cost functions

depending only on the two adjacent marginals Xt and Xt+1. Then the above discretized

version can be decomposed into d−1 assignment problems and hence can be solved efficiently

by using network algorithms. In fact, with this separable cost function, we can apply this

discretization approach to the so-called martingale optimal transport problem, which is

first studied by Beiglbock et al. (2013) and Galichon et al. (2014). A general form of the

martingale optimal transport problem looks as follows:

inf
π∈M (µ1,...,µd)

Eπ[c(X1, . . . , Xd)], (1.5)

where M (µ1, . . . , µd) is the set of all martingale measures, i.e. the underlying process

(Xt)t=1,...,d satisfies Xt ∼ µt,Eπ[Xt|Ft−1] = Xt−1. The martingale optimal transport prob-

lem is different from the previous one in that in general there exists no easy way to convert

it to the discretized version due to the martingale constraint, but we can show that when
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the cost function c is separable, then the problem can still be discretized to d − 1 linear

programming problems.

A major application of martingale optimal transport problem is in mathematical finance,

where it is important to choose a pricing model when evaluating an exotic option; such a

model is characterized by a martingale measure while the marginal distributions are the

daily underlying prices. Instead of postulating a model, we use (1.5) to give a model-free

lower bound for the price of exotics, whose payoff function c depends on the d-marginal

distributions of a certain underlying X, indexed by time t = 1, · · · , d. Similarly, by maxi-

mization instead of minimization we also obtain an upper bound for the price. This price

range is robust against model errors and it complies with market prices of vanilla options,

which are liquid and suitable hedging instruments. We provide some examples of financial

derivatives whose model-free price ranges can be obtained by our method.

While in the previous chapters we focused on the impact of tail modeling or dependence,

in the later parts of the dissertation we take a broader view by studying decisions which are

made based on empirical observations. We focus on so-called distributionally robust opti-

mization formulations. The objective of distributionally robust optimization is to choose

a decision β that minimizes the worst-case expected loss supP∈U EP [l(X,β)], where the

worst-case is taken over an uncertainty neighborhood U of an unknown true distribution

P ∗. Though the true distribution P ∗ is unknown, we usually have some information or

properties about P ∗, such as the empirical measure Pn, so in practice we often form the

uncertainty neighborhood around Pn. Distributionally robust optimization has two main

advantages: one is to improve the out-of-sample performance of stochastic programmings

and the other one is that distributionally robust models are often tractable even though the

corresponding stochastic models are NP-hard. A good choice of uncertainty neighborhood

U should be rich enough to include the true distribution with high confidence while at the

same time it should be small enough to exclude uninteresting distributions so as to avoid too

conservative decisions. Previous works usually use moment constraints (J.Goh and M.Sim

(2010), Wieseman et al. (2014)) and KL-divergence (Breuer and Csiszar (2013a), H.Lam

(2013), Glasserman and Xu (2014a)) to quantify model misspecification and model uncer-
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tainty. Despite the fact that KL-divergence is not a true metric, it is a popular choice due

to its tractability. However, many of these earlier works also acknowledge the shortcom-

ings of KL-divergence, as the absolute continuity requirement rules out many interesting

settings. For instance, all the probability measures in the neighborhood of an empirical

measure defined by the KL-divergence are just re-weighting of this empirical measure; the

neighborhood fails to include any continuous measures. Recently, people start applying

Wasserstein distance to distributionally robust optimization and quantify model misspeci-

fication (Wozabal (2012), Esfahani and Kuhn (2015), Blanchet and Murthy (2016)). When

the cost function c is a metric, i.e. c(x, y) = d(x, y), then the optimal transport problem

actually induces a metric called the Wasserstein distance or the optimal transport metric,

which characterizes a distance between the two probability measures µ and ν, and in turn

we can use it to define a neighborhood of a measure and apply it to the distributionally

robust problems. The uncertainty set contains both continuous and discrete distributions

that are close to the measure of interest (e.g. the empirical measure) with respect to the

Wasserstein distance, which makes it possible to incorporate many tractable surrogate mod-

els and offers better out-of-sample performance. However, distributionally robust models

with Wasserstein uncertainty neighborhood are generally harder in computations and they

are still attractive topics in research.

� Chapter 5 uses optimal transport theory to model the degree of distributional uncer-

tainty or model misspecification, and extends the following distributionally robust optimiza-

tion (DRO) model proposed by Blanchet et al. (2016a), where they reveal that the DRO

models links to several machine learning algorithms such as regularized logistic regression

for classification,

min
β

max
P∈Uδ(Pn)

EP [l(X,Y, β)] = min
β

(
EPn [l(X,Y, β)] + δ ‖β‖p

)
, (1.6)

where l is some loss function, and Uδ (Pn) = {P : Dc(P, Pn) ≤ δ} is a neighborhood of the

empirical measure Pn defined by the optimal transport distance

Dc (P, Pn) = inf
π

{
Eπ[c(P, Pn)] : π is a joint distribution of P and Pn}

and the optimal transport cost function

c((x, y), (x′, y′)) =
∥∥x− x′∥∥2

q
I(y = y′) +∞ · I(y 6= y′),
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where p−1 + q−1 = 1 for p ∈ [1,∞), and EPn [l(X,Y, β)] := 1
n

∑n
i=1 l(Xi, Yi, β). We can

interpret the DRO problem on the left hand side of (1.6) as we choose a decision β for

minimization, while the adversarial player selects a model P , a perturbation of the data Pn,

from Uδ(Pn). This interpretation has applications in adversarial training of neural networks,

see e.g. Sinha et al. (2017). Note that the shape of Uδ(Pn) is determined by the cost function

c (·) in the definition of the optimal transport discrepancy Dc(P, Pn), but so far it has been

taken as a given `q-norm, but not chosen in a data-driven way; this is the starting point of

this project to improve the DRO method.

Our contribution consists in studying how to specify the optimal transport metric in a

data-driven way. We would propose a data-driven DRO (DD-DRO) model with the cost

function cΛ defined by a local metric dΛ(x, x′) :=
√

(x− x′)TΛ(x)(x− x′), where the matrix

Λ(x) is trained by metric learning methods, see, e.g. Bellet et al. (2013). Note that when we

use a data-driven cost function, we may no longer have correspondence as (1.6) but we can

still directly solve the DRO problem on the left hand side. We expect that DD-DRO is able

to improve the generalization property compared to many other state-of-the-art classifiers

on a large number of data sets from UCI machine learning database, because it exploits the

side information (the information about the intrinsic metric, the “shape”) of the data.

The main methodologies and contributions of this project are the followings:

• We would use DRO as a link that combines k-NN methods with logistic regressions

for classification. We use k-NN method to generate the side information of the data

and then form the shape of the distributional uncertainty neighborhood by learning

a metric from this side information.

• The DD-DRO is able to recover adaptive regularized ridge regression estimator. The

DD-DRO provides a novel and interpretable way to select hyper-parameters in adap-

tive regularized ridge regression (see e.g.Zou (2006)) from a metric learning perspec-

tive.

• We would use an approximation algorithm based on stochastic gradient descent to

solve DD-DRO. We would reformulate the DRO problem by using the duality repre-

sentation given in Blanchet and Murthy (2016) and then solve it by smooth approxi-
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mation and stochastic gradient descend algorithms.

• We would employ the robust metric learning to deal with the noisiness of side infor-

mation. Since the side information is usually noisy, we borrow the idea from robust

optimization (see e.g. Ben-Tal et al. (2009)) and build a doubly robust data-driven dis-

tributionally robust optimization (DD-R-DRO) model on top of the DD-DRO model

to achieve robust metric learning.
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Chapter 2

On Distributionally Robust

Extreme Value Analysis

2.1 Introduction

Extreme Value Theory (EVT) provides reasonable statistical principles which can be used

to extrapolate tail distributions, and, consequently, estimate extreme quantiles. However,

as with any form for extrapolation, extreme value analysis rests on assumptions that are

rather difficult (or impossible) to verify. Therefore, it makes sense to provide a mechanism

to robustify the inference obtained via EVT.

The goal of this paper is to study non-parametric distributional robustness (i.e. find-

ing the worst case distribution within some discrepancy of a natural baseline model) in

the context of EVT. We ultimately provide a data-driven method for estimating extreme

quantiles in a manner that is robust against possibly incorrect model assumptions. Our

objective here is different from standard statistical robustness which is concerned with data

contamination only (not model error); see, for example, Tsai et al. (2010), for this type of

analysis in the setting of EVT.

Our focus in this paper is closer in spirit to distributionally robust optimization as in,

for instance, Dupuis et al. (2000), Hansen and Sargent (2001), Ben-Tal et al. (2013), Breuer

and Csiszár (2013b). However, in contrast to the literature on robust optimization, the

emphasis here is on understanding the implications of distributional uncertainty regions in



CHAPTER 2. ON DISTRIBUTIONALLY ROBUST EXTREME VALUE ANALYSIS 12

the context of EVT. As far as we know this is the first paper that studies distributional

robustness in the context of EVT.

We now describe the content of the paper, following the logic which motivates the use

of EVT.

2.1.1 Motivation and Standard Approach

In order to provide a more detailed description of the content of this paper, its motivations,

the specific contributions, and the methods involved, let us invoke a couple of typical ex-

amples which motivate the use of extreme value theory. As a first example, consider the

problem of forecasting the necessary strength that is required for a skyscraper in New York

City to withstand a wind speed that gets exceeded only about once in 1000 years, using

wind speed data that is observed only over the last 200 years. In another instance, given

the losses observed during the last few decades, a reinsurance firm may want to compute,

as required by Solvency II standard, a capital requirement that is needed to withstand all

but about one loss in 200 years.

These tasks, and many others in practice, present a common challenge of extrapolating

tail distributions over regions involving unobserved evidence from available observations.

There are many reasonable ways of doing these types of extrapolations. One might take

advantage of physical principles and additional information, if available, in the windspeed

setting; or use economic principles in the reinsurance setting. In the absence of any funda-

mental principles which inform tail extrapolation of a random variable X, one may opt to

use purely statistical considerations.

One such statistical approach entails the application of the popular extremal types

theorem (see Section 2.2) to model the distribution of block maxima of a modestly large

number of samples of X, by a generalized extreme value (GEV) distribution. Once we

have a satisfactory model for the distribution of Mn = max{X1, . . . , Xn}, evaluation of

any desired quantile of X is straighforward because of the relationship that P (Mn ≤ x) =

(P (X ≤ x))n for any x ∈ R. Another common approach is to use samples that exceed

a certain threshold to model conditional distribution of X exceeding the threshold. The

standard texts in extreme value theory (see, for example, Leadbetter et al. (1983),de Haan
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and Ferreira (2006),Resnick (2008)) provide a comprehensive account of such standard

statistical approaches.

Regardless of the technique used, various assumptions underlying an application of a

result similar to the extremal types theorem might be subject to model error. Consequently,

it has been widely accepted that tail risk measures, particularly for high confidence levels,

can only be estimated with considerable statistical as well as model uncertainty (see, for

example, Jorion (2006)). The following remark due to Coles (2001) holds significance in this

discussion: “Though the GEV model is supported by mathematical argument, its use in

extrapolation is based on unverifiable assumptions, and measures of uncertainty on return

levels should properly be regarded as lower bounds that could be much greater if uncertainty

due to model correctness were taken into account.”

Despite these difficulties, however, EVT is widely used (see, for example, de Haan and

Ferreira (2006)) and regarded as a reasonable way of extrapolation to estimate extreme

quantiles.

2.1.2 Proposed Approach Based on Infinite Dimensional Optimization

We share the point of view that EVT is a reasonable approach, so we propose a procedure

that builds on the use of EVT to provide upper bounds which attempts to address the

types of errors discussed in the remark above from Coles (2001). For large values of n,

under the assumptions of EVT, the distribution of Mn lies close to, and appears like,

a GEV distribution. Therefore, instead of considering only the GEV distribution as a

candidate model, we propose a non-parametric approach. In particular, we consider a

family of probability models, all of which lie in a “neighborhood” of a GEV model, and

compute a conservative worst-case estimate of Value at risk (VaR) over all of these candidate

models. For p ∈ [0, 1], the value at risk VaRp(X) is defined as

VaRp(X) = F←(p) := inf{x : P{X ≤ x} ≥ p}.

Mathematically, given a reference model, P
ref

, which we consider to be obtained using

EVT (using a procedure such as the one outlined in the previous subsection), we consider
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the optimization problem

sup

{
P{X > x} : d(P, P

ref
) ≤ δ

}
. (2.1)

Note that the previous problem proposes optimizing over all probability measures that are

within a tolerance level δ (in terms of a suitable discrepancy measure d) from the chosen

baseline reference model P
ref
.

There is a wealth of literature that pursues this line of thought (see Dupuis et al. (2000),

Hansen and Sargent (2001), Ahmadi-Javid (2012), Ben-Tal et al. (2013),Breuer and Csiszár

(2013b),Glasserman and Xu (2014b)), but, no study has been carried out in the context of

EVT. Moreover, while the solvability of problems as in (2.1) have understandably received

a great deal of attention, the qualitative differences that arise by using various choices of

discrepancy measures, d, has not been explored, and this is an important contribution of this

paper. For tractability reasons, the usual choice for discrepancy d in the literature has been

KL-divergence. In Section 2.3 we study the solution to infinite dimensional optimization

problems such as (2.1) for a large class of discrepancies that includes KL-divergence as a

special case, and discuss how such problems can be solved at no significant computational

cost.

2.1.3 Choosing Discrepancy and Consistency Results

One of our main contributions in this paper is to systematically demonstrate the qualitative

differences that arise by using different choices of discrepancy measures d in (2.1). Since

our interest in the paper is limited to robust tail modeling via EVT, this narrow scope, in

turn, lets us analyse the qualitative differences that may arise because of different choices

of d.

As mentioned earlier, the KL-divergence1 is the most popular choice for d. In Section

2.4 we show that for any divergence neighborhood P, defined using d = KL-divergence

around a baseline reference P
ref

, there exists a probability measure P in P that has tails

as heavy as

P (x,∞) ≥ c log−2 P
ref

(x,∞),

1KL-divergence, and all other relevant divergence measures, are defined in Section 2.3.1
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for a suitable constant c, and all large enough x. This means, irrespective of how small δ is

(smaller δ corresponds to smaller neighborhood P), a KL-divergence neighborhood around

a commonly used distribution (such as exponential, (or) Weibull (or) Pareto) typically

contains tail distributions that have infinite mean or variance, and whose tail probabilities

decay at an unrealistically slow rate (even logarithmically slow, like log−2 x, in the case

of reference models that behave like a power-law or Pareto distribution). As a result,

computations such as worst-case expected short-fall2 may turn out to be infinite. Such

worst-case analyses are neither useful nor interesting.

For our purposes, we also consider a general family of divergence measures Dα that

includes KL-divergence as a special case (when α = 1). It turns out that for any α > 1,

the divergence neighborhoods defined as in {P : Dα(P, P
ref

) ≤ δ} consists of tails that are

heavier than P
ref

, but not prohibitively heavy. More importantly, we prove a “consistency”

result in the sense that if the baseline reference model belongs to the maximum domain

of attraction of a GEV distribution with shape parameter γ
ref
, then the corresponding

worst-case tail distribution,

F̄α(x) := sup{P (x,∞) : Dα(P, P
ref

) ≤ δ}, (2.2)

belongs to the maximum domain of attraction of a GEV distribution with shape parameter

γ∗ = (1− α−1)−1γ
ref

(if it exists).

Since our robustification approach is built resting on EVT principles, we see this consis-

tency result as desirable. If a modeler who is familiar with certain type of data expects the

EVT inference to result in an estimated shape parameter which is positive, then the robus-

tification procedure should preserve this qualitative property. An analysis of the maximum

domain of attraction of the distribution F̄α(x), depending on α and γ
ref
, is presented in

Section 2.4, along with a summary of the results in Table 1.

Note that the smaller the value of α, the larger the absolute value of shape parameter γ∗,

and consecutively, heavier the corresponding worst-case tail is. This indicates a gradation

in the rate of decay of worst-case tail probabilities as parameter α decreases to 1, with

2Similar to VaR, expected shortfall (or) conditional value at risk (referred as CVaR) is another widely

recognized risk measure.
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the case α = 1 (corresponding to KL-divergence) representing the extreme heavy-tailed

behaviour. This gradation, as we shall see, offers a great deal of flexibility in modeling by

letting us incorporate domain knowledge (or) expert opinions on the tail behaviour. If a

modeler is suspicious about the EVT inference he/she could opt to select α = 1, but, as we

have mentioned earlier, this selection may result in pessimistic estimates.

The relevance of these results shall become more evident as we introduce the required

terminology in the forthcoming sections. Meanwhile, Table 2.1 and Figure 2.1 offer illus-

trative comparisons of F̄α(x) for various choices of α.

2.1.4 The Final Estimation Procedure

The framework outlined in the previous subsections yields a data driven procedure for

estimating VaR which is presented in Section 2.5. A summary of the overall procedure is

given in Algorithm 2. The procedure is applied to various data sets, resulting in different

reference models, and we emphasize the choice of different discrepancy measures via the

parameter α. The numerical studies expose the salient points discussed in the previous

subsections and rigorously studied via our theorems. For instance, Example 3 shows how

the use of the KL divergence might lead to rather pessimistic estimates. Moreover, Example

4 illustrates how the direct application of EVT can severely underestimate the quantile of

interest, while the procedure that we advocate provides correct coverage for the extreme

quantile of interest.

The very last section of the paper, Section 2.6, contains technical proofs of various

results invoked in the development.

2.2 Generalized extreme value distributions

The objective of this section is to mainly fix notation and review properties of generalized

extreme value (GEV) distributions that are relevant for introducing and proving our main

results in Section 2.4. For a thorough introduction to GEV distributions and their applica-

tions to modeling extreme quantiles, we refer the readers to the wealth of literature that is

available (see, for example, Leadbetter et al. (1983), Embrechts et al. (1997), de Haan and
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Ferreira (2006), Resnick (2008) and references therein).

If we use Mn to denote the maxima of n independent copies of a random variable X

with cumulative distribution funtion F (·), then extremal types theorem identifies all non-

degenerate distributions G(·) that may occur in the limiting relationship,

lim
n→∞

P

{
Mn − bn

an
≤ x

}
= lim

n→∞
Fn (anx+ bn) = G(x), (2.3)

for every continuity point x of G(·), with an and bn representing suitable scaling constants.

All such distributions G(x) that occur in the right-hand side of (2.3) are called extreme

value distributions.

Extremal types theorem (Fisher and Tippet (1928), Gnedenko (1943)). The class of

extreme value distributions is Gγ(ax+ b) with a > 0, b, γ ∈ R, and

Gγ(x) := exp
(
− (1 + γx)−1/γ

)
, 1 + γx > 0. (2.4)

If γ = 0, the right-hand side is interpreted as exp(− exp(−x)).

The extremal types theorem asserts that any G(x) that occurs in the right-hand side of

(2.3) must be of the form Gγ(ax + b). As a convention, any probability distribution F (x)

that gives rise to the limiting distribution G(x) = Gγ(ax + b) in (2.3) is said to belong to

the maximum domain of attraction of Gγ(x). In short, it is written as F ∈ D(Gγ). The

parameters γ, a > 0 and b are, respectively, called the shape, scale and location parameters.

From the above we have

P (Mn ≤ x) = P
(Mn − bn

an
≤ x− bn

an

)
≈ Gγ0

(x− bn
an

)
=: Gγ0(a0x+ b0),

where γ0, an, bn are estimated by a parameter estimation technique such as maximum

likelihood and a0 := 1/an, b0 := −bn/an. We will use PGEV to denote the distribution

Gγ0(a0x+ b0).

2.2.1 Frechet, Gumbel and Weibull types

Though the limiting distributions Gγ(ax+b) seem to constitute a simple parametric family,

they include a wide-range of tail behaviours in their maximum domains of attraction, as
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discussed below: For a distribution F, let F̄ (x) = 1 − F (x) denote the corresponding tail

probabilities, and x∗
F

= sup{x : F (x) < 1} denote the right endpoint of its support.

1) The Frechet Case (γ > 0). A distribution F ∈ D(Gγ) for some γ > 0, if and only

if right endpoint x∗
F

is unbounded, and its tail probabilities satisfy

F̄ (x) =
L(x)

x1/γ
, x > 0 (2.5)

for a function L(·) slowly varying at ∞3. As a consequence, moments greater than or

equal to 1/γ do not exist. Any distribution F (x) that lies in D(Gγ) for some γ > 0

is also said to belong to the maximum domain of attraction of a Frechet distribution

with parameter 1/γ. The Pareto distribution 1− F (x) = x−α ∧ 1 is an example for a

distribution that belongs to D(G1/α).

2) The Weibull case (γ < 0). Unlike the Frechet case, a distribution F ∈ D(Gγ) for

some γ < 0, if and only if its right endpoint x∗
F

is finite, and its tail probabilities

satisfy

F̄ (x∗
F
− ε) = ε−1/γL

(
1

ε

)
, ε > 0 (2.6)

for a function L(·) slowly varying at ∞. A distribution that belongs to D(Gγ) for

some γ < 0 is also said to belong to the maximum domain of attraction of Weibull

family. The uniform distribution on the interval [0, 1] is an example that belongs to

this class of extreme value distributions.

3) The Gumbel case (γ = 0). A distribution F ∈ D(G0) if and only if

lim
t↑x∗

F

F̄ (t+ xf(t))

F̄ (t)
= exp(−x), x ∈ R (2.7)

for a suitable positive function f(·). In general, the members of G0 have exponen-

tially decaying tails, and consequently, all moments exist. Probability distributions

F (·) that give rise to limiting distributions G0(ax+ b) are also said to belong to the

Gumbel domain of attraction. Common examples that belong to the Gumbel domain

of attraction include exponential and normal distributions.

3A function L : R→ R is said to be slowly varying at infinity if limx→∞ L(tx)/L(x) = 1 for every t > 0.

Common examples of slowly varying function include log x, log log x, 1− exp(−x), constants, etc.
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Given a distribution function F, Proposition 2.1 is useful to test to determine its domain of

attraction:

Proposition 2.1. Suppose F ′′(x) exists and F ′(x) is positive for all x in some left neigh-

borhood of x∗
F
. If

lim
x↑x∗

F

(
1− F
F ′

)′
(x) = γ, (2.8)

then F belongs to the domain of attraction of Gγ .

The proof of Proposition 2.1 and further details on the classification of extreme value

distributions can be found in any standard text on extreme value theory (see, for example,

Leadbetter et al. (1983) or de Haan and Ferreira (2006)).

2.2.2 On model errors and robustness

After identifying a suitable GEV model PGEV for the distribution of block maxima Mn, it

is common to utilize the relationship P{Mn ≤ x} = P{X ≤ x}n, to compute a desired

extreme quantile of X. It is useful to remember that PGEV (−∞, x] is only an approxi-

mation for P{Mn ≤ x}, and the quality of the approximation is, in turn, dependent on

the unknown distribution function F (see Resnick (2008),de Haan and Ferreira (2006)).

Therefore, in practice, one does not know the block-size n for which the GEV model PGEV

well-approximates the distribution of Mn. Even if a good choice of n is known, one cannot

often employ it in practice, because larger n means smaller m, and consequentially, the

inferential errors could be large. Due to the arbitrariness in the estimation procedures and

the nature of applications (calculating wind speeds for building sky-scrapers, building dykes

for preventing floods, etc.), it is desirable to have, in addition, a data-driven procedure that

yields a conservative upper bound for xp that is robust against model errors. To accom-

plish this, one can form a collection of competing probability models P, all of which appear

plausible as the distribution of Mn, and compute the maximum of pn-th quantile over all

the plausible models in P. This is indeed the objective of the sections that follow.
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2.3 A non-parametric framework for addressing model errors

Let (Ω,F) be a measurable space and M1(F) denote the set of probability measures on

(Ω,F). Let us assume that a reference probability model P
ref
∈ M1(F) is inferred by

suitable modelling and estimation procedures from historical data. Naturally, this model is

not the same as the distribution from which the data has been generated, and is expected

only to be close to the data generating distribution. In the context of Section 2.2, the

model P
ref

corresponds to PGEV , and the data generating model corresponds to the true

distribution of Mn. With slight perturbations in data, we would, in turn, be working with

a slightly different reference model. Therefore, it has been of recent interest to consider a

family of probability models P, all of which are plausible, and perform computations over

all the models in that family. Following the rich literature of robust optimization, where it

is common to describe the set of plausible models using distance measures (see Ben-Tal et

al. (2013)), we consider the set of plausible models to be of the form

P =
{
P ∈M1(F) : d

(
P, P

ref

)
≤ δ
}

for some distance functional d : M1(F) ×M1(F) → R+ ∪ {+∞}, and a suitable δ > 0.

Since d(P
ref
, P

ref
) = 0 for any reasonable distance functional, P

ref
lies in P. Therefore, for

any random variable X, along with the conventional computation of EP
ref

[X], one aims to

provide “robust” bounds,

inf
P∈P

EP [X] ≤ EP
ref

[X] ≤ sup
P∈P

EP [X].

Here, we follow the notation that EP [X] =
∫
XdP for any P ∈ M1(F). Since the state-

space Ω is uncountable, evaluation of the above sup and inf-bounds, in general, are infinite-

dimensional problems. However, as it has been shown in the recent works Breuer and

Csiszár (2013b),Glasserman and Xu (2014b), it is indeed possible to evaluate these robust

bounds for carefully chosen distance functionals d.

2.3.1 Divergence measures

Consider two probability measures P and Q on (Ω,F) such that P is absolutely continu-

ous with respect to Q. The Radon-Nikodym derivative dP/dQ is then well-defined. The



CHAPTER 2. ON DISTRIBUTIONALLY ROBUST EXTREME VALUE ANALYSIS 21

Kullback-Liebler divergence (or KL-divergence) of P from Q is defined as

D1(P,Q) := EQ

[
dP

dQ
log

(
dP

dQ

)]
. (2.9)

This quantity, also referred to as relative entropy (or) information divergence, arises in

various contexts in probability theory. For our purposes, it will be useful to consider a

general class of divergence measures that includes KL-divergence as a special case. For any

α > 1, the Rényi divergence of degree α is defined as:

Dα(P,Q) :=
1

α− 1
logEQ

[(
dP

dQ

)α]
. (2.10)

It is easy to verify that for every α, Dα(P,Q) = 0, if and only if P = Q. Additionally,

the map α 7→ Dα is nondecreasing, and continuous from the left. Letting α → 1 in (2.10)

yields the formula for KL-divergence D1(P,Q). Thus KL-divergence is a special case of the

family of Rényi divergences, when the parameter α equals 1. If the probability measure P

is not absolutely continuous with respect to Q, then Dα(P,Q) is taken as ∞. Though none

of these divergence measures form a metric on the space of probability measures, they have

been used in a variety of scientific disciplines to discriminate between probability measures.

For more details on the divergences Dα, see Rényi (1961),Liese and Vajda (1987).

2.3.2 Robust bounds via maximization of convex integral functionals

Recall that P
ref

is the reference probability measure obtained via standard estimation pro-

cedures. Since the model P
ref

could be misspecified, we consider all models that are not far

from P
ref

in the sense quantified by divergence Dα, for any fixed α ≥ 1. Given a random

variable X, we consider optimization problems of form

Vα(δ) := sup
{
EP [X] : Dα(P, P

ref
) ≤ δ

}
. (2.11)

Though KL-divergence has been a popular choice in defining sets of plausible probability

measures as above, use of divergences Dα, α 6= 1 is not new altogether: see Atar et al.

(2015),Glasserman and Xu (2014b). Due to the Radon-Nikodym theorem, Vα(δ) can be

alternatively written as,

Vα(δ) = sup
{
EP

ref
[LX] : EP

ref
[φα(L)] ≤ δ̄, EP

ref
[L] = 1, L ≥ 0

}
, (2.12)
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where L = dP/dPref and

φα(x) =


xα if α > 1,

x log x if α = 1

and δ̄ =


exp ((α− 1)δ) if α > 1,

δ if α = 1.

(2.13)

A standard approach for solving optimization problems of the above form is to write

the corresponding dual problem as below:

Vα(δ) ≤ inf
λ>0,
µ

sup
L≥0

EP
ref

[
LX − λ

(
φα(L)− δ̄

)
+ µ(L− 1)

]
.

The above dual problem can, in turn, be relaxed by taking the sup inside the expectation:

Vα(δ) ≤ inf
λ>0,
µ

{
λδ̄ − µ+ λEP

ref

[
sup
L≥0

{
(X + µ)

λ
L− φα(L)

}]}
. (2.14)

By first order condition the inner supremum is solved by

L∗α(c1, c2) :=


c1 exp(c2X), if α = 1,

(c1 + c2X)
1/(α−1)
+ , if α > 1,

(2.15)

for some suitable constants c1 ∈ R, c2 > 0 when α > 1; and c1 ∈ (0, 1) and c2 > 0 when

α = 1. Then the following theorem is intuitive:

Theorem 2.2. Fix any α ≥ 1. For L∗α(c1, c2) defined as in (2.15), if there exists constants

c1 and c2 such that

L∗α(c1, c2) ≥ 0, EP
ref

[L∗α(c1, c2)] = 1 and EP
ref

[φα (L∗α(c1, c2))] = δ̄,

then L∗α(c1, c2) solves the optimization problem (2.12). The corresponding optimal value is

Vα(δ) = EP
ref

[L∗α(c1, c2)X] . (2.16)

Proof. Under the specified assumptions, when we plug L∗α(c1, c2) into the right-hand-side of

inequality (2.14), it is simplified to EP
ref

[L∗α(c1, c2)X], so we have Vα(δ) ≤ EP
ref

[L∗α(c1, c2)X].

On the other hand, since L∗α(c1, c2) satisfies all the constraints in the problem (2.12), we

have Vα(δ) ≥ EP
ref

[L∗α(c1, c2)X]. �
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Remark 2.1. Let us say one can determine constants c1 and c2 for given X,α and δ. Then,

as a consequence of Theorem 2.2, the optimization problem (2.11) involving uncountably

many measures can, in turn, be solved by simply simulating X from the original reference

measure P
ref
, and multiplying by corresponding L∗α(c1, c2) to compute the expectation as

in (2.16).

A general theory for optimizing convex integral functionals of form (2.12), that includes a

bigger class of general divergence measures, can be found in Breuer and Csiszár (2013b). If

the random variable X above is an indicator function, then computation of bounds Vα(δ)

turns out to be even simpler, as illustrated in the example below:

Example 2.1. Let P
ref

be a probability measure on (R,B(R)). For a given δ > 0 and α ≥

1, let us say we are interested in evaluating the worst-case tail probabilities

F̄α,δ(x) := sup{P (x,∞) : Dα(P, P
ref

) ≤ δ}.

Consider the canonical mapping Z(ω) = ω, ω ∈ R. Then

F̄α,δ(x) = sup
{
EP

ref
[L1(Z > x)] : EP

ref
[φα(L)] ≤ δ̄, EP

ref
[L] = 1, L ≥ 0

}
.

is an optimization problem of the form (2.11). Therefore, due to Theorem 2.2 and equation

(2.15), the optimal L∗ has the form

L∗α(c1, c2) :=


c1 exp(c21(Z > x)), if α = 1,

(c1 + c21(Z > x))
1/(α−1)
+ , if α > 1,

When we consider the two cases of Z > x and Z ≤ x, and combine the range information on

c1, c2 following equation (2.15), the above formulation of L∗α(c1, c2) can further be simplified

to θ1(x,∞) + θ̃1(−∞, x] for some constants θ > 1 and θ̃ ∈ (0, 1). Substituting for L∗ =

θ1(x,∞) + θ̃1(−∞, x] in the constraints EP
ref

[φα(L∗)] = δ̄ and EP
ref

[L∗] = 1, we obtain

the following conclusion: Given x > 0, if there exists a θx > 1 such that

P
ref

(x,∞)φα(θx) + P
ref

(−∞, x]φα

(
1− θxPref (x,∞)

P
ref

(−∞, x]

)
= δ̄, (2.17)

then F̄α,δ(x) = θxPref (x,∞).
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2.4 Asymptotic analysis of robust estimates of tail probabil-

ities

In this section we study the asymptotic behaviour of F̄α,δ(x) := sup{P (x,∞) : Dα(P, P
ref

) ≤

δ}, for any α ≥ 1 and δ > 0, as x→∞. We first verify in Proposition 2.3 below that F̄α,δ(x),

viewed as a function of x, satisfies the properties of a tail distribution function. A proof of

Proposition 2.3 is presented in Section 2.6.

Proposition 2.3. The function, Fα,δ(x) := 1− F̄α,δ(x), viewed as a function of x, satisfies

properties of cumulative distribution function of a real-valued random variable.

Thus from here onwards, we shall refer F̄α,δ(·) as the α-family worst-case tail distribution,

and study its qualitative properties such as domain of attraction for the rest of this section.

All the probability measures involved, unless explicitly specified, are taken to be defined on

(R,B(R)). Since Dα(P
ref
, P

ref
) = 0, it is evident that the worst-case tail estimate F̄α,δ(x)

is at least as large as P
ref

(x,∞). While the overall objective has been to provide robust

estimates that account for model perturbations, it is certainly not desirable that the worst-

case tail distribution F̄α,δ(·), for example, has unrealistically slow logarithmic decaying tails.

Seeing this, our interest in this section is to quantify how heavier the tails of F̄α,δ(·) are,

when compared to that of the reference model.

The bigger the plausible family of measures
{
P : Dα(P, P

ref
) ≤ δ

}
, the slower the decay

of tail F̄α,δ(x) is, and vice versa. Hence it is conceivable that the parameter δ is influential

in determining the rate of decay of F̄α,δ(·). However, as we shall see below in Theorem 2.5,

it is the parameter α (along with the tail properties of the reference model P
ref

) that solely

determines the domain of attraction, and hence the rate of decay, of F̄α,δ(·).

Since our primary interest in the paper is with respect to reference model P
ref

being a

GEV model, we first state the result in this context:

Theorem 2.4. Let the reference GEV model PGEV have shape parameter γ
ref
. Then the

distribution F induced by PGEV satisfies the regularity assumptions of Proposition 2.1 with

γ = γ
ref
. For any α > 1, let F̄α,δ(x) := sup{P (x,∞) : Dα(P, PGEV ) ≤ δ}, and

γ∗ :=
α

α− 1
γ
ref
.
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Then the distribution function Fα,δ(x) = 1− F̄α,δ(x) belongs to the domain of attraction of

Gγ∗ .

Theorem 2.4 is, however, a corollary of Theorem 2.5 below.

Theorem 2.5. Let the reference model P
ref

belong to the domain of attraction of Gγref
.

In addition, let P
ref

induce a distribution F that satisfies the regularity assumptions of

Proposition 2.1 with γ = γ
ref
. For any α > 1, let F̄α,δ(x) := sup{P (x,∞) : Dα(P, P

ref
) ≤

δ}, and

γ∗ :=
α

α− 1
γ
ref
.

Then the distribution function Fα,δ(x) = 1 − F̄α,δ(x) belongs to the maximum domain of

attraction of Gγ∗ .

The special case corresponding to α = 1 is handled in Propositions 2.6 and 2.7. Proofs

of Theorems 2.4 and 2.5 are presented in Section 2.6.

Remark 2.2. First, observe that P (x,∞) ≤ F̄α,δ(x), for every P in the neighborhood

set of measures Pα,δ := {P : Dα(P, P
ref

) ≤ δ}. Therefore, for any α > 1, apart from

characterizing the domain of attraction of F̄α,δ, Theorem 2.5 offers the following insights on

the neighborhood Pα,δ :

1) If the reference model belongs to the domain of attraction of a Frechet distribution

(that is, γ
ref

> 0), and if P is a probability measure that lies in its neighborhood

Pα,δ, then P must satisfy that

P (x,∞) = O

(
x
− α−1
αγ
ref

+ε
)
, (2.18)

as x → ∞, for every ε > 0. This conclusion is a consequence of (2.5): F̄α,δ is in the

domain of attraction of Gγ∗ , then by (2.5) we have

F̄α,δ(x) = L(x)x−1/γ∗ = L(x)x
− α−1
αγ
ref ,

and the observation that P (x,∞) ≤ F̄α,δ(x). In addition, as in the proof of Theorem

2.5, one can exhibit a measure P ∈ Pα,δ such that P (x,∞) ≥ cx−(α−1)/αγ
ref for some

c > 0 and all large enough x.
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2) On the other hand, if the reference model belongs to the Gumbel domain of attraction

(γ
ref

= 0), then every P ∈ Pα,δ satisfies P (x,∞) = o(x−ε), as x→∞, for every ε > 0.

3) Now consider the case where P
ref
∈ D(Gγref

) for some γ
ref

< 0 (that is, the reference

model belongs to the domain of attraction of a Weibull distribution). Let x∗
F
< ∞

denote the supremum of its bounded support. In that case, any probability measure

P that belongs to the neighborhood Pα,δ must satisfy that P (−∞, x∗
F

) = 1 and

P (x∗
F
− ε, x∗

F
) = O

(
ε
− α−1
αγ
ref
−ε′
)
,

as ε→ 0, for every ε′ > 0. In addition, one can exhibit a measure P ∈ Pα,δ such that

P (x∗
F
− ε, x∗

F
) ≥ cε−(α−1)/αγ

ref , for some positive constant c and all ε > 0 sufficiently

small.

It is important to remember that the above properties hold for all α > 1, and is not

dependent on δ.

For a fixed reference model P
ref
, it is evident from Remark 2.2 that the neighborhoods

Pα,δ = {P : Dα(P, P
ref

) ≤ δ} include probability distributions with heavier and heavier

tails as α approaches 1 from above. This is in line with the observation that Dα(P, P
ref

) is

a non-decreasing function in α, and hence larger neighborhoods Pα,δ for smaller values of α.

In particular, when α = 1 and shape parameter γ
ref

= 0, the quantity γ∗ = γ
ref
α/(α − 1)

defined in Theorem 2.4 is not well-defined. This corresponds to the set of plausible measures

{P : D1(P,G0) ≤ δ} defined using KL-divergence around the reference Gumbel model G0.

The following result describes the tail behaviour of F̄α,δ in this case:

Proposition 2.6. Recall the definition of extreme value distributions Gγ in (2.4). Let

F̄1,δ(x) = sup{P (x,∞) : D1(P,G0) ≤ δ}, and F1,δ(x) = 1 − F̄1,δ(x). Then F1,δ belongs to

the domain of attraction of G1.

The following result, when contrasted with Remark 2.2, better illustrates the difference

between the cases α > 1 and α = 1.

Proposition 2.7. Recall the definition of Gγ as in (2.4). For every δ > 0, one can find

a probability measure P in the neighborhood {P : D1(P,Gγref
) ≤ δ}, along with positive

constants c+ or c− or c0, and x+ or x0 or ε− such that
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a) P (x,∞) ≥ c+ log−3 x for every x > x+, if γ
ref

> 0;

b) P (x,∞) ≥ c0x
−1 for every x > x0, if γ

ref
= 0; and

c) P (−∞, x∗
G

) = 1 and P (x∗
G
− ε, x∗

G
) ≥ c3 log−3 1

ε for every ε < ε−, if γ
ref

< 0. Here,

the right endpoint x∗
G

= sup{x : Gγ
ref

(x) < 1} is finite because γ
ref

< 0.

In addition, it is useful to contrast these tail decay results for neighboring measures with

that of the corresponding reference measure Gγref
characterized in (2.5), (2.6) or (2.7).

It is evident from this comparison that the worst-case tail probabilities F̄α,δ(x) decay at

a significantly slower rate than the reference measure when α = 1 (the KL-divergence

case). Table 2.1 below summarizes the rates of decay of worst-case tail probabilities F̄α,δ(·)

over different choices of α when the reference model is a GEV distribution. In addition,

Figure 2.1, which compares the worst-case tail distributions F̄α,δ(x) for three different GEV

example models, is illustrative. Proofs of Theorems 2.4 and 2.5, Propositions 2.6 and 2.7

are presented in Section 2.6.

2.5 Robust estimation of VaR

Given independent samples X1, . . . , XN from an unknown distribution F, we consider the

problem of estimating F←(p) for values of p close to 1. In this section, we develop a

data-driven algorithm for estimating robust upper bounds for these extreme quantiles by

employing traditional extreme value theory in tandem with the insights derived in Sections

2.3 and 2.4. Our motivation has been to provide conservative estimates for F←(p) that are

robust against incorrect model assumptions as well as calibration errors.

Naturally, the first step in the estimation procedure is to arrive at a reference model

PGEV (−∞, x) = Gγ0(a0x + b0) for the distribution of block-maxima Mn. Once we have

a candidate model PGEV for Mn, the pn-th quantile of the distribution PGEV serves as an

estimator for F←(p). Instead, if we have a family of candidate models (as in Sections 2.3

and 2.4) for Mn, a corresponding robust alternative to this estimator is to compute the

worst-case quantile estimate over all the candidate models as below:

x̂p := sup
{
G←(pn) : Dα(G,PGEV ) ≤ δ

}
. (2.19)
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Table 2.1: A summary of domains of attraction of Fα,δ(x) = 1 − F̄α,δ(x) for GEV models.

Throughout the paper, γ∗ := α
α−1γref

Domain of attraction of Domain of attraction of

Reference model Worst-case tail F̄α,δ(·), α > 1 Worst-case tail F̄α,δ(·), α = 1

(the KL-divergence case)

G0 G0 G1

(Gumbel light tails) (Gumbel light tails) (Frechet heavy tails)

Gγref
, γ

ref
> 0 Gγ∗ –

(Frechet heavy tails) (Frechet heavy tails) (slow logarithmic decay of

F̄α,δ(x) as x→∞)

Gγref
, γ

ref
< 0 Gγ∗ –

(Weibull) (Weibull) (slow logarithmic decay of F̄α,δ(x) to 0

at a finite right endpoint x∗)

Here G← denotes the usual inverse function G←(u) = inf{x : G(x) ≥ u} with respect to

distribution G. Since the framework of Section 2.3 is limited to optimization over objective

functionals in the form of expectations (as in (2.11)), it is immediately not clear whether

the supremum in (2.19) can be evaluated using tools developed in Section 2.3. Therefore,

let us proceed with the following alternative: First, compute the worst-case tail distribution

F̄α,δ(x) := sup {G(x,∞) : Dα(G,PGEV ) ≤ δ} , x ∈ R
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Figure 2.1: Comparison of F̄α,δ(x) for different GEV models: The solid curves represents

the reference model Gγref
(x) for γ

ref
= 1/3 (top left figure), γ

ref
= 0 (top right figure) and

γ
ref

= −1/3 (bottom figure). Computations of corresponding F̄α,δ(x) are done for α = 1

(the dotted curves), and α = 5 (the dash-dot curves) with δ fixed at 0.1. The dotted curves

(corresponding to α = 1, the KL-divergence case) conform with our reasoning that F̄α,δ(x)

have vastly different tail behaviours from the reference models when KL-divergence is used.

(a) G 1
3
(x), a Frechet example (b) G0(x), a Gumbel example

(c) G− 1
3
(x), a Weibull example

over all candidate models, and compute the corresponding inverse

F←α,δ(p
n) := inf{x : 1− F̄α,δ(x) ≥ pn}.

The estimate x̂p (defined as in (2.19)) is indeed equal to F←α,δ(p
n), and this is the content

of Lemma 2.1.

Lemma 2.1. For every u ∈ (0, 1), F←α,δ(u) = sup {G←(u) : Dα(G,PGEV ) ≤ δ} .

Proof. For brevity, let P = {G : Dα(G,PGEV ) ≤ δ}. Then, it follows from the definition of



CHAPTER 2. ON DISTRIBUTIONALLY ROBUST EXTREME VALUE ANALYSIS 30

F̄α,δ(·) and F←α,δ(·) that

F←α,δ(u) = inf

{
x : sup

G∈P
G(x,∞) ≤ 1− u

}
= inf

⋂
G∈P

{
x : G(x,∞) ≤ 1− u

}
= inf

⋂
G∈P

[
G←(u),∞

)
= sup

G∈P
G←(u).

This completes the proof of Lemma 2.1. �

Now that we know x̂p = F←α,δ(p
n) is the desired upper bound, let us recall from Example

2.1 how to evaluate F̄α,δ(x) for any x of interest. If θx > 1 solves

PGEV (x,∞)φα(θx) + PGEV (−∞, x)φα

(
1− θxPGEV (x,∞)

PGEV (−∞, x)

)
= δ̄,

then F̄α,δ(x) = θxPGEV (x,∞). Though θx cannot be obtained in closed-form, given any

x > 0, one can numerically solve for θx, and compute F̄α,δ(x) to a desired level of precision.

On the other hand, given a level u ∈ (0, 1), it is similarly possible to compute F←α,δ(u) by

solving for x that satisfies PGEV (x,∞) < 1− u and

PGEV (x,∞)φα

(
1− u

PGEV (x,∞)

)
+ PGEV (−∞, x)φα

(
u

PGEV (−∞, x)

)
= δ̄. (2.20)

Therefore, given α and δ, it is computationally not any more demanding to evaluate the

robust estimates F←α,δ(p
n) for F←(p).

2.5.1 On specifying the parameter δ.

For a given choice of paramter α ≥ 1, there are several divergence estimation methods

available in the literature to obtain an estimate δ̂ = Dα(P̂Mn , PGEV ), where P̂Mn is the

empirical distribution of Mn. For our examples, we use the k-nearest neighbor (k-NN)

algorithm of Póczos and Schneider (2011) and Q.Wang et al. (2009). See also Nguyen et al.

(2009),Nguyen et al. (2010),Gupta and Srivastava (2010) for similar divergence estimators.

These divergence estimation procedures provide an empirical estimate of the divergence

between sample maxima and the calibrated GEV model PGEV .

The specific details of the k-NN divergence estimation procedure we employ from Póczos

and Schneider (2011) and Q.Wang et al. (2009) are provided in Remark 2.3 below:
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Remark 2.3. Suppose Mn,1, . . . ,Mn,m are independent samples of Mn, and L1, . . . , Ll are

samples from PGEV . Define ρk(i) to be the Euclidean distance between Mn,i and its k-th

nearest neighbour among all Mn,1, . . . ,Mn,m and similarly νk(i) the distance between Mn,i

and its k-th nearest neighbour among all L1, . . . , Ll. The k-NN based density estimators are

p̂k(Mn,i) =
k/(m− 1)

|B(ρk(i))|
and q̂k(Mn,i) =

k/l

|B(νk(i))|
,

where |B(ρk(i))| denotes the volume of a ball with radius ρk(i). Then, for a fixed α, the

estimator for δ = Dα(PMn , PGEV ) is given by

δ̂ =
1

α− 1
log

(
1

m

m∑
i=1

((m− 1)ρk(i)

lνk(i)

)1−α
· Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)

)
,

for α > 1, where Γ denotes the gamma function, and

δ̂ =
1

m

m∑
i=1

log
( lνk(i)

(m− 1)ρk(i)

)
,

for α = 1.

For a fixed choice of α ≥ 1 and desired p close to 1, the Rob-Estimator(p, α) procedure

in Algorithm 1 below provides a summary of the prescribed estimation procedure.

2.5.2 On specifying the parameter α.

To input to the estimation procedure Rob-Estimator(p, α) in Algorithm 1, one can per-

haps choose α via one of the three approaches explained below:

1) Choose α so that the corresponding γ∗ = γ0α/(α − 1) matches with an appropriate

confidence interval for the estimate γ0 : For example, if γ0 > 0 and the confidence

interval for γ0, estimated from data, is given by (γ0 − ε, γ0 + ε), then we choose α

satisfying

γ0
α

α− 1
= γ0 + ε. (2.21)

See Examples 2.2 and 2.3 for demonstrations of choosing α following this approach.

2) Alternatively, one can choose α based on domain knowledge as well: For example,

consider the case where one uses Gaussian distribution to model returns of a portfolio.
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In this instance, if a financial expert identifies the returns are instead heavy-tailed,

then one can take α = 1 to account for the imperfect assumption of Gaussian tails.

See Example 2.4 for a demonstration of choosing α based on this approach.

3) One can also adopt the following approach that mimicks the cross-validation proce-

Algorithm 1 To compute a robust upper bound x̂p for VaRp(X)

Given: N independent samples X1, . . . , XN of X, a level p close to 1, and a fixed choice

α ≥ 1.

procedure Rob-Estimator(p, α)

Initialize n < N, and let m = bNn c.

Step 1 (Compute block-maxima): Partition X1, . . . , XN into blocks of size n, and

compute the block maxima for each block to obtain samples Mn,1, . . . ,Mn,m of maxima

Mn.

Step 2 (Calibrate a reference GEV model): Treat the samples Mn,1, . . . ,Mn,m as

independent samples coming from a member of the GEV family and use a parameter

estimation technique (for example, maximum-likelihood) to estimate the parameters a0 , b0

and γ0 , along with suitable confidence intervals.

Step 3 (Determine the family of candidate models): For chosen α ≥ 1, determine δ

using a divergence estimation procedure (for an example, see Section 2.5.1). Then the

set {P : Dα(P, PGEV ) ≤ δ} represents the family of candidate models.

Step 4 (Compute the pn-th quantile for the reference GEV model, and as well as the

worst-case estimate over all candidate models):

Solve for x such that Gγ0
(a0x+ b0) = pn, and let xp be the corresponding solution.

Solve for x > xp in (2.20) and let the solution be x̂p.

Return xp and x̂p
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dure used in machine learning for choosing hyperparameters:

Recall that our objective is to estimate F←(p) for some p close to 1. With this ap-

proach, we first estimate F←(q) as a plug-in estimator from the empirical distribution,

for some q < p; while it is desirable that q is closer to p, care should be taken in the

choice that F←(q) should be estimable from the given N samples with high confi-

dence.

Having estimated F←(q) directly from the empirical distribution, the idea now is to

divide the given N samples, uniformly at random, into K mini-batches, each of which

is independently input as samples to the procedure Rob-Estimator(q, α) in Algo-

rithm 1 to yield K different robust estimates of F←(q) for an initially chosen value of

α (say, α = 1). If the mini-batches are of size N/r, then it is reasonable to choose the

scale-down factor r to be of the same order of magnitude as (1− q)/(1− p).

We repeat the above experiment for small increments of α to identify the largest value

of α for which the robust estimates obtained from the K sub-problems still cover the

plug-in estimate for F←(q) obtained initially from the empirical distribution. We uti-

lize this largest value of α that performs well in the scaled-down sub-problems to be

the choice of α for robust estimation of F←(p).

The third approach avoids using the upper end-point of a confidence interval of γ to

pick α. Instead it incorporates a trade-off between the choice of α and δ. Estimating

δ requires the estimation of the Rényi divergence, which is typically handled by k-NN

methods as explained in Remark 2.3. Large values of α may be desirable because they

generate better upper bounds, but since α → Dα is nondecreasing as mentioned in

Section 2.3.1, it also requires large neighborhoods to include the true distribution and

hence large values of δ. Further, by Theorem 2.5 if the true distribution has heavier

tail than the chosen GEV model, then there does exist a threshold of α over which the

neighborhoods will not include the true distribution or any other distributions with

the same or more tail heaviness than the true distribution, regardless of how large

δ is. Therefore when the chosen α is so large that the true distribution has the tail

with an index greater than γ∗, any attempt to estimate such δ will be unstable and

underestimated and causes the failure of coverage for true quantile. The above cross-
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validation-like procedure incorporates this trade-off and picks a suitable pair (α, δ).

Example 2.5 gives the corresponding numerical experiments using this approach.

2.5.3 Numerical examples

Example 2.2. For a demonstration of the ideas introduced, we consider the rainfall accu-

mulation data, due to the study of Coles and Tawn (1996), from a location in south-west

England (see also Coles (2001) for further extreme value analysis with the dataset). Given

annual maxima of daily rainfall accumulations over a period of 48 years (1914-1962), we

attempt to compute, for example, the 100-year return level for the daily rainfall data. In

other words, we aim to estimate the daily rainfall accumulation level that is exceeded about

only once in 100 years. As a first step, we calibrate a GEV model for the annual maxima.

Maximum-likelihood estimation of parameters results in the following values for shape, scale

and location parameters: γ0 = 0.1072, a0 = 9.7284 and b0 = 40.7830. The 100-year return

level due to this model yields a point estimate 98.63mm with a standard error of ±17.67mm

(for 95% confidence interval). It is instructive to compare this with the corresponding es-

timate 106.3± 40.7mm obtained by fitting a generalized Pareto distribution (GPD) to the

large exceedances (see Example 4.4.1 of Coles (2001)). To illustrate our methodology, we

pick α = 2, as suggested in (2.21). Next, we obtain δ = 0.05 as an empirical estimate

of divergence Dα between the data points representing annual maxima and the calibrated

GEV model PGEV = Gγ0(a0x + b0). This step is accomplished using a simple k-nearest

neighbor estimator (see Póczos and Schneider (2011)). Consequently, the worst-case quan-

tile estimate over all probability measures satisfying Dα(P, PGEV ) ≤ δ is computed to be

F←α (1− 1/100) = 132.24mm. While not being overly conservative, this worst-case 100 year

return level of 132.44mm also acts as an upper bound to estimates obtained due to different

modelling assumptions (GEV vs GPD assumptions). To demonstrate the quality of esti-

mates throughout the tail, we plot the return levels for every 1/(1−p) years, for values of p

close to 1, in Figure 2.2(a). While the return levels predicted by the GEV reference model

is plotted in solid line (with the dash-dot lines representing 95% confidence intervals), the

dotted curve represents the worst-case estimates F←α (p). The empirical quantiles are drawn

in the dashed line.



CHAPTER 2. ON DISTRIBUTIONALLY ROBUST EXTREME VALUE ANALYSIS 35

Figure 2.2: Plots for Examples 2.2 and 2.3

(a) Quantile plots for rainfall data, Eg. 2.2

(b) Quantile plots for Pareto data, Eg. 2.3

Example 2.3. In this example, we are provided with 100 independent samples of a Pareto

random variable satisfying P{X > x} = 1− F (x) = 1 ∧ x−3. As before, the objective is to

compute quantiles F←(p) for values of p close to 1. As the entire probability distribution

is known beforehand, this offers an opportunity to compare the quantile estimates returned
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by our algorithm with the actual quantiles. Unlike Example 2.2, the data in this example

does not present a natural means to choose block sizes. As a first choice, we choose block

size n = 5 and perform routine computations as in Algorithm 1 to obtain a reference

GEV model PGEV with parameters γ0 = 0.11, a0 = 0.58, b0 = 1.88, and corresponding

tolerance parameters α = 1.5 and δ = 0.8. Then the worst-case quantile estimate F←α (pn) =

sup{G←(pn) : Dα(G,PGEV ) ≤ δ} is immediately calculated for various values of p close to 1,

and the result is plotted (in the dotted line) against the true quantiles F←(p) = (1− p)−1/3

(in the solid line) in Figure 2.2(b). These can, in turn, be compared with the quantile

estimates xp (in the solid line) due to traditional GEV extrapolation with reference model

PGEV . Recall that the initial choice for block size, n = 5, was arbitrary. One can perhaps

choose a different block size, which will result in a different model for corresponding block-

maximum Mn. For example, if we choose n = 10, the respective GEV model for M10 has

parameters γ0 = 0.22, a0 = 0.55 and b0 = 2.3. Whereas, if we choose n = 15, the GEV

model for M15 has parameters γ0 = 0.72, a0 = 0.32 and b0 = 2.66. When considering the

shape parameters, these models are different, and subsequently, the corresponding quantile

estimates (plotted using dashed lines in Figure 2.2(b)) are also different. However, as it can

be inferred from Figure 2.2(b), the robust quantile estimates (in the dotted line) obtained

by running Algorithm 1 forms a good upper bound to the actual quantiles F←(p), as well

as to the quantile estimates due to different GEV extrapolations from different block sizes

n = 10 and 15.

Example 2.4. The objective of this example is to demonstrate the applicability of Al-

gorithm 1 in an instance where the traditional extrapolation techniques tend to not yield

stable estimates. For this purpose, we use N = 2000 independent samples of the random

variable Y = X + 501(X > 5) as input to the maximum likelihood based GEV model

estimation, with the aim of calculating the extreme quantile F←(0.999). Here, F denotes

the distribution function of random variable Y, and X is a Pareto random variable with

distribution max(1 − x−1.1, 0). The quantile estimates (and the corresponding 95% confi-

dence intervals) output by this traditional GEV estimation procedure, for various choices of

block sizes, is displayed with the solid line in Figure 2.3. Even for modestly large block size

choices, it can be observed that the 95% confidence regions obtained from the calibrated
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GEV models are far below the true quantile drawn in the dashed line. This underestimation

is perhaps because of the sudden shift of samples of block-maxima Mn from a value less

than 5 to a value larger than 55 (recall that the distribution F assigns zero probability to

the interval (5, 55)).

Figure 2.3: Plot for Example 2.4, instability in estimated quantile F←(0.999)

Next, we use Algorithm 1 to yield an upper bound that is robust against model errors.

Unlike previous examples where standard errors are used to calculate the suitable α, in

this example, we use the domain knowledge that the samples of Y have finite mean, which

means, γ∗ ≤ 1. Assuming no additional information, we resort to the conservative choice

γ∗ = 1. The dashed curve in Figure 2.3 corresponds to the upper bound on F←(0.999)

output by Algorithm 1. We note the following observations: First, the worst case estimates

output by Algorithm 1 indeed act as an upper bound for the true quantile (drawn in solid

line), irrespective of the block-size chosen and the baseline GEV model used. Second, for

block-sizes smaller than n = 45, it appears that the calibrated baseline GEV models are not

representative enough of the distribution of Mn, and hence higher the value of δ for these

choices of block sizes. Understandably, this results in a conservative worst case estimate

for the smaller choices of block sizes. However, we argue that the overall procedure is

not discouragingly conservative, by observing that the spread of 95% confidence region for
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block size choices n = 50 to 60 (where the traditional GEV calibration appears correct) is

comparable to the difference between the true quantile and the worst-case estimate produced

by Algorithm 1 for majority of block size choices (from n = 20 to 60).

Example 2.5. In this example we consider the St. Petersburg distribution, which is not in

the maximum domain of attraction of any GEV distribution (see e.g. Fukker et al. (2016)).

Recall that X is St.Petersburg distributed if

P{X = 2k} = 2−k, k = 1, 2, . . . (2.22)

Note that the St. Petersburg distribution takes large values with tiny probability. Let B

denote a Bernoulli random variable with parameter 1/5. In addition let W be exponentially

distributed with mean 8 and define Z = B ·X +W. Suppose we have 5000 data points from

the distribution of Z. Similar to the previous example, we want to estimate its quantile

F←(0.999).

Here we demonstrate another approach to choose the parameter α. The idea, as described

earlier in Item 3) is to first choose a tail probability level q for which F←(q) can be accurately

estimated from the whole data set. For our example, we take q = 0.99 and compute the plug-

in estimate F←(q) from the empirical distribution. Then we independently divide the given

data set uniformly at random into 10 batches each of size 625 samples (corresponding to a

scale-down factor = 8). We employ the procedure Rob-Estimator(q, α) for various values

of α on each of these 10 sub-sampled mini-batches independently, and choose the largest

value of α such that the robust estimates from each of the 10 sub-samples cover the earlier

plug-in estimate F←(0.99). The specific details for this example are as follows:

1) The plug-in estimate for F←(0.99) from the given 5000 samples is 44.9. Note that with

5000 samples, this estimate from empirical distribution is with reasonably high confidence.

2) Resample the data into 10 mini-batches of size 5000/8 = 625 samples. With blocksize

= 20 we utilize the procedure Rob-Estimator(0.99, α) on each of the 10 mini-batches to

choose the largest α such that the respective robust estimates from all the 10 sub-sampled

mini-batches cover the empirical estimate of F←(0.99) obtained from step 1). This approach

leads us to the choice of α = 4.47. Computing block maxima from blocks of samples with size

= 48, the subsequent robust upper bound from the procedure Rob-Estimator(0.999, 4.47)
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turns out to be 652.90, which covers the true quantile, F←(0.999) = 268.27. In contrast,

the 95%-confidence interval of GEV estimate is [93.81, 201.60], which fails to cover the true

quantile.

This approach incorporates the trade-off between the choice of α and δ. Large values of

α may be desirable because they generate less conservative upper bounds. But Step 2) avoids

picking too large values of α, because too large values of α, combined with the corresponding

estimators for δ empirically do not lead to good coverage for F←(0.99). Therefore this

cross-validation-like procedure automatically incorporates the trade-off between the choice of

hyperparameters α and δ.

2.6 Proofs of main results

In this section, we provide proofs of Theorems 2.4 and 2.5, along with proofs of Propositions

2.3, 2.6 and 2.7.

Proof of Proposition 2.3

By definition, Fα,δ(x) is non-decreasing in x. Since Fα,δ(x) ≤ Pref (−∞, x), we have limx→−∞ Fα,δ(x) =

0. In addition, we have from Example 2.1 that F̄α,δ(x) = θxPref (x,∞), where θx satisfies

(2.17). Since Pref (x,∞)φα(θx) ≤ δ̄ (follows from (2.17)), we have θx ≤ φ−1
α (δ̄/Pref (x,∞)),

where φ−1
α (·) is the inverse function of φα(·) (recall the defintion of φα(·) in (2.13) to see

that the inverse is well-defined for every α ≥ 1). As a result,

F̄α,δ(x) ≤ φ−1
α

(
δ̄

Pref (x,∞)

)
Pref (x,∞). (2.23)

If we let W (x) denote the product log function4, then φ−1
α (u) = u−1/α when α > 1 and

φ−1
α (u) = u/W (u) when α = 1. Consequently for any α ≥ 1, εφ−1

α (1/ε)→ 0 as ε→ 0. As a

result, limx→∞ F̄α,δ(x) = 0 for any choice of α ≥ 1 and δ > 0. Thus limx→∞ Fα,δ(x) = 1.

4W is the inverse function of f(x) = xex
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To show that Fα,δ(x) is right-continuous, we first see that

Fα,δ(x+ ε)− Fα,δ(x) = sup
P :Dα(P,Pref )≤δ

P (x,∞)− sup
P :Dα(P,Pref )≤δ

P (x+ ε,∞)

≤ sup
P :Dα(P,Pref )≤δ

P (x, x+ ε],

for any ε > 0, for every choice of δ > 0, α ≥ 1 and Pref . Following the same reasoning as in

(2.23), we obtain that

sup
P :Dα(P,Pref )≤δ

P (x, x+ ε] ≤ φ−1
α

(
δ̄

Pref (x, x+ ε]

)
Pref (x, x+ ε],

for which the right hand side vanishes when ε→ 0. As a result, Fα,δ(x) is right-continuous

as well, thus verifying all the properties required to prove that Fα,δ(·) is a cumulative

distribution function. �

Proof of Theorem 2.5

Our goal is to determine the maximum domain of attraction of F̄α,δ(x) = sup{P (x,∞) :

Dα(P, P
ref

) ≤ δ}. We already have an upper bound for F̄α,δ(x) in (2.23) in the proof of

Proposition 2.3. To obtain a lower bound for F̄α,δ(x), first consider a probability measure

Q defined by

dQ

dP
ref

(x) = φ−1
α

(
c

P
ref

(x,∞)(1− logP
ref

(x,∞))2

)
,

for a suitable positive constant c. Then Dα(Q,P
ref

) < ∞ because of a simple change of

variables u = P
ref

(x,∞) in the integration∫
φα

(
dQ

dP
ref

)
dP

ref
=

∫ 1

0

c

u(1− log u)2
du <∞.

Consequently, due to a continuity argument, one can demonstrate a constant a ∈ (0, 1) such

that Dα(aQ+ (1− a)P
ref
, P

ref
) ≤ δ. Then, it follows from the definition of F̄α,δ(x) that

F̄α,δ(x) ≥
(
aQ+ (1− a)P

ref

)
(x,∞) =

∫ ∞
x

(
a
dQ

dP
ref

(t) + 1− a
)
P
ref

(dt)

Since dQ/dP
ref

(t) is eventually increasing, as t→∞, we have that,

F̄α,δ(x) ≥ aφ−1
α

(
c

P
ref

(x,∞)(1− logP
ref

(x,∞))2

)
P
ref

(x,∞),
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for sufficiently large values of x. For brevity, let

A(x) := P
ref

(x,∞), g(x) := aφ−1
α (c(1− log x)−2/x) and h(x) := φ−1

α (δ̄/x).

Then, combining the above lower bound with the upper bound in (2.23), we obtain

F̄low(x) := g(A(x))A(x) ≤ F̄α,δ(x) ≤ h(A(x))A(x) =: F̄up(x), (2.24)

for large values of x. Recall that the reference measure P
ref

belongs to the maximum domain

of attraction of Gγref
. The following lemma characterizes the extreme value distributions

corresponding to the upper and lower bounds F̄up and F̄low.

Lemma 2.2. Suppose that the quantity γ∗ = α
α−1γref is well-defined. Additionally, let

x∗ = sup{x : A(x) > 0}. Then the following are true:

(a) lim
x↑x∗
−

(
F̄up
F̄ ′up

)′
(x) = γ∗, and (b) lim

x↑x∗
−
(
F̄low
F̄ ′low

)′
(x) = −γ∗.

As a consequence of Proposition 2.1 and Lemma 2.2, if γ∗ is finite, both F̄low and F̄up

lie in the maximum domain of attraction of Gγ∗ . As F̄α,δ(x) is sandwiched between F̄low(x)

and F̄up(x) as in (2.24), if at all F̄α,δ belongs to the maximum domain of attraction of Gγ

for some γ ∈ R, then γ must equal γ∗. Since F̄α,δ(x) ∼ F̄α,δ(x−) as x ↑ x∗, due to Theorem

1.7.13 of Leadbetter et al. (1983), this is indeed the case. Therefore, the α-family worst-case

tail distribution F̄α,δ belongs to the maximum domain of attraction of Gγ∗ . �

Proof of Lemma 2.2(a). Recall that F̄up(x) = h(A(x))A(x). By repeatedly applying ele-

mentary rules of differentiation, it is obtained that

−

(
F̄up
F̄ ′up

)′
(x) = −

(
A

A′

)′
(x)

(
1 +

A(x)h′(A(x))

h(A(x))

)−1

+

+

(
A(x)h′(A(x))

h(A(x))
+A2(x)

(
h′

h

)′
(A(x))

)(
1 +

A(x)h′(A(x))

h(A(x))

)−2

(2.25)

Case α > 1 : Since h(x) = (δ̄/x)1/α and h′(x)/h(x) = −(αx)−1, we obtain

−

(
F̄up
F̄ ′up

)′
(x) = −

(
A

A′

)′
(x)

(
1− 1

α

)−1

+

(
− 1

α
+

1

α

)(
1− 1

α

)−2

.



CHAPTER 2. ON DISTRIBUTIONALLY ROBUST EXTREME VALUE ANALYSIS 42

In addition, as required in the statement of Theorem 2.5, A(x) := P
ref

(x,∞) satisfies

−(A/A′)′(x)→ γ
ref
, as x approaches its right endpoint x∗ = sup{x : A(x) > 0}. Therefore,

lim
x↑x∗
−

(
F̄up
F̄ ′up

)′
(x) =

α

α− 1
lim
x↑x∗

[
−
(
A

A′

)′
(x)

]
=

α

α− 1
γ
ref
.

Case α = 1 : When α equals 1, φ−1
α (x) = x/W (x), where W (x) is the product log function.

Then the following calculations are simply algebraic:

xh′(x)

h(x)
= −

1 +
1

W
(
δ̄
x

)
−1

and

x2

(
h′

h

)′
(x) =

[
1 +

(
1 +W

(
δ̄

x

))−1
]1 +

1

W
(
δ̄
x

)
−2

.

Substituting these in (2.25), we obtain

−

(
F̄up
F̄ ′up

)′
(x) =

[
−
(
A

A′

)′
(x)W

(
δ̄

A(x)

)
− 1

]1 +
1

W
(

δ̄
A(x)

)
−1

. (2.26)

Recall that −(A/A′)′(x) converges to γ
ref
, as x ↑ x∗. Letting x→ x∗ in the above expression,

we obtain

−

(
F̄up
F̄ ′up

)′
(x) =


∞, if γ

ref
> 0,

−∞, if γ
ref

< 0,

which indeed equals α
α−1γref . This completes the proof of Part (a) of Lemma 2.2.

Proof of Lemma 2.2(b). First, an expression for (F̄low/F̄
′
low)′ similar to (2.25) can be ob-

tained by simply substituting g in place of h in (2.25). Again, the cases α > 1 and α = 1

are calculated separately:

Case α > 1 : When α > 1, φ−1
α (x) = x1/α. By applying elementary rules of differentiation,

we obtain

xg′(x)

g(x)
=

1

α

1 + log x

1− log x
and x2

(
g′

g

)′
(x) =

1

α

1 + log2 x

(1− log x)2
.
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Letting x ↑ x∗, we obtain A(x)g′(A(x))/g(A(x)) → −1/α and A(x)2(g′/g)′(A(x)) → 1/α.

Subsequently,

lim
x↑x∗

(
F̄low
F̄ ′low

)′
(x) =

(
1− 1

α

)−1

lim
x↑x∗

(
A

A′

)′
(x) +

(
− 1

α
+

1

α

)(
1− 1

α

)2

,

which equals α
α−1γref , as in the proof of Part (a) of Lemma 2.2. The case α = 1 is similar

to that of proof of Part (a), but more tedious, and is not presented here in the interest of

space and readability.

Proof of Theorem 2.4

Theorem 2.4 follows as a simple corollary of Theorem 2.5, once we verify that any GEV

model G(x) := PGEV (−∞, x) satisfies G′(x) > 0 and G′′(x) exists in a left neighborhood of

x∗G = sup{x : G(x) < 1}, along with the property that

lim
x↑x∗G

(
1−G
G′

)′
(x) = γ

ref
,

where γ
ref

is the shape parameter of G. Such a GEV model satisfies G(x) = Gγref
(ax + b)

for some scaling and translation constants a and b. Therefore, it is enough to verify these

properties only for G(x) = Gγref
(x). Once we recall the definition of Gγ in (2.4), the desired

properties are elementary exercises in calculus. �

Proof of Proposition 2.6

First, we derive a lower bound for F̄1(x) = sup{P (x,∞) : D1(P,G0) ≤ δ}. Consider the

probability density function f(x) = c(x log x)−21(x ≥ 2), where c is a normalizing constant

that makes
∫
f(x)dx = 1. In addition, let g(x) = G′0(x) denote the probability density

function corresponding to the distribution G0. Clearly,

D1(f, g) =

∫
f(x) log

(
f(x)

g(x)

)
dx

= c

∫ ∞
2

(x log x)−2 log

(
c(x log x)−2

exp(− exp(−x) exp(−x))

)
dx

≤
∫ ∞

2

x+ exp(−x) + log c

x2 log2 x
dx <∞.
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Now, as in the proof of Theorem 2.5, consider a family of densities {af + (1 − a)G′0 : a ∈

(0, 1)}. Due to the continuity of D1(af + (1 − a)G′0, G
′
0) with respect to a, there exists an

ā ∈ (0, 1) such that D1(āf + (1− ā)G′0, G
′
0) ≤ δ. Then, according to the definition of F̄1,

F̄1(x) ≥
∫ ∞
x

(
āf + (1− ā)G′0

)
(u)du

≥ ā
∫ ∞
x

c

u2 log2 u
du =

āc+ o(1)

x log2 x
,

as x → ∞. The asymptotic equivalence used above is due to Karamata’s theorem (see

Theorem 1 in Chapter VIII.9 of Feller (1966)). Combining this lower bound with the upper

bound in (2.23), we obtain, for large enough x,

āc

2x log2 x
≤ F̄1(x) ≤ h

(
1−G0(x)

)(
1−G0(x)

)
,

where h(x) = φ−1
α (δ̄/x). For convenience, let us write F̄up(x) := h

(
1−G0(x)

)(
1−G0(x)

)
and

F̄low(x) := āc/(2x log2 x). Due to the characterization in (2.5), we have that F̄low ∈ D(G1).

On the other hand, following the lines of Proof of Lemma 2.2(a), from (2.26), we obtain

that

−

(
F̄up
F̄ ′up

)′
(x) =

[(
1−G0

G′0

)′
(x)W

(
δ̄

1−G0(x)

)
+ 1

]1 +
1

W
(

δ̄
1−G0(x)

)
−1

.

Since G0(x) = exp(−e−x), we obtain(
1−G0

G′0

)′
(x) = ee

−x
(
ex
(

1− e−e−x
)
− 1
)

=
e−x

2
(1 + o(1)),

as x→∞. Therefore,

−

(
F̄up
F̄ ′up

)′
(x) ∼ e−x

2
(1 + o(1))W

(
δ̄

e−x(1 + o(1))

)
+ 1

as x → ∞. Since tW (1/t) → 0 as t → 0, it follows that −(F̄up/F̄
′
up)(x) converges to 1 as

x→∞. Then, due to Proposition 2.1, we have that F̄up also belong to the maximum domain

of attraction of G1. Since both F̄low and F̄up lie in the maximum domain of attraction of

G1, following the same line of reasoning as in the proof of Theorem 2.5, we obtain that

F̄1(x) ∈ D(G1). �
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Proof of Proposition 2.7

First, let us consider the case γ
ref
6= 0: Recall the probability measure aQ + (1 − a)P

ref

exhibited for establishing the lower bound in the proof of Theorem 2.5. For proving

Proposition 2.7, we take the reference measure P
ref

as Gγref
. Further, if we let g(t) =

aφ−1
1 (c(1 − log t)−2/t) and A(x) := 1 − Gγref

(x), then as in the proof of Theorem 2.5, the

measure P := aQ+ (1− a)P
ref

1) satisfies D1(P,Gγref
) ≤ δ, and

2) admits a lower bound P (x,∞) ≥ g(A(x))A(x).

To proceed further, observe that A(x) = 1−Gγref
(x) ≥ c̄(1+γ

ref
x)−1/γ

ref for some constant

c̄ < 1 and all x close enough to the right endpoint x∗
G

:= sup{x : Gγref
(x) < 1}. In addition,

tg(t) strictly decreases to 0 as t decreases to 0. Therefore, for all x close to the right endpoint

x∗G := sup{x : Gγref
(x) < 1}, it follows that

P (x,∞) ≥ g
(
c̄(1 + γ

ref
x)−1/γ

ref

)
c̄(1 + γ

ref
x)−1/γ

ref .

Since φ−1
1 (u) ≥ u/ log u for large enough u, g(t) ≥ act−1 (1− log t)−2 log−1 (c/t), for all t

close to 0. As a result, there exists a constant c′ such that tg(t) ≥ c′(1 − log t)−3 for all t

sufficiently close to 0. This allows us to write

P (x,∞) ≥ c′(1− log(c̄(1 + γ
ref
x)−1/γ

ref ))−3 = c′(1 + log(c̄1/γ
ref (1 + γ

ref
x))/γ

ref
)−3,

for x sufficiently close x∗
G
, thus verifying the statement in cases (a) and (b) where γ

ref
6= 0.

When γ
ref

= 0, see the proof of Proposition 2.6 where we exhibit a measure P such that

D1(P,G0) ≤ δ and P (x,∞) = O
(
x−1 log−2 x

)
. This completes the proof.
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Chapter 3

Dependence with two sources of

uncertainty: Computing

Worst-case Expectations Given

Marginals via Simulation

We focus on the problem of computing lower and upper bounds among any dependence

structure for a function of two random vectors whose marginal distributions are assumed to

be known. This problem is motivated from several applications in risk quantification and

statistics. Before discussing its applications, let us first describe it precisely.

Suppose that X ∈ Rd follows distribution µ and Y ∈ Rl follows distribution ν. We

define Π (µ, ν) to be the set of joint distributions π in Rd×l such that the marginal of the

first d entries coincides with µ and the marginal of the last l entries coincides with ν. In

other words, for any probability measure π in Rd×l (endowed with the Borel σ-field), if we

let πX (A) = π
(
A× Rl

)
for any Borel measurable set A ∈ Rd, and πY (B) = π

(
Rd ×B

)
for any Borel measurable set B ∈ Rl, then π ∈ Π (µ, ν) if and only if πX = µ and πY = ν.

We are interested in the quantity (focusing on minimization)

V = min{Eπ [c (X,Y )] : π ∈ Π (µ, ν)} (3.1)

where c(·, ·) ∈ R is some cost function. Formulation (3.1) is well-defined as the class Π (µ, ν)
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is non-empty, because the product measure π = µ× ν belongs to Π (µ, ν).

In operations research contexts, problem (3.1) arises as a means to obtain bounds for

performance measures in situations where dependence information is ambiguous. Such

situations occur because, in practice, accurately estimating the marginal distributions of

random variables is often relatively easy, e.g., by goodness-of-fit against well-chosen para-

metric distributions. They also occur in scenarios where data from different stochastic

sources are collected independently (i.e., rather than in pairs), in which case no dependence

information between these sources can be inferred. Indeed, special (i.e., discrete) cases

of (3.1) have been analyzed in the distributionally robust optimization literature (e.g.,

Doan et al. (2015)). Variants of (3.1) to risk measures have also been studied, regarding

both algorithmic approaches (e.g., Rüschendorf (1983), Embrechts et al. (2013)) and sharp

bounds over specific geometric classes of marginals (e.g., Wang and Wang (2011),Puccetti

(2013),Puccetti and Rüschendorf (2013)).

In statistics and machine learning contexts, the value of (3.1) is the Wasserstein dis-

tance (of order 1) between X and Y when c(·, ·) is taken as a metric. The optimization can

be viewed as the classical Kantorovich relaxation to Monge’s problem in optimal transport

(e.g., Rachev and Rüschendorf, Villani (1998, 2008)), where solutions based on differential

properties have been extensively studied. Wasserstein distance is of central importance in

probabilistic analysis (e.g., quantifying model discrepancies in Bayesian settings Minsker et

al. (2014) and convergence rates of ergodic processes Boissard and Le Gouic (2014), among

many others). The estimation of the distance itself is also suggested as a tool for statistical

inference, including the use in goodness-of-fit tests Del Barrio et al. (1999),Del Barrio et

al. (2005) and in applications such as image recognition Sommerfeld and Munk (2016). It

has also been used to quantify model uncertainty in stochastic optimization problems (e.g.,

Esfahani and Kuhn (2015),Blanchet and Kang (2016),Blanchet and Murthy (2016),Gao and

Kleywegt (2016)) and in the application of distributionally robust optimization in machine

learning settings Blanchet et al. (2016b). As such, there have been growing studies on the

convergence behaviors of its empirical estimation. Central limit theorems (CLTs) on the

empirical estimation of (3.1), based on representations using quantile functions, have been

investigated in the one-dimensional case (e.g., Bobkov and Ledoux (2014), Del Barrio et al.
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(1999)). More generally, concentration bounds have been studied in the line of work includ-

ing Horowitz and Karandikar (1994), Bolley et al. (2007), Boissard (2011), Sriperumbudur

et al. (2012), Trillos and Slepčev (2014) and Fournier and Guillin (2015), so do laws of large

numbers in some special cases (e.g., Dobrić and Yukich (1995)).

Since classical methods for solving (1), based for instance on Euler-Lagrange equations,

may not yield straightforward computational schemes in general, we resort to Monte Carlo

for an easy-to-implement approximation. Our contribution is precisely to quantify the rate

of convergence of such Monte Carlo schemes. Our results also add to the literature of

empirical Wasserstein estimation when these Monte Carlo samples are viewed as data. We

focus on the setting where one of the marginals, say Y , is a finite-support distribution, and

another, say X, is a multi-dimensional distribution that can be continuous. To approximate

V , we consider the drawn samples from the continuous variable X, and replace the infinite-

dimensional linear program (LP) in (3.1) by its sampled counterpart, which can be solved

by standard LP solvers.

Our main result shows that the error of our procedure is O(n−1/2) where n is the sample

size, independent of the dimension d or l. We also identify the limiting distribution in the

associated CLT. The closest work to our results, as far as we know, is the recent work of

Sommerfeld and Munk (2016), who derive a CLT when both marginal distributions are

finitely discrete. Our result here can be viewed as a generalization to theirs when one of

the distributions is continuous. We remark that our obtained rate differs from the typical

rate of O(n−1/d) in high-dimensional empirical Wasserstein estimation where d ≥ 3 is the

dimension of the marginal distributions. As we will see, the finite-support property of

one of the marginals plays a crucial role in applying classical results in sample average

approximation (SAA) that maintain the standard Monte Carlo rate in our scheme.

In the rest of this paper, we will first describe our algorithm, followed by our main

results on the convergence analysis.
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3.1 Algorithmic Description

Suppose that the distribution ν for Y has finite support {y1, ...ym} ⊂ Rl. Supposing that

X can be simulated, we sample n i.i.d. observations X1, . . . , Xn from µ, and approximate

V by

Vn = min{Eπ [c (X,Y )] : π ∈ Π (µn, ν)} (3.2)

where µn is the empirical distribution of X constructed from the Xi’s, i.e.,

µn(A) =
1

n

n∑
i=1

I(Xi ∈ A)

for any Borel measurable A.

Note that (3.2) is a finite-dimensional LP, which can be written more explicitly as

min
∑n

i=1

∑m
j=1 c(Xi, yj)pij

subject to
∑m

j=1 pij = 1
n ∀i = 1, . . . , n∑n

i=1 pij = ν{yj} ∀j = 1, . . . ,m

pij ≥ 0 ∀i = 1, . . . , n, j = 1, . . . ,m

(3.3)

where the decision variables pij represent the probability masses on (Xi, yj), and ν{yj}

denotes the mass on yj under ν. Problem (3.3) is an assignment problem, which is a

special type of minimum cost problem and can be solved by, e.g., successive shortest path

algorithms in polynomial time of order O(n2m+n(n+m) log(n+m)) (see, e.g., R.K.Ahuja

et al. (2000) pp. 471, 500).

3.2 Convergence Analysis

Our main result is a convergence analysis on Vn to V . We impose the assumptions:

Assumption 1. For each yj , c(., yj) is non-negative and lower semicontinuous.

Assumption 2. Suppose that ν has finite support {y1, ..., ym} ⊂ Rl. We have

Eµ[c(X, yj)
2] <∞, ∀j = 1, . . . ,m.
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Denote

V ′ = max
β1,...,βm∈R

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]

(3.4)

which is the dual problem of (3.1) (see Lemma 3.1 for an explanation in the special case

of finite-dimensional settings). Under Assumptions 1 and 2, strong duality (known as the

Kantorovich duality) holds and V ′ = V ; see, e.g., Theorem 5.10 in Villani (2008).

In order to state our main result, we need to introduce a Gaussian random field G(·) :

Rm → R with covariance structure given by

Cov(G(β), G(β′)) = Cov
(

min
j=1,...,m

{
c(X, yj)− βj

}
, min
j=1,...,m

{
c(X, yj)− β′j

})
for any β = (βj)

m
j=1 and β′ = (β′j)

m
j=1. Our main result is the following.

Theorem 3.1. Under Assumption 2, Vn
p→ V ′ as n→∞. Moreover,

n1/2
(
Vn − V ′

)
⇒ G∗

as n→∞, where

G∗ = max
β=(β1,...,βm)∈S

G (β) .

Here S is the set of all optimal solutions β = (βj)
m
j=1 ∈ Rm for the convex optimization

problem

max
β1,...,βm∈R∑m
j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]
. (3.5)

Remark 3.1. The significance of this result is that one can approximate worst-case ex-

pectations by sampling with a rate of convergence (as measured by the sample size of the

continuous distribution) of order O(n−1/2). As we mentioned earlier, this might be some-

what surprising given that standard empirical estimators for Wasserstein distances exhibit

a degradation which becomes quite drastic in high dimensions.

3.2.1 Proof of Theorem 3.1

We first note that adding a constant to βj in the objective function of the dual does not

change the objective value. To remove this ambiguity we inroduce the next result.
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Lemma 3.1. Define

V̂n := max
βj∈R,j=1,...,m.∑m

j=1 βj=0

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}
. (3.6)

We have Vn = V̂n.

Proof. The dual formulation of Vn, depicted as the LP (3.3), is given by

max 1
n

∑n
i=1 αi +

∑m
j=1 βjν{yj}

subject to αi + βj ≤ c(Xi, yj) ∀i = 1, . . . , n, j = 1, . . . ,m
(3.7)

where (αi)
m
i=1, (βj)

m
j=1 are the dual variables. Note that the constraint in (3.7) can be written

as αi ≤ minj=1,...,m{c(Xi, yj)− βj} ∀i = 1, . . . , n, which implies that (3.7) is equivalent to

max
βj∈R,j=1,...,m

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}
(3.8)

Since shifting any (βj)
m
j=1 to (βj + λ)mj=1 by an arbitrary constant λ does not affect

the objective value of (3.8), we can always set λ = − 1
m

∑m
j=1 βj to enforce the constraint∑m

j=1 βj = 0, so that (3.8) is equal to (3.6). Finally, since (3.3) is feasible by choosing an

independent distribution, strong duality holds. We therefore conclude the lemma.

Next we show that V̂n can be further reduced to a problem with compact feasible region,

which will subsequently facilitate the invocation of classical results in SAA:

Proposition 3.2. Define

V̂ b
n := max

βj∈R,|βj |≤b,j=1,...,m∑m
j=1 βj=0

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}
. (3.9)

There exists some large enough constant b > 0 such that

Vn = V̂ b
n (3.10)

eventually, i.e., holds for any n > N for some N <∞ almost surely.
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Proof. By Lemma 3.1, we have

Vn = V̂n

= max

{
max

βj∈R,|βj |≤b,j=1,...,m∑m
j=1 βj=0

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}
,

max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}}
.(3.11)

Note that the first term inside the outer max is V̂ b
n by our definition (3.9). We will show

that there exists a deterministic b > 0 such that the first term dominates the second term

eventually, which will then conclude the proposition.

To this end, consider the second term in (3.11)

max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

{
1

n

n∑
i=1

min
j=1,...,m

{
c(Xi, yj)− βj

}
+

m∑
j=1

βjν{yj}

}

≤ max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

{
min

j=1,...,m

{
− βj

}
+

m∑
j=1

βjν{yj}
}

+
1

n

n∑
i=1

max
j=1,...,m

c(Xi, yj).

We analyze

max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

{
min

j=1,...,m

{
− βj

}
+

m∑
j=1

βjν{yj}
}
. (3.12)

Denote M = maxj=1,...,m |βj |, so that M > b for any β inside the feasible region. There

must exist either a βj∗ = M or βj∗ = −M . In the first case, we have

max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

{
min

j=1,...,m

{
− βj

}
+

m∑
j=1

βjν{yj}
}

≤ −M +


max

∑m
j=1 βjν{yj}

subject to βj ≤M ∀j = 1, . . . ,m∑m
j=1 βj = 0


= −M +M ×


max

∑m
j=1 βjν{yj}

subject to βj ≤ 1 ∀j = 1, . . . ,m∑m
j=1 βj = 0

 (3.13)
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where the last equality follows by a change of variable from βj to βj/M in the optimization.

Note that the optimal value of

max
∑m

j=1 βjν{yj}

subject to βj ≤ 1 ∀j = 1, . . . ,m∑m
j=1 βj = 0

is strictly less than 1. To see this, observe that the optimal value is at most 1 by using

the first constraint. The value of exactly 1 is attained under the first constraint by the

unique solution βj = 1, j = 1, . . . ,m, which is ruled out because it would violate the second

constraint. With this claim, we conclude that (3.13) is equal to θM for some θ < 0, which

is bounded from above by θb.

In the second case, we have βj∗ = −M . Let j̃∗ = argmaxj=1,...,m{βj}. By the constraint∑m
j=1 βj = 0 in (3.12), we must have βj̃∗ ≥M/(m− 1). Therefore, applying our argument

for the first case gives that (3.12) is bounded from above by θM/(m− 1) ≤ θb/(m− 1) for

the same θ < 0 chosen before.

Therefore, in either case (3.12) is bounded from above by θb/(m−1). Note that the first

term inside the outer max in (3.11), namely V̂ b
n , satisfies V̂ b

n ≥ (1/n)
∑n

i=1 minj=1,...,m c(Xi, yj)

by plugging in the feasible solution given by βj = 0, j = 1, . . . ,m. Thus, with the law of

large numbers, by choosing b > 0 large enough such that

θb

m− 1
+ Eµ

[
max

j=1,...,m
c(X, yj)

]
< Eµ

[
min

j=1,...,m
c(X, yj)

]
(3.14)

the first term dominates the second term inside the outer max in (3.11) as n → ∞ almost

surely.

We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1. Note that the function

F (X,β) := min
j=1,...,m

{
c(X, yj)− βj

}
+

m∑
j=1

βjν{yj} (3.15)

on β = (βj)
m
j=1 ∈ Rm is Lipschitz continuous in the sense that

|F (X,β)− F (X,β′)| ≤ (1 + ‖ν‖)‖β − β′‖
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where ‖ · ‖ denotes the L2-norm, and ν is interpreted as a vector (ν{yj})mj=1. This follows

since ∣∣∣∣ min
j=1,...,m

{
c(X, yj)− βj

}
− min
j=1,...,m

{
c(X, yj)− β′j

}∣∣∣∣ ≤ ‖β − β′‖∞
and ∣∣∣∣∣∣

m∑
j=1

βjν{yj} −
m∑
j=1

β′jν{yj}

∣∣∣∣∣∣ ≤ ‖ν‖‖β − β′‖
by the Cauchy-Schwarz inequality. Since the set B := {β ∈ Rm :

∑m
j=1 βj = 0, |βj | ≤ b,∀j =

1, . . . ,m} is compact and Eµ[F (X,β)2] < ∞ by Assumption 2, by using Theorem 5.7 in

Shapiro et al. (2009), we have

V̂ b
n

p→ V b (3.16)

and
√
n(V̂ b

n − V b)⇒ G∗,b (3.17)

where

V b = max
βj∈R,|βj |≤b,j=1,...,m∑m

j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]

(3.18)

and

G∗,b = max
β=(β1,...,βm)∈Sb

G (β)

with Sb denoting the set of optimal solutions for (3.18) and G(·) is defined as in Theorem

3.1 but restricted to the domain B.

By Proposition 3.2, we have
√
n(V̂ b

n − Vn)
p→ 0 as n → ∞. Thus, together with (3.16),

we have

Vn
p→ V b

and together with (3.17), we have

√
n(Vn − V b)⇒ G∗,b

by Slutsky’s Theorem.

To conclude the theorem, we show that V b = V ′, and Sb = S so that G∗,b = G∗. By

using essentially the same argument as for Proposition 3.2 (with the empirical expectation
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replaced by Eµ[·]) and choosing the same b as in (3.14), we have

V ′ = max
βj∈R,j=1,...,m

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+

m∑
j=1

βjν{yj}
]

= max
βj∈R,j=1,...,m∑m

j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]

by shifting any (βj)
m
j=1 to (βj − (1/m)

m∑
k=1

βk)
m
j=1 which does not affect the objective value and

enforces the constraint

m∑
j=1

βj = 0

= max

{
max

βj∈R,|βj |≤b,j=1,...,m∑m
j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+

m∑
j=1

βjν{yj}
]
,

max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]}

where

V b

= max
βj∈R,|βj |≤b,j=1,...,m∑m

j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]

> max
βj∈R,j=1,...,m,|βj |>b for some j∑m

j=1 βj=0

Eµ
[

min
j=1,...,m

{c (X, yj)− βj}+
m∑
j=1

βjν{yj}
]

so that V ′ = V b and Sb = S.

3.3 Additional Discussion and Extensions

Finally, we briefly discuss the challenge in generalizing our procedure to the case when both

X and Y are continuous. Here, one may attempt to sample both variables (assuming both

can be simulated) and formulate a sampled program like (3.2) or (3.3). However, the analog

of its reformulation in (3.6) and (3.9) will have a growing number of variables βj and an

analogous limit in (3.5) that involves an infinite-dimensional variable, which challenges the

use of standard SAA machinery. In fact, consider a special example where X,Y ∼ U [0, 1]d
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and c(x, y) = ‖x− y‖. In this case, (3.1) corresponds to the Wasserstein distance (of order

1) between X and Y , which is of course 0. It is known that sampling X and keeping Y

continuous will give, for d ≥ 3, an expected optimal value of (3.2) that is of order n−1/d, i.e.,

C1n
−1/d ≤ EVn ≤ C2n

−1/d for all n for some C1, C2 > 0 (e.g., Problem 5.11 in van Handel

(2014)). Thus, the convergence rate deteriorates with the dimension and the standard

Monte Carlo rate O(n−1/2) cannot be maintained without assuming additional structure or

infomation available to the modeler on the primal problem. It is of interest to investigate

reasonable assumptions which are useful in applications and which would mitigate such

rate-of-convergence deterioration.
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Chapter 4

Dependence with several sources of

uncertainty: Martingale Optimal

Transport with the Markov

Property

4.1 Introduction

In this chapter we study a discretization approach for computing lower and upper bounds

among any dependence structure for a function of multiple random variables whose marginal

distributions are assumed to be known. More specifically, given d ≥ 2 marginal distributions

µ1, . . . , µd on a common compact metric space X , we focus on the lower bound

inf
π∈Π(µ1,...,µd)

Eπ[c(X1, . . . , Xd)], (4.1)

where Π(µ1, . . . , µd) is the set of all joint distributions with marginals X1 ∼ µ1, . . . , Xd ∼ µd,

and c is a cost function. For instance, in risk management, such situations often occur

when the estimation of marginal distributions of each risk factor Xi is relatively easy, but

the dependence structure among them is ambiguous. Given loss level ` > 0 and the cost

function c(X1, . . . , Xd) = I(X1 + · · ·+Xd > `) with d risk factors X1, . . . , Xd, the quantity
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infπ∈Π(µ1,...,µd) Eπ[c(X1, . . . , Xd)] gives a lower bound for the probability of the event that

the sum of these risk factors exceed the level `.

Note that when d = 2, the problem (4.1) is the standard optimal transport (or Monge-

Kantorovich) problem, whose theoretical properties have been studied in the literature

substantially(Villani (2003), Villani (2008)). For d > 2, this problem has been studied by

Gangbo and Swiech (1998) and G.Carlier et al. (2008).

Based on the above optimal transport problem (4.1), Beiglbock et al. (2013) and Gali-

chon et al. (2014) further develop the so-called martingale optimal transport problem, which

adds the martingale constraint to the joint distribution. The martingale optimal transport

problem has the following form

inf
π∈M (µ1,...,µd)

Eπ[c(X1, . . . , Xd)],

where M (µ1, . . . , µd) is the set of all martingale measures, i.e. the underlying process

(Xt)t=1,...,d satisfies Xt ∼ µt,Eπ[Xt+1|Ft] = Xt for t = 1, . . . , d− 1.

In contrast to optimal transport problem where the product measure is always a feasible

solution, here the existence of martingale measure π requires some constraint on marginals:

for the feasibility of

{P : X1 ∼ µ1, . . . , Xd ∼ µd;Eπ[Xt+1|Ft] = Xt for t = 1, . . . , d− 1},

we need the condition that all the marginals satisfy the convex order: µt ≤ µt+1, for

t = 1, . . . , d− 1 where µt ≤ µt+1 is defined as Eµt [ψ(Xt)] ≤ Eµt+1 [ψ(Xt+1)],∀ψ convex. See

H.G.Kellerer (1972).

The main motivation of studying martingale optimal transport problem stems from

the requirement of financial robustness against model risks. In finance, it is important to

choose a pricing model when evaluating an exotic option; such a model is characterized

by a martingale measure while the marginal distributions are the daily underlying prices.

Instead of postulating a model, (4.6) gives a model-free lower bound for the price of exotics,

whose payoff function c depends on the d-marginal distributions of a certain underlying X,

indexed by time t = 1, . . . , d. Similarly, by using maximization instead of minimization we
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also obtain an upper bound. This price range is robust against model errors and it complies

with market prices of vanilla options, which are liquid and suitable hedging instruments.

Previous literatures tackle the martingale optimal transport problems by numerically

solving the Hamilton-Jacobi-Bellman PDEs (Henry-Labordere and Touzi (2013)), but the

computational complexity is hard to track.

Compared to their numerical PDE approach, our discretization approach can obtain an

approximate solution within certain error under a much mild assumptions, both on the cost

function c and on the marginal distributions. We give the computational complexity for the

general optimal transport problem in high dimensions. And we also give a discretization

method for the martingale transport problem with a special type of cost functions and

provide a practical way of robustly pricing certain financial derivatives.

4.2 Optimal Transport Problems with Two Marginal Distri-

butions and Minimum Cost Problems

4.2.1 Problem Definition

For simplicity and to describe the idea of discretization, in this section we consider the

case of two given marginals. Let X be a compact metric space and P(X ) be the set of

probability measures on X . In this section, we only consider two (marginal) probability

measures. For µ, ν ∈P(X ), let Π(µ, ν) be the set of all joint probability measures with µ

and ν as marginals. We are interested in the following optimal transport problem

P := min
π∈Π(µ,ν)

{∫
c(x, y)dπ(x, y)

}
= min

π∈Π(µ,ν)
Eπc(X,Y ) (4.2)

where the cost function c(·, ·) : X ×X → R is Lipschitz continuous with Lipschitz constant

K, and ‖c‖ ≤ 1.

In the following we will try to solve the optimal transport problem by discretizing it to

a linear programming problem. We want to understand the computational complexity of

computing P within ε > 0 precision.
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4.2.2 Quantization and Discretization

We first create a partition of X with X =
∑n

k=1Ak such that the diameter of every Ak

does not exceed δ, with δ = O(n−1). Then we choose a representative xk ∈ Ak for each k

and form a discrete set Xδ = {xk : k = 1, . . . , n} with an associated quantization map

T : X →Xδ

x 7→
n∑
k=1

xkI(x ∈ Ak).

In addition, we define the corresponding quantized measures as

µδ(xk) = µ(Ak) and νδ(xk) = ν(Ak), for k = 1, . . . , n. (4.3)

We then obtain the following discretized approximate version of the optimal transport

problem:

Pδ := min
πi,j

n∑
i,j=1

c(xi, xj)πi,j

s.t.

n∑
j=1

πi,j = µδ(xi), i = 1, · · · , n

n∑
i=1

πi,j = νδ(xj), j = 1, · · · , n

n∑
i=1,j=1

πi,j = 1, πi,j ≥ 0.

(4.4)

It is actually an assignment problem, which is a special type of minimum cost problem

that can be solved by various network algorithms that are much faster than the general LP

algorithms. For instance, with the successive shortest path algorithm (see R.K.Ahuja et al.

(2000) p.320) one can achieve O(n2 log(n)).

Lemma 4.1.

|P − Pδ| ≤ Kδ.

Proof. Let π̄ ∈ Π(µ, ν) be an ε-optimal coupling such that

P >

∫
c(x, y)π̄(x, y)− ε.
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Since c ∈ Lip(K), we have that |c(x, y)− c(T (x), T (y))| ≤ Kδ, which gives that

P >

∫
c(T (x), T (y))π̄(x, y)−Kδ − ε

=
∑
i,j

c(xi, xj)π̄(Ai, Aj)−Kδ − ε

≥Pδ −Kδ − ε,

where the last inequality follows from the observation that the probability mass function

defined by
(
π̄(Ai×Aj)

)n
i,j=1

is an element of Π(µ, ν) and Pδ is the corresponding maximum

that can be attained.

To proof the other direction, let (π∗i,j)
n
i,j=1 be the solution to the linear programing (4.4).

We then consider the following sampling procedure:

1. Draw an index (I, J) from the distribution (π∗i,j)
n
i,j=1.

2. Given (I, J) = (i, j) draw a sample X ∼ µ(·|Ai) and Y ∼ ν(·|Aj).

Note that (X,Y ) has a joint distribution which belongs to Π(µ, ν) and conditioned on the

realization (I, J) = (i, j), we have |c(X,Y )− c(xi, xj)| ≤ Kδ. Therefore

P ≤ Ec(X,Y )

≤
∑
i,j

c(xi, xj)π
∗
i,j +Kδ

≤ Pδ +Kδ.

Since ε > 0 is arbitrary, the claim is proved.

4.3 Optimal Transport Problems with d-Marginals

Now we consider an optimal transport problems with d-marginals, but all of the marginal

distributions are supported on a compact metric space X .

inf
π∈Π(µ1,...,µd)

Eπ[c(X1, . . . , Xd)]. (4.5)

where the cost function c is Lipschitz continuous with Lipschitz constant K, and ‖c‖ ≤ 1.
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4.3.1 Discretization and Complexity

Just as Section 4.2 we can similarly approximate the optimal solution to problem (4.5) by

the following discretization

min
π

n∑
i1,··· ,id=1

c(xi1 , · · · , xid)π(xi1 , · · · , xid)

s.t.

n∑
i2=1,··· ,id=1

π(xi1 , · · · , xid) = µ1(xi1), i1 = 1, · · · , n,

· · ·

n∑
i1=1,··· ,id−1=1

π(xi1 , · · · , xid) = µd(xid), id = 1, · · · , n,

n∑
i1=1,··· ,id=1

π(xi1 , · · · , xid) = 1, π(xi1 , · · · , xid) ≥ 0,

where µk is the quantized marginal distribution of Xk. Since here, we will omit the δ

subscript and use µk to denote both the marginal distribution and the quantized marginal

distribution of Xk when there’s no confusion.

This is an LP problem with nd unknown variables and d ·n equality constrainsts, which

is underdetermined in the sense that nd >> d ·n. In the papers E.Candes et al. (2005) and

E.Candes and T.Tao (2014) such underdetermined LP problems with sparse solutions are

discussed, and they proved that if the coefficient matrix satisfies the so called restricted or-

thonormality condition then the (sparse) solution exists and unique. However, these papers

just use usual LP algorithm as efficient way to recover the sparse solutions.

Note also that for the general cost function c it is difficult to transform it to a minimum

cost problem, since there exist no direct way to put these d-dimensional transport into a

plane graph. So in this case we can no longer employ the more efficient network flow algo-

rithms.
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In G.Puccetti (2014) they propose the rearrangement algorithms, which only works for

the case when the cost c takes the form of the linear combination of unknown variables

c(xi1 , · · · , xid) =
∑n

k=1 αkxik .

4.4 Martingale Optimal Transport Problems with Separable

Cost Functions and the Markov Property

In this section we are focusing on the following martingale optimal transport problem:

inf
π∈M (µ1,...,µd)

Eπ[c(X1, . . . , Xd)], (4.6)

where M (µ1, . . . , µd) is the set of all martingale measures, i.e. the underlying process

(Xt)t=1,...,d satisfies Xt ∼ µt,Eπ[Xt|Ft−1] = Xt−1. In addition, Xt takes values in a com-

pact metric space X and (µt)
d
t=1 satisfy the convex order condition.

Since the dimension d could be interpreted as d days in financial applications, the trans-

port should be proceeded as from a layer to its next layer. It might make sense to add

an assumption that the underlying process Xt is Markovian. We expect that under the

Markovian assumption the optimization problem can be simplified a lot, but unfortunately

we still need another strict assumption to achieve the simplification.

Assumption 1: The cost function c(x1, · · · , xd) is separable in the sense that it can be

decomposed into a sum of

c1(x1, x2), · · · , cd−1(xd−1, xd).

Remark 4.1. The payoff, such as, (1
d

∑d
i=1Xi − K)+ of an Asian option doesn’t satisfy

this condition.

Nonetheless, with this assumption at hand, we don’t even need to assume that the

underlying process is Markovian. Instead, we can not only conclude that the underlying
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process (Xt)t=1,...,d must be Markovian but we can also decompose the original optimization

problem into d− 1 sub optimization problems. Last but not least, in this case we can also

easily add martingale constraint onto the sub problems. This is summarized in the following

lemma.

Lemma 4.2. Under Assumption 1 with the particular cost function c, the associated process

(Xt)t=1,...,d to the martingale optimal problem (4.6) is Markovian.

Proof. Under Assumption 1 we can decompose the objective function as the following:

min
π∈M (µ1,··· ,µd)

∫
x1,··· ,xd

c(x1, · · · , xd)dπ(x1, · · · , xd)

= min
π∈M (µ1,··· ,µd)

∫
x1,··· ,xd

{ d−1∑
k=1

c(x1, · · · , xd)dπ(x1, · · · , xd)
}

= min
π∈M (µ1,··· ,µd)

d−1∑
k=1

∫
xk,xk+1

c(xk, xk+1)dπk,k+1(xk, xk+1)

=
d−1∑
k=1

{
min

πk,k+1∈M (µk,µk+1)

∫
xk,xk+1

c(xk, xk+1)dπk,k+1(xk, xk+1)
}

=
d−1∑
k=1

{
min
Pk,k+1

∫
xk,xk+1

c(xk, xk+1)µk(xk)dPk,k+1(xk, xk+1)
}
,

(4.7)

where πk,k+1 is the ”marginal joint” distribution of Xk and Xk+1, and Pk,k+1 is the

transition probability which satisfies

πk,k+1(xk, xk+1) = µk(xk)Pk,k+1(xk, xk+1)

and the martingale constraint∫
xk+1

xk+1Pk,k+1(xk, dxk+1) = xk.

Note that the above derivation does not need the Markovian assumption at all. From

the above we know that the minimization of all joint distribution π is equivalent to the

minimization over all Pk,k+1. The optimal joint distribution is determined by

π∗(xi1 , · · · , xid) = µ1(xi1)P ∗12(xi1 , xi2) · · ·P ∗d−1,d(xid−1
, xid).

So the associated optimal process is Markovian.
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We now turn to the corresponding discretized version of the martingale optimal transport

problem. The particular form of the cost function c(x1, · · · , xd) = c(x1, x2)+· · ·+c(xd−1, xd)

leads to the conclusion that the process associated to the optimal solution is Markovian.

In addition, the above proof of Lemma 4.2 shows that the martingale constraint can also

be decomposed into martingale constraints on the transition kernal. So in the end, the

corresponding discretized martingale optimal transport problem is decomposed into the

following d− 1 LP problems:

min
P12

n∑
i1,i2=1

c(xi1 , xi2)µ1(xi1)P12(xi1 , xi2)

s.t.

n∑
i1=1

µ1(xi1)P12(xi1 , xi2) = µ2(xi2), i2 = 1, · · · , n;

n∑
i2=1

P12(xi1 , xi2) = 1, i1 = 1, · · · , n;

n∑
i2=1

xi2P12(xi1 , xi2) = xi1 , i1 = 1, · · · , n;

P12(xi1 , xi2) ≥ 0, i1, i2 = 1, · · · , n;

...

min
Pd−1,d

n∑
id−1,id=1

c(xid−1
, xid)µd−1(xi1)Pd−1,d(xid−1

, xid)

s.t.

n∑
id−1=1

µd−1(xid−1
)Pd−1,d(xid−1

, xid) = µd(xid), id = 1, · · · , n,

n∑
id=1

Pd−1,d(xid−1
, xid) = 1, id−1 = 1, · · · , n;

n∑
id=1

xidPd−1,d(xid−1
, xid) = xid−1

, id−1 = 1, · · · , n;

Pd−1,d(xid−1
, xid) ≥ 0, id−1, id = 1, · · · , n;
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Therefore, with this special cost function, the algorithm complexity for the martingale

optimal transport problem is (d− 1) · LP(3n× n2), where LP(3n× n2) is the cost to solve

an LP with a 3n× n2 coefficient matrix.

Remark 4.2. With Assumption 1 but without the martingale constraints, the problem re-

duces to a particular case in Section 4.5. In this case, it decomposes then into n−1 minimum

cost problems, and the total complexity can be further improved to (d− 1) ·O(n2 log(n)).

4.4.1 Applications in Pricing Exotic Options

In practice of financial engineering we can observe traded option prices, but know little or

nothing about the model. There are many models which are consistent with the market

prices of liquidly traded options but they may give very different prices for the exotic. Ide-

ally one might attempt to characterise a model which is consistent with all the market price

of options, but this is a very challenging problem, and a less ambitious one is to characterise

a model which can give the bounds to the price of exotic options, such as the maximum or

minimum of the price of an exotic option. We need the following two assumptions for our

model-free pricing framework:

Assumption 2: There exists a risk-neutral measure in the market.

Assumption 3: We could quite exactly estimate the marginal distribution of the un-

derlying process: X1 ∼ µ1, · · · , Xd ∼ µd.

Remark 4.3. In practice, since Vanilla options are very suitable hedge instruments because

of high liquidity, so the pricing has to comply with their market prices. The distribution

of Xt is obtained from vanilla options at T = t by Breeden-Litzenberger formula, pXt(x) =

∂2

∂K2C(T = t,K = x), where C(T,K) denotes the price of a vanilla call with maturity T

and strike K.

As said before, the payoff of, such as, Asian options (1
d

∑d
t=1 St −K)+ doesn’t satisfy

Assumption 1. The following two exotic options are examples where their payoff functions
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satisfy Assumption 1:

Example 4.1. A cliquet option is an exotic option consisting of a series of ”pre-purchased”

at-the-money options where the total premium is determined in advance. The first is active

immediately. The second becomes active when the first expires, etc. Each option is struck

at-the-money when it becomes active. The payout on each option can either be paid at the

final maturity, or at the end of each reset period. For instance, an d-year cliquet with reset

dates each year would have n payoffs, the payoff function f can be written as

d∑
t=1

(Xt −Xt−1)+,

where X0 := K, the initial strike.

For a general d-periods cliquet, we can get the lower bound of the price by solving the

following d− 1 LP problems:

min
P12

n∑
i1,i2=1

(xi2 − xi1)+µ1(xi1)P12(xi1 , xi2)

s.t.

n∑
i1=1

µ1(xi1)P12(xi1 , xi2) = µ2(xi2), i2 = 1, · · · , n;

n∑
i2=1

P12(xi1 , xi2) = 1, i1 = 1, · · · , n;

n∑
i2=1

xi2P12(xi1 , xi2) = xi1 , i1 = 1, · · · , n;

P12(xi1 , xi2) ≥ 0, i1, i2 = 1, · · · , n;

...
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min
Pd−1,d

n∑
id−1,id=1

(xid − xid−1
)+µd−1(xi1)Pd−1,d(xid−1

, xid)

s.t.

n∑
id−1=1

µd−1(xid−1
)Pd−1,d(xid−1

, xid) = µd(xid), id = 1, · · · , n,

n∑
id=1

Pd−1,d(xid−1
, xid) = 1, id−1 = 1, · · · , n;

n∑
id=1

xidPd−1,d(xid−1
, xid) = xid−1

, id−1 = 1, · · · , n;

Pd−1,d(xid−1
, xid) ≥ 0, id−1, id = 1, · · · , n;

Note that the the first payoff E(X1 −K)+ can be directly calculated from the marginal dis-

tribution µ1.

4.5 A Numerical Experiment

Example 4.2. Another similar example is variance swaps. A variance swaps is an agree-

ment to exchange the realized volatility

(
log
(X1

X0

))2
+ · · ·+

(
log
( XT

XT−1

))2

for some prespecified fixed volatility V̂ at time T . The market convention is to set V̂ so that

no money needs to change hands at initiation of the trade:

V̂ = E
[(

log
(X1

X0

))2
+ · · ·+

(
log
( XT

XT−1

))2]
.

Its payoff satifies Assumption 1 as well, so we can apply the above method to get a model-free

pricing.

The standard way of pricing the payoff is using the following approximation (see, e.g.P.Carr

and D.Madan (2002) and S.Bossu et al. (2005)):

V̂ ≈ 2 exp(rT ∗)

T ∗

{Nput∑
i=1

p0(Kput
i , T ∗)

(Kput
i )2

(Kput
i −Kput

i−1) +

Ncall∑
i=1

c0(Kcall
i , T ∗)

(Kcall
i )2

(Kcall
i −Kcall

i−1)
}
,
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where Kput
i and Kcall

i are the respective strikes of the i-th put and i-th call, Nput and Ncall

are the respective number of puts and calls, and p0(Kput
i , T ∗) and c0(Kcall

i , T ∗) denote the

respective time-0 price of puts and calls with strike Kput
i and Kcall

i and maturity T ∗. We

will use the standard pricing as a benchmark.

Suppose the variance swaps has maturity T ∗ = 1 and its underlying security starts at

S0 = 100. The interest rate is r = 0.02 and the forward price is F = S0 ∗ exp(rT ) = 102.02.

The standard pricing gives that the strike of variance swaps is 4.01%. We then use a series of

calls and puts with strike K ranging from [0.01, 2F ] and maturity T ranging from [0.01, T ∗]

to approximate the densities of the marginal distributions St by the Breeden-Litzenberger

formula. By performing both the minimization and maximization our method gives a model-

free robust price interval [3.95%, 13.35%], in which the standard pricing lies, indicating that

there’s no arbitrage in this case.
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Chapter 5

Data-driven choice of the aspects

over which to robustify:

Data-driven Optimal Transport

Cost Selection and Doubly Robust

Distributionally Robust

Optimization

5.1 Introduction

A Distributionally Robust Optimization (DRO) problem takes the form of

min
β

max
P∈Uδ

EP [l (X,Y, β)] , (5.1)

where β is a decision variable, (X,Y ) is a random element, and l(x, y, β) measures a suitable

loss incurred when (X,Y ) = (x, y) and the decision β is taken. The expectation EP [·] is

taken under the probability measure P . The set Uδ is called the distributional uncertainty

neighborhood and it is indexed by the parameter δ > 0, which measures the size of the
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distributional uncertainty.

The DRO problem is said to be data-driven if the uncertainty set Uδ is informed by empirical

observations. One natural way to use this information is by placing the “center” of the

uncertainty region at the empirical measure, Pn, induced by the data set {Xi, Yi}ni=1, which

represents an empirical sample of realizations of W = (X,Y ). In order to emphasize the

data-driven nature of a DRO formulation, we write Uδ = Uδ(Pn) to represent that the

uncertainty region is informed by an empirical sample. Recently, Blanchet et al. (2016a)

showed that many prevailing machine learning estimators can be reformulated as a data-

driven DRO of form (5.1). For example, suppose that X ∈ Rd and Y ∈ {−1, 1}. Let

l(x, y, β) = log(1 + exp(−yβTx)) denote the log-exponential loss associated to a logistic

regression model where Y ∼ Ber(1/(1 + exp(−βT∗ x)), and β∗ is the underlying parameter

to learn. Then, given a set of empirical samples Dn = {(Xi, Yi)}ni=1, and a judicious choice

of the distributional uncertainty set Uδ (Pn), Blanchet et al. (2016a) shows that

min
β

max
P∈Uδ(Pn)

EP [l(X,Y, β)] = min
β

(
EPn [l(X,Y, β)] + δ ‖β‖p

)
, (5.2)

where ‖·‖p is the `p−norm in Rd for p ∈ [1,∞) and EPn [l(X,Y, β)] = n−1
∑n

i=1 l(Xi, Yi, β).

The definition of Uδ (Pn) turns out to be informed by the dual norm ‖·‖q with 1/p+1/q = 1.

If p = 1 we see that (5.2) recovers L1 regularized logistic regression (see Friedman et al.

(2001)). Other estimators such as Support Vector Machines and sqrt-Lasso are shown in

Blanchet et al. (2016a) to have similar DRO representations – provided that the loss function

and the uncertainty region are carefully chosen. Note that the parameter δ in Uδ(Pn) is

precisely the regularization parameter on the right hand side of (5.2). So the data-driven

DRO representation (5.2) provides a direct interpretation of the regularization parameter

as the size of the probabilistic uncertainty around the empirical evidence.

An important element to all of the DRO representations obtained in Blanchet et al. (2016a)

is that the design of the distributional uncertainty neighborhood Uδ(Pn) is based on optimal

transport theory. More specifically, we define the distributional uncertainty neighborhood

as

Uδ (Pn) = {P : Dc(P, Pn) ≤ δ}, (5.3)
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where Dc(P, Pn) is the minimal cost of rearranging (i.e. transporting the mass of) the

distribution Pn into the distribution P . The rearrangement mechanism has a transportation

cost c(u,w) ≥ 0 for moving a unit of mass from location u in the support of Pn to location

w in the support of P . For instance, in the setting of (5.2) we choose the cost as

c
(
(x, y), (x′, y′)

)
=
∥∥x− x′∥∥2

q
I
(
y = y′

)
+∞ · I

(
y 6= y′

)
. (5.4)

As discussed in Section 5.3, Dc(P, Pn) can be computed as the solution of a linear program-

ming (LP), which is also known as Kantorovich’s problem (see Villani (2008)).

Other discrepancy notions between probability models have been explored by a vast num-

ber of literatures, especially the Kullback-Leibler divergence and other divergence based

notions Hu and Hong (2013). Using divergence (or likelihood ratio) based discrepancies to

characterize the uncertainty region Uδ(Pn) forces the models P ∈ Uδ(Pn) to have the same

support as Pn, which may restrict generalization properties of a DRO-based estimator, and

such restriction may further induce overfitting problem (see the discussions in Esfahani and

Kuhn (2015) and Blanchet et al. (2016a)).

The generalization performance of DRO is primarily affected by the choice of distribution-

ally uncertainty set, specifically by its size and shape. Under the setting of (5.3), choosing

the size of the uncertainty neighborhood in DRO is equivalent to choosing a tuning param-

eter δ for regularization. One way to optimally select δ is based on Robust Wasserstein

Profile function, whose assymptotic behavior is comprehensively discussed in Blanchet et

al. (2016a). In practice, we can also choose δ by cross-validation. The work of Blanchet et

al. (2016a) compares the asymptotically optimal choice against cross-validation, concluding

that the performance is comparable in the experiments performed. In this paper, we use

cross validation to choose δ.

Note that the the shape of Uδ(Pn) is determined by the cost function c (·) in the definition

of the optimal transport discrepancy Dc(P, Pn), but so far it has been taken as a given,

but not chosen in a data-driven way. This is the starting point of this paper to improve

the DRO method and our main goal in this paper is to discuss a data-driven framework to

inform the shape of the uncertainty neighborhood. As to selecting the types of cost c(·) to

be used in practice, we rely on metric-learning procedures. Ultimately, the choice of c(·) is
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influenced by the nature of the data and the application problem at hand. For example,

in the setting of image recognition, it might be natural to use a cost function related to

similarity notions.

In brief, DD-DRO employs metric learning procedures to estimate c(·) by exploiting the

side information in the data. Then with this learned cost function c(·) we can further define

Dc(P, Pn) and the distributional uncertainty neighborhood Uδ(Pn) in (5.3). Finally, we solve

the DRO problem (5.1) and use cross-validation to choose a proper δ. Based on DD-DRO,

we further propose a DD-R-DRO model, which contains two layers of robustification. The

first layer is, instead of minimizing risk with respect to empirical measure defined by the

training data, DRO minimizes the maximum risk with repect to all the measures in the

distributional uncertainty neighborhood of the empirical measure defined via the distance

Dc(P, Pn). The second layer of robustness arises from learning the cost function c(·) of

Dc(P, Pn) in a robust way to minimize the effect of noisiness among side information.

We now provide our main contributions in this paper:

• We establish a data-driven framework that combines k-NN methods with lo-

gistic regressions for classification.

We propose a Data-driven Distributionally Robust Optimization (DD-DRO) model, which

uses k-NN method to generate the side information of the data (the side information con-

tains the information about the intrinsic measure among the data) and then form the shape

of the distributional uncertainty neighborhood by learning a metric from this side informa-

tion. This combination is desirable as logistic regression is a linear classifier which has high

bias, while k-NN has high variability, so they complement each other well.

• We reveal the connection between DD-DRO and adaptive regularized ridge

regression estimator.

Theorem 5.1 reveals the close relationship between DD-DRO and adaptive regularized ridge

regression. Our DD-DRO approach provides a novel and interpretable way that selects

hyper-parameters in adaptive regularized ridge regression from a metric learning perspec-

tive.

• We propose an appoximation algorithm based on stochastic gradient descent

to solve DD-DRO.
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Thanks to the duality representation given in Blanchet and Murthy (2016), we are able

to reformulate the DD-DRO problem, which is solved by a smoothing approximation and

stochastic gradient descent algorithm. The error bound of the smoothing approximation is

provided in Lemma 5.1.

• We employed robust metric learning to take care of the noisiness of side in-

formation.

The side information is usually noisy; it is either given, e.g. by the implicit feedback from

the customers, which contains a lot of incorrect information, or it is generated, as we did

in this paper, by k-NN method, which suffers from high variability. So we borrow the idea

from robust optimization and build a doubly robust data-driven distributionally robust op-

timization (DD-R-DRO) model on top of the DD-DRO model to deal with noisiness of side

information by introduing an additional layer of robustification during metric learning for

the construction of distributional uncertainty neighborhood. We use primal-dual deepest

descent to achieve robust metric learning.

Figure 5.1 summarizes the various combinations of information and robustness which have

been studied in the literature so far and in our DD-DRO and DD-R-DRO models.

The figure consists of four diagrams with various arrows. A wiggly arrow indicates poten-

tially noisy testing error estimates. The straight arrows represent the use of a robustification

procedure. A wide arrow represents the use of high degree of information.

Diagram (A) represents the standard empirical risk minimization (ERM); which fully uses

the training data but often leads to high variability in testing error and poor out-of-sample

performance. Diagram (B) represents DRO where only the center, Pn, and the size of the

uncertainty, δ, are data driven; this choice controls out-of-sample performance but does not

use the side information among data to shape the type of perturbation (i.e. the cost func-

tion), thus it potentially results in pessimistic testing error bounds. Diagram (C) illustrates

DD-DRO with data-driven shape of distributional uncertainty neighborhood for perturba-

tion through metric learning techniques; this construction uses the side information in the

data and reduces the testing error bounds at the expense of increase in the variability of

the testing error estimates. Diagram (D) illustrates DD-R-DRO, the shape of the perturba-

tion allowed for the adversary player is estimated by using robust optimization procedure
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to account for the noisiness of the side information; this double robustification, as we will

show in the numerical experiments, is able to control the variability that presents in the

third diagram.

Figure 5.1: Four diagrams illustrating information on robustness.

The rest of the paper is organized as following. In Section 5.2 we will go into details about

the necessity of metric learning in DD-DRO and the intuition behind the improvement of the

generalization property. In Section 5.3 we give a quick review of the metric learning and its

usage in DD-DRO. In section 5.4, we show the connection between DD-DRO and adaptive

regularized ridge regression. In Section 5.5, we introduce an algorithm based on stochastic

gradient descent to solve DD-DRO. In Section 5.6, we formulate the robust metric learning

problem that is solved by primal-dual steepest descent algorithm. In Section 5.7, we compare

the performance of DD-DRO and DD-R-DRO with a number of alternative machine learning

methods on various data sets and show that our approach exhibits consistently superior

performance.

5.2 Data-Driven DRO: Intuition and Interpretations

One of the main benefits using DRO formulation such as (5.2) is its interpretability. For

example, we can readily see from the left hand side of (5.2) that the regularization parameter

corresponds precisely to the size of the data-driven distributional uncertainty δ, so we can
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employ statistical thinking to pick it optimally. Additionally, the DRO is appealing as

it reveals how to enhance generalization properties. We can interpret (5.1) as a game in

which we (the outer player) choose a decision β, while the adversary (the inner player)

selects a model which is a perturbation P , of the data (encoded by Pn). The amount of the

perturbation is dictated by the size of δ, while the type of perturbation and its measurement

is dictated by Dc(P, Pn). Figure 2(a) further explains the necessity of informing Dc(·) in a

data-driven way.

Figure 5.2: Stylized examples illustrating the need for data-driven cost function.

Suppose we have a classification task. The data roughly lies on a lower-dimensional and non-

linear manifold. Some data classified as negative are “close” to data classified as positive

when one sees the whole space R2 as the natural ambient domain of the data. However, if

we use a distance similar to the geodesic distance intrinsic in the manifold then the negative

instances are actually far apart from the positive instances. By learning this intrinsic metric

we are able to calibrate a cost function c (u,w) which attaches relatively high transportation

costs to (u,w) if transporting mass between these locations has substantial impacts on the

response variable and increases the expected risk. This forces the adversary player to

carefully choose the data which is to be transported, with a given budget δ. He has to make

a compromise; on one hand, he would like to maximize the empirical risk by purturbing the
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data between locations that has substantial impacts on the response variable, but on the

other hand he has to pay higher cost for those purturbations. As a result, this compromise

of the DRO procedure leads to the focus on reagions of relevance and hence improves the

generalization performance.

The idea can be further explored in the context of a logistic regression shown in Figure

2(b): Suppose that d = 2, and that Y depends only on X(1), the first coordinate of

X. The metric learning in (5.7) will capture the more informative X(1) in the data and

induce a cost function which bears relatively high transportation cost in X(1) direction

while relatively low transportation cost along X(2) direction. From the standpoint of the

adversarial player, he has to reach a compromise between maximizing the expected loss

(which is his objective) by transporting more along the impactful X(1) direction and paying

a higher cost for perturbing along X(1) direction with his limited budget δ.

5.3 Background on Optimal Transport and Metric Learning

Procedures

This section provides a quick review of basic notions in optimal transport for defining

Dc(P, Pn) and in metric learning for calibrating the cost function c(·).

5.3.1 Defining Optimal Transport Distances and Discrepancies

Assume that the cost function c : Rd+1 × Rd+1 → [0,∞] is lower semicontinuous. We also

assume that c(u, v) = 0 if and only if u = v. Given two distributions P and Q, with supports

SP and SQ, respectively, we define the optimal transport discrepancy, Dc, via

Dc (P,Q) = inf
{
Eπ [c(U, V )] : π ∈ P

(
SP × SQ

)
, πU = P, πV = Q

}
, (5.5)

where P(SP ×SQ) is the set of probability distributions π supported on SP×SQ , and πU and

πV denote the two marginals of π. The non-negativeness of c(·) ensures that Dc(P,Q) ≥ 0

and the condition that c(u, v) = 0 if and only if u = v guarantees that Dc(P,Q) = 0 if

and only P = Q. If c(·) is also symmetric (i.e. c(u, v) = c(v, u)), and there exists % ≥ 1

such that c1/%(u,w) ≤ c1/%(u, v) + c1/%(v, w) (i.e. c1/%(·) satisfies the triangle inequality)
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then it can be verified (see Villani (2008)) that D
1/%
c (P,Q) is a metric. For example, if

c(u, v) = ‖u − v‖%q for q ≥ 1 (where ‖u − v‖q denotes the lq norm in Rd+1) then Dc(·) is

known as the Wasserstein distance of order %. An important observation is that (5.5) is a

linear program in the variable π.

5.3.2 On Metric Learning Procedures

In order to keep the discussion focused, we pick only a few metric learning methods for the

calibration of cost function in DRO formulation, but we emphasize that our approach can

combine with almost any other methods in the metric learning literature. The paper Bellet

et al. (2013) gives a wide survey of various metric learning procedures. The procedures

we employed can already improve significantly upon natural benchmarks, and these metric

families can be related to adaptive regularization. This connection will be useful to further

enhance the intuition of our procedure.

5.3.2.1 The Mahalanobis Distance

The Mahalanobis metric is defined as

dΛ

(
x, x′

)
=
((
x− x′

)T
Λ
(
x− x′

))1/2
,

where Λ is symmetric and positive semi-definite and we write Λ ∈ PSD. Note that dΛ(x, x′)

is the metric induced by the norm ‖x‖Λ =
√
xTΛx.

Suppose our data is of the form Dn = {(Xi, Yi)}ni=1 and Yi ∈ {−1,+1}. The prediction

variables are assumed to have already been standardized. Motivated by applications such

as social networks, where there is a natural graph connecting instances in the data, and the

information of connection is summarized in setsM and N , whereM is the set of the pairs

that should be close (so that we can connect them) to each other, while N characterizes

the relations that the pairs should be far away (not connected). They are often called side

information of the data. We define them as

M := {(Xi, Xj) | Xi and Xj must connect} ,

N := {(Xi, Xj) | Xi and Xj should not connect} .
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While it is typically assumed that M and N are given, one may also resort to k-Nearest-

Neighbor (k-NN) method to generate these sets if they are not available. This is the

approach we follow in our numerical experiments. It is worth noting that the choice of any

criterion for the definition of M and N should be oriented by the learning task so as to

achieve both interpretability and performance.

In our experiments we assign the pair (Xi, Xj) to M if they are sufficiently close in the

k-NN criterion, and with the same label Yi = Yj . Else if Yi 6= Yj , we assign them to N .

The work of Xing et al. (2002), one of pioneer paper on this subject, suggests to solve the

following optimization problem

min
Λ∈PSD

∑
(Xi,Xj)∈M

d2
Λ (Xi, Xj) (5.6)

s.t.
∑

(Xi,Xj)∈N

d2
Λ (Xi, Xj) ≥ λ̄. (5.7)

to achieve the goal of minimizing the total distance between pairs that should be connect,

while keeping the pairs that should not connect well separated. The constant λ̄ > 0 is not

essential, since Λ can be normalized by λ̄ and we can choose λ̄ = 1 without loss of generality.

The optimization problem (5.7) is a typical semidefinite programming and has been widely

studied, see, for example, Xing et al. (2002) for a projection-based algorithm; and Schultz

and Joachims (2004) for a factorization-based procedure; or the survey paper Bellet et al.

(2013) for comparison between various algorithms.

We have chosen formulation (5.7) to estimate Λ as it is most intuitive, while more advanced

metric learning techniques developed recently can also be incorporated into the estimation

of cost function c(·) for our DRO formulation. (see Li et al. (2016)).

5.3.2.2 Using Mahalanobis Distance in Data-Driven DRO

Just as before assume that the underlying data takes the form Dn = {(Xi, Yi)}ni=1, where

Xi ∈ Rd and Yi ∈ R and the loss function, depending on a decision variable β ∈ Rm, is

given by l(x, y, β). Note that no linear structure is imposed on the underlying model or on

the loss function. Analogous to the cost function c(·) in (5.4), here we define a cost function
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cΛ(·) associated with a positive semidefinite matrix Λ as

cΛ

(
(x, y), (x′, y′)

)
= d2

Λ

(
x, x′

)
I
(
y = y′

)
+∞I

(
y 6= y′

)
. (5.8)

The infinite contribution in the definition of cΛ (i.e. the∞·I (y 6= y′) part) indicates that the

adversarial player in the DRO formulation is not allowed to perturb the response variable.

Since the sets M and N depend on Wi = (Xi, Yi), the cost function cΛ(·) will be informed

by the Yi’s. With this data-driven cost function at hand we can then estimate β via

min
β

sup
P :DcΛ (P,Pn)≤δ

E[l(X,Y, β)]. (5.9)

It is worth noting that Λ comes only into the definition of the cost function.

5.3.2.3 Mahalanobis Metrics on a Non-Linear Feature Space

In this subsection, we consider the case when the cost function is defined on non-linear

transformed data. Assume that the data takes the form Dn = {(Xi, Yi)}ni=1, where Xi ∈ Rd

and Yi ∈ R and the loss function, depending on decision variable β ∈ Rm, is given by

l (x, y, β). We define

cΦ
Λ

(
(x, y), (x′, y′)

)
= d2

Λ

(
Φ (x) ,Φ

(
x′
))
I
(
y = y′

)
+∞I

(
y 6= y′

)
, (5.10)

for Λ ∈ PSD. To preserve the properties of a cost function (i.e. non-negativity, lower

semicontinuity and cΦ
Λ (u,w) = 0 implies u = w), we assume that Φ (·) is continuous and

that Φ (w) = Φ (u) implies that w = u. Then we can apply a metric learning procedure,

such as the one described in (5.7), to calibrate Λ.

5.4 Data Driven Cost Selection and Adaptive Regularization

In this section we establish a direct connection between our fully data-driven DRO procedure

and adaptive regularization. Our main result also reveals a direct connection between the

metric learning and adaptive regularized estimators.

Throughout this section we consider a data set of the form Dn = {(Xi, Yi)}ni=1 with Xi ∈ Rd
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and Yi ∈ R as before. With the cost function cΛ(·) defined in (5.8), we have the following

results. Its proof is given in the Appendix.

Theorem 5.1 (DRO Representation for Generalized Adaptive Regularization). Assume

that Λ ∈ Rd×d in (5.8) is positive definite and the loss function is mean squared error, we

have the following representation

min
β

max
P :DcΛ (P,Pn)≤δ

E1/2
P

[(
Y −XTβ

)2]
= min

β

√√√√ 1

n

n∑
i=1

(
Yi −XT

i β
)1/2

+
√
δ ‖β‖Λ−1 . (5.11)

Moreover in the context of adaptive regularized logistic regression with Y ∈ {−1,+1} , we

have

min
β

max
P :DcΛ (P,Pn)≤δ

E
[
log
(

1 + e−Y (XT β)
)]

= min
β

1

n

n∑
i=1

log
(

1 + e−Yi(X
T
i β)
)

+ δ ‖β‖Λ−1 .(5.12)

In particular, when Λ is a diagonal positive definite matrix, we recover a more familiar

version of (5.11) for adaptive regularization:

min
β

max
P :DcΛ (P,Pn)≤δ

E1/2
P

[(
Y −XTβ

)2]
= min

β

√√√√ 1

n

n∑
i=1

(
Yi −XT

i β
)2

+
√
δ

√√√√ d∑
i=1

β2
i /Λii.(5.13)

The adaptive regularization method was initially derived as a generalization of ridge regres-

sion in Hoerl and Kennard (1970b) and Hoerl and Kennard (1970a). Recent work shows

that adaptive regularization can improve the prediction power of its non-adaptive coun-

terpart, especially in high-dimensional settings (see in Zou (2006) and Ishwaran and Rao

(2014)).

In view of (5.13), our discussion in Section 5.3.2.1 uncovers tools which can be used to esti-

mate the coefficients {1/Λii : 1 < i ≤ d}. To complement the intuition given in Figure 1(b),

note that in the adaptive regularization literature one often choose Λii ≈ 0 to force βi ≈ 0

(i.e., there is a high penalty to variables with low explanatory power). This corresponds to

the low transport costs along those low explanatory directions in our DRO formulation.
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5.5 Solving Data Driven DRO Based on Optimal Transport

Discrepancies

To fully take advantage of the synergies between DRO and metric learning it is crucial to

have an algorithm efficiently estimating β from (5.1). In the presence of a special represen-

tation such as (5.2) or (5.13), we can apply standard stochastic optimization methods (see

Lei and Jordan (2016)).

Our objective in this section is to give algorithms which are applicable to more general loss

and cost functions, when a simplified representation is not accessible.

Throughout this section the data has the form Dn = {(Xi, Yi)}ni=1 ⊂ Rd+1. The loss func-

tion is written as {l (x, y, β) : (x, y) ∈ Rd+1, β ∈ Rm}. We assume that for each (x, y), the

function l (x, y, ·) is convex and continuously differentiable. Further, we shall consider cost

functions of the form

c̄
(
(x, y) ,

(
x′, y′

))
= c

(
x, x′

)
I
(
y = y′

)
+∞I

(
y 6= y′

)
,

as this will simplify the form of the dual representation in the inner optimization of our

DRO formulation. To ensure boundedness of the DRO formulation, we impose the following

assumption.

Assumption 1. There exists Γ(β, y) ∈ (0,∞) such that l(u, y, β) ≤ Γ(β, y) · (1 + c(u, x)),

for all (x, y) ∈ Dn, Under Assumption 1, we can guarantee that

max
P :Dc(P,Pn)≤δ

EP [l (X,Y, β)] ≤ (1 + δ) max
i=1,...,n

Γ (β, Yi) <∞.

Using the strong duality theorem for semi-infinity linear programming problem in Appendix

B of Blanchet et al. (2016a),

max
P :Dc(P,Pn)≤δ

EP [l (X,Y, β)] = min
λ≥0

1

n

n∑
i=1

φ (Xi, Yi, β, λ) , (5.14)

where ψ(u,X, Y, β, λ) := l(u, Y, β)−λ(c(u,X)−δ), φ (X,Y, β, λ) := maxu∈Rd ψ(u,X, Y, β, λ).

Therefore,

min
β

max
P :DcΛ (P,Pn)≤δ

EP [l (X,Y, β)] = min
λ≥0,β

{EPn [φ (X,Y, β, λ)]} . (5.15)
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The right hand side of (5.15) is minimized over β and λ, to which we can apply stochastic

approximation algorithms if the gradient of φ (·) with respect to β and λ exist. However, φ (·)

itself is given by solving a maximization problem, so its gradient is not readily accessible.

Therefore we consider a smoothing approximation technique to remove the maximization

problem in φ (·).

The smoothing approximation for φ (·) is defined as,

φε,f (X,Y, β, λ) = ε log

(∫
Rd

exp ([ψ (u,X, Y, β, λ)] /ε) f (u) du

)
,

where f (·) is a probability density in Rd; for example, f can be taken as the density of a

normal distribution and ε > 0 is a smoothing parameter.

Theorem 5.1 below quantifies the error due to smoothing approximation.

Lemma 5.1. Under mild technical assumptions (see Assumption 1-4 in Appendix 5.9.2),

there exists ε0 > 0 such that for every ε < ε0, we have

φ(X,Y, β, λ) ≥ φε,f (X,Y, β, λ) ≥ φ(X,Y, β, λ)− dε log(1/ε)

The proof of Lemma 5.1 is given in Appendix 5.9.2.

With the help of smooth approximation we transform the original optimization problem

to a standard stochastic optimization problem and we can solve it by mini-batch based

stochastic approximation (SA) algorithm. Notice that the gradient of φε,f (·), as a function

and β and λ, satisfies

∇βφε,f (X,Y, β, λ) =
EU∼f [exp (ψ (U,X, Y, β, λ) /ε)∇βl (U,X, Y )]

EU∼f [exp (ψ (U,X, Y, β, λ) /ε)]
, (5.16)

∇λφε,f (X,Y, β, λ) =
EU∼f [exp (ψ (U,X, Y, β, λ) /ε) (δ − cΛn (U,X))]

EU∼f [exp (ψ (U,X, Y, β, λ) /ε)]
. (5.17)

which is still in the form of expectation, but we can approximate the gradient by a simple

Monte Carlo sampling, i.e., we sample Ui’s from f(·) and evaluate the numerators and

denominators of the gradient using Monte Carlo separately. The details of this SA algorithm

are given in Algorithm 2.
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Algorithm 2 Stochastic Gradient Descent with Continuous State

1: Initialize λ = 0, and β to be empirical risk minimizer, ε = 0.5, tracking error Error =

100.

2: while Error > 10−3 do

3: Sample a mini-batch {Xj , Yj}Mj=1 uniformly from n observations , with M ≤ n.

4: For each j = 1, . . . ,M , sample i.i.d. {U (j)
k }

L
k=1 from N

(
0, σ2Id×d

)
.

5: We denote f jL as empirical distribution for U
(j)
k ’s, and estimate the batched as

∇βφε,f =
1

M

M∑
j=1

∇βφε,fjL (Xj , Yj , β, λ) ,∇λφε,f =
1

M

M∑
j=1

∇λφε,fjL (Xj , Yj , β, λ) .

6: Update β and λ using β = β − αβ∇βφε,f and λ = λ− αλ∇λφε,f .

7: Update tracking error Error as the norm of difference between latest parameter and

average of last 50 iterations.

8: Output β.

Remark 5.1. The above optimization problem can be written as a mixed problem in the

sense of J.Blanchet et al. (2017)

min
λ≥0,β

1

n

n∑
i=1

ε log(EU [exp(ψ(U,Xi, Yi, β, λ)/ε)]) =: min
λ≥0,β

1

n

n∑
i=1

Φi(EU [ΨU (β, λ)]) =: min
λ≥0,β

F (β, λ),

(5.18)

where

ΨU (β, λ) :=
(

exp(ψ(U,X1, Y1, β, λ)/ε), · · · , exp(ψ(U,XM , YM , β, λ)/ε)
)T
,

and Φi(EU [ΨU (β, λ)]) := ε log(EU [exp(ψ(U,Xi, Yi, β, λ)/ε)]) = φε,f (Xi, Yi, β, λ) .

Let θ := (β, λ)T , then exp ([ψ (u,X, Y, θ)] /ε) f (u) is log-convex in θ for all u ∈ R, and by

Boyd and Vandenberghe (2004) p.106 the function φε,f is convex in θ, so F is also convex.

Remark 5.2. Note that

∇βφε,f (X,Y, β, λ) =
EU∼f [exp (ψ (U,X, Y, β, λ) /ε)∇βl (U,X, Y )]

EU∼f [exp (ψ (U,X, Y, β, λ) /ε)]

relates to the quotient of two expectations. In general,∑L
k=1 exp (ψ (Uk, X, Y, β, λ) /ε)∇βl (Uk, X, Y )∑L

k=1 exp (ψ (Uk, X, Y, β, λ) /ε)
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is not an unbiased estimator for ∇βφε,f (X,Y, β, λ). The unbiased estimator ∇βφε,fjL (Xj , Yj , β, λ)

can be construncted via multi-level randomization, see Blanchet and Glynn (2015). ∇λφε,f
is analogue.

Remark 5.3. Let θ = (β, λ)T and define

h(Xj , Yj , (U
(j)
k )Lk=1, θ) := ∇θφε,fjL (Xj , Yj , θ)

and

H(Z, θ) :=
1

M

M∑
j=1

h(Xj , Yj , (U
(j)
k )Lk=1, θ),

where Z = ((Xj , Yj , (U
(j)
k )Lk=1)Mj=1). We have E[H(Z, θ)|θ] = EPM

⊗
Pf [∇θφε,f (X,Y, U, θ)|θ],

where PM is the empirical measure formed by the M data points, and Pf denotes the distri-

bution of U . Thus, Algorithm 2 can be seen as a special type of stochastic gradient descend

algorithm.

Theorem 5.2. Let θ∗ = (β∗, λ∗)T be an optimal value for minθ F (θ) in (5.18). Assume

that i) the problem is optimized over a compact and convex set Θ which contains θ∗ and

(θt)t≥0 generated by the algorithm, ii) Inside the compact set Θ both the loss function l(·)

and the cost function c(·) are twice continously differentiable, Then

a) If F is µ-strongly convex, when taking step-size αt = 2
µ
√
t

we then have

E[‖θT − θ∗‖22] ≤ 4C

µ2(T + 1)
,

where C is some constant.

b) If F is just convex but we can find some constant D such that E[‖θt − θ∗‖22] ≤ D for all

t ≥ 0, when taking step-size αt = 2√
t+1

we then have

E[F (θT )]− F (θ∗) ≤ 2
√

2(C +D)√
T

,

where C is some constant.

Proof. Since both the loss function l(·) and the cost function c(·) are twice continously

differentiable and the set Θ is compact, so the functions Φi and ΨU are also twice continously

differentiable and their gradients are L-Lipschitz continuous for some constant L. Therefore,

it satisfies all the assumptions in J.Blanchet et al. (2017) and the results follow.
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Remark 5.4. As shown in Remark 5.1 F is convex, but if F is not strongly convex we can

generally add a penalty term ‖θ‖22 to make it strongly convex.

5.6 Robust Metric Learning

The objective of this section is to explore how to learn data-driven cost function cΛ in a

robust way and combine it with our DD-DRO model. We call this new model Doubly Ro-

bust Data-Driven Distributionally Robust Optimization (DD-R-DRO). Robust optimization

(RO) is a family of optimization techniques that deals with uncertainty or misspecification

in the objective function and constraints. It was first proposed in Ben-Tal et al. (2009) and

has attracted increasing attentions in the recent decades El Ghaoui and Lebret (1997) and

Bertsimas et al. (2011). It has been applied in machine learning to regularize statistical

learning procedures, for example, in Xu et al. (2009a) and Xu et al. (2009b) robust opti-

mization was employed for SR-Lasso and support vector machines. Note that the classical

robust optimization is different from our distributionally robust optimization in the sense

that classical robust optimization concerns only deterministic uncertain scenarios and we

will apply this classical robust optimization only to the cost function learning procedure in

our DD-DRO. The reason that we want to learn the cost function in a robust way is due to

the fact that there often exists noisiness or incorrectness in side information (e.g. the train-

ing constraint sets M and N or the relative constraints R defined later, are often gained

from customers’ implicit feedback, and are quite noisy.) This extra layer of robustness will

reduce the variability in testing error as it is shown in the later numerical experiments.

5.6.1 Robust Optimization for Relative Metric Learning

The robust metric learning we shall use is based on the work of Huang et al. (2012). Consider

the relative constraint set R containing data triplets with relative relation defined as

R = {(i, j, k) |dΛ(Xi, Xj) should be smaller than dΛ(Xi, Xk)} .

and the Relative Metric Learning formulation

min
Λ�0

∑
(i,j,k)∈R

(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+
. (5.19)
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Suppose we know that about 1 − α ∈ (0, 1] of the constraints are noisy (the value of α is

usually given by experience or it can also be inferred by cross validation), but we cannot

determine exactly which part of them are noisy. Instead of optimizing over all subsets of

constraints, we try to minimize the worst case loss function over all possible α |R| constraints

(where |·| denote the cardinality of a set) and obtain the following min-max formulation

min
Λ�0

max
q∈T (α)

∑
(i,j,k)∈R

qi,j,k
(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+
, (5.20)

where T (α) is a robust uncertainty set of the form

T (α) =
{
q = {qi,j,k|(i, j, k) ∈ R} |0 ≤ qi,j,k ≤ 1,

∑
(i,j,k)∈R

qi,j,k ≤ α× |R|
}
,

which is a convex and compact set.

Firstly we observe that the above minimax problem is equivalent to

min
Λ�0

max
q∈T (α)

∑
(i,j,k)∈R

qi,j,k
(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
, (5.21)

because qi,j,k = 0 whenever d2
Λ (Xi, Xj) − d2

Λ (Xi, Xk) + 1 < 0. So our algorithm will be

quite different from the original algorithm proposed by Huang et al. (2012) in the sense that

our alorithm doesn’t resort to any smooth technique, instead we will use the primal-dual

steepest descent algorithm.

Secondly, the objective function in (5.21) is convex in Λ and concave (linear) in q̃. Define

L(Λ, q) :=
∑

(i,j,k)∈R

qi,j,k
(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+
κ

2
‖Λ‖2F , (5.22)

where κ > 0 is the tuning parameter and ‖ · ‖F denote the Frobenius norm. In addition we

define

f(Λ) := max
q∈T (α)

L(Λ, q), g(q) := min
Λ�0

L(Λ, q) (5.23)

and since L is strongly convex in Λ and linear in q we also have

q(Λ) := arg max
q∈T (α)

L(Λ, q), Λ(q) := arg min
Λ�0

L(Λ, q) (5.24)

Our iterative algorithm uses the fact that f(Λ) and q(Λ) can actually be fast obtained by

a simple sorting: for a fixed Λ � 0, the inner maximization is linear in q, and the optimal
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q satisfy qi,j,k = 1 whenever (dΛ (Xi, Xj)− dΛ (Xi, Xk) + 1) ≥ 0 and ranks in the top α |R|

largest values and set qi,j,k = 0 otherwise. If there are more than one optimal q’s, break

the tie by choosing q(Λ) := arg maxq∈T (α) L(Λ, q)− κ‖q− q(n)‖22 at the (n+ 1)-th iteration,

where κ is a tuning parameter that is small enough such that it ensures that the q(Λ) is

chosen among the all the optimal ones. On the other hand, since L(Λ, q) is smooth in Λ,

we can also obtain g(q) and Λ(q) fast by gradient descent.

We summarize the primal-dual steepest descent algorithm as in Algorithm 3.

5.6.2 Robust Optimization for Absolute Metric Learning

The RO formulation of (5.7) that we present here appears to be novel in the literature.

First we write (5.7) in its Lagrangian form,

min
Λ�0

max
λ≥0

∑
(i,j)∈M

d2
Λ (Xi, Xj) + λ

(
1−

∑
(i,j)∈N

d2
Λ (Xi, Xj)

)
. (5.25)

Similar to R, the side information sets M and N often suffer from noisiness or inaccuracy

as well. Let us assume that about 1 − α proportion of the constraints in M and N are,

respectively, inaccurate. We then construct robust uncertainty sets W(α) and V(α) from

M and N as

W(α) =
{
η̃ = {ηij : (i, j) ∈M} |0 ≤ ηij ≤ 1,

∑
(i,j)∈M

ηij ≤ α× |M|
}
,

V(α) =
{
ξ̃ = {ξij : (i, j) ∈ N} |0 ≤ ξij ≤ 1,

∑
(i,j)∈N

ξij ≥ α× |N |
}
.

Then the RO formulation of (5.25) can be written as

min
Λ�0

max
λ≥0

max
η∈W(α),ξ∈V(α)

∑
(i,j)∈M

ηi,jd
2
Λ (Xi, Xj) + λ

(
1−

∑
(i,j)∈N

ξi,jd
2
Λ (Xi, Xj)

)
(5.26)

The switch of maxλ with max(η̃,ξ̃) is valid in general. Note also that the Cartesian product

M (α)×N (α) is a compact set, and the objective function is convex in Λ and concave (lin-

ear) in pair (η̃, ξ̃), so we can further apply Sion’s min-max Theorem again (see in Terkelsen

(1973)) to switch the order of minΛ-max(η̃,ξ̃). This leads to an iterative algorithm.

Define q := (η, ξ) as the dual variable and

L(Λ, q) :=
∑

(i,j)∈M

ηi,jd
2
Λ (Xi, Xj) + λ

(
1−

∑
(i,j)∈N

ξi,jd
2
Λ (Xi, Xj)

)
+
κ

2
‖Λ‖2F , (5.27)
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Algorithm 3 Sequential Coordinate-wise Metric Learning Using Relative Relations

1: Initialize Set the iteration counter n = 0, the positive definite matrix Λ = Id, and

the tolerance ε = 10−3. Then randomly sample α proportion of elements from R to

construct q.

2: (Optimal test) Terminate if

|min{f(Λ(n)), f(Λ(q(n)))} −max{g(q(n)), g(q(Λ(n)))}| ≤ ε.

and Output

Λ̄ = arg min{f(Λ)|Λ = Λ(n) or Λ = Λ(q(n))}

q̄ = arg max{g(q)|q = q(n) or q = q(Λ(n))},

3: (Line search) Generate the intermediate Λ̂(n+1), q̂(n+1) with perfect line search

Λ̂(n+1) = (1− γn)Λ(n) + γnΛ(q(Λ(n)))

q̂(n+1) = (1− βn)q(n) + βnq(Λ(q(n))),

where

γn = arg min
γ∈[0,1]

f
(
(1− γ)Λ(n) + γΛ(q(Λ(n)))

)
βn = arg max

β∈[0,1]
g
(
(1− β)q(n) + βq(Λ(q(n)))

)
,

4: (Update the iterates)

Λ(n+1) = arg min{f(Λ)|Λ = Λ̂(n+1) or Λ = Λ(q(n))}

q(n+1) = arg max{g(q)|q = q̂(n+1) or q = q(Λ(n))},

and then return to Step 2 with counter n← n+ 1.
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and

f(Λ) := max
q∈T (α)

L(Λ, q), g(q) := min
Λ�0

L(Λ, q) (5.28)

and

q(Λ) := arg max
q∈T (α)

L(Λ, q), Λ(q) := arg min
Λ�0

L(Λ, q) (5.29)

Similarly, the f(Λ) and q(Λ) are easy to obtain. At the n-th step, given fixed Λ(n−1) � 0

and λ > 0 (it is easy to observe that optimal solution λ is positive, i.e. the constraint is

active so we may safely assume λ > 0), the inner maximization problem looks like,

max
η∈W(α)

∑
(i,j)∈M

ηi,jd
2
Λ(n−1) (Xi, Xj) + λ

(
1− min

ξ∈V(α)

∑
(i,j)∈N

ξi,jd
2
Λ(n−1) (Xi, Xj)

)
.

Analogous to the relative constraints case, the optimal η and ξ satisfy: ηi,j is 1, if d2
Λ(n−1) (Xi, Xj)

ranks top α withinM and equals 0 otherwise; while ξi,j = 1 if d2
Λ(n−1) (Xi, Xj) ranks bottom

α within N and equals 0 otherwise. So we also defineMα(Λ(n−1)) as a subset ofM, which

contains the constraints with largest α percent of dΛ(n−1) (·); and define Nα(Λ(n−1)) as a

subset of N , which contains the constraints with smallest α percent of dΛ(n−1) (·). Then the

optimal solution given fixed Λ(n−1) can be reformulated as ηi,j = 1 if (i, j) ∈ Mα(Λ(n−1))

and ξi,j = 1 if (i, j) ∈ Nα(Λ(n−1)).

On the other hand, given fixed η and ξ, we can simplify the minimization problem g(q) as

min
Λ�0

∑
(i,j)∈Mα(Λ(n−1))

d2
Λ (Xi, Xj) s.t.

∑
(i,j)∈Nα(Λ(n−1))

d2
Λ (Xi, Xj) ≥ 1.

This formulation of the minimization problem g(q) takes the same form as (5.7) and it thus

can be solved by similar SDP algorithms presented in Xing et al. (2002). On the whole we

solve the minimax problem of (5.26) by using the same primal-dual algorithm as presented

in Algorithm 3.

Other robust methods have also been considered in the metric learning literature, see Zha

et al. (2009) and Lim et al. (2013) although the connections to RO are not fully exposed.

Theorem 5.3. There exists saddle points (Λ̄, q̄) for the minimax problems (5.22) and (5.27)

respectively. The Algorithm 3 converges linearly to the common optimal value f(Λ̄) = g(q̄)
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in the sense that

f(Λ(n+1))− f(Λ̄) ≤ θ
(
f(Λ(n))− f(Λ̄)

)
g(q(n+1))− g(q̄) ≤ θ

(
g(q(n))− g(q̄)

)
,

where θ ∈ (0, 1) is some constant and the functions f and g are define by (5.23) and (5.28)

respectively.

Proof. In both (5.22) and (5.27) the function L is strongly convex in Λ and q takes value

in a bounded set, so it satisfies the condition of existence of saddle points, see Zhu (1994)

and R.T.Rockafeller (1970). Note that though L is not strongly concave in q but it is linear

in q. At iteration n + 1 if there are more than one optimal values of q we can use the

proximal point algorithm to create a strongly convex-concave Lagrangian, i.e. we maximize

−‖q−q(n)‖22 to break the tie. The linear convergence follows then from Theorem 3.3 in Zhu

(1994).

5.7 Numerical Experiments

5.7.1 Numerical Experiments for DD-DRO

We validate our data-driven cost function based DRO on 5 real data sets from the UCI

machine learning database Lichman (2013). We focus on a DRO formulation for a linear

classification model with the log-exponential loss. We use the linear metric learning frame-

work (5.7) to learn a positive semidefinite matrix Λ and then plug it into the cost function

cΛ defined in (5.8). We denote this model DRO-L. In addition, we also fit a cost function

cΦ
Λ to the quadratric transformed data, as explained in (5.10); the model is denoted by

DRO-NL. We compare our DRO-L and DRO-NL with logistic regression (LR), and regu-

larized logistic regression (LRL1). For each iteration and each data set, the data is split

randomly into training and test sets. We fit the models on the training set and evaluate the

performance on test set. The regularization parameter is chosen via 5−fold cross-validation

for LRL1, DRO-L and DRO-NL. For each data set, we perform 200 independent experi-

ments and report the mean and standard deviation for the training error, testing error and
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testing accuracy. The details of the numerical results and basic information of the data are

summarized in Table 5.1.

Table 5.1: Numerical Results for DD-DRO on Real Data Sets.

breast cancer qsar magic minibone spambase

LR

Train 0± 0 .026± .008 .213± .153 0± 0 0± 0

Test 8.75± 4.75 35.5± 12.8 17.8± 6.77 18.2± 10.0 14.5± 9.04

Accur .762± .061 .701± .040 .668± .042 .678± .059 .789± .035

LRL1

Train .185± .123 .614± .038 .548± .087 .401± .167 .470± .040

Test .428± .338 .755± .019 .610± .050 .910± .131 .588± .140

Accur .929± .023 .646± .036 .665± .045 .717± .041 .811± .034

DRO-L

Train .022± .019 .402± .039 .469± .064 .294± .046 .166± .031

Test .126± .034 .557± .023 .571± .043 .613± .053 .333± .018

Accur .954± .015 .733± .026 .727± .039 .714± .032 .887± .011

DRO-NL

Train .032± .015 .339± .044 .381± .084 .287± .049 .195± .034

Test .119± .044 .554± .032 .576± .049 .607± .060 .332± .015

Accur .955± .016 .736± .027 .730± .043 .716± .054 .889± .009

Num Predictors 30 30 10 20 56

Train Size 40 80 30 30 150

Test Size 329 475 9990 125034 2951

5.7.2 Numerical Experiments for DD-R-DRO

In this subsection we proceed to verify the further improved performance of our DD-R-DRO

method on the same five data sets from UCI machine learning data base.

The side information, i.e. the relative constraint set R and the absolute constraint sets M

and N are generated by k-NN method. We then add noisiness to these constraint sets by

randomly replacing the correct constraints with wrong constraints with probability 1− α.

We consider logistic regression (LR), regularized logistic regression (LRL1), DD-DRO with

cost function learned from absolute constraints (DD-DRO (absolute)) and DD-R-DRO(absolute)

with cost function learned from absolute constraints at level of α = 50% and α = 90%; DD-
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DRO with cost function learned from relative constraints (DD-DRO (relative)) and DD-R-

DRO(relative) with cost function learned from relative constraints at level of α = 50% and

α = 90%. For each data and each experiment, we randomly split the data into training and

testing and fit models on training set and evaluate on testing set.

For each data sets, we perform 200 independent experiments and report the mean and stan-

dard deviation of training error, testing error, and testing accuracy. The detailed results

and data set information are summarized in Table 5.2.

After we obtained the learned cost function, we then apply the smoothing approximation

algorithm introduced in Section 5.5 to solve the DRO problem directly, where the size of

uncertainty δ is chosen via 5-fold cross-validation.

We observe that DD-R-DRO presents robust improvement comparing to its non-robust

counterpart DD-DRO when the cost function is learned from noisy side information at level

α = 90%. More important, DD-R-DRO tends to enjoy the variance reduction property due

to RO. In addition, as the robust level increases, i.e. α = 50%, where we believe that the

side information is highly noisy, we observe that the doubly robust based approach seems

to shrink towards to LRL1, and benefits less from the data-driven cost structure.

5.8 Conclusion and Discussion

We have proposed a novel DD-DRO, a fully data-driven DRO procedure, which combines a

semiparametric approach (the metric learning) with a parametric procedure (the expected

loss minimization) and enhances the generalization performance of the underlying para-

metric model. A smoothing technique based algorithm is given for solving the DD-DRO

problem.

Based on DD-DRO we further take noisiness of the side information into account during

the metric learning for the cost function, and introduce robust metric learning method to

DD-DRO, which leads to our DD-R-DRO model. The overall method is then doubly robust;

one is distributionally robustness around the training data, and the other is robust metric

learning of the cost function from the noisy side information. This second layer of robust-

ness not only keeps the improved generalization properties of DD-DRO, but also reduces
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the variability of the testing errors due to the noise in side information.

We emphasize that our approach is applicable to other DRO formulations and is not re-

stricted to classification tasks. Interesting future research avenues which might be worth

considering include the development of a semisupervised framework as in Blanchet and

Kang (2017), in which unlabeled data is used to inform the support of the elements in

Uδ(Pn). Another interesing approach that might be worth exploring is to combine metric

learning for domain adaptation with our DRO model.

5.9 Proof of Main Results

5.9.1 Proof of Theorem 5.1

We first state and prove Lemma 5.2 which will be useful for the proof of Theorem 5.1.

Lemma 5.2. If Λ is a is positive definite matrix and we define ‖x‖Λ =
(
xTΛx

)1/2
, then

‖·‖Λ−1 is the dual norm of ‖·‖Λ. Furthermore, we have

uTw ≤ ‖u‖Λ ‖w‖Λ−1 ,

where the equality holds if and only if, there exists non-negative constant τ , s.t τΛu = Λ−1w

or τΛ−1w = Λu.

Proof of Lemma 5.2. This result is a direct generalization of l2 norm in Euclidean space.

Note that

uTw = (Λu)T (Λ−1w) ≤ ‖Λu‖2
∥∥Λ−1w

∥∥
2

= ‖u‖Λ ‖w‖Λ−1 . (5.30)

The inequality above is Cauchy-Schwartz inequality for Rd appling to Λu and Λ−1w, and the

equality holds if and only if there exists nonnegative τ , s.t. τΛu = Λ−1w or τΛ−1w = Λu.

By the definition of the dual norm, we have

‖w‖∗Λ = sup
u:‖u‖Λ≤1

uTw = sup
u:‖u‖Λ≤1

‖u‖Λ ‖w‖Λ−1 = ‖w‖Λ−1 .

While the first equality follows from the definition of dual norm, the second equality is

due to Cauchy-Schwartz inequality (5.30) and the equality condition therein, and the last

equality are immediate after maximizing.
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Proof of Theorem 5.1. The technique is a generalization of the method used in proving The-

orem 1 in Blanchet et al. (2016a). We can apply the strong duality result (see Proposition 6

in Appendix of Blanchet et al. (2016a)) to the worst-case expected loss function, and obtain

a semi-infinite linear programming problem

sup
P :DcΛ (P,Pn)≤δ

EP
[(
Y −XTβ

)2]
= min

γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{(
yi − uTβ

)2 − γ ‖xi − u‖2Λ}
}
.

For the inner suprema , let us denote ∆ = u−Xi and ei = Yi−XT
i β for notation simplicity.

The inner optimization problem associated with (Xi, Yi) becomes,

sup
u

{(
yi − uTβ

)2 − γ ‖xi − u‖2Λ}
= e2

i + sup
∆

{(
∆Tβ

)2 − 2ei∆
Tβ − γ ‖∆‖2Λ

}
,

= e2
i + sup

∆


∑

j

|∆j | |βj |

2

+ 2 |ei|
∑
j

|∆j | |βj | − γ ‖∆‖2Λ

 ,

= e2
i + sup

‖∆‖Λ

{
‖∆‖2Λ ‖β‖

2
Λ−1 + 2 |ei| ‖∆‖Λ ‖β‖Λ−1 − γ ‖∆‖2Λ

}
,

=

 e2
i

γ

γ−‖β‖2
Λ−1

if γ > ‖β‖2Λ−1 ,

+∞ if γ ≤ ‖β‖2Λ−1 .

While the first equality is due to the change of variable, the second equality follows from

the fact that the last term only depends on the magnitude rather than sign of ∆, so the

maximization problem will always pick a ∆ that satisfies the equality. The third equality

follows from the same reason; we can first apply the Cauchy-Schwartz inequality in Lemma

5.2 and the maximization problem will pick a ∆ satisfying the equality constraint. The last

equality following simply from the first order condition of optimality.

For the outer minimization problem over γ, as the inner suprema equal infinity if γ ≤
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‖β‖2Λ−1 , the worst-case expected loss becomes,

sup
P :DcΛ (P,Pn)≤δ

EP
[(
Y −XTβ

)2]
(5.31)

= min
γ>‖β‖2

Λ−1

{
γδ − 1

n

n∑
i=1

(
Yi −XT

i β
) γ

γ − ‖β‖2Λ−1

}
,

=

√√√√ 1

n

n∑
i=1

(
Yi −XT

i β
)

+
√
δ ‖β‖Λ−1

2

.

We see that the objective function on the right hand side of (5.31) is convex and differentiable

and the value function will be infinity as γ → ∞ and γ → ‖β‖2Λ. Solving γ through the

first order condition of optimality, it is straightforward to obtain the last equality in (5.31).

By taking square root on both sides, we proved the claim for the case of mean-squared loss

function.

For the log-exponential loss function the proof is analogous. By applying strong duality

results of semi-infinity linear programming problem in Blanchet et al. (2016a), we can write

the worst case expected loss function as

sup
P :DcΛ (P,Pn)≤δ

EP
[
log
(
1 + exp

(
−Y βTX

))]
= min

γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}}
.

For each i, we can use Lemma 1 in Shafieezadeh-Abadeh et al. (2015) and dual-norm result

in Lemma 5.2 to deal with the inner maximization problem and obtain

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}
=

 log
(
1 + exp

(
−YiβTXi

))
if ‖β‖Λ−1 ≤ γ,

∞ if ‖β‖Λ−1 > γ.

Moreover, since the outer is minimization problem, following the same discussion for the

proof for linear regression case, we can plug-in the result above and get the first equality
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below,

min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}}

= min
γ≥‖β‖Λ−1

{
δγ +

1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))}

=
1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))
+ δ ‖β‖Λ−1 .

We know that the target function is continuous and monotone increasing in γ, its optimal

is γ = ‖β‖Λ−1 , which leads to the second equality above. This proves the theorem for the

case of log-exponential loss function.

5.9.2 Proof of Lemma 5.1

Let us first list all the assumptions required to prove Theorem 5.1. We begin by recalling

Assumption 1 from Section 5.5.

Assumption 1. There exists Γ(β, y) ∈ (0,∞) such that l(u, y, β) ≤ Γ(β, y) · (1 + c(u, x)),

for all (x, y) ∈ Dn,

In addition, we introduce the following Assumptions 2-4.

Assumption 2. ψ (·, X, Y, β, λ) is twice continuously differentiable and the Hessian of

ψ (·, X, Y, β, λ) evaluated at u∗, D2
uψ (u∗, X, Y, β, λ), is positive definite. In particular, we

can find θ > 0 and η > 0, such that

ψ(u,X, Y, β, λ) ≥ ψ (u∗, X, Y, β, λ)− θ

2
‖u− u∗‖22, ∀u with ‖u− u∗‖2 ≤ η.

Assumption 3. For a constant λ0 > 0 such that φ(X,Y, β, λ0) <∞, letK = K (X,Y, β, λ0)

be any upper bound for φ(X,Y, β, λ0).

Assumption 4. In addition to the lower semicontinuity of c (·) ≥ 0, we assume that c (·, X)

is coercive in the sense that c (u,X)→∞ as ‖u‖2 →∞.

For any set S, the r-neighborhood of S is defined as the set of all points in Rd which are at

a distance less than r from S, i.e. Sr = ∪u∈S{ū : ‖ū− u‖2 ≤ r}.

Proof of Lemma 5.1. The first part of the inequalities is easy to derive. For the second

part, we proceed as follows: Under Assumptions 3 and 4, we can define a compact set

C = C(X,Y, β, λ) = {u : c(u,X) ≤ l(X,Y, β)−K + λ0/(λ− λ0)}.
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It is easy to check that arg max{ψ (u,X, Y, λ)} ⊂ C. Owing to optimality of u∗ and As-

sumption 2 that K ≥ φ(X,Y, β, λ0), we see that

l(X,Y ) ≤ l(u∗, Y ))− λc(u,X)

= l(u∗, Y )− λ0c(u
∗, X)− (λ− λ0)c(u∗, X)

≤ K − λ0 − (λ− λ0)c(u∗, X).

By checking the definition of C = C(X,Y, β, λ), one conludes that u∗ ∈ C, which further

implies {u : ‖u − u∗‖2 ≤ η} ⊂ Cη. Then we combine the strongly convexity assumption in

Assumption 2 and the definition of φε,f (u,X, Y, β, λ), which yields

φε,f (X,Y, β, λ) ≥ ε log

(∫
‖u−u∗‖2≤η

exp

([
φ (X,Y, β, λ)− θ

2
‖u− u∗‖22

]
/ε

)
f(u)du

)

= ε log (exp (φ (X,Y, β, λ) /ε))

∫
‖u−u∗‖2≤η

exp

(
−θ

2
‖u− u∗‖22/ε

)
f(u)du

= φ (X,Y, β, λ) + ε log

∫
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖22
2ε

)
f(u)du.

As {u : ‖u− u∗‖2 ≤ η} ⊂ Cη, we can use the lower bound of f(·) to deduce that∫
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖22
2ε

)
f(u)du ≥ inf

u∈Cη
f(u)×

∫
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖22
2ε

)
du

= inf
u∈Cη

f(u)× (2πε/θ)d/2 P (Zd ≤ η2θ/ε),

where Zd is a chi-squared random variable of d degrees of freedom. To conclude, recall that

ε ∈ (0, η2θχα), the lower bound of φε,f (·) can be written as

φε,f (X,Y, β, λ) ≥ φ(X,Y, β, λ)− d

2
ε log(1/ε) +

d

2
ε log

(
(2πα/θ) inf

u∈Cη
f(u)

)
.

This completes the proof of Lemma 5.1.
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Table 5.2: Numerical Results for DD-R-DRO on Real Data Sets with Side Information

Generated by k-NN Method.

breast cancer qsar magic minibone spambase

LR

Train 0± 0 .026± .008 .213± .153 0± 0 0± 0

Test 8.75± 4.75 35.5± 12.8 17.8± 6.77 18.2± 10.0 14.5± 9.04

Accur .762± .061 .701± .040 .668± .042 .678± .059 .789± .035

LRL1

Train .185± .123 .614± .038 .548± .087 .401± .167 .470± .040

Test .428± .338 .755± .019 .610± .050 .910± .131 .588± .140

Accur .929± .023 .646± .036 .665± .045 .717± .041 .811± .034

DD-DRO

(absolute)

Train .022± .019 .402± .039 .469± .064 .294± .046 .166± .031

Test .126± .034 .557± .023 .571± .043 .613± .053 .333± .023

Accur .954± .015 .733± .0.026 .727± .039 .714± .032 .887± .011

DD-R-DRO

(absolute)

α = 90%

Train .029± .013 .397± .036 .420± .063 .249± .055 .194± .031

Test .126± .023 .554± .019 .561± .035 .609± .044 .331± .018

Accur .954± .012 .736± .025 .729± .032 .709± .025 .890± .008

DD-R-DRO

(absolute)

α = 50%

Train .040± .055 .448± .032 .504± .041 .351± .048 .166± .030

Test .132± .015 .579± .017 .590± .029 .623± .029 .337± .013

Accur .952± .012 .733± .025 .710± .033 .715± .021 .888± .008

DD-DRO

(relative)

Train .086± .038 .392± .040 .457± .071 .322± .061 .181±, 036

Test .153± .060 .559± .025 582± .033 .613± .031 .332± .016

Accur .946± .018 .714± .029 .710±, 027 .704± .021 .890± .008

DD-R-DRO

(relative)

α = 90%

Train .030± .014 .375± .038 .452± .067 .402± .058 .234± .032

Test .141± .054 .556± .022 .577± .032 .610± .024 .332± .011

Accur .949± .019 .729± .023 .717± .025 .710± .020 .892± .007

DD-R-DRO

(relative)

α = 50%

Train .031± .016 .445± .032 .544± .057 .365± .054 .288± .029

Test .154± .049 .570± .019 .594± .018 .624± .018 .357± .008

Accur .948± .019 .705± .023 .699± .028 .698± .018 .881± .005

Num Predictors 30 30 10 20 56

Train Size 40 80 30 30 150

Test Size 329 475 9990 125034 2951
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[71] Giovanni Puccetti and Ludger Rüschendorf. Sharp bounds for sums of dependent risks.

Journal of Applied Probability, 50(01):42–53, 2013.

[72] Giovanni Puccetti. Sharp bounds on the expected shortfall for a sum of dependent

random variables. Statistics & Probability Letters, 83(4):1227–1232, 2013.

[73] Q.Wang, S.Kulkarni, and S.Verdu. Divergence estimation for multidimensional den-

sities via k-nearest-neighbor distances. IEEE TRANSACTIONS ON INFORMATION

THEORY, VOL. 55, NO. 5, 2009.
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