23 research outputs found

    Learning Emotional Representations from Imbalanced Speech Data for Speech Emotion Recognition and Emotional Text-to-Speech

    Full text link
    Effective speech emotional representations play a key role in Speech Emotion Recognition (SER) and Emotional Text-To-Speech (TTS) tasks. However, emotional speech samples are more difficult and expensive to acquire compared with Neutral style speech, which causes one issue that most related works unfortunately neglect: imbalanced datasets. Models might overfit to the majority Neutral class and fail to produce robust and effective emotional representations. In this paper, we propose an Emotion Extractor to address this issue. We use augmentation approaches to train the model and enable it to extract effective and generalizable emotional representations from imbalanced datasets. Our empirical results show that (1) for the SER task, the proposed Emotion Extractor surpasses the state-of-the-art baseline on three imbalanced datasets; (2) the produced representations from our Emotion Extractor benefit the TTS model, and enable it to synthesize more expressive speech.Comment: Accepted by INTERSPEECH202

    Kernel-convoluted Deep Neural Networks with Data Augmentation

    Full text link
    The Mixup method (Zhang et al. 2018), which uses linearly interpolated data, has emerged as an effective data augmentation tool to improve generalization performance and the robustness to adversarial examples. The motivation is to curtail undesirable oscillations by its implicit model constraint to behave linearly at in-between observed data points and promote smoothness. In this work, we formally investigate this premise, propose a way to explicitly impose smoothness constraints, and extend it to incorporate with implicit model constraints. First, we derive a new function class composed of kernel-convoluted models (KCM) where the smoothness constraint is directly imposed by locally averaging the original functions with a kernel function. Second, we propose to incorporate the Mixup method into KCM to expand the domains of smoothness. In both cases of KCM and the KCM adapted with the Mixup, we provide risk analysis, respectively, under some conditions for kernels. We show that the upper bound of the excess risk is not slower than that of the original function class. The upper bound of the KCM with the Mixup remains dominated by that of the KCM if the perturbation of the Mixup vanishes faster than O(n1/2)O(n^{-1/2}) where nn is a sample size. Using CIFAR-10 and CIFAR-100 datasets, our experiments demonstrate that the KCM with the Mixup outperforms the Mixup method in terms of generalization and robustness to adversarial examples

    On the benefits of defining vicinal distributions in latent space

    Get PDF
    The vicinal risk minimization (VRM) principle is an empirical risk minimization (ERM) variant that replaces Dirac masses with vicinal functions. There is strong numerical and theoretical evidence showing that VRM outperforms ERM in terms of generalization if appropriate vicinal functions are chosen. Mixup Training (MT), a popular choice of vicinal distribution, improves the generalization performance of models by introducing globally linear behavior in between training examples. Apart from generalization, recent works have shown that mixup trained models are relatively robust to input perturbations/corruptions and at the same time are calibrated better than their non-mixup counterparts. In this work, we investigate the benefits of defining these vicinal distributions like mixup in latent space of generative models rather than in input space itself. We propose a new approach - \textit{VarMixup (Variational Mixup)} - to better sample mixup images by using the latent manifold underlying the data. Our empirical studies on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that models trained by performing mixup in the latent manifold learned by VAEs are inherently more robust to various input corruptions/perturbations, are significantly better calibrated, and exhibit more local-linear loss landscapes.Comment: Accepted at Elsevier Pattern Recognition Letters (2021), Best Paper Award at CVPR 2021 Workshop on Adversarial Machine Learning in Real-World Computer Vision (AML-CV), Also accepted at ICLR 2021 Workshops on Robust-Reliable Machine Learning (Oral) and Generalization beyond the training distribution (Abstract

    Smooth image-to-image translations with latent space interpolations

    Full text link
    Multi-domain image-to-image (I2I) translations can transform a source image according to the style of a target domain. One important, desired characteristic of these transformations, is their graduality, which corresponds to a smooth change between the source and the target image when their respective latent-space representations are linearly interpolated. However, state-of-the-art methods usually perform poorly when evaluated using inter-domain interpolations, often producing abrupt changes in the appearance or non-realistic intermediate images. In this paper, we argue that one of the main reasons behind this problem is the lack of sufficient inter-domain training data and we propose two different regularization methods to alleviate this issue: a new shrinkage loss, which compacts the latent space, and a Mixup data-augmentation strategy, which flattens the style representations between domains. We also propose a new metric to quantitatively evaluate the degree of the interpolation smoothness, an aspect which is not sufficiently covered by the existing I2I translation metrics. Using both our proposed metric and standard evaluation protocols, we show that our regularization techniques can improve the state-of-the-art multi-domain I2I translations by a large margin. Our code will be made publicly available upon the acceptance of this article
    corecore