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a b s t r a c t 

The vicinal risk minimization (VRM) principle is an empirical risk minimization (ERM) variant that re- 

places Dirac masses with vicinal functions. There is strong numerical and theoretical evidence showing 

that VRM outperforms ERM in terms of generalization if appropriate vicinal functions are chosen. Mixup 

Training (MT), a popular choice of vicinal distribution, improves generalization performance of models 

by introducing globally linear behavior in between training examples. Apart from generalization, recent 

works have shown that mixup trained models are relatively robust to input perturbations/corruptions and 

at same time are calibrated better than their non-mixup counterparts. In this work, we investigate the 

benefits of defining these vicinal distributions like mixup in latent space of generative models rather than 

in input space itself. We propose a new approach - VarMixup (Variational Mixup) - to better sample mixup 

images by using the latent manifold underlying the data. Our empirical studies on CIFAR-10, CIFAR-100 

and Tiny-ImageNet demonstrates that models trained by performing mixup in the latent manifold learned 

by VAEs are inherently more robust to various input corruptions/perturbations, are significantly better 

calibrated and exhibit more local-linear loss landscapes. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep Neural Networks (DNNs) have become a key ingredient 

o solve many challenging tasks like classification, segmentation, 

bject detection, speech recognition, etc. In most successful appli- 

ations, these networks are trained to minimize the average er- 

or over the training dataset known as the Empirical Risk Mini- 

ization (ERM) principle [34] . However, various empirical and the- 

retical studies have shown that minimizing Empirical Risk over 

raining datasets in over-parameterized settings leads to memo- 

ization and thus poor generalization on examples just outside 

he training distribution. Some classical results in learning theory 

33] tells us that the convergence of ERM is guaranteed as long as 

he size of the learning machine (in terms of number of parame- 

ers or VC-complexity [11] ) does not increase with the number of 

raining data. To mitigate this problem of memorization in over- 

arameterized neural networks, Vicinal Risk Minimization (VRM) 

as proposed which essentially chooses to train networks on simi- 

ar but different exam ples to the training data. This technique more 

opularly known as data augmentation [27] , requires one to define 

 vicinity or neighbourhood around each training example (eg. in 

erms of brightness, contrast, imperceptible noise, to name a few). 
∗ Corresponding author. 
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nce defined, more examples can be sampled from their vicinity 

o enlarge the support of training distribution. 

One of the popular choices to create the vicinal distribution is 

ixup. Mixup Training (MT) [43] has emerged as a popular tech- 

ique to train models for better generalisation in the last couple 

f years. Recent works have also shown that the idea of Mixup 

nd Mixup training can be leveraged during inference [25] and in 

any existing techniques like data augmentation [14] , adversarial 

raining [19] , etc. to improve the robustness of models to various 

nput perturbations [30,39] and corruptions [14] . Another variant 

f Mixup, known as Manifold Mixup [35] encourages neural net- 

orks to predict less confidently on interpolations of hidden rep- 

esentations by leveraging semantic interpolations as an additional 

raining signal. As a result, neural networks trained with Manifold 

ixup learn class representations with fewer directions of vari- 

nce. Other efforts on Mixup [31] have shown that Mixup-trained 

etworks are significantly better calibrated and less prone to over- 

onfident predictions on out-of-distribution than the ones trained 

n the regular fashion. 

Although still in its early phase, the above effort s 

25,31,35,43] also indicate a trend to view Mixup from per- 

pectives of robustness and calibration. In this work, we take 

nother step in this direction and propose a new vicinal distri- 

ution/sampling technique called VarMixup (Variational Mixup) to 

ample better Mixup images during training to induce robustness 

s well as improve predictive uncertainty of models while preserv- 

ng the clean data performance to extent possible. In particular, 
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e hypothesize that the latent unfolded manifold underlying the 

ata (through a generative model, a Variational Autoencoder in 

ur case) is linear by construction (manifolds unfold the locally 

inear structure of a high-dimensional data space), and hence 

ore suitable for the defining vicinal distributions involving linear 

nterpolations, such as Mixup. Importantly, we show that this 

hoice of the distribution for Mixup plays an important role to- 

ards robustness and predictive uncertainty ( Section 3 ). We note 

erein that our downstream task is image classification and the 

AE used in our approach is an auxiliary tool rather than being 

he model to be trained in the first place. 

Our contributions can be summarized as follows: 

• We propose a new sampling technique called VarMixup (Vari- 

ational Mixup) to sample better Mixup images during training 

by using the latent manifold learned by generative models. Our 

experiments on 3 standard datasets- CIFAR-10, CIFAR-100 and 

Tiny-ImageNet show that VarMixup significantly boosts the ro- 

bustness to out-of-distribution shifts as well calibration of neu- 

ral networks as compared to regular mixup or manifold-mixup 

training. 
• We conduct additional analysis/studies which show that 

VarMixup significantly decreases the local linearity error of the 

neural network and generates samples that are slightly off- 

distribution from training examples or mixup generated sam- 

ples, to provide robustness. 

. Background and related work 

.1. Notations and preliminaries 

We denote a neural network as F w 

: R 

c×h ×w → R 

k , with weight

arameters w . F w 

takes an image x ∈ R 

c×h ×w and outputs logits, 

 

i 
w 

(x ) for each class i ∈ { 1 . . . k } . Without loss of generality, we as-

ume the classification task with L as the standard cross-entropy 

oss function. p actual denotes the training data distribution, and 

he optimal weight parameter w 

∗ is obtained by training the net- 

ork using standard empirical risk minimization [34] , i.e. w 

∗ = 

rg min w 

E ( x ,y ) ∼p actual 
[ L (F w 

( x ) , y )] , where y is the true label asso-

iated with input x . 

.2. Vicinal risk minimization 

Given the data distribution p actual , a neural network F w 

and loss 

unction L , the expected risk (average of loss function over p actual ) 

s given by R (F w 

) = 

∫ 
L (F w 

(x ) , y ) · dp actual (x, y ) . In practice, the true

istribution p actual is unknown, and is approximated by the train- 

ng dataset D = { (x i , y i ) } N i =1 
, which represents the empirical distri-

ution : p δ (x, y ) = 

1 
N ·

∑ N 
i =1 δ(x = x i , y = y i ) . Here, δ(x = x i , y = y i ) is

he Dirac delta function centered at (x i , y i ) . Using p δ as an estimate

o p actual , we define expected empirical risk as: 

 δ(F w 

) = 

1 

N 

·
N ∑ 

i =1 

L (F w 

(x i ) , y i ) (1) 

Minimizing Eqn 1 to find optimal F w 

∗ is typically termed Empir- 

cal Risk Minimization (ERM) [34] . However overparametrized neu- 

al networks can suffer from memorizing, leading to undesirable 

ehavior of network outside the training distribution, p δ [30,41] . 

ddressing this concern, [33] and [5] proposed Vicinal Risk Mini- 

ization (VRM) , where p actual is approximated by a vicinal distri- 

ution p v , given by: 

p v (x, y ) = 

1 

N 

·
N ∑ 

i =1 

v (x, y | x i , y i ) (2)

here v is the vicinal distribution that calculates the probability of 

 data point (x, y ) in the vicinity of other samples (x , y ) . Thus,
i i 

383 
sing p v to approximate p actual , expected vicinal risk is given by: 

 v (F w 

) = 

1 

N 

·
N ∑ 

i =1 

g(F w 

, L , x i , y i ) (3) 

here g(F w 

, L , x i , y i ) = 

∫ 
L (F w 

(x ) , y ) · dv (x, y | x i , y i ) . The superiority

f VRM over ERM has been theoretically as well as empirically ver- 

fied by many recent works [4,10,24,42] . 

Popular examples of vicinal distributions include: (i) Gaus- 

ian Vicinal distribution : Here, v gaussian (x, y | x i , y i ) = N (x − x i , σ
2 ) ·

(y = y i ) , which is equivalent to augmenting the training sam- 

les with Gaussian noise; and (ii) Mixup Vicinal distribution 

 Here v mixup (x, y | x i , y i ) = 

1 
n ·

∑ N 
j=1 E λ[ δ(x = λ · x i + (1 − λ) · x j , y =

· y i + (1 − λ) · y j )] , where λ ∼ β(η, η) and η > 0 . 

.3. Mixup 

[43] proposed Mixup, a method to train models on the con- 

ex combination of pairs of examples and their labels. In other 

ords, it constructs virtual training examples as: x ′ = λ · x i + (1 −
) · x j ; y ′ = λ · y i + (1 − λ) · y j , where x i , x j are input vectors; y i ,

 j are one-hot label encodings and λ is a mixup coefficient, usu- 

lly sampled from a β(η, η) distribution. By doing so, it regular- 

zes the network to behave linearly in between training exam- 

les, thus inducing global linearity between them. A recent vari- 

nt, Manifold Mixup [35] , exploits interpolations at hidden repre- 

entations, thereby obtaining neural networks with smoother deci- 

ion boundaries at different levels of hidden representations. Aug- 

ix [14] mixes up multiple augmented images and uses a Jensen- 

hannon Divergence consistency loss on them to achieve better 

obustness to common input corruptions [13] . In semi-supervised 

earning, MixMatch [2] obtains state-of-the-art results by guessing 

ow-entropy labels for data-augmented unlabeled examples and 

ixes labeled and unlabeled data using Mixup. It has been shown 

hat apart from better generalization, Mixup also improves the ro- 

ustness of models to adversarial perturbations as well. To further 

oost this robustness at inference time, Pang et al. [25] recently 

roposed a Mixup Inference technique which performs a mixup of 

nput x with a clean sample x s and passes the corresponding mixup 

ample ( λ · x + (1 − λ) · x s ) into the classifier as the processed in-

ut. 

Other effort s related to Mixup [31] have shown that Mixup- 

rained networks are better calibrated i.e., the predicted softmax 

cores are better indicators of the actual likelihood of a correct 

rediction than DNNs trained in the regular fashion. Addition- 

lly, they also observed that mixup-trained DNNs are less prone 

o over-confident predictions on out-of-distribution and random- 

oise data. None of these efforts however address Mixup from a 

enerative latent space, which is the focus of this work. Efforts 

uch as [25] and [31] , in fact, have inferences that motivate the 

eed to consider a latent Mixup space to address a model’s ro- 

ustness and predictive uncertainty. 

From a different perspective, Xu et al. [37] used domain mixup 

o improve the generalization ability of models in domain adap- 

ation. Adversarial Mixup Resynthesis [1] attempted mixing latent 

odes used by autoencoders through an arbitrary mixing mecha- 

ism that can recombine codes from different inputs to produce 

ovel examples. This work however has a different objective and 

ocuses on generative models in a Generative Adversarial Network 

GAN)-like setting, while our work focuses on robustness and pre- 

ictive uncertainty. The work by Liu et al. [21] may be closest to 

urs in terms of approach as they use an adversarial autoencoder 

AAE) to impose a uniform distribution on the feature represen- 

ations. However, their work deals with improving generalization 

erformance, while ours looks at robustness and predictive uncer- 

ainty, as already stated. Other related works like [22,36,38] at- 

empt to leverage Generative Adversarial Networks (GANs) to train 
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dversarially robust classifiers, while, we focus on VAEs, because of 

heir ability to model the latent manifold explicitly, to train clas- 

ifiers robust to commonly observed out-of-distribution shifts (eg. 

now, fog etc.) (explained in detail in Section 3 ). Furthermore, we 

ropose a new method, VarMixup, which focuses on directly ex- 

loiting the manifold learned by a Variational Autoencoder (VAE) 

and do not regularize it unlike previous work) during Mixup and 

eport improved adversarial robustness. We also present useful in- 

ights into the working of VarMixup (which is lacking in earlier 

ork including [21] ), thus making our contributions unique and 

ore complete. 

. Methodology 

In this work, we build on the recent success of using Mixup 

s a vicinal distribution by proposing the use of the latent spaces 

earned by a generative deep neural network model. The use of 

enerative models such as Variational Autoencoders (VAEs) [17] to 

apture the latent space from which a distribution is generated 

rovides us an unfolded manifold (the low-dimensional latent 

pace), where the linearity in between training examples is more 

eadily observed. Defining vicinal distributions by using neigh- 

ors on this latent manifold, which is more linear in the low- 

imensional space, learned by generative models provides us more 

ffective linear interpolations than the ones in input space. We 

ence leverage such an approach to capture the induced global lin- 

arity in between examples, and define Mixup vicinal distributions 

n this latent surface. 

.1. Our approach: Varmixup (variational mixup) 

To capture the latent manifold of the training data through a 

enerative model, we opt for a Variational Autoencoder (VAE). VAE 

17] is an autoencoder which is trained using Variational Inference, 

hich serves as an implicit regularizer to ensure that the obtained 

atent space allows us to generate new data from the same distri- 

ution as training data. Our rationale behind choosing VAEs over 

ANs to capture latent manifold of training data is that while VAEs 

re known for modeling latent variable models explicitly, GANs are 

mplicit generative models, i.e. while we can generate images from 

atent variables, the reverse operation - getting latent variable sam- 

les corresponding to images - is not explicitly modeled. To obtain 

he latent embedding of an image x , one may have to solve the 

ollowing optimization via backpropogation: 

 

∗ = arg min 

z 
‖ G (z) − x ‖ 2 (4) 

here G is the generator. Clearly, such an optimization causes ad- 

itional overhead in increased time and computation complexity. 

ince we work on defining vicinal distributions in the latent space, 

hoosing VAEs directly allows us to obtain the latent embeddings 

ia one forward pass. 

We denote the encoding and decoding distribution of VAE as 

 φ(z| x ) and p θ (x | z) respectively, parametrized by φ and θ respec-

ively. Given p(z) as the desired prior distribution for encoding, the 

eneral VAE objective is given by the loss function: 

 VAE = −γ · D (q φ(z) ‖ p(z)) + E x ∼p actual 
E z∼q φ (z| x ) [ log (p θ (x | z))] (5)

ere, D is any strict divergence, meaning that D (q ‖ p) ≥ 0 and

 (q ‖ p) = 0 if and only if q = p, and γ > 0 is a scaling coefficient.

he second term in the objective acts as a image reconstruction 

oss and q φ(z) = E x ∼p actual 
[ q φ(z| x )] . The original VAE [17] uses KL-

ivergence in Eqn 5 , and thus optimizes the following objective: 

 VAE = E x ∼p actual 

[
−γ KL (q φ(z| x ) ‖ p(z))] + E z∼q φ (z| x ) log (p θ (x | z)) ]

(6) 
384 
However, using KL-divergence in Eqn 5 has some shortcomings, 

s pointed out in [6,28,29,45] . 

KL-divergence encourages the encoding q φ(z| x ) to be a random 

ample from p(z) for each x , making them uninformative about 

he input. Also, it is not strong enough a regularizer compared 

o the reconstruction loss and tends to overfit data, consequently, 

earning a q φ(z| x ) that has high variance. Both the aforementioned 

hortcomings can affect the encoding distribution by making them 

ninformative of inputs with high variance. Since we use VAEs to 

etter capture a linear latent manifold and subsequently define in- 

erpolations there, a bad latent distribution can affect our method 

ignificantly. Hence, we use a variant Maximum Mean Discrepancy 

AE (MMD-VAE) [45] which uses a MMD Loss [8] instead of KL- 

ivergence, and hence optimizes the following objective: 

 M M D −VAE = γ · M M D (q φ(z) ‖ p(z)) 

+ E x ∼p actual 
E z∼q φ (z| x ) [ log (p θ (x | z))] (7) 

A MMD-VAE doesn’t suffer from the aforementioned shortcom- 

ngs [45] , as it maximizes mutual information between x and z

y matching the distribution over encodings q φ(z) with prior p(z) 

nly in expectation, rather than for every input. We hence train 

n MMD-VAE to characterize the training distribution more effec- 

ively. Once trained, we now define a Mixup vicinal distribution in 

he latent space of the trained VAE as: 

 VarM ixup ( z, y | x i , y i ) = 

1 
n 

· ∑ N 
j=1 E λ

[
δ
(
z = λ · E z 

[
q φ( z| x i ) 

]

+ ( 1 − λ) · E z 

[
q φ

(
z| x j 

)]
, y = λ · y i + ( 1 − λ) · y j 

)] (8) 

here λ ∼ β(η, η) and η > 0 . Using the above vicinal distribu- 

ion, v VarMixup and the MMD-VAE decoder, p θ (x | z) , we construct 

arMixup samples as: 

 

′ = E x [ p θ (x | λ · E z [ q φ(z| x i )] + (1 − λ) · E z [ q φ(z| x j )])] 

 

′ = λ · y i + (1 − λ) · y j 
(9) 

From another perspective, one could view our new sampling 

echnique as performing Manifold Mixup [35] , however over the 

atent space of an MMD-VAE (instead of the neural network fea- 

ure space) and using it for sample reconstruction. We compare 

gainst Manifold Mixup in our results to show the improved per- 

ormance of the learned generative latent space in our VarMixup. 

ig. 1 illustrates the conceptual idea behind VarMixup. The entire 

raining methodology of VarMixup can be summarized in the fol- 

owing steps: 

• Train an MMD-VAE using Eq. 7 . 
• Generate VarMixup samples { (x (i ) , y (i ) ) } according to Eq. 9 . 
• Optimize model on generated VarMixup samples, { (x (i ) , y (i ) ) } 

via standard cross-entropy loss. 

. Experiments and results 

We now present our experimental studies and results using our 

ethod, VarMixup, on multiple datasets. We begin by describing 

he datasets, evaluation criteria and implementation details. Note 

hat we focus explicitly on the usefulness of our approach on out- 

f-distribution test data and addressing predictive uncertainty 

Datasets: We perform experiments on three well-known stan- 

ard datasets: CIFAR-10, CIFAR-100 [18] and Tiny-ImageNet [7] . 

IFAR-10 is a subset of 80 million tiny images dataset and consists 

f 60,0 0 0 32 × 32 color images containing one of 10 object classes, 

ith 60 0 0 images per class. CIFAR-100 is just like CIFAR-10, except 

hat it has 100 classes containing 600 images each. There are 500 

raining images and 100 testing images per class. Tiny-Imagenet has 

00 classes, with each class containing 500 training images, 50 val- 

dation images, and 50 test images. Each image here is of resolu- 

ion 64 × 64 . 
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Fig. 1. Illustration of the conceptual idea behind VarMixup. We interpolate on the unfolded manifold, as defined by a generative model (VAE, in our case). 
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Evaluation Criteria: To measure the generalization of our mod- 

ls on out-of-distribution data, we evaluate their robustness on 

he newer CIFAR-10-C, CIFAR-100-C and Tiny-Imagenet-C datasets 

13] . These datasets contain images, corrupted with 15 different 

istortions at 5 severity levels (Gaussian blur, Shot Noise, Impulse 

oise, JPEG compression, Motion blur, frost, to name a few). For 

ompleteness, we also report accuracy on clean images and stan- 

ard deviations over 10 trials (which captures standard generaliza- 

ion performance). We also measure the Expected Calibration Error 

ECE) [9] of our trained models to quantify their predictive uncer- 

ainty. 

Implementation Details: It has been shown [16] that adver- 

arial robust training [23] removes irrelevant biases (e.g. texture 

iases) in their hidden representations, thus making them more 

nformative. We hence hypothesize that the considered VAE, if 

rained in an adversarially robust fashion, will have more informa- 

ive latent encoding than its regular equivalent. This would hence 

elp improve the empirical/vicinal distributions like VarMixup. 

mpirically, we validate this hypothesis in our subsequent exper- 

ments and use prefix adv- (eg: adv -VarMixup) to distinguish them 

rom their regular variants. We note that the aforementioned ap- 

roach of adversarial robust training [23] is different from ad- 

ersarial training used to train GAN-like architectures, and hence 

oth should not be confused. In other words, the adversarial ro- 

ust training that we are referring to, minimizes adversarial ELBO 

nstead of standard ELBO (7) of an MMD-VAE. Given a dataset 

 = { (x i , y i ) } , we identify adversarial ELBO L 

adv 
M M D −VAE 

as follows: 

 q φ( z ) = E x ∼p actu al 

[
q φ( z| x ) ] = 

1 
| D | 

∑ 

i q φ( z| x i ) 
 MMD −VAE ( x 1 , . . . x i ) = γ · MMD 

(
1 

| D | 
∑ 

i q φ( z| x i ) 
∥∥ p ( z ) 

)

+ 

1 
| D | 

∑ 

i E z∼q φ ( z| x i ) [ log ( p θ ( x i | z ) ) ] 
 

∗
i 

= max 
x i ∈ B ( x i ,ε) 

L MMD −VAE ( x 1 , . . . x i ) 

 

adv 
MMD −VAE ( x 1 , . . . x i ) = γ · MMD 

(
1 

| D | 
∑ 

i q φ
(
z 
∣∣x ∗

i 

) ∥∥ p ( z ) 
)

+ 

1 
| D | 

∑ 

i E z∼q φ( z | x ∗i ) 
[

log 
(

p θ
(

x ∗
i 

∣∣ z 
)) ]

(10) 

We choose Resnet-34 [12] and WideResNet-28-10 [40] (SOTA 

ackbone [23,35,43] ) as the backbone architecture for evaluating 

ur approach and baselines. 
385 
Baseline Models: We compare our method, VarMixup, against 

n exhaustive set of baselines including non-VRM variants, mixup 

ariants and state-of-the-art adversarial techniques. Below are 

heir details: 

1. ERM - Vanilla Empirical Risk Minimization (Eqn 1 ) using Adam 

optimizer ( lr = 1 e − 3 ) for 100 epochs on all datasets. 

2. Mixup - Vanilla Mixup training [43] using Adam optimizer ( lr = 

1 e − 3 ) for 150 epochs on all datasets. Mixup coefficient is sam- 

pled from β(1 , 1) . 

3. Mixup-R - Mixup training on MMD-VAE’s reconstructed image 

space [43] using Adam optimizer ( lr = 1 e − 3 ) for 150 epochs

on all datasets. Mixup coefficient is sampled from β(1 , 1) . 

4. Manifold Mixup - Manifold Mixup training [35] using Adam op- 

timizer ( lr = 1 e − 3 ) for 150 epochs on all datasets. Mixup co-

efficient is sampled from β(2 , 2) . 

5. AT and TRADES - l ∞ 

PGD/TRADES adversarial training 

[23,44] with ε = 8 / 255 and step-size α = 2 / 255 . Models 

are trained using Adam optimizer ( lr = 1 e − 3 ) for 250 epochs

on all datasets. 

6. IAT - l ∞ 

Interpolated adversarial training [19] with ε = 8 / 255 

and step-size α = 2 / 255 . Interpolation coefficient is sampled 

from β(1 , 1) . Models are trained using Adam optimizer ( lr = 

1 e − 3 ) for 350 epochs on all datasets. 

Generalization Performance and Robustness to Out-of- 

istribution shifts 

We first evaluate the trained models on their robustness to 

arious common input corruptions, along with their generaliza- 

ion performance on “clean data” (test data without corruptions). 

endrycks et al [13] recently proposed the CIFAR-10-C, CIFAR-100- 

, and Tiny-Imagenet-C datasets, which are extensions of CIFAR- 

0, CIFAR-100 and Tiny-Imagenet containing images corrupted with 

5 different distortions and 5 levels of severity. We report the 

ean classification accuracy over all distortions on these datasets 

n Table 1 and Table 2 for ResNet-34 [12] and WideResNet-28-10 

40] architectures respectively. The results show that our method - 

arMixup/ adv -VarMixup achieves superior performance by a mar- 

in of ∼ 2 − 10% consistently across the datasets. 
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Table 1 

Robustness to common input corruptions on CIFAR-10-C, CIFAR-100-C and Tiny-Imagenet-C [13] datasets using ResNet- 

34 [12] backbone. Best results in bold and second best underlined . Clean accuracy is reported in parentheses using gray 

colour. 

Method CIFAR-10-C CIFAR-100-C Tiny-Imagenet-C 

AT [23] 73.12 ± 0.31 (85.58 ± 0.14) 45.09 ± 0.31 (60.28 ± 0.13) 15.74 ± 0.36 (22.33 ± 0.16) 

TRADES [23] 75.46 ± 0.21 (88.11 ± 0.43) 45.98 ± 0.41 (63.3 ± 0.32) 16.20 ± 0.23 (26.12 ± 0.38) 

IAT [19] 81.05 ± 0.42 (89.7 ± 0.33) 50.71 ± 0.25 (62.7 ± 0.21) 18.69 ± 0.45 (18.08 ± 0.34) 

ERM 69.29 ± 0.21 (94.5 ± 0.14) 47.3 ± 0.32 (64.5 ± 0.10) 17.34 ± 0.27 (49.96 ± 0.12) 

Mixup 74.74 ± 0.34 (95.5 ± 0.35) 52.13 ± 0.43 (76.8 ± 0.41) 21.55 ± 0.37 (53.83 ± 0.17) 

Mixup-R 74.27 ± 0.22 (89.88 ± 0.11) 43.54 ± 0.15 (62.24 ± 0.21) 21.34 ± 0.32 (53.5 ± 0.28) 

Manifold-Mixup 72.54 ± 0.14 (95.2 ± 0.18) 41.42 ± 0.23 (75.3 ± 0.48) - 

VarMixup 82.57 ± 0.42 (93.91 ± 0.45) 52.57 ± 0.39 (73.2 ± 0.44) 24.87 ± 0.32 (50.98 ± 0.11) 

adv -VarMixup 82.12 ± 0.46 (92.19 ± 0.32) 54.0 ± 0.41 (72.13 ± 0.34) 25.36 ± 0.21 (50.58 ± 0.23) 

Mixup + VarMixup 83.36 ± 0.46 (94.1 ± 0.13) 54.36 ± 0.05 (75.3 ± 0.23) 26.87 ± 0.21 (52.58 ± 0.47) 

Table 2 

Robustness to common input corruptions on CIFAR-10-C and CIFAR-100-C [13] datasets using WideResNet-28-10 

[40] backbone. Best results in bold and second best underlined . Clean accuracy is reported in parentheses using 

gray colour. 

Method CIFAR-10-C CIFAR-100-C 

AT 74.8 ± 0.34 (87.32 ± 0.11) 46.1 ± 0.06 (62.5 ± 0.20) 

TRADES 77.39 ± 0.21 (89.97 ± 0.53) 46.7 ± 0.22 (65.6 ± 0.33) 

IAT 82.25 ± 0.44 (91.3 ± 0.09) 52.3 ± 0.56 (63.67 ± 0.77) 

ERM 72.46 ± 0.12 (96.0 ± 0.43) 46.7 ± 0.22 (77.27 ± 0.39) 

Mixup 75.62 ± 0.16 (97.1 ± 0.51) 52.46 ± 0.11 (80.53 ± 0.37) 

Manifold-Mixup 73.78 ± 0.31 (97.3 ± 0.08) 45.6 ± 0.33 (81.2 ± 0.26) 

VarMixup 84.39 ± 0.22 (95.81 ± 0.13) 53.78 ± 0.42 (77.24 ± 0.56) 

adv -VarMixup 84.7 ± 0.08 (94.2 ± 0.17) 54.72 ± 0.48 (75.97 ± 0.35) 

Mixup + VarMixup 83.92 ± 0.10 (96.78 ± 0.36) 58.22 ± 0.25 (79.3 ± 0.27) 
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We observe a slight drop in the clean accuracy of VarMixup 

odels (shown in parentheses in Table 1 and Table 2 ) which we 

elieve is due to the tradeoff between robustness and clean ac- 

uracy, a common trend observed in robustness literature [32] . 

owever, in an attempt to strike a balance between both (i.e re- 

uce the tradeoff), we conduct an additional experiment where 

e exploit the benefits that Mixup or VarMixup offer individually. 

ore specifically in each training iteration, we randomly choose 

with probability of 0.5) to sample either using Mixup or VarMixup 

istribution. We refer this experiment as Mixup + VarMixup in 

able 1 and Table 2 and observe that it leads to clean test accuracy

omparable to regular Mixup/Manifold-Mixup whilst improving or 

tleast maintaining similar performance on corrupted benchmarks. 

Moreover, we would also like to point out that this trade-off be- 

ween robust and clean accuracies has been a subject of research 

tself, where efforts like [19,20] have proposed methodologies to 

arrow the gap between the two accuracies. In this work, our pri- 

ary goal is to improve the robustness of neural networks while 

reserving performance on clean data to the extent possible. Fur- 

her study on reducing the trade-off between robust-clean accu- 

acy in this setting is left as a direction of future work. 

Calibration: A recent study [31] showed that DNNs trained 

ith Mixup are significantly better calibrated than DNNs trained 

n a regular fashion. Calibration [9] measures how good softmax 

cores are as indicators of the actual likelihood of a correct predic- 

ion. We measure the Expected Calibration Error (ECE) [9,31] of the 

roposed method, following [31] : predictions (total N predictions) 

re grouped into M interval bins ( B m 

) of equal size. The accuracy 

nd confidence of B m 

are defined as: 

cc(B m 

) = 

1 

| B m 

| 
∑ 

i ∈ B m 
1 · ( ̂  y i = y i ) 

nd 

on f (B m 

) = 

1 

| B m 

| 
∑ 

i ∈ B m 
ˆ p i 
386 
here ˆ p i , ˆ y i , y i are the confidence, predicted label and true label 

f sample i respectively. The Expected Calibration Error (ECE) is then 

efined as: 

CE = 

M ∑ 

m =1 

| B m 

| 
N 

· | acc(B m 

) − con f (B m 

) | (11) 

Fig. 2 shows the calibration error on CIFAR-10 and CIFAR- 

00 datasets using Mixup, VarMixup, adv-VarMixup and Mixup + 

arMixup. The figure illustrates that our VarMixup models (and 

heir combinations with regular Mixup) are also better calibrated 

han regular Mixup. 

. Discussion and ablations 

Local linearity on loss landscapes: [26] showed that the lo- 

al linearity of loss landscapes of neural networks is related to 

odel robustness. The more the loss landscapes are linear, the 

ore the adversarial robustness. To further study this observation 

sing our method, we analyze the local linearity of loss landscapes 

f VarMixup and regular mixup trained models. Qin et al. [26] de- 

nes local linearity at a data-point x within a neighbourhood B (ε) 

s γ (ε, x, y ) = 

max 
∈ B (ε) 

|L (F w 

(x + δ) , y ) − L (F w 

(x ) , y ) − δT � x L (F w 

(x ) , y ) | (12)

Fig. 3 shows the average local linear error (over test set) 

ith increasing L ∞ 

max-perturbation ε on CIFAR-10 and CIFAR- 

00 datasets. As noticeable, VarMixup/ adv -VarMixup makes the lo- 

al linear error significantly ( × 2) lesser as compared to regular 

ixup, thus inducing robustness. 

Analyzing VarMixup samples: 

Fig. 5 shows sample data generated by regular Mixup, 

arMixup, and adv -VarMixup on two images. Although mixup or 

arMixup samples look perceptually similar, they are quite differ- 

nt at a statistical level. We measure the Frechet Inception Dis- 

ance (FID) [15] and Kernel Inception Distance [3] between regu- 



P. Mangla, V. Singh, S. Havaldar et al. Pattern Recognition Letters 152 (2021) 382–390 

Fig. 2. Expected Calibration Error (ECE) [9] of ERM, Mixup, VarMixup, adv-VarMixup, Mixup + VarMixup trained models. 

Fig. 3. Local linear error of loss landscapes of the models trained on CIFAR-10/-100 (denoted as C10 and C100). 
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ar training data and training data generated by mixup/VarMixup/ 

dv -VarMixup. These scores summarize how similar the two 

roups are in terms of statistics on computer vision features of the 

aw images calculated using the Inceptionv3 model used for image 

lassification. 

Lower scores indicate the two groups of images are more 

imilar, or have more similar statistics, with a perfect score be- 

ng 0.0 indicating that the two groups of images are identical. 

ig. 4 reports these metrics on CIFAR-10 and CIFAR-100 respec- 

ively. The greater FID and KID scores indicate that we are adding 

ff-manifold samples (w.r.t. the manifold characterized by training 

ata) to the training using our approach. 
387 
Computational Overhead: We compare the computational time 

f our trained models using VarMixup/ adv -VarMixup with com- 

only used adversarial training techniques: AT and TRADES. 

arMixup, adv -VarMixup, AT and TRADES take around 3, 5, 8.8 

nd 15 hours respectively for training. The training time of the 

MD-VAE was also considered here. While already significantly 

aster than AT and TRADES, the proposed method will be more 

calable and time-efficient, if a VAE trained on a dataset such 

s ImageNet can be directly used to generate VarMixup samples 

or other datasets. This is a typical transfer learning setting, and 

e hence study the performance of training VarMixup models on 

IFAR-10 and CIFAR-100 datasets using MMD-VAE trained on the 
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Fig. 4. FID and KID scores between training set and Mixup/VarMixup generated samples on CIFAR-10 and CIFAR-100. 

Fig. 5. Samples generated by mixup, VarMixup and adv -VarMixup on CIFAR-10 (Mixup coefficient λ = 0 . 5 ). 
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iny-Imagenet dataset. Respectively, VarMixup obtained mean cor- 

uption accuracy of 82.0% and 53.25% on CIFAR-10-C and CIFAR- 

00-C benchmarks, thus making our approach time-efficient and 

lso scalable. 

. Conclusions 

In this work, we proposed a Mixup-based vicinal distribution, 

arMixup, which performs linear interpolation on an unfolded la- 
388 
ent manifold where linearity in between training examples is 

ikely to be preserved by construction. We show that VarMixup 

rained models are more robust to common input corruptions, are 

etter calibrated and have significantly lower local-linear loss than 

egular Mixup models. As expected and noted earlier, in some 

laces, we do observe a trade-off between clean and robust accu- 

acy, and leave this as a direction for future works to explore. Ad- 

itionally, our experiments indicate that VarMixup adds more off- 

anifold images to training than regular mixup, which we hypoth- 
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size is a key reason for the observed robustness. Our work high- 

ights the efficacy of defining vicinal distributions by using neigh- 

ors on unfolded latent manifold rather than data manifold and we 

elieve that our work can open a discussion around this notion of 

obustness and choice of vicinal distributions on generative latent 

paces. 
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