8,197 research outputs found

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Designing two-channel causal stable IIR PR filter banks and wavelet bases by model order reduction and constrained optimization

    Get PDF
    In this paper, two methods for designing two-channel causal stable IIR PR filter banks are introduced. The first method makes use of model reduction and constrained optimization to obtain a causal stable IIR filter bank from the structural PR FIR filter bank proposed in [2]. It yields better frequency characteristics than the original FIR filter bank and avoids the dump at π/2 when allpass filters are used. Using the 1-D to 2-D transformation proposed in [2], two dimensional PR IIR filter bank can readily be obtained from these prototypes. The second method is based on constrained optimization technique using the general PR condition. Using this technique, filter banks with low system delay and flexible frequency characteristics can be designed. The technique can also be modified to design causal stable IIR dyadic wavelet bases with added regularity conditions. A number of design examples are used to demonstrate the usefulness of the proposed design methods.published_or_final_versio

    Design of one-dimensional and two-dimensional filters with finite-wordlength coefficients using genetic algorithms.

    Get PDF
    This thesis presents an enhanced version of a Genetic Algorithm to design discrete filter coefficients. This optimization based algorithm has the advantages of eliminating truncation error and quantization process in filter design, and to produce filters which are suitable for high speed signal processing applications. We have examined the usefulness of various error norms, such as Least Mean Square and Minimax, and their impact on the convergence rate and the result. We also present the application of various encoding schemes applied to the filter coefficients and their effect on obtaining optimized filters. Examples of 1-D & 2-D FIR and 2-D IIR filters are provided to illustrate the design procedures and to determine the best Genetic Algorithm combinations for digital filter design. Source: Masters Abstracts International, Volume: 40-03, page: 0756. Adviser: Majid Ahmadi. Thesis (M.Sc.)--University of Windsor (Canada), 2000

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Design of near allpass strictly stable minimal phase real valued rational IIR filters

    Get PDF
    In this brief, a near-allpass strictly stable minimal-phase real-valued rational infinite-impulse response filter is designed so that the maximum absolute phase error is minimized subject to a specification on the maximum absolute allpass error. This problem is actually a minimax nonsmooth optimization problem subject to both linear and quadratic functional inequality constraints. To solve this problem, the nonsmooth cost function is first approximated by a smooth function, and then our previous proposed method is employed for solving the problem. Computer numerical simulation result shows that the designed filter satisfies all functional inequality constraints and achieves a small maximum absolute phase error

    Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks

    Get PDF
    A class of nonrecursive cascaded-lattice structures is derived, for the implementation of finite-impulse response (FIR) digital filters. The building blocks are lossless and the transfer function can be implemented as a sequence of planar rotations. The structures can be used for the synthesis of any scalar FIR transfer function H(z) with no restriction on the location of zeros; at the same time, all the lattice coefficients have magnitude bounded above by unity. The structures have excellent passband sensitivity because of inherent passivity, and are automatically internally scaled, in an L_2 sense. The ideas are also extended for the realization of a bank of MFIR transfer functions as a cascaded lattice. Applications of these structures in subband coding and in multirate signal processing are outlined. Numerical design examples are included
    corecore