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Abstract—In this brief, a near allpass strictly stable minimal 

phase real valued rational IIR filter is designed so that the 
maximum absolute phase error is minimized subject to a 
specification on the maximum absolute allpass error. This 
problem is actually a minimax nonsmooth optimization problem 
subject to both linear and quadratic functional inequality 
constraints. To solve this problem, the nonsmooth cost function is 
first approximated by a smooth function and then our previous 
proposed method is employed for solving the problem. Computer 
numerical simulation result shows that the designed filter 
satisfies all functional inequality constraints and achieves a small 
maximum absolute phase error. 
 

Index Terms—Strictly stable, minimal phase, near allpass, real 
valued rational IIR filters, functional inequality constraints, 
minimax nonsmooth optimization problem. 

I. INTRODUCTION 
LLPASS real valued rational IIR filters are found in many 
signal processing, communications and control 

applications [1]-[12]. On the other hand, real valued rational 
IIR filters with both the strictly stable and the minimal phase 
properties are found in many analog-to-digital conversion 
applications [13]. 

The most common allpass real valued rational IIR filters are 
that with the numerator coefficients being the flip version of 
the denominator coefficients. For those filters, the zeros are 
the complex conjugate reciprocal of the poles. In other words, 
if these filters are strictly stable, then they are not minimal 
phase. 

Since both the strictly stable and the minimal phase 
properties are important for some applications, it would be 
useful to relax the allpass condition to a near allpass condition 
and design a near allpass strictly stable minimal phase real 

valued rational IIR filter so that the maximum absolute phase 
error is minimized subject to a specification on the maximum 
absolute allpass error. However, this design problem is 
actually a nonsmooth optimization problem subject to both 
linear and quadratic functional inequality constraints, which is 
very difficult to solve. This brief is to address this issue.  

 The outline of this brief is as follows. In Section II, 
notations used throughout this brief are introduced. In Section 
III, the design of a near allpass strictly stable minimal phase 
real valued rational IIR filter is formulated as a nonsmooth 
optimization problem. The problem is then approximated by a 
smooth problem so that our previous proposed method can be 
applied for solving the problem. In Section IV, computer 
numerical simulation results are presented. Finally, 
conclusions are drawn in Section V. 

II. NOTATIONS 
Denote the frequency response of a rational IIR filter as 
( )ωH . Denote the order of the numerator transfer function and 

that of the denominator transfer function as M  and , 
respectively. Denote the numerator coefficients as  for 

N
mb

Mm ,,1,0 L=  and the denominator coefficients as  for na
Nn ,,1,0 L= . In this brief, as we only consider real valued 

rational IIR filters, so we assume that ℜ∈mb  for 
Mm ,,1,0 L= , ℜ∈na  for , Nn ,,2,1 L= 10 =a  and 
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ω . A rational IIR filter is said to be achieved 

an allpass characteristic if ( ) 1=ωH  . [ ]ππω ,−∈∀

III. PROBLEM FORMULATION 
As discussed in Section I that for those allpass real valued 

rational IIR filters with the numerator coefficients being the 
flip version of the denominator coefficients, if they are strictly 
stable, then they are not minimal phase. Since stability is a 
very important property because of safety reasons, stability 
has to be guaranteed. For some applications, such as some 
applications in analog-to-digital conversions, minimal phase 
property is also important. For these applications, the allpass 
characteristic is relaxed and a near allpass strictly stable 
minimal phase real valued rational IIR filter is designed. 
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( ) [ ]Tn
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The phase response of the filter is 
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Denote  and a desired phase response as [ TT
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It can be seen from equation (8) that if )( ω,xE
]

 is small 
[ ππω ,−∈∀ , then ( )ωH∠  will be close to ( )ωdH∠  
[ ]ππω ,−∈∀ . Hence, ( )ω,xE  represents the phase error 

between the designed and the desired phase responses. 
Equation (8) can be further rewritten as 
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2
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and 
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Define . If the filter is strictly stable 
[14], then we have  ]

( ) ( )( ) a
Td

ch xηx ωω −−≡ 1,1

( ) 0,1 <ωxh [ ππω ,−∈

]

∀ . Similarly, define 

. If the filter is minimal phase, then we 
have  
( ) ( )( ) b

Tn
ch xηx ωω −≡,2

( ) 0,2 <ωxh [ ππω ,−∈∀ . Denote ε  as the acceptable 
bound on the maximum absolute allpass error, that is 

( ) εω <−12H  [ ]ππω ,−∈∀ . This is equivalent to 
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( ) ( ) ( )( )[ TTd
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, (17) 

( ) ( ) ( )( )[ TTd
c 0ηα ωεω −≡ 122 , (18) 

εβ −−≡ 11  (19) 
and 

εβ −≡12 . (20) 
Then we have ( ) 0,3 <ωxh  and ( ) 0,4 <ωxh  [ ]ππω ,−∈∀ . 
Hence, the design of a near allpass strictly stable minimal 
phase real valued rational IIR filter can be formulated as the 
following optimization problem: 
Problem (I) 

[ ]ππω ,
maxmin
−∈x

 ( )ω,xE , (21a) 

subject to ( ) 0,1 <ωxh  ][ω π π,−∈∀ , (21b) 
 ( ) 0,2 <ωxh  [ ]ππω ,−∈∀ , (21c) 
 ( ) 0,3 <ωxh  ][ω π π,−∈∀  (21d) 

and 
 ( ) 0,4 <ωxh  [ ]ππω ,−∈∀ . (21e) 

It is worth noting that this optimization problem involves a 
minimax nonsmooth cost function as well as both the linear 
and the quadratic functional inequality constraints. Compared 
to the problem discussed in [15], in which it consists of a 
smooth cost function, the method used in [15] cannot be 
applied to solve this optimization problem. To solve this 
optimization problem, ( )ω,xE  is approximated by the 

following function: 
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It can be easily shown that ),( ωδ xE  is both continuous and 
differentiable  and . Also, if 1++ℜ∈∀ NMx ( ππω ,−∈∀ ) 0→δ , 
then ( ) 0,),( →− ωωδ xx EE . Hence, ),( ωδ xE  is a good 

approximation of ( )ω,xE , and Problem (I) can be 

approximated by the following smooth optimization problem: 
Problem (II) 

[ ]ππω ,
maxmin
−∈x

 ( )ωδ ,xE , (23a) 

subject to ( ) 0,1 <ωxh  ][ω π π,−∈∀ , (23b) 
 ( ) 0,2 <ωxh  [ ]ππω ,−∈∀ , (23c) 
 ( ) 0,3 <ωxh  ][ω π π,−∈∀  (23d) 

and 
 ( ) 0,4 <ωxh  [ ]ππω ,−∈∀ . (23e) 

The form of this optimization problem is the same as that in 
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[16], so our previous proposed method in [16] can be applied 
for solving this problem. A brief review of the method in [16] 
is summarized as follows. Problem (II) is equivalent to the 
following problem: 
Problem (III) 

x
min  α , (24a) 

subject to ( ) αωδ ≤,xE , (24b) 
  ( ) 0,1 <ωxh [ ]ππω ,−∈∀ , (24c) 
  ]( ) 0,2 <ωxh [ ππω ,−∈∀ , (24d) 
 ( ) 0,3 <ωxh  [ ]ππω ,−∈∀  (24e) 

and 
 ( ) 0,4 <ωxh  ][ ππω ,−∈∀ . (24f) 
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Then Problem (III) is further equivalent to the following 
optimization problem: 
Problem (IV) 

α
min  . (27) ( αδδ

δδ
,,ˆlimlim
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++ →′→
J )

This problem is a standard smooth optimization problem and 
can be solved via many CAD tools, such as Matlab 
optimization toolbox. 

IV. COMPUTER NUMERICAL SIMULATION RESULTS 
Although there are plenty existing designs on allpass 

strictly stable real valued rational IIR filters, none of them are 
minimal phase. Hence, it is difficult to have a fair 
comparison. As minimal phase real valued FIR filters are a 
particular type of real valued rational filters satisfying both 
the minimal phase and the strictly stable conditions, minimal 
phase real valued FIR filters are compared. For an interesting 
purpose, conventional strictly stable non-minimal phase real 
valued rational allpass IIR filters are also compared. 

Since fractional delay filters are found in many 
applications [7]-[12] including the A/D conversion 
application [17], a fractional delay strictly stable minimal 
phase real valued IIR filter is designed. The phase response 
of the filter is in the form of ( ) ωω mHd =∠  where m  is a 

rational number. In this brief, 
6
1

=m  is chosen. As all 

discrete-time filters are π2  periodic, the frequency response 
of the corresponding ideal fractional delay filter contains a 
discontinuity at the frequencies πω =  and πω −= . Hence, 
the passband of the filter excludes neighborhoods around π  
and π− . Denote the band of interest as [ ]Δ−−Δ= ππ ,tB , 
where  refers to the transition bandwidth. Δ  depends on Δ2
M ,  and N ε . In general, the larger the values of M ,  and N
ε  would result to a smaller value of Δ . However, large 

values of M  and  would increase the computational 
efforts, while too small values of 

N
M ,  and N ε  may not 

result to a solution. To tradeoff among these specifications, 
10=M , 10=N , π05.0=Δ  and 40−=ε dB ( ) are chosen 

because these values are typical in many applications. In 
order to convert the nonsmooth optimization problem to a 
smooth one, the values of 

01.0

δ  and δ ′  play an important role. If 
δ  and δ ′  are large, then the optimization problem is smooth, 
but the difference between the original nonsmooth 
optimization problem and the approximated problem is large. 
On the other hand, if δ  and δ ′  are small, then the difference 
between the original nonsmooth optimization problem and 
the approximated problem is small, but the problem becomes 
less smooth. To tradeoff between these factors,  
are chosen because this value is typical for most applications 
[16]. 

610−=′= δδ

By following the formulation discussed in Section III and 
applying our proposed method discussed in [16] for solving 
the optimization problem, the near allpass strictly stable 
minimal phase real valued rational IIR filter could be 
designed. Since there are 21 coefficients in the designed IIR 
filter, a near allpass minimal phase FIR filter with 21 
coefficients is designed for a comparison. The magnitude and 
the phase responses of the designed IIR filter, the 
conventional strictly stable non-minimal phase real valued 
rational allpass IIR filter and the FIR filter are shown in 
Figure 1a and Figure 1b, respectively. The absolute allpass 
errors and the absolute phase errors of these filters are shown 
in Figure 1c and Figure 1d, respectively. The poles and the 
zeros of the designed IIR filter, the conventional IIR filter 
and the FIR filter are shown in Figure 2a, Figure 2b and 
Figure 2c, respectively. It can be seen from Figure 2a that all 
the poles and the zeros of our designed IIR filter are strictly 
inside the unit circle. Hence, our designed IIR filter satisfies 
both the strictly stable and the minimal phase conditions. On 
the other hand, all the zeros of the conventional IIR filter are 
outside the unit circle. Hence, the conventional IIR filter is 
non-minimal phase. 

Although it can be seen from Figure 2c that all the zeros of 
the FIR filter are strictly inside the unit circle, it can be seen 
from Figure 1c that the maximum absolute allpass error of the 
FIR filter is larger than -40dB. Hence, the FIR filter does not 
satisfy the maximum absolute allpass constraint. On the other 
hand, the maximum absolute allpass error of our designed IIR 
filter is -40.0529dB, in which it satisfies the required 
specification. Although the conventional IIR filter could 
ideally achieve the zero maximum absolute allpass error, the 
maximum absolute phase error of the conventional IIR filter 
is just closed to that of our designed IIR filter, while that of 
FIR filter is unacceptable. 

Although it is hard to guarantee that the obtained solution 
is the global optimal solution, we have run the optimization 
algorithm using 50 different initial conditions and find that 
the solutions corresponding to all these initial conditions are 
the same. Hence, even though the obtained solution is a local 
optimal solution, it corresponds to the optimal solution within 
the most common ranges of filter coefficients. 
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V. CONCLUSIONS 
In this brief, the allpass condition is relaxed to a near 

allpass condition so that a strictly stable minimal phase real 
valued IIR filter is designed. The design problem is actually a 
minimax nonsmooth optimization problem subject to both 
linear and quadratic functional inequality constraints. To solve 
this problem, the nonsmooth cost function is approximated by 
a smooth function and our previous proposed method is 
applied for solving the problem. Computer numerical 
simulation results show that a small maximum absolute phase 
error could be achieved subject to a small maximum absolute 
allpass error. 
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Figure 1. (a) Magnitude response, (b) phase response, (c) allpass error, and (d) 
phase error of the designed near allpass strictly stable minimal phase IIR filter, 
a conventional allpass non-minimal phase IIR filter and a near allpass minimal 

phase FIR filter. 
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Figure 2. Pole zero plot of the designed near allpass strictly stable minimal 

phase IIR filter, a conventional allpass non-minimal phase IIR filter and a near 
allpass minimal phase FIR filter.

 
 

 4


	I. Introduction
	II. Notations
	III. Problem Formulation
	IV. Computer Numerical Simulation Results
	V. Conclusions
	Acknowledgement
	References

