133,625 research outputs found

    Classifying Families of Character Degree Graphs of Solvable Groups

    Get PDF
    We investigate prime character degree graphs of solvable groups. In particular, we consider a family of graphs Γk,t\Gamma_{k,t} constructed by adjoining edges between two complete graphs in a one-to-one fashion. In this paper we determine completely which graphs Γk,t\Gamma_{k,t} occur as the prime character degree graph of a solvable group.Comment: 7 pages, 5 figures, updated version is reorganize

    What is Ramsey-equivalent to a clique?

    Full text link
    A graph G is Ramsey for H if every two-colouring of the edges of G contains a monochromatic copy of H. Two graphs H and H' are Ramsey-equivalent if every graph G is Ramsey for H if and only if it is Ramsey for H'. In this paper, we study the problem of determining which graphs are Ramsey-equivalent to the complete graph K_k. A famous theorem of Nesetril and Rodl implies that any graph H which is Ramsey-equivalent to K_k must contain K_k. We prove that the only connected graph which is Ramsey-equivalent to K_k is itself. This gives a negative answer to the question of Szabo, Zumstein, and Zurcher on whether K_k is Ramsey-equivalent to K_k.K_2, the graph on k+1 vertices consisting of K_k with a pendent edge. In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the smallest minimum degree over all Ramsey minimal graphs for H. The study of s(H) was introduced by Burr, Erdos, and Lovasz, where they show that s(K_k)=(k-1)^2. We prove that s(K_k.K_2)=k-1, and hence K_k and K_k.K_2 are not Ramsey-equivalent. We also address the question of which non-connected graphs are Ramsey-equivalent to K_k. Let f(k,t) be the maximum f such that the graph H=K_k+fK_t, consisting of K_k and f disjoint copies of K_t, is Ramsey-equivalent to K_k. Szabo, Zumstein, and Zurcher gave a lower bound on f(k,t). We prove an upper bound on f(k,t) which is roughly within a factor 2 of the lower bound

    On a theorem of K T Chen

    Get PDF
    Proving normal form of mappings of real line into itself by contracting mapping principl

    Track Layouts of Graphs

    Get PDF
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad
    • …
    corecore