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Abstract. We investigate prime character degree graphs of solvable groups. In particular, we consider

a family of graphs Γk,t constructed by adjoining edges between two complete graphs in a one-to-one

fashion. In this paper we determine completely which graphs Γk,t occur as the prime character degree

graph of a solvable group.

1. Introduction

We note that throughout this paper, G will be a finite solvable group. We denote Irr(G) for the set

of irreducible characters of G, and cd(G) = {χ(1) | χ ∈ Irr(G)}. Write ρ(G) to be the set of primes

that divide degrees in cd(G). When working solely with graphs Γ (and not necessarily degree graphs

of a finite solvable group G), we will also use the notation ρ(Γ) to signify the vertex set. The degree

graph of G, written as ∆(G), is the graph whose vertex set is ρ(G). Two vertices p and q of ρ(G) are

adjacent in ∆(G) if there exists a ∈ cd(G) where pq divides a. We identify each vertex of a graph

with a prime in ρ(G). Throughout this paper, for simplicity, when labeling a vertex we associate that

label also with a prime p ∈ ρ(G). Character degree graphs have been studied in a variety of places;

for example, see [2], [5], [6], [7], [8], and [9]. We expand upon the work done in [1].

Families of graphs have been considered and studied by way of direct products for some time.

However, showing that a family of graphs cannot occur as the prime character degree graph of any

solvable group was done recently in [1]. One of the main tools in that paper was to classify vertices as
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admissible. In particular, it was shown that the graph cannot occur when every vertex is admissible.

Many arguments in this paper rely on this result.

In this paper, we construct a family of a graphs, denoted Γk,t (for natural numbers k ≥ t ≥ 1),

and inquire for which values of k and t does Γk,t occur as the prime character degree graph of some

solvable group. We construct Γk,t by taking two complete graphs (uniquely determined by the number

of vertices, of size k and t, respectively), and we place an edge between the two graphs injectively.

That is, we attach edges uniquely from one complete graph to the other in a one-to-one fashion.

The construction clearly gives a graph that satisfies Pálfy’s condition and is at most diameter two.

However, when determining if the graph can or cannot occur as the prime character degree graph of a

solvable group, many of our arguments rely on facts about graphs that are diameter three. This has

been studied more extensively in [5] and [9], and their techniques and results will play an important

role.

For k ≥ t ≥ 1, we handle the cases separately for t = 1 (Proposition 3.1), t = 2 (Proposition 3.2),

t = 3 (Proposition 3.3), and t ≥ 4 (Proposition 3.4). We can sum up their parts in the result below:

Main Theorem. The graph Γk,t occurs as the prime character degree graph of a solvable group

precisely when t = 1 or k = t = 2. Otherwise Γk,t does not occur as the prime character degree graph

of any solvable group.

2. Preliminaries

Here we present some classic and more recent results that are immediately related to prime character

degree graphs of solvable groups. Our aim is to keep this paper as self-contained as possible, and one

can see [3] or [7] for more reading. Most of the results from this section, however, can be found in [1],

[8], or [9].

Lemma 2.1 (Pálfy’s condition). ([8]) Let G be a solvable group and let π be a set of primes contained

in ∆(G). If |π| = 3, then there exists an irreducible character of G with degree divisible by at least two

primes from π. (In other words, any three vertices of the prime character degree graph of a solvable

group span at least one edge.)

Definition 2.2. ([1]) A vertex p of a graph Γ is admissible if:

(i) the subgraph of Γ obtained by removing p and all edges incident to p does not occur as the prime

character degree graph of any solvable group, and

(ii) none of the subgraphs of Γ obtained by removing one or more of the edges incident to p occur as

the prime character degree graph of any solvable group.

Lemma 2.3. ([1]) If Γ is a graph in which every vertex is admissible, then Γ is not the prime character

degree graph of any solvable group.

Taking direct products is a method to generate graphs from smaller ones. We present the detailed

construction below.
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Definition 2.4. A graph Γ is a direct product if it can be constructed in the following way:

We start with graphs A and B. We have that ρ(Γ) = ρ(A)∪ρ(B), where ρ(A) and ρ(B) are disjoint

sets. There is an edge between vertices p and q in Γ if any of the following are satisfied:

(i) p, q ∈ ρ(A) and there is an edge between p and q in A,

(ii) p, q ∈ ρ(B) and there is an edge between p and q in B, or

(iii) p ∈ ρ(A) and q ∈ ρ(B).

Lemma 2.5. Complete graphs occur as ∆(G) for some solvable group G.

The following two results are due to Lewis. They will aid in constructions throughout this paper.

Lemma 2.6. ([7]) For every positive integer N , there is a solvable group G so that ∆(G) has two

complete, connected components: one having an isolated vertex, and the other having N vertices.

Lemma 2.7. ([5]) Let G be a solvable group and let p ∈ ρ(G). If P is a normal Sylow p-subgroup of

G, then ρ(G/P ′) = ρ(G) \ {p}.

The above Lemma 2.7 implies the subgraph ∆(G/P ′) is a subgraph of ∆(G) without the vertex p,

all edges incident to p, and possibly without edges between vertices adjacent to p.

The following was presented in [9]. Suppose Γ is a graph of diameter three. We can partition ρ(Γ)

into four nonempty disjoint sets: ρ(Γ) = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4. One can do this in the following way: find

vertices p and q where the distance between them is three. Let ρ4 be the set of all vertices that are

distance three from the vertex p, which will include the vertex q. Let ρ3 be the set of all vertices that

are distance two from the vertex p. Let ρ2 be the set of all vertices that are adjacent to the vertex p

and some vertex in ρ3. Finally, let ρ1 consist of p and all vertices adjacent to p that are not adjacent to

anything in ρ3. This notation is not unique, and depends on the vertices p and q. Using this notation,

we have the following result.

Proposition 2.8. ([9]) Let G be a solvable group where ∆(G) has diameter three. One then has the

following:

(i) |ρ3| ≥ 3,

(ii) |ρ1 ∪ ρ2| ≤ |ρ3 ∪ ρ4|,
(iii) if |ρ1 ∪ ρ2| = n, then |ρ3 ∪ ρ4| ≥ 2n, and

(iv) G has a normal Sylow p-subgroup for exactly one prime p ∈ ρ3.

Next we state the main theorem from [1]. It gives rise to two families of graphs that satisfy Pálfy’s

condition. We will concern ourselves with one of them, which is our motivation of this paper.

Theorem 2.9. ([1]) Let Γ be a graph satisfying Pálfy’s condition with k ≥ 5 vertices. Assume that

there exists two vertices p1 and p2 in Γ such that

(i) both p1 and p2 are of degree two,

(ii) p1 is adjacent to p2, and
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(iii) p1 and p2 share no common neighbor.

Then Γ is not the prime character degree graph of any solvable group.

3. Main Results

Similar to a direct product, here we construct the graph Γk,t. This will yield a family of graphs

that we investigate and classify in our Main Theorem. We say that a graph Γ is in the family Γk,t if

it can be constructed in the following way:

We start with complete graphs A and B. Let A have k vertices (arbitrarily labeled a1, a2, . . . , ak),

and let B have t vertices (arbitrarily labeled b1, b2, . . . , bt). Without loss of generality, we fix k ≥ t.

Letting Γk,t := Γ, we have that ρ(Γk,t) = ρ(A)∪ρ(B), where ρ(A) and ρ(B) are disjoint sets. There

is an edge between vertices p and q in Γk,t if any of the following are satisfied:

(i) p, q ∈ ρ(A),

(ii) p, q ∈ ρ(B), or

(iii) p = ai ∈ ρ(A) and q = bi ∈ ρ(B) for some 1 ≤ i ≤ t.

Notice how this construction generates a graph that satisfies Pálfy’s condition and is at most

diameter two. We now proceed towards proving the propositions needed for the Main Theorem.

Proposition 3.1. Let k ≥ 1. The graph Γk,1 occurs as ∆(G) for some solvable group G.

Proof. Observe that Γ1,1 occurs by Lemma 2.5. For k ≥ 2, we consider the following: let A be a graph

consisting of two complete, connected components: one having an isolated singleton, and the other

having k − 1 vertices. Let B be a singleton. Notice that A occurs as ∆(GA) for some solvable group

GA by Lemma 2.6, and B occurs as ∆(GB) for some solvable group GB by Lemma 2.5. Therefore,

the direct product of A and B occurs as ∆(G) for some solvable group G. Finally, observe that Γk,1

is precisely the direct product of A and B. □

..•. •.. •. •. •...

•

.

•

.

•

.

•

.....

•

.

•

.

•

.

•

.

•

.......

Figure 1. Graphs in Proposition 3.1

It was shown in [2] that Γ2,2, represented in Figure 2, occurs as ∆(G) for some solvable group G.

It is in fact a direct product. The rest of the cases for t = 2 can be extrapolated from Theorem 2.9.
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Figure 2. The graph Γ2,2

Proposition 3.2. ([1]) Let k ≥ 3. The graph Γk,2 is not the prime character degree graph of any

solvable group.

Proof. Observe that Theorem 2.9 yields two families, one of which is Γk,2. □
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Figure 3. Graphs in Proposition 3.2

Proposition 3.3. Let k ≥ 3. The graph Γk,3 is not the prime character degree graph of any solvable

group.

Proof. We proceed by induction on k. As our base case, we will show that Γ3,3 does not occur as the

prime character degree graph of any solvable group. We label the vertices ai and bi for 1 ≤ i ≤ 3,

where the a’s and b’s each form a complete graph, with edges between ai and bi. For the sake of

contradiction, suppose that the solvable group G is a counterexample with |G| minimal such that

∆(G) = Γ3,3.

We will show that a1 is admissible. Removing the edge between a1 and ai (with 1 ≤ i ≤ 3 and

i ̸= 1) violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ 3, j ̸= 1, and j ̸= i. Removing the

edge between a1 and b1 reduces to a graph of diameter three. This graph cannot occur since |ρ3| = 2,

which contradicts Proposition 2.8(i). Removing the vertex a1 with all incident edges yields the graph

Γ3,2, which does not occur by Proposition 3.2. Thus, a1 is admissible. By symmetry, we note that

every remaining vertex is also admissible. Hence, Γ3,3 cannot occur by Lemma 2.3.
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Next we consider k ≥ 4. As the inductive hypothesis, we suppose that Γk−1,3 does not occur as the

prime character degree graph of any solvable group. We now proceed to the inductive step. In order

to see that Γk,3 also does not occur as the prime character degree graph of any solvable group, one

again shows that every vertex is admissible. We start by labeling the vertices ai and bj for 1 ≤ i ≤ k

and 1 ≤ j ≤ 3, where the a’s and b’s each form a complete graph, with edges between aj and bj . For

the sake of contradiction, suppose that the solvable group G is a counterexample with |G| minimal

such that ∆(G) = Γk,3.

First we consider the vertex a1. Removing a1 and all incident edges yields a graph of diameter

three such that |ρ3| = 2, which contradicts Proposition 2.8(i). Removing the edge between a1 and

ai, where 2 ≤ i ≤ k, violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ 3, j ̸= 1, and

j ̸= i. Removing the edge between a1 and b1 again gives a graph of diameter three, which once again

contradicts Proposition 2.8(i). Thus, a1 is admissible, and by symmetry so too are a2 and a3.

Next we consider the vertex ak. Removing ak and all incident edges yields the graph Γk−1,3, which

we are assuming does not occur as the prime character degree graph of any solvable group by our

inductive hypothesis. Removing the edge between ak and ai for 1 ≤ i ≤ k − 1 again violates Pálfy’s

condition with ak, ai, and bj , where 1 ≤ j ≤ 3 and j ̸= i. Thus, ak is admissible. By symmetry, we

also get that ai is admissible for 4 ≤ i ≤ k − 1.

Finally we consider the vertex b1. Removing b1 and all incident edges gives us the graph Γk,2,

which does not occur as the prime character degree graph of any solvable group by way of Proposition

3.2. Removing the edge between b1 and bj for 2 ≤ j ≤ 3 violates Pálfy’s condition with b1, bj , and

ak. Removing the edge between b1 and a1 was already considered above and shown to result in a

graph which cannot occur. Thus, b1 is admissible, and by symmetry we now have that b2 and b3 are

admissible as well.

Since all vertices are admissible, we then invoke Lemma 2.3 to get our desired result. □
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Figure 4. Graphs in Proposition 3.3
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Proposition 3.4. Let k ≥ t ≥ 4. The graph Γk,t is not the prime character degree graph of any

solvable group.

Proof. We proceed by induction on both k and t. For our base case, we will show that Γk,4 does not

occur as the prime character degree graph of any solvable group. To do this, one must first consider

Γ4,4 and then induct on k. To see that Γ4,4 does not occur, we start by labeling the vertices ai and bi

for 1 ≤ i ≤ 4, where the a’s and b’s each form a complete graph, with edges between ai and bi. For

the sake of contradiction, suppose that the solvable group G is a counterexample with |G| minimal

such that ∆(G) = Γ4,4.

We will show that a1 is admissible. Removing the edge between a1 and ai (with 1 ≤ i ≤ 4 and

i ̸= 1) violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ 4, j ̸= 1, and j ̸= i. Removing

the edge between between a1 and b1 yields a graph of diameter three. Notice that |ρ1 ∪ ρ2| = 4 and

|ρ3 ∪ ρ4| = 4, which contradicts Proposition 2.8(iii). Removing the vertex a1 and all incident edges

yields the graph Γ4,3, which does not occur by Proposition 3.3. Thus a1 is admissible. By symmetry,

notice that every remaining vertex is also admissible. Hence Γ4,4 cannot occur by Lemma 2.3.

Next we consider k ≥ 5. As the inductive hypothesis, we assume that Γk−1,4 does not occur as the

prime character degree graph of any solvable group. To see that Γk,4 does not occur as the prime

character degree graph of any solvable group, we start by labeling the vertices ai and bj for 1 ≤ i ≤ k

and 1 ≤ j ≤ 4, where the a’s and b’s each form a complete graph, with edges between aj and bj . For

the sake of contradiction, suppose that the solvable group G is a counterexample with |G| minimal

such that ∆(G) = Γk,4.

First we show that a1 is admissible. Removing the edge between a1 and ai (where 1 ≤ i ≤ k and

i ̸= 1) violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ 4, j ̸= 1, and j ̸= i. Removing the

edge between a1 and b1 yields a graph of diameter three (which we denote by ∆(H) for some solvable

group H). Notice that Proposition 2.8(ii) forces ρ3 = {a2, a3, a4}, and by Proposition 2.8(iv), we

know that H has a normal Sylow p-subgroup for exactly one prime p ∈ ρ3. Without loss of generality,

let p = a2, and call the normal subgroup P . By Lemma 2.7, we know that ρ(H/P ′) = ρ(H) \ {p}.
Observe that ∆(H/P ′) is a connected subgraph obtained from ∆(H) by removing the vertex a2 and

all incident edges, and possibly edges between vertices adjacent to a2. However, in ∆(H/P ′), we

have that |ρ3| = 2, which contradicts Proposition 2.8(i). Thus the edge between a1 and b1 cannot be

lost. Removing the vertex a1 and all incident edges yields a graph of diameter three. By following

an argument similar to the above, we can again get that |ρ3| = 2, which cannot happen. Thus a1 is

admissible. By symmetry, a2, a3, and a4 are admissible as well.

Following similar arguments, one can show that bj is admissible for 1 ≤ j ≤ 4 (relying on Γk,3 from

Proposition 3.3), as well as ai for 5 ≤ i ≤ k (relying on Γk−1,4 from the above inductive hypothesis).

Thus, all vertices are admissible, and we get our result from Lemma 2.3.

Finally, for k ≥ t ≥ 5, we verify that Γk,t does not occur. The inductive hypothesis requires that

Γk,t−1 does not occur as the prime character degree graph of any solvable group. We then need to
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show Γk,t does not occur, which requires induction. First we will verify that Γt,t does not occur; we

will follow a similar argument as above, mimicking the proof for Γ4,4. Label the vertices ai and bi for

1 ≤ i ≤ t, where the a’s and b’s each form a complete graph, with edges between ai and bi. For the

sake of contradiction, suppose that the solvable group G is a counterexample with |G| minimal such

that ∆(G) = Γt,t.

We start by considering the vertex a1. Removing the edge between a1 and ai (with 1 ≤ i ≤ t and

i ̸= 1) violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ t, j ̸= 1, and j ̸= i. Removing

the edge between between a1 and b1 yields a graph of diameter three. Notice that |ρ1 ∪ ρ2| = t and

|ρ3 ∪ ρ4| = t, which contradicts Proposition 2.8(iii). Removing the vertex a1 and all incident edges

yields the graph Γt,t−1, which does not occur by the inductive hypothesis. Thus a1 is admissible. By

symmetry, notice that every remaining vertex is also admissible. Hence Γt,t cannot occur by Lemma

2.3.

Then we suppose that for k > t ≥ 5, we have that Γk−1,t does not occur as the prime character

degree graph of any solvable group. Showing Γk,t does not occur employs the same argument as

for Γk,4, using Proposition 2.8(iv) and Lemma 2.7 multiple times before getting a contradiction with

Proposition 2.8(i). To start, we label the vertices ai and bj for 1 ≤ i ≤ k and 1 ≤ j ≤ t, where the

a’s and b’s each form a complete graph, with edges between aj and bj . For the sake of contradiction,

suppose that the solvable group G is a counterexample with |G| minimal such that ∆(G) = Γk,t.

We show that a1 is admissible. Removing the edge between a1 and ai (where 1 ≤ i ≤ k and

i ̸= 1) violates Pálfy’s condition with a1, ai, and bj , where 1 ≤ j ≤ t, j ̸= 1, and j ̸= i. Removing

the edge between a1 and b1 yields a graph of diameter three (which we denote by ∆(H) for some

solvable group H). Notice that Proposition 2.8(ii) forces ρ3 = {a2, a3, . . . , at}, and by Proposition

2.8(iv), we know that H has a normal Sylow p1-subgroup for exactly one prime p1 ∈ ρ3. Without

loss of generality, let p1 = a2, and call the normal subgroup P1. By Lemma 2.7, we know that

ρ(H/P ′
1) = ρ(H) \ {p1}. Observe that ∆(H/P ′

1) is a connected subgraph obtained from ∆(H) by

removing the vertex a2 and all incident edges, and possibly edges between vertices adjacent to a2.

However, notice that ∆(H/P ′
1) is also of diameter three. For this graph, Proposition 2.8(ii) forces

ρ3 = {a3, . . . , at}, and by Proposition 2.8(iv) we know that H/P ′
1 has a normal Sylow p2-subgroup

for exactly one prime p2 ∈ ρ3. Without loss of generality, let p2 = a3, and call the normal subgroup

P2. Observe one can show that P1P2 = P1 × P2 is normal in H. Notice this implies that P2 is also a

normal Sylow p-subgroup of H, where p ∈ ρ3. This contradicts Proposition 2.8(iv), since we now have

two such subgroups: P1 and P2. Finally, removing the vertex a1 and all incident edges yields a graph

of diameter three. By following an argument similar to the above, we can again get that |ρ3| = 2,

which cannot happen. Thus a1 is admissible. By symmetry, aj is admissible for all 1 ≤ j ≤ t.

One can show that bj is admissible, which relies on the graph Γk,t−1 from the inductive hypothesis.

Furthermore, showing ai is admissible (t+1 ≤ i ≤ k) relies on the graph Γk−1,t, which we are supposing

does not occur. Since all vertices are admissible, our result follows by way of Lemma 2.3. □
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Figure 5. Graphs in Proposition 3.4

As consequence of Propositions 3.1, 3.2, 3.3, and 3.4, our Main Theorem is proved. We state it

again below:

Theorem 3.5. The graph Γk,t occurs as the prime character degree graph of a solvable group precisely

when t = 1 or k = t = 2. Otherwise Γk,t does not occur as the prime character degree graph of any

solvable group.

Corollary 3.6. Let k ≥ t ≥ 2. No connected proper subgraph of Γk,t with the same vertex set is the

prime character degree graph of any solvable group.

The case for the disconnected subgraph can also be considered. The group structure of two con-

nected components is fully outlined in [4].
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