11 research outputs found

    On threshold models over finite networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-110).We study a model for cascade effects over finite networks based on a deterministic binary linear threshold model. Our starting point is a networked coordination game where each agent's payoff is the sum of the payoffs coming from pairwise interaction with each of the neighbors. We first establish that the best response dynamics in this networked game is equivalent to the linear threshold dynamics with heterogeneous thresholds over the agents. While the previous literature has studied such linear threshold models under the assumption that each agent may change actions at most once, a study of best response dynamics in such networked games necessitates an analysis that allows for multiple switches in actions. In this thesis, we develop such an analysis and construct a combinatorial framework to understand the behavior of the model. To this end, we establish that the agents behavior cycles among different actions in the limit and provide three sets of results. We first characterize the limiting behavioral properties of the dynamics. We determine the length of the limit cycles and reveal bounds on the time steps required to reach such cycles for different network structures. We then study the complexity of decision/counting problems that arise within the context. Specifically, we consider the tractability of counting the number of limit cycles and fixed-points, and deciding the reachability of action profiles. We finally propose a measure of network resilience that captures the nature of the involved dynamics. We prove bounds and investigate the resilience of different network structures under this measure.by Elie M. Adam.S.M

    Learning algorithms with applications to robot navigation and protein folding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 109-117).by Mona Singh.Ph.D

    Noise tolerant algorithms for learning and searching

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 109-112).by Javed Alexander Aslam.Ph.D

    The complexity of joint computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 253-266).Joint computation is the ubiquitous scenario in which a computer is presented with not one, but many computational tasks to perform. A fundamental question arises: when can we cleverly combine computations, to perform them with greater efficiency or reliability than by tackling them separately? This thesis investigates the power and, especially, the limits of efficient joint computation, in several computational models: query algorithms, circuits, and Turing machines. We significantly improve and extend past results on limits to efficient joint computation for multiple independent tasks; identify barriers to progress towards better circuit lower bounds for multiple-output operators; and begin an original line of inquiry into the complexity of joint computation. In more detail, we make contributions in the following areas: Improved direct product theorems for randomized query complexity: The "direct product problem" seeks to understand how the difficulty of computing a function on each of k independent inputs scales with k. We prove the following direct product theorem (DPT) for query complexity: if every T-query algorithm has success probability at most 1-[epsilon] in computing the Boolean function f on input distribution [mu], then for [alpha] 0, the worst-case success probability of any [alpha]R₂(f)k-query randomized algorithm for f k falls exponentially with k. The best previous statement of this type, due to Klauck, Spalek, and de Wolf, required a query bound of O(bs(f)k). Our proof technique involves defining and analyzing a collection of martingales associated with an algorithm attempting to solve f*k. Our method is quite general and yields a new XOR lemma and threshold DPT for the query model, as well as DPTs for the query complexity of learning tasks, search problems, and tasks involving interaction with dynamic entities. We also give a version of our DPT in which decision tree size is the resource of interest. Joint complexity in the Decision Tree Model: We study the diversity of possible behaviors of the joint computational complexity of a collection f1,... , fk of Boolean functions over a shared input. We focus on the deterministic decision tree model, with depth as the complexity measure; in this model, we prove a result to the effect that the "obvious" constraints on joint computational complexity are essentially the only ones. The proof uses an intriguing new type of cryptographic data structure called a "mystery bin," which we construct using a polynomial separation between deterministic and unambiguous query complexity shown by Savický. We also pose a conjecture in the communication model which, if proved, would extend our result to that model. Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators: We study the circuit complexity of Boolean operators, i.e., collections of Boolean functions defined over a common input. Our focus is the well-studied model in which arbitrary Boolean functions are allowed as gates, and in which a circuit's complexity is measured by its depth and number of wires. We show sharp limitations of several existing lower-bound methods for this model. First, we study an information-theoretic lower-bound method due to Cherukhin, which gave the first improvement over the lower bounds provided by the well-known superconcentrator technique for constant depths. (The lower bounds are still barelysuperlinear, however) Cherukhin's method was formalized by Jukna as a general lower-bound criterion for Boolean operators, the "Strong Multiscale Entropy" (SME) property. It seemed plausible that this property could imply significantly better lower bounds by an improved analysis. However, we show that this is not the case, by exhibiting an explicit operator with the SME property that is computable in constant depths whose wire-complexity essentially matches the Cherukhin-Jukna lower bound (to within a constant multiplicative factor, for depths d = 2,3 and for even depths d >/= 6). Next, we show limitations of two simpler lower-bound criteria given by Jukna: the "entropy method" for general operators, and the "pairwise-distance method" for linear operators. We show that neither method gives super-linear lower bounds for depth 3. In the process, we obtain the first known polynomial separation between the depth-2 and depth-3 wire complexities for an explicit operator. We also continue the study (initiated by Jukna) of the complexity of "representing" a linear operator by bounded-depth circuits, a weaker notion than computing the operator. New limits to classical and quantum instance compression: Given an instance of a decision problem that is too difficult to solve outright, we may aim for the more limited goal of compressing that instance into a smaller, equivalent instance of the same or a different problem. As a representative problem, say we are given Boolean formulas [psi]1,... ,[psi]t, each of length n << t, and we want to determine if at least one [psi]j is satisfiable. Can we efficiently reduce this "OR-SAT" question to an equivalent problem instance (of SAT or another problem) of size poly(n), independent of t? We call any such reduction a "strong compression" reduction for OR-SAT. This would amount to a major gain from compressing [psi]1,. .. , [psi]t jointly, since we know of no way to reliably compress an individual SAT instance. Harnik and Naor (FOCS '06/SICOMP '10) and Bodlaender, Downey, Fellows, and Hermelin (ICALP '08/JCSS '09) showed that the infeasibility of strong compression for OR-SAT would also imply limits to instance compression schemes for a large number of other, natural problems; this is significant because instance compression is a central technique in the design of so-called fixed-parameter tractable algorithms. Bodlaender et al. also showed that the infeasibility of strong compression for the analogous "AND-SAT" problem would establish limits to instance compression for another family of problems. Fortnow and Santhanam (STOC '08) showed that deterministic (or 1-sided error randomized) strong compression for OR-SAT is not possible unless NP C coNP/poly; the case of AND-SAT remained mysterious. We give new and improved evidence against strong compression schemes for both OR-SAT and AND-SAT; our method applies to probabilistic compression schemes with 2-sided error. We also give versions of these results for an analogous task of quantum instance compression, in which a polynomial-time quantum reduction must output a quantum state that, in an appropriate sense, "preserves the answer" to the input instance. We give quantitatively similar evidence against strong compression for AND- and OR-SAT in this setting, albeit under less well-studied hypotheses about the relationship between NP and quantum complexity classes. To prove all of these results, we exploit the information bottleneck of an instance compression scheme, using a new method to "disguise" information being fed into a compressive mapping.by Andrew Donald Drucker.Ph.D

    Combined optimization algorithms applied to pattern classification

    Get PDF
    Accurate classification by minimizing the error on test samples is the main goal in pattern classification. Combinatorial optimization is a well-known method for solving minimization problems, however, only a few examples of classifiers axe described in the literature where combinatorial optimization is used in pattern classification. Recently, there has been a growing interest in combining classifiers and improving the consensus of results for a greater accuracy. In the light of the "No Ree Lunch Theorems", we analyse the combination of simulated annealing, a powerful combinatorial optimization method that produces high quality results, with the classical perceptron algorithm. This combination is called LSA machine. Our analysis aims at finding paradigms for problem-dependent parameter settings that ensure high classifica, tion results. Our computational experiments on a large number of benchmark problems lead to results that either outperform or axe at least competitive to results published in the literature. Apart from paxameter settings, our analysis focuses on a difficult problem in computation theory, namely the network complexity problem. The depth vs size problem of neural networks is one of the hardest problems in theoretical computing, with very little progress over the past decades. In order to investigate this problem, we introduce a new recursive learning method for training hidden layers in constant depth circuits. Our findings make contributions to a) the field of Machine Learning, as the proposed method is applicable in training feedforward neural networks, and to b) the field of circuit complexity by proposing an upper bound for the number of hidden units sufficient to achieve a high classification rate. One of the major findings of our research is that the size of the network can be bounded by the input size of the problem and an approximate upper bound of 8 + √2n/n threshold gates as being sufficient for a small error rate, where n := log/SL and SL is the training set
    corecore