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Abstract

We study a model for cascade effects over finite networks based on a deterministic
binary linear threshold model. Our starting point is a networked coordination game
where each agent's payoff is the sum of the payoffs coming from pairwise interaction
with each of the neighbors. We first establish that the best response dynamics in this
networked game is equivalent to the linear threshold dynamics with heterogeneous
thresholds over the agents. While the previous literature has studied such linear
threshold models under the assumption that each agent may change actions at most
once, a study of best response dynamics in such networked games necessitates an

analysis that allows for multiple switches in actions. In this thesis, we develop such
an analysis and construct a combinatorial framework to understand the behavior of

the model. To this end, we establish that the agents behavior cycles among different
actions in the limit and provide three sets of results.

We first characterize the limiting behavioral properties of the dynamics. We de-
termine the length of the limit cycles and reveal bounds on the time steps required
to reach such cycles for different network structures. We then study the complexity
of decision/counting problems that arise within the context. Specifically, we consider
the tractability of counting the number of limit cycles and fixed-points, and deciding
the reachability of action profiles. We finally propose a measure of network resilience
that captures the nature of the involved dynamics. We prove bounds and investigate
the resilience of different network structures under this measure.
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Chapter 1

Introduction

1.1 Cascade Effects in Networks

Networks intertwine with every aspect of our modern lives, be it through sharing

ideas, communicating information, shaping opinions, performing transactions or de-

livering utilities. Explicitly, we may cite social networks, financial networks, economic

networks, communication networks and power networks. Isolation among entities in

many such aggregate systems is being dissolved; more and more links are being estab-

lished for either mutual or global welfare. However, those interdependencies lay down

pathways for various local fluctuations to ripple through. For instance, the reper-

cussion of a firm's collapse echoes among its suppliers, potentially inducing them to

also fail if the shocks are to be vigorous enough. If that should happen, it would, in

turn, cripple the pool of rivals sharing those same suppliers, and would furthermore

'back-propagate' along the supply chain, eventually crumbling down a whole sector.

Similarly, the breakdown of a vital component in a power-grid system (or communi-

cation network) might incur enough strain on other components to have them sink,

generating an avalanche of successive breakdowns leading to a well-spread outage.

We also observe such typical behavior in social settings, such instances hold in adop-

tion of new trends. A new idea sprouts with a small group of early adopters, and

is passed on progressively to others by many different means. If conditions happen

to be favorable, the idea does not die out but rather builds up enough inertia to
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flood the whole social network. In the case of infectious diseases, it is quite urgent to

contain the propagation, to attempt to limit the contagion process before the disease

becomes untameable and takes hold of a favorable portion of the network. Gaining

understanding and maneuverability over such processes cannot prove to be but useful,

not to mention interesting mathematically in its own right. We need insight and tools

to engineer such problems, to construct more resilient networks, mitigate losses and

achieve higher efficiency.

1.2 Threshold Models

Interactions over many different types of networks require agents to coordinate with

their neighbors. In economic networks, technologies that conform to the standards

used by other related firms are more productive; in social networks, conformity to the

behavior of friends is valuable for a variety of reasons. The desire for such coordina-

tion can lead to cascading behavior: the adoption decision of some agents can spread

to their neighbors and from there to the rest of the network. One of the most com-

monly used models of such cascading behavior is the linear threshold model originally

introduced by Granovetter [1]. This model is used to explain a variety of aggregate

level behaviors including diffusion of innovation, voting, propagation of rumors and

diseases, spread of riots and strikes, and dynamics of opinions.

Most analyses of this model in the literature assume that one of the behaviors

adopted by the agents (represented by the nodes of a graph) is irreversible, meaning

that agents can only make a single switch into this behavior and can never switch

out from it. However, incurring this progressive property in behavior dilutes several

perspectives of the dynamics: whereas some situations are best captured by such

a variant, many others cannot be captured but by allowing players to revert back

to previous actions. A main motivation for example would be opinion dynamics in

social network: in most situations a player changes opinions back and forth. This

said, the literature lacks a satisfactory characterization of the limiting properties of

such a model.
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In this thesis, we consider a model of cascade effects based on binary linear thresh-

old dynamics over finite graphs. We start from an explicit coordination game set over

a finite undirected network. The payoff of each agent is the sum of the payoff in a

two player and two action coordination game the agent plays pairwise with each of

the neighbors (the action is fixed across all interactions). We then study the behavior

induced by best response dynamics, whereby each agent changes the played action to

that which yields highest payoff given the actions of the neighbors. We first show that

best response dynamics are identical to the dynamics traced by the linear threshold

model with heterogeneous thresholds for the agents. However, crucially, actions can

change multiple times. Thus, the dynamics of interest for the set of problems posed

here cannot be studied using existing results and in fact have a different mathematical

structure. The main contribution of this thesis is to fully characterize these dynamics.

Of central importance in the study of cascades over networks is the resilience of

networks to invasion by certain types of behavior (e.g., cascades of failures or spread

of epidemics). For the new dynamics defined by our problem, we define a measure

of resilience of a network to such invasion that captures the heterogeneity in the

thresholds of the agents. We prove both upper and lower bounds on the resilience

measure, and provide insight on how different network structures affect this measure.

1.3 On Related Literature

The thesis is related to a large literature on network dynamics and linear threshold

models (see e.g., [2]-[8]). A number of papers in this literature investigate the question

of whether a behavior initially adopted by a subset of agents (i.e., the seed set) will

spread to a large portion of the network, focusing on the dynamics where agents

can make a single switch to one of the behaviors. Morris [2], while starting from a

multi-switch version of the dynamics, studied without loss of generality the single-

switch version to answer whether there exists a finite set of initial adopters (in an

infinite network with homogeneous thresholds) such that the behavior diffuses to

the entire network. In [6], Watts derives conditions for the behavior to spread to a
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positive fraction of the network (represented by a random graph with given degree

distribution) using a branching process analysis. Similarly, Lelarge [7] provides an

explicit characterization of the expected fraction of the agents that adopt the behavior

in the limit over such networks.

The work [4] studies the linear threshold model over deterministic graphs. Given

an initial seed set of adopter, it characterizes the final set of adopter in terms of

cohesive sets where cohesion in social groups is measured by comparing the relative

frequency of ties among group members to ties with non-members. The work in

[51 studies (e.g. in the context of viral marketing) how to target a fixed number of

agents (and change their behavior) in order to maximize the spread of the behavior

in the network in the (time) limit. Formally, it studies the (optimization) problem of

maximizing the final set of adopter, under the constraint of picking K initial adopters.

It considers various models of cascade, shows that the optimization problem is NP-

hard for the linear threshold model,and then provides an algorithm to find a (1-1/e)-

approximation for the optimal set that achieves maximum influence.

In the context of network resilience, the recent paper [8] adopts single-switch linear

threshold dynamics as a model of failures in a network. This work defines a measure

of network resilience that is a function of the graph topology and the distribution

over thresholds and studies this measure for different network structures focusing on

d-regular graphs (hence ignoring the effect of the degree distribution of a graph on

cascaded failures). Here we provide a novel resilience measure that highlights the

impact of heterogeneity in thresholds and degrees of different agents.

Finally, noisy versions of best-response dynamics in networked coordination games

were studied in [9] and [10] (see also [11] and [12] in the statistical mechanics litera-

ture). The random dynamics in these models can be represented in terms of Markov

chains with absorbing states, and therefore do not exhibit the cyclic behavior pre-

dicted by the multi-switch linear threshold model studied in this thesis.
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1.4 Outline and Overview of Contribution

To conclude this chapter, we outline the structure of the thesis and highlight the main

results and contribution.

Chapter 2 presents a formal description of the model dynamics as a networked

coordination game. We establish that the best-response dynamics along the game are

equivalent to the dynamics of a linear threshold model with heterogeneous thresholds

distributed over the agents and equal weights on all edges in the graph. We then

propose an extension for the model by allowing non-equal weights on the edges, and

finally allow self-loops generalizing the graph structure from simple graphs to multi-

graphs. Results throughout this thesis will be first established for the primary model,

and then generalized to the extension models whenever possible.

The work proceeds in Chapter 3 to describe the dynamics broadly. We establish

that for any network structure, after some finite time step, the agents deterministi-

cally cycle among action profiles (we refer to such cycles as convergence cycles). We

begin by presenting some global properties of the model, then proceed to characterize

limiting properties in the three chapters to follow. We first determine the length of

the convergence cycles, we then study the convergence time, i.e., the minimal number

of time steps needed to reach a convergence cycle, and finally study the number of

cycles and fixed points.

In Chapter 4, we characterize the length of the convergence cycles. Ultimately,

we show that for any graph structure on the players, any threshold distribution over

the players and any initial action configuration played by the players, the limiting

behavior of the dynamics get absorbed into action configuration cycles of length at

most two. In other words, at the limit every agent either plays one action, never

deviating, or keeps on switching actions at every time step. We take care to build up

the intuition of the reader by considering specialized instances: we characterize the
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length of convergence cycles for cycle graphs, complete graphs and trees by exploiting

the graph structure. Along the way, we slowly construct the combinatorial framework

that is to be used throughout the thesis on general graphs, and emphasize the proper-

ties of the constructs to ensure a thorough understanding. We generalize the results

to general graphs, extend the results to the case allowing non-equal weights on edges

and finally show that the same result holds for multigraphs.

In Chapter 5, we characterize the convergence time. Building up on the frame-

work set up in Chapter 4, we show that for some positive integer m, given any graph

structure on the players, any threshold distribution over the players and any initial

action configuration, the dynamics reach a non-degenerate cycle or a fixed-point in

at most mn 2 time steps where n is the number of players. We mention however that

similar results on cycle length and quadratic convergence time for linear threshold

models (termed differently, e.g. boolean threshold networks) have appeared in the

Cellular Automata literature in [13]. Nevertheless, we prove our results from a differ-

ent approach; we put particular emphasis on the combinatorial aspect of the problem.

We furthermore improve the convergence time bound from quadratic to be uniformly

not more than the size of the network whenever the graph in concern is either a cycle

graph, a complete graph or a tree. We finally discuss improving convergence time

bounds for the general graph.

Chapter 6 studies the complexity of counting and decision problems that arise

in this model. We are interested in characterizing the number of limiting states the

system could get absorbed in. We begin by arguing that no 'insightful' uniform

upper-bound or lower-bound can be established. Considering only the case of a cycle

graph, the number of fixed-points may vary at least from 2 to 2n/3 depending on the

threshold distribution. Instead, we turn to study how tractable it is to count the

convergence cycles. We start by an overview of complexity theory, and then proceed

to show that:

. Given a graph structure on the player and a threshold distribution over the

16



players as input, the problem of counting the number of limiting configuration

classes (i.e. either fixed-points or non-degenerate cycles) is #P-Complete.

" Given a graph structure on the player and a threshold distribution over the

players as input, the problem of counting the number of fixed-points is #P-

Complete.

* Given a graph structure on the player and a threshold distribution over the

players as input, the problem of counting the number of non-degenerate cycles

is #P-Complete.

We additionally show that all those counting problems remain #P-Complete even

when we restrict the counting to bipartite graphs and homogeneous thresholds. How-

ever, restriction to specific graph structures yield counting problems in the complexity

class FP: we consider complete graphs as an explicit example. We further consider

the problem of deciding whether an action configuration over the network is reachable

along the dynamics. To this end, we show that:

" Given a graph structure on the player, a threshold distribution over the players

and some action configuration played by the players, the problem of deciding

whether that action configuration is reachable is NP-Complete.

" Given a graph structure on the player, a threshold distribution over the players

and some reachable action configuration played by the players, the problem of

counting the number of action configuration preceding that reachable action

configuration is #P-Complete.

In Chapter 7, we put our model within a context of network resilience. We de-

fine a resilience metric as a function of the graph structure that captures the minimal

'cost of recovery' needed when the model is confronted with a perturbation in the

agents' action profile. We prove achievable uniform lower-bounds and upper-bounds

on the measure. We compute the resilience measure of some network structures, and

end with a discussion.
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We conclude the thesis with Chapter 8.
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Chapter 2

Our Model

The model chapter consists of three parts. The first sets up a networked coordination

game, it properly defines the interaction among players in the network and char-

acterizes the best-response dynamics in this game. The second proposes a natural

extension to the model: it imposes non-equal weights on the pairwise interactions

among the players. The third allows players to give weights to their own actions,

thus generalizing simple graph structures to multigraph structures.

2.1 The Primary Model

We define a networked coordination game. For a positive integer n, we denote by

1, the set of n players'. For technical convenience, we assume that I, c Im for

n < m.2 We define g, to be the class of all connected undirected graphs G(I, E)

defined over the vertex set In, with edge set E.3 To be proper, E is a relation 4 on

In, but for convenience we will consider the set E to have cardinality exactly equal

'We use the words player, agent, node and vertex interchangeably.
2We use the letters i and j to denote agents. We reserve the letter n for the number of players

in the game. If it is clear from the context to which set X an element x belongs to, we refrain from
mentioning the set X explicitly to simplify notation. Moreover, for any function f with domain -En,
we will denote f(i) by fi. In particular, for functions q, k and a with domain I., q(i), k(i) and a(i)

are denoted qj, ki and a, respectively.
3For a graph G, we denote by V(G) and E(G) the vertex set and edge set respectively.
4 A (binary) relation R on a set A is a subset of AxA. We use the notation aRb to denote

(a, b) c R.

19



to the number of undirected edges. We denote an undirected edge in E by {i, j}, and

we abbreviate it to ij when no confusion arises. For G(In, E) in g, we use NG(i)
to denote the neighborhood of player i in G, i.e. Ac(i) = {j C : ij c E}. We

denote by dG(i) the degree of player i in G, namely the cardinality of NVG(i). We

refer to AG(i) and dG(i) respectively as i and di when the underlying graph is clear

from the context. We finally define Q,, to be the space of type distributions over the

agents, namely the set of maps from I, into [0, 1].

Let {B, W} be a (binary) set of actions, where the symbols B and W may be

identified with the colors black and white, respectively. Given a graph G(I,, E) in g
and a type distribution q in Q, each player i in I, plays one action a, in {B, W}.

For ij c E, we define the payoff received by agent i when playing ai against agent j

playing aj to be

qj if ai = aj = W

gij (ai, a) = 1 - qj if ai =a = . (2.1)

0 if a aj

The utility player i gets is the sum of the payoffs from the pairwise interactions

with the players in Mi. Formally, when player j plays action aj, we have:

ui(ai, a_j) = gi, (ai, aj), (2.2)

where a_, denotes the action profile of all players except i.

We define A, be the space of action 5 profiles 6 played by the agents, namely the

set of maps from I, into {B, W}. The players are assigned an initial action profile

a, we refer to a as the action profile of the players at time step 0. For T in N,7

every player best responds to the action profile of the players at time step T - 1, by

choosing the action that maximizes his utility. We suppose that players play action

W as a tie breaking rule. Formally we impose a strict order on {W, B} such that

min{W, B} = W. Suppose we denote by aiT the action played by player i at time T,

5We use the words action, assignment and color interchangeably.
6 We use the words profile and configuration interchangeably.
7 We denote by N the set of non-negative integers, and by Z+ the set of positive integers.
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then given an initial action configuration a in An, for every player i, we recursively

define

ai,T= min argmax ui(ai, a-i,T_1),
ai {WI}

for T E Z+. (2.3)

where the min operator breaks ties. The recursive definition in (2.3) is equivalent to

the following proposition.

Proposition 2.1.1. Let a be the initial action configuration, namely the action profile

of the players at time step 0. For every positive integer T, player i plays action B

at time step T if and only if more than qidi neighbors of player i played action B at

time step T - 1.

Proof. We substitute ui in (2.3) with the expressions in (2.1) and (2.2), and get that

player i plays action B at time T if and only if

Z (1 - qj)1{1B}(a,T_1) > Z qil{w}(aj,_1),

where 1r(x) = 1 if and only if x E F. Equivalently, player i plays action B at time T

if and only if

E
The left-side term is essentially summing the number of neighbors of player i playing

action B. 7

As a technical clarification, we highlight the fact that every player is capable of

switching actions both from W to B and B to W.

2.2 An Extension: Dynamics with Weighted Edges

Our primary model is such that every player treats the payoffs from the pairwise

interactions with equal weights. This corresponds on the part of player i to an

21
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unweighted counting of the number of neighbors playing B at time T - 1 to decide

whether to play E at T or not. Our model can take a more general form by allowing

symmetric positive weights on the payoffs. Let G(In, E) be given, suppose we assign

for every ij in E, a positive weight wig = wi. Given a q in Q, we extend the utility

player i gets to be the weighted sum of the payoffs from the pairwise interactions with

the players in A§, namely when player j plays action aj,

ui (ai, a_w) = wijgi, (ai, aj), (2.4)

Again, we denote by aj,T the action played by player i at time T. If we let a be

the initial action configuration, namely aj,0 = a, then for every positive integer T,

player i plays action ajT = B at time step T if and only if

S wijl{Ij(aj,T_1) > O6,

where we define 0, = qi EjeN wi2 . The primary model described in the previous

section is then an instance of this model where wij = wji = 1 for all edges ij in E.

This model translates to allowing multiple edges among nodes in the primary model.

2.3 An Extension: Dynamics over Multigraphs

In both the primary model and its weighted-edge extension, a node does not take into

consideration the action it played at time step T - 1 when playing an action at time

step T. We may go around this issue by allowing the node to play a coordination game

with itself. This translates to allowing weighted self loops in the network structure.

Combining both weights on the self loops and on the edge leads to a graph structure

that is not necessarily a simple graph but rather a multigraph.

Definition 2.3.1. A multigraph is a pair of a set V and a multiset8 E having a subset

8 The notion of a multiset generalizes the notion of a set by allowing elements to appear multiple
times. Formally, a multiset is a set S along with a map m from S into Z+, where for each s in S,
the positive integer m(s) denotes the multiplicity of s. We shall refer to S as the base set.
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of V x V as a base set. The set V is called the vertex set; the set E is called the edge

set.

The decision rule extends naturally from the previous models by letting each

node suppose itself as a neighbor with a symmetrically weighted edge. We refrain

from explicitly writing the update rule.

The Course of the Thesis will proceed as follows. Much emphasis will be given to

extracting dynamical properties of the primary model described in Section 2.1. Those

properties will be furthermore generalized to the model in Section 2.2 and Section

2.3. A general description of the dynamics and a general overview of the results is

provided in the next chapter. The resilience context will be considered in the Chapter

8. We will prove bounds on the measure, and investigate different network structures

with respect to that measure.
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Chapter 3

Description of the Dynamics

We begin with a coarse description of the involved dynamics. However, we only

focus on the primary model. The dynamics in the extension models may be trivially

generalized from the propositions in this chapter. To sum up the model, we consider

a finite set of players -In along with three mathematical objects go, Q, and An. An

element G(In, E) of g; corresponds to the network structure imposed on the players,

an element q of Q, refers to the type distribution over the players, and an element a

of An consists an action profile played by the players. The triplet G, q and a interact

as dictated by Proposition 2.1.1.

3.1 From Types to Thresholds

Proposition 2.1.1 infers that playing B is never a best response for player i if no player

in Ni is playing B. We will generalize our model to provide symmetry between both

actions B and W. We do this for two reasons. The first is to consider the linear

threshold model as considered in the literature. The second is a technical reason,

mainly to ensure closure of the set 0, x Q, under certain operations. Nevertheless,

any result for the generalized version of the model is inherited by the initial version

trivially by inclusion.

We substitute the set Qn by a set KI and then modify the statement of Proposition

2.1.1. We define K, to be the space of threshold distributions over the agents, namely
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the set of maps from I4 into N. We make a particular distinction between the word

type attributed to Q, and the word threshold attributed to KC. Given a pair (G, k)

with k C C, we generalize Proposition 2.1.1 as follows:

Proposition 3.1.1. Let a be the initial action configuration, namely the action profile

of the players at time step 0. For every positive integer T, player i plays action B

at time step T if and only if at least ki neighbors of player i played action B at time

step T - 1.

The rule in Proposition 3.1.1 supersets the rule in Proposition 2.1.1. Indeed, for

every q in Q, there exists a k in Kn such that qidi may be substituted with the integer

ki for all i without changing the behavior of the players. It is also crucial to note that

at most is replaced by at least.

Having made the transition from types to thresholds, we distinguish the nodes

having thresholds at the boundaries as follows:

Definition 3.1.2. Given a pair (G, k) in Gx Kn, player i in I, is called non-valid

with respect to (G, k) (or simply non-valid) if ki is either equal to 0 or greater than

di. A player is called valid if it is not non-valid.

A non-valid node is then allowed to play only one of the actions in {W, B} (de-

pending on its threshold) whenever it is allowed to decide on the action to play.

Finally, for G(In, E) in gn and k in 1C, we denote by Gk the map from A,

into An such that for player i, (Gka) = B if and only if at least ki players are

in a-(B) n Nf. 1 From this perspective, given an initial configuration a in An, the

sequence a, Gka, Gka,..- corresponds to the sequence of action profiles a, ai, a2, ...

where aT = G'a is the action profile played by the players at time T if they act in

accordance with the rule in Proposition 3.1.1.

'Let f : A - B and g : B -+ C be functions, we denote by gf the function g o f : A -+ C. In
particular, if a function f maps a set A to itself, for a non-negative integer m, we denote by fm the
function fofm"-1 where f 0 is the identity map on A.
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3.2 The Limiting Behavior

To understand the limiting behavior, we note two fundamental properties: the space

An has finite cardinality, and Proposition 3.1.1 is deterministic. Since A, is finite, if

we let ao, ai, a2, - be any infinite sequence of action profiles played by the agents

according to Proposition 3.1.1, then there exists at least one action profile & that will

appear infinitely many times along this sequence. This follows from the pigeon-hole

principle. Since the dynamics are deterministic, the same sequence of action profiles

appears between any two consecutive occurrences of e. This means that after a finite

time step, the sequence of action profiles will cycle among action profiles.

Let us consider a different representation of the dynamics. Given a pair (G, k) in

gx IC, we define a (binary) relation - on An such that for a and b in An, a - b

if and only if b = Gka. Consider the graph H(As, -), it forms a directed graph

(possibly with self loops) on the vertex set taken to be the space of action profiles

An, and an action profile a is connected to an action profile b by a directed edge (a, b)

going from a to b if and only if b = Gka. Suppose we pick a vertex a, namely an

action configuration, and perform a walk on vertices along the edges in H starting

from a. The walk eventually cycles vertices in the same order. Every initial action

profile leads to one cycle, and two action profiles need not lead to the same cycle. We

formalize the idea in the following definitions.

Definition 3.2.1. Given (G, k) in gn x Kn, for two action profiles a and b in An, it

is said that a can be reached from b with respect to Gk if there exists a non-negative

integer T such that a = Gib. Formally, we define the relation RGk on An such that

for a and b in An, aRGkb if and only if there exists a non-negative integer T such

that a = Gi b.

For a and b in An, we have aRGb if and only if there exists a directed path in

H(An, -) from vertex b to vertex a. The idea to emphasize is that H is not necessarily

weakly-connected.2 If we construct a relation CGk on An such that for a and b in An,
2A directed graph G is said to be weakly-connected if for any vertices u and v in the vertex set

of G, there exists an undirected path connecting u to v. A weakly-connected component of G is a
maximal subgraph of G that is weakly-connected.
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aCGk b if and only if aRG b or bRGk a, then CG, is an equivalence relation on An. In

this setting, two configurations in An are in the same equivalence class with respect

to the relation CG, if and only if they are in the same weakly-connected component

in H. In this case, every weakly-connected component of H contains exactly one

directed cycle. We characterize the set of cycles as.follows:

Definition 3.2.2. Given a pair (G, k) in 9, Kn, we define CYCLEn (G, k) to be

the collection of subsets of An, such that for every C in CYCLEn(G, k), if a and b

are in C then we have both aRGkb and blZGka, and for every c in An\C, there does

not exist an action configuration a in C such that aRGC. We refer to the elements

of CYCLEn(G, k) as convergence cycles.

The condition "aRGkb and bR7G, a" can be concisely replaced by "aRG b", however

we keep it as such to stress on the fact that both a can be reached from b and b can

be reached from a. The second condition ensures that C is in CYCLEn(G, k) only if

there exists no larger cycle C' containing C.

Cycles in CYCLEn(G, k) consisting of only one action configuration are fixed-

points of Gk and so will be referred to as fixed-points. Cycles in CYCLEn(G, k)

consisting of more than one action configuration will be referred to as non-degenerate

cycles (as opposed to fixed-points which are degenerate cycles).

We begin by stating some basic properties of the dynamics. First, we define two

partial-order relations namely B-inclusion (c1) and W-inclusion (Cw) on An.

Definition 3.2.3. For a and b in An, we have a c1 b if and only if a-1 (B) C b-1(B).

Similarly, we have a Cw b if and only if a-1 (W) C b-1 (W).

From the definition, we have that a cB b if and only if b Cw a. Building on the

definition, the dynamics involved are monotonic in the following sense:

Property 3.2.4 (Monotonicity). For every pair (G, k) in gn X C, and every a and

b in An, if a CB b then Gka cR Gkb.
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Proof. For a and b in An, if a CB b then for each i in I1, we have a- 1(B) n N c

b- (B) nN. To finish off the proof, we invoke the decision rule under Gk. Specifically,

(Gka)i = B if and only if la1 (B) n Nel > ki, and therefore (Gka)i = B only if

b- 1(B) n N l > ki, which in turn is equivalent to (Gkb)i = H.

As a follow-up, we can derive sufficient conditions for the sequence a, Gka, G'a,---

to be eventually constant i.e. sufficient conditions to attain a fixed-point of Gk when

applying Gk iteratively on a finitely many times.

Proposition 3.2.5. For every pair (G, k) in !n X Cn and every a in An, if either

a CH Gka or a Cw Gka then there exists an action configuration c in An such that

Gma = c for all m greater or equal to some non-negative integer M.

Proof. We consider the case where a CB Gka, the other case may be derived by

symmetry. If a CH Gka then a cI Gka cB G2a CI Gia CIB ... by monotonicity.

Clearly, if G'a = Gp+la for some non-negative integer M, then Ga = G1i+na for

all non-negative integers m, since Gp±m = GkG+ m . Finally, by the pigeonhole

principle and monotonicity, there exists a non-negative integer M such that G'a

Gau+1a. E

Nevertheless, this condition is not a necessary condition. We provide a simple ex-

ample to illustrate that fact. We consider the 2-regular connected graph R in g3 and

define k to be equal to 1 over all players in 13. We pick a player i in In and consider

an action configuration a in A3 to be equal to B on i and equal to W everywhere else.

It then follows that Gka and a are not comparable with respect to B-inclusion (and

hence also W-inclusion). Indeed, (Gka)i = W and (Gka)j = B for j in Ai. However,

G'a is equal to B over I, and G'a = G2+ma for every non-negative integer m.

Finally, we present a rather natural statement that will be extensively used in

inductive arguments. Although the statement is simple, we take effort to state it

carefully to invoke it, whenever needed, without having to take care of any minor

technicalities involved. In addition, the insight behind the statement is crucial enough
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to be stated outside a proof. We first give a simplistic non-formal version of it: given

a triplet (G, k, a) in 9, x KC x An, let us consider the sequence a, Gka, Gka2 , .. . If

some player never changes action along this sequence, then we may delete the player

from the graph and modify the thresholds of the neighboring players in such a way

that the effect of the action played by the player is 'seen' by the neighbors. We do

so by keeping the thresholds of the neighbors unchanged if that action is W, and by

decreasing the thresholds by 1 if that action is B. In this case, we would obtain a

different triplet (G', k', a') where all the players in V(G') play the exact actions as in

the sequence a, Gka, Gka 2, . . .

We initially present the statement assuming the graph is 2-connected (for sim-

plicity) while omitting the proof. We then follow it with a generalized statement

relaxing the 2-connectedness assumption, and provide a proof there instead.

Proposition 3.2.6. Let (G, k) be a pair in gnX kn where G is 2-connected, and let

a be an action configuration in An. If there exists a player i and an action c, such

that (Gma)i = c for all non-negative integers m, we let G' be the induced subgraph

of G over I\{i}, 5 define a' to be the action configuration a restricted to the players

in In\{i}, and define k' to be the map from In\{i} into N such that k' = k on

In\(i U {i}), k' k on NV if c=W and k = (k -1)V 0 on N, if C = B.6 Then,

(Gma) = (G'ma')j,

for all non-negative integers m and all players j in In\{i}.

We have only defined our dynamics over connected connected graphs, and so the

2-connectedness assumption is only needed to ensure that the graph is connected

when deleting a vertex. The assumption may be relaxed by restricting the analysis

3A connected graph is said to be 2-connected if the graph remains connected when one vertex of
the graph is removed.

4Let G be a graph, an induced subgraph over U c V(G) is the graph defined over the vertex set
U with edge set E consisting of the edges in E(G) having both endpoints in U.

5Let X be a set. For A and B subsets of X, we denote by A\B the subset of X containing
elements in A that are not in B.

6 For xi and x 2 in a strictly ordered set, we denote max{x1, x 2} and min{x1, x 2} by x1 V x2 and
x1 A x 2 respectively.
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in the statement to only a connected component of the induced subgraph.

Proposition 3.2.7. Let (G, k) be a pair in gx KC, and let a be an action configu-

ration in An. If there exists a player i and an action c, such that (Gma)i = c for all

non-negative integers m, we let H be the induced subgraph of G over I\{i}. Suppose

G' is a connected component of H with vertex set J, define a' to be the action con-

figuration a restricted to the players in J, and define k' to be the map from J into

N such that k' = k on J\i, k' = k on Mi n j if c = W and k' = (k - 1) V 0 on

Ai n j if c = B. Then,

(G'a)j =(G'a')j,

for all non-negative integers m and all players j in J.

Proof. It would be enough to show that the local decision rules of the players in

§n i does not change, i.e. for j in J n Ai, we have:

(Gka)j = (G',a')j.

Let j be a player in j n Ai, then (Gka)j = B if and only if at least kj nodes in

Nj play B in a, or equivalently at least k' nodes in A§\{i} play B in a', since k'

takes into account the action of player i. But the last statement is equivalent to

(G' a')j = B. E]

Note: Non-valid nodes may be created during this deletion process, even when

starting with only valid nodes. From this perspective, the class of elements (G, k) in

g, x A3n such that all nodes are valid with respect to (G, k) is not closed under this

deletion operation. Care should be taken when performing proofs by induction based

on node deletion.

We proceed to provide a broad overview of all the main general results, while

omitting the proofs. We elaborate on each result along with refinements in subsequent

chapter. We restrict the result to those regarding the behavior of the dynamics. We

do not mention any resilience measure or bounds thereof, we do so in Chapter 8.
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3.3 On Convergence: an Overview

Given the limiting cyclic behavior, the most natural starting point should characterize

the length of the cycles in the equivalence classes as a function of the imposed graph

structure and the threshold distribution.

Theorem 3.3.1. For every positive integer n, every (G, k) in gn x Kn and every cycle

C in CYCLEn(G, k), the cardinality of C is less than or equal to 2.

Put differently, given a network structure G, a threshold distribution k and an

initial action profile a, if we iteratively apply Gk on a ad infinitum to get a sequence

of best response action profiles, along the sequence of actions considered by player i,

player i will eventually either settle on playing one action, or switch action on every

new application of Gk. We further show that this theorem also holds for multigraphs

as network structures (see Sections 2.2 and 2.3).

Definition 3.3.2. For every positive integer n, and every (G, k, a) in !n x K, x An,

we define 6,,(G, k, a) to be equal to the smallest non-negative integer T such that there

exists a cycle C in CYCLEn(G, k) and b in C with G'a = b.

The quantity 6,(G, k, a) denotes to the minimal number of iterations needed until

a given action configuration a reaches a cycle, when iteratively applying Gk. We refer

to 6n(G, k, a) as the convergence time from a under Gk.

Theorem 3.3.3. For some positive integer m, every positive integer n, and every

(G, k, a) in gnX knx A, the convergence time 6n(G, k, a) is less than or equal to

2mn2

We mention that similar results on convergence cycles and quadratic convergence

time have appeared in the literature on cellular automata [13]. Nevertheless, the proof

approach is different: we focus throughout the thesis on building a combinatorial

framework for the analysis. Moreover, we improve the results on convergence time

and get a bound that is linear in the size of the network when the graphs are restricted

to being cycle graphs, complete graphs or trees.
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Theorem 3.3.4. For all positive integers n, and every (G, k, a) in gn x K xAn where

G is a cycle graph, a complete graph or a tree, the convergence time 6,(G, k, a) is less

than or equal to n.

We further discuss improving convergence time bounds on general graphs.

We proceed to present an overview of results on decision and counting problem

that arise within this framework.

3.4 On Complexity: an Overview

A next natural step is to quantify the number of limiting configurations. We char-

acterize the number of equivalence classes, fixed points and cycles of length two

(referred to as non-degenerate cycles). We refrain from defining complexity classes

in this section, instead we refer the reader to Chapter 6 where we provide a short

overview of Complexity Theory. We consider the counting problem #CYCLE that

takes < n, G, k > as input, where n is a positive integer and (G, k) belongs to g x K,,

and outputs the cardinality of CYCLE,(G, k).

Theorem 3.4.1. #CYCLE is #P-Complete.

One has to be subtle towards what such result entails. This result does not imply

that no characterization of the number of cycles is possible whatsoever, but rather

that we would be unable to get an arbitrarily refined characterization of that number.

We consider the counting problem #FIX that takes < n, G, k > as input, where

n is a positive integer and (G, k) belongs to g, x KC, and outputs the cardinality of

{C E CYCLE,(G, k) :C =1}.

Theorem 3.4.2. #FIX is #P-Complete.

We consider the counting problem #2CYCLE that takes < n, G, k > as input,

where n is a positive integer and (G, k) belongs to g, x K, and outputs the cardinality

of {C e CYCLE,(G, k): |C| = 2}.
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Theorem 3.4.3. #2CYCLE is #P-Complete.

We further show that those counting problems remain hard even if we restrict the

graphs to be bipartite and impose homogeneous thresholds on the players.

A question of interest is to decide whether given a graph structure G, a type

distribution k and some action configuration a, the action configuration a is reachable

from some configuration b. We define the language PRED to consist of all 4-tuples

< n, G, k, a >, where n is a positive integer, (G, k, a) belongs to g x K/ x An with

Gk(a) 1# 0.

Theorem 3.4.4. PRED is NP-Complete.

Given a graph structure G, a type distribution k and a configuration a, suppose

we want to compute the number of configurations b from which a can be reached

by applying Gk only once on b. We define the counting problem #PRED takes

< n, G, k, a > as input, where n is a positive integer and (G, k, a) and outputs the

cardinality of G--1(a). As a corollary from the hardness of PRED, we get:

Corollary 3.4.5. #PRED is #P-Complete.

However, suppose that we restrict the counting to only the action configurations

that are reachable from some action configuration. Specifically, we restrict the count-

ing to only the elements in PRED. From this perspective, we are computing the

'fan-in' of a given action configuration.

If we define the counting problem #reachable-PRED to take < n, G, k, a > as

input, where n is a positive integer, (G, k, a) and Gk(a)- -' 0 and output the cardi-

nality of Gk7'(a). We get the following result:

Theorem 3.4.6. #reachable-PRED is #P-Complete.

The results are derived from thresholds in K, instead of types of Qn. However,

the results trivially extend to types as follows: Convergence results hold by inclusion;
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complexity results hold since they still hold if we restrict (G, k) to contain no non-

valid node. We devote the Chapters 4 and 5 to follow to convergence results, and

Chapter 6 to complexity results.
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Chapter 4

On Convergence Cycles

In this chapter, we study the following problem: given a graph G in g, and a threshold

distribution k in C, how many action configurations could a cycle in CYCLE,(G, k)

consist of? Ultimately, we show that for any graph and any threshold distribution,

the cycles in CYCLE,(G, k) consist of at most two action configurations. We begin

the analysis by considering cycle graphs, we proceed to complete graphs and then

move on to trees. Each of those special cases is treated by exploiting its graphic

properties. Obviously, most of those properties are not shared among all graphs,

and some cannot even be generalized to general graphs. Nevertheless, we explicitly

provide results over those toy examples first to build up the intuition of the reader and

second to construct the combinatorial framework slowly as we go along. After trees,

we consider general graphs. We then generalize the results to the extension model

allowing non-equal weights on edges and finally extend the results over multigraphs

as network structure.

4.1 On Convergence Cycles for Cycle Graphs

1

Let us consider a pair (G, k) in g xA, where G is a path, i.e. every agent is

connected to at most two other agents and no cycles in the graphs are allowed. Our

'A cycle graph is a 2-regular connected graph, we shall use both terms interchangeably.
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first intent is to characterize the length of the limiting cycles in that case. Suppose

k is picked in such a way that some players are non-valid, then we know that those

players can only play one action after some finite time step. With respect to the

analysis concerned, we may remove those players as in Proposition 3.2.7, update the

thresholds of the neighboring players accordingly and end up with a collection of

disconnected paths. Restricting the analysis to one of the paths leads us back to the

initial case. Therefore, we will assume that every node in the graph is valid, this

implies that k is equal to 1 for the nodes having degree 1 and k takes values in {1, 2}

for the nodes having degree equal to 2. Moreover, to take care of the boundary case,

we will connect the 1-degree nodes together, and so forming a ring of agents. The

graph in consideration is then the 2-regular connected graph. We then relax k to take

values in {1, 2} over I.

Given that the thresholds of the nodes are either 1 or 2, it is interesting to state

the decision rules as follows. Let a be some action configuration in An, if node i has

a threshold ki equal to 1, then node i is B in Gka if and only if either one of its

neighbors is B in a. Similarly, if node i has a threshold ki equal to 2, then node i is

B in Ga if and only if both of its neighbors are B in a.

Let us impose a strict ordering on {W, B} such that min{W, B} = W. This

translates to W A B = W for notational convenience. 2 For maps a, b and c taking

values in {W, B}, the following identities can be checked that:

aAa=a aVa=a

aAB=a aVW=a

aAb=bAa aVb=bVa

aA(bVc)= (aAb)V(aAc) aV(bAc) (aVb)A(aVc)

aA(bAc)= (aAb)Ac aV(bVc) (aVb)Vc.

Given a pair (G, k) in g, x C, where G is 2-regular, all nodes are valid in (G, k)

2See footnote 6. Mainly, a A b = min{a, b} and a V b = max{a, b}.
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and k takes values in {1, 2}, we define a map T from I, into {V, A} such that T = V

if and only if ki = 1. Similarly, let us define two maps s and p from I into I-. (we

refer to them successor and predecessor) such that i and si are neighbors, i and pi

are neighbors and (sp)j = (ps)i = i. The dynamics are then represented as follows:

(Gka)i = ap,-rias,.

We give a quick example to illustrate. Let us consider a 2-regular connected graph

G over the set I for n > 5 and suppose we are given a threshold distribution k in IC,

taking values in {1, 2}. Let us choose a node i from I,. The nodes si and pi are then

(distinct) neighbors of node i. Let a be an action configuration in A, and suppose

ki = 1, then (Gka)i = H if and only if either as, = B or ap, = B i.e. at least one

neighbor is B. We can rewrite the previous statement as:

(Gka)i = max{a,,, ap,} = as, V api = asrea

that is because we imposed a strict ordering on {W, B} such that min{W, B} = W,

and because T = V if and only if k= 1 by definition. Furthermore, si has both i

and (ss), as neighbors. Suppose ks, = 2, then in this case (Gka), = B if and only if

both ai = B and a(,,), = B i.e. at least two neighbor are B. Similarly, we can rewrite

the previous statement as:

(Gka)i = min{ai, a(,,),}= a2 A a(ss), = air8,agss) .

Finally to conclude the example, we further suppose that kp = 2. The node pi

has both i and (pp)2 as neighbors, and similarly to the rule of node si, we have

(Gka)i = ai A app),.. We may now express (G2a)i in terms of actions in a as follows:

(G a), = (Gk(Gka))i = (Gka)s, V (Gka)p, = (a, A a(8s).) v (ai A a(pp)..
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Finally, using distributivity (as defined in the identities above) we get:

(ai A a(ss)) V (ai A a(pp)) a ai A (a(ss), V a(pp)j).

We now generalize the last part of the example. We consider a pair (G, k) in

gnxK, where G is 2-regular and k takes values in {1, 2}. In this setting, (Gla)i

would only depend on the actions of nodes (ss)i, (pp)i and i itself in a. In particular,

there are a total of eight possible decision rules, we summarize them in the following

table:

T,,Ti s, (Gkaji (G a)i

c.1 V V V api V a, ai V (a() V a(pp)

c.2 V V A api V as ai V ap

c.3 V A V api A as2  a, V (a(ss), A a(pp))

c.4 V A A api A a81  a A a(8 S)

c.5 A V V api V a, ai V a(

c.6 A V A api V as8  ai A (a(ss), V a(pp),)

c.7 A A V api A as a A ap

c.8 A A A api A a,, a, A (a(ss), A at,,))

We proceed by defining strong assignments, then state a first proposition on the

dynamics induced by the above table.

Definition 4.1.1. For any positive even integer n greater than 2, any graph G in

g!, every threshold distribution k in Kn, an action c is called a strong action (or

strong assignment) for player i in I if once played by player i at time step T, it is

played by player i at time step T + 2m for all positive integers m, regardless of what

is initially played by the neighbors of node i. We refer to any action that is not a

strong assignment as a weak assignment.

Given the definition, every node in the setting concerned in this section has a

strong assignment.
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Proposition 4.1.2. For any positive even integer n greater than 2, any 2-regular

graph G in gn, any threshold distribution k in Kn taking values in {1, 2}, every player

i in In has a strong assignment.

Proof. Let i be a player in In, to prove the result it would be enough to investigate

the update rule over two iterated applications of Gk of player i, i.e. the value (G2 a)i

takes. Referring back to the previous table, notice that in the case of each threshold

distribution over {pj, i, si}, for (G2a)i to be equal to B, the condition ai = B is

either sufficient or necessary. In the case where ai = B is sufficient, if ai = B then

(G ma)i = B for all positive integers m, and so B is a strong assignment for player i.

Likewise, in the case where ai = B is necessary, if ai = W then (G ma)i = W for all

positive integers m, and so W is a strong assignment for player i. D

In particular, c.1, c.2, c.3 and c.5 correspond to B being a strong assignment for

player i, and c.4, c.6, c.7 and c.8 correspond to W being a strong assignment for

player i. We now characterize the length of the convergence cycles.

Proposition 4.1.3. For any positive even integer n greater than 2, any 2-regular

graph G in g, and any threshold distribution k in K taking values in {1, 2}, each

cycle C in CYCLEn(G, k) has cardinality less than or equal to 2.

Proof. Let a be an action configuration in A,. Suppose we construct the sequence

a,Gka, G2a, Ga .. . For notational convenience, let us denote G'a by a'. We

consider the subsequence a0 , a2, a, , choose a player i in I,, and then observe the

evolution of the action played by player i over two time step, i.e. we consider the

sequence ao, a , a, Without any loss of generality, let us assume that B is the

strong assignment. Either B appears in the sequence or B does not appear in the

sequence. If it does appear, then there exists a positive integer M such that a2m = B

for all m > M. If it does not appear, then a2m = B for all non-negative integers m.

Either way, for every player i, there exists a non-negative integer T and an action c

in {W, B} such that a2m = c for all m > T. If we set T = maxi T, then there exists

an action profile & such that a2 m = a for all m > T. We then get that {&, Gk&} is the

41



cycle reached from a. It follows that if we let C be any cycle in CYCLE,(G, k) and

we let a be an action configuration in C, then necessarily C = {a, Gka}. D

We transition to investigate the behavior when the graph structure is complete.

4.2 On Convergence Cycles for Complete Graphs

Given some positive integer n, we consider a pair (G, k) in g x/c,, where G is the

complete graph. We put no restriction on nodes to be valid. We then define the

subset 3 k of A, such that a belongs to Bk if and only if for every player i in I, if

player i plays B in a, then each player j with kj < ki plays B in a (or equivalently,

if player i plays W in a, then each player j with kj > ki plays W in a). The reason

for defining the set Bk is to perform the analysis with action configurations that are

'well behaved'. The following proposition states that an action configuration in Bk is

reached from any action configuration in at most one application of Gk.

Proposition 4.2.1. For any complete graph G in !, and any threshold distribution

k in Kn, the map Gk maps every action profile in A, to an action profile in Bk, i.e.

Gk (A,) c Bk.

Proof. Suppose there exists an action configuration a in A, such that Gka does not

belong to Bk, then there exists a player i and j such that ki > kj, (Gka)i = B and

(Gka)j = W then |a-1 (B)| < k + 1 but la-1 (B)| > ki, and so kj + 1 > ki contradicting

ki > kj.

Therefore, when considering the behavior only after some finite time step, we

may assume that the initial action configuration belongs to Bk. In what follows, we

prepare a path for an induction to happen, we consider several cases and characterize

some behavior in each.

Proposition 4.2.2. For any complete graph G in g, and any threshold distribution

k in Kn, if k takes more than one value over I, then there exists a player in In, that

will never change color after some finite time step.
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Proof. We shall assume that all nodes are valid, otherwise there is nothing to be

done. Consider the sequence a0, al, a 2, . .. where am denotes Gna. Let S be the set

of nodes in I having the lowest threshold in the network. Consider the case where

aT(S) = {W} for some T. The action profile aT is W everywhere on I since aT

belongs to Bk, then aTm is W everywhere for all positive integers m and the result

follows. We consider the case where am(S) contains B for all m. If am(S) contains W

for infinitely many m, then necessarily am(S) = {W, B} for all m greater than some

M otherwise there would exist a T such that aT c. aT+1 where aT+1 (S) does not

contain W, that is, all the players in S in all subsequent action profiles never play W

again by monotonicity. It then follows since am is in Bk for all m that am = W for

all m greater than M where j is a node having the highest threshold in the network.

Finally, if am(S) contains W finitely many times, then every node in S has the color

B after some finite time step. E

Proposition 4.2.3. For any complete graph G in gn and any threshold distribution

k in kn, if k takes only one value over I, and n is odd, then all players will never

flip after some finite time step.

Proof. Let a be any action configuration in A,. Suppose at least two players play

different actions in a, otherwise the result trivially follows. We partition In into two

non-empty sets B and W such that B contains all players playing B in a, and W

contains all players playing W in a. Suppose k takes the constant value b. If b > |BI

then all players will play W in Gka. Similarly, if b < |B|, all players will play B in

Gka. Finally, for the case where k = |BI, all players in B will play W in Gka and all

players in W will play B in Gka, but since n is odd, either |W| > |BI or |W < |BI,

and the result follows by a symmetric argument of the case where k # |Bl. E

Proposition 4.2.4. For any complete graph G in 9n and any threshold distribution

k in C, that takes only one value over In. Assume k # n/2 over I, and n is even.

Then no player switches action after some finite time step.

Proof. We will assume that all nodes are valid, otherwise no work is to be done. If

k $ n/2 then either k < n/2 or k > n/2. Let a in An be given, and define B and W
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to be the set of players playing B and W respectively in a. If k > |BI, then Gka is

equal to W over I,, and no player ever switches again. If k < |BI then Gka is equal

to B over 1, and no player ever switches again. Finally, if k = |B| then Gka is equal

to B on W and equal to W on B. In that case, k I W| and so the result follows by

repeating the proof on Gka. E

Proposition 4.2.5. For any complete graph G in gn, any threshold distribution k

in C and any action configuration a in An, if k = n/2 over In, n is even and

|a (B)| =|a- 1(W)|, then all players will flip actions at every time step.

Proof. Let B and W be the set of players in In playing B and W respectively. Since

la'(B)| = la1 (W)| and k = n/2, then k = |a-1 (B)| and so all players in W will play

B in Gka and all players in B will play W in Gka and |(Gka)-'(B)| = |(Gka)- (W)

0

Proposition 4.2.6. For any complete graph G in gn and any threshold distribution

k in 1C, and any action configuration a in An, if k = n/2 over In, n is even and

|a(B)| I a (W) , then no player switches action after some finite time step.

Proof. Let B and W be the set of players in In playing B and W respectively. Since

la- 1 (B)| / la-(W)|, then k / la-1 (B)|. If k < |a-1 (B)| then Gka will be equal to W

over -En and no node will ever switch action. Similarly, if k > |a- 1 (B) , then Gka will

be equal to B over I and no node will ever switch action. E

We now characterize the lengths of the cycles.

Theorem 4.2.7. For any positive even integer n, any complete graph G in g and

any threshold distribution k in IC, every cycle C in CYCLEn(G, k) has cardinality

less than or equal to 2.

Proof. We prove the statement by induction. The statement is trivially true for n 1,

and easily checked to be true for n = 2. So, let us suppose that the statement is true

for all positive integers not greater than n, we show that it is true for n + 1. Let G be

a complete graph in gn+1 and k a threshold distribution in KCn+1. Suppose there exists
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a node in G that is non-valid, then after a finite time step we may apply Proposition

3.2.6 removing the node and updating the thresholds accordingly. The result would

follow from the assumption that the statement holds true for n or less. If k takes

only one value over In, then the result follows from Propositions 4.2.3-4.2.6. If k

takes more than one value of In, then by Proposition 4.2.2 there exists at least one

player that will never flip after some time step. Apply Proposition 3.2.6 removing the

node and updating the thresholds accordingly when this node stops flipping actions.

The result again follows from the assumption that the statement holds true for n or

less. E

We transition to study the behavior on trees.

4.3 On Convergence Cycles for Trees

We consider in this section dynamics on trees, namely acyclic connected graphs. In

this section, the letter T shall always be used to denote trees, and never time as was

done sometimes in previous sections. Given a tree T in g, if we label a node r in I,

as root, the children of node i (with respect to the root r) are all the neighbors of i,

not lying on the path from the root r to node i. Finally, a leaf (with respect to r) in

the tree T is a node having degree 1. Fortunately, strong assignments appear in the

dynamics on trees. We begin by stating the following proposition:

Proposition 4.3.1. For any positive even integer n, any tree T in Qn and any thresh-

old distribution k in ICn such that all nodes are valid with respect to (G, k), pick a

root r for the tree, then for every node i where all its children (with respect to r) are

leaves, i has at least one strong assignment. In particular, if ki > 1, then W is a

strong assignment and if ki < di then B is a strong assignment.

Proof. We know that for each node i where all its children (with respect to r) are

leaves, node i has at least di - 1 leaves connected to it. Since all nodes are considered

to be valid, then all leaves has a threshold of 1. Suppose ki > 1, it then follows that
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(G'a)i = ai A (a), for some map # from A, into {W, B}. Suppose ki < di, it then

follows that (G2a)i = ai V #(a) , for some map # from An into {W, B}. D

In this case, note that if 1 < ki < di, then i has both B and W as strong assignment.

This fact implies that i will never change its color over two time steps. It is to note

that the proposition considers only the case where all nodes in concern are valid.

Aside being acyclic, trees enjoy bipartiteness: a crucial property that will be

heavily relied on when considering general graphs. We begin to convey how the

bipartite property of graphs may be exploited. The definitions and results to follow

apply to general bipartite graphs.

Definition 4.3.2. Let P be a subset of In, for (G, k) in GxICn, we define GkIp to

be the restriction of Gk to act on the actions of the players in P. Formally, for a in

An,

(Gklpa)i= (Gka)i if i P

ai if i P

It is to note that we are not restricting the domain of the function, Gk Pis indeed

a map from An into An. To proceed, it is known that any bipartite graph has a 2-

(node)-coloring, we avoid the wording coloring to avoid confusion. Instead, we define

2-Partitions. Let Qnb be the set of all connected undirected bipartite graphs defined

over the vertex set In.

Definition 4.3.3. Given a graph G(In, Eb) in gQ, a 2-Partition of In with respect to

G, is a pair (PO, Pe) of disjoint subsets of -En such that PO U Pe = In and there does

not exist an (i,j) in P u P2 such that ij E Eb.

We eventually restrict Gk to act on the nodes in PO and Pe separately. For con-

vention, o would refer to odd and e to even. The dynamics will be presented in such a

way, that nodes in Po (resp. Pe) will be allowed to change actions only at odd (resp.

even) time steps. Let us first clearly define a partition of a set.

Definition 4.3.4. Let X be a set, a partition P 1,... , Pm of X is a finite collection

of disjoint non-empty subsets of X whose union is X.
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The definition to follow serves mainly as a notational clarification, its technical

value is rather intuitive.

Definition 4.3.5. Consider a function f mapping In into some set. Let P1,- , Pm

be a partition of I, and let f [Pi be the restriction of f to have domain P1. Let ir be

any permutation on {1, ... , m}, we consider f to be equal to (f [P,(1), ''' , f rPr(m)).

Given a 2-Partition, we may 'decouple' the dynamics and the following identities

would emerge:

Proposition 4.3.6. Given a pair (G, k) in G'xACn, if we consider a 2-Partition

(PO, Pe) of In with respect to G, then:

1. Gka = ((Gk 1pa) [Po, (GkI p a) [Pe)

2. GlpeGklpoa = (Gka [Po, G 2aPe)

3. G2a = ((Gklp,Gkp a) [Pe, (Gkl 0Gk pea)(PF).

Proof. The fact that Gka ((Gk p0a) LPo, (Gk pea) [Pe) follows from the definition of

Gk. We have (Gk 1pa) [P= (Gka)[P,, so (Gk p,Gk Ipa) P, = (Gka) [Po, and on the

other hand since Gk Ie modifies the action of the players in Pe based only on the

actions in PO, we get:

Gk eGkjpoa[Pe = Gk Ie ((Gka)[Po, a [Pe)[Pe

= Gk p,((Gka) [P, (Gka) [Pe) [Pe

GklpeGka [Pe

= G a['Pe.

As for the last statement,

Ga[Po = Gk(Gka [PeGkaPO)[P0

= Gk p,(Gka [Pe, Gka[Po) [Po

= Gk pO(Gkpea [Pe, Gk pe a [Po) [ Po

- Gk p0GkIp, a [Po.

47



Similarly, we get G'a [Pe = Gk Ip, Gk l p a [Po.

This fact allows us so say something about the sequence a, Gka, G'a,- for all a

by investigating instead b, GkepeGk l 0b, (GkpeGkp) 2 b, ... for all b. In some way, the

proposition allows us to observe the process diagonally, in a zig-zag fashion. We shall

perform that, and we state the following lemma to formalize the idea.

Proposition 4.3.7. Given a pair (G, k) in G XKn, for every cycle C in CYCLEn (G, k),

if for some action configuration a in C, for any 2-Partition (PO, Pe) of I4n with respect

to G we have (Gk p,GkIpoa) Pe = a(Pe then C has a cardinality of at most 2.

Of course, the condition could have also been written as (Gk pGk lpe a) LPo = a [Po,

but that statement is equivalent to the statement in the proposition because it holds

for any 2-Partition.

Proof. From Proposition 4.3.6, we have G2a = ((Gk leGk l a)tPe, (GlGk l pea) [FPo).

Let C be a cycle in CYCLEn(G, k), if we have (GkIpeGk Ipa) Pe = a[Pe for some

action configuration in C, then G2a = a and so C has a cardinality of at most 2. D

To prove that all cycle have cardinality at most 2, we will study for all 2-Partitions

(PO, Pe) and every a in An, the sequence a, Gk peGk pa, (Gk lpeGk p) 2 a and show that

this sequence is eventually constant, i.e. there exists a finite time step where all terms

become equal. If that is the case, then for any a in An the sequence a, G2a, G4a, ...

is eventually constant and so cycles cannot have a cardinality greater than 2. To this

end, we note the following fact:

Proposition 4.3.8. Given a pair (G, k) in g'xiKc and a 2-Partition (P0 , Fe) of In,

for every player i in In, if c C {W, B} is a strong assignment for player i, then for

every a in An, if (GkpeGklpoa)i = c, then ((GkpeGklp,)ma)i = c for all positive

integers m.

Proof. If i belongs to Pe, we have (Gke IpGk lpa) = (G2a)j, and the result then follows

from the definition of strong assignment. If i belongs to Po, then (GklejGkpoa)=
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(Gk lrpa)i, and so if (GklpeGklp a)i = c then (Gklp a)i = c and since:

((GkpGkp, )0 a) i = (Gk |P(GkpoGkpe)m - 1Gk poa)

= ((GkIkp,Gke )m-lGk Ipoa) i

= (G 2 Gk p,a) i

The result would follow from the definition of strong assignment.

We now specialize Proposition 3.2.7 to meet our needs for the bipartite case.

Proposition 4.3.9. Let (G, k) be a pair in g6 x C, (PO, Pe) be a 2-Partition of I

and a an action configuration in A,. If there exists a player i and an action c, such

that ((Gk eGklp 0 )ma)i = c for all non-negative integers m, consider H to be the

induced subgraph of G over In\{i}. Suppose G' is a connected component of H with

vertex set J, define a' to be the action configuration a restricted to the players in J,

P|, and P' te be PO n J and Pe n J respectively, and define k' to be the map from J

into N such that k' = k on J\Ni, k'= k on i n if c =W and k' = (k -1)V 0 on

X, n J if c = B. Then,

((GklpGpo)a)j = ((G'G,p G',|)a')m ,

for all non-negative integers m and all players j in J.

Proof. It would be enough to show that the local decision rules of the players in

j n A does not change, simply that

(GklpGkpoa)j = (G',|p ,G' a')j.

Let j be a player in J n NM, either j belongs to PO or j belongs to Pe. Suppose j

belongs to PO, then (GklepGklpoa)j = (Gklpoa)j, and (Gklpa)j = B if and only if at

least kj nodes in j play B in a, or equivalently at least kj nodes in Nj\{i} play

B in a', since k' takes into account the action of player i. And that is equivalent
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to (GI'GG'a') 3 = . Similarly, if j belongs to Pe we get that (GkjleGklpea)=

(Gk1p,(G',|p'a',cr{i})j = G',|p;G'pa. E

With this settled, we go now to proving our theorem.

Proposition 4.3.10. For any positive integer n, any tree T in g, and any threshold

distribution k in K, every cycle C in CYCLEn(T, k) has cardinality less than or

equal to 2.

Proof. We prove this statement by induction. The statement can be checked for all

one node, two node networks. So let us suppose that it holds for all graphs with size

less than or equal to n where n > 3. Given a tree of size n+1, if there exists a non-valid

node, then after some finite time-step those nodes never flip, apply Proposition ??

removing those node and updating the thresholds accordingly, the result follows since

it holds on the connected components obtained. If all nodes are valid, since n > 2

necessarily there exists a parent and a leaf, by the previous lemma it has a strong

assignment, and so it stops flipping after some finite time step. When it stops flipping,

we now apply the Proposition ??, removing that node and updating the thresholds

accordingly, the result holds since it holds on the connected component. E

We proceed to extend such results to general graphs. Unfortunately, the notion of

strong assignment does not extend to general case, e.g. consider the complete graph

considered earlier. We construct a different approach.

4.4 On Convergence Cycles for General Graphs

Given a pair (G, k) in g x k, we will have this pair undergo two procedures: a

bipartite expansion and a symmetric-expansion. We introduced them in what follows.

Recall that we denote by gA the set of all connected undirected bipartite graphs

defined over the vertex set In.

Definition 4.4.1. Given a pair (G, k) in 9n x kn where G is non-bipartite, we con-

struct a pair (G', k') in 9' x C2n as outlined in procedure to follow. We refer to

(G', k') as the bipartite-expansion of (G, k).
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Bipartite-expansion procedure - Given a pair (G, k) in g, x IC, where G is

non-bipartite and has edge set E, we construct a pair (G', k') in g X C2n as follows.

We suppose G' is equal to (12n, E'), and partition T2n into two sets In and J,. We

define a bijection 4 from J, into In and define E' to be the set of undirected edges

on 12n such that for i and j in 12n, {Ji,j} C E' if and only if (i,j) E Inx J7 and

{i, 4(j)} E E. Finally, set k' to be equal to k on I and k o 4 on 7n.

We define Sn to be the set of all pairs (G, k) in g, x IC, such for each player i in

In, the degree di is odd and ki is equal to (di + 1)/2. We refer to Sn as the set of

symmetric models, in the sense that for (G, k) in Sn the property is such that for any

action profile a in An, and any player i, the action (Gka)i is the action played by the

majority in Ni with respect to the action profile a. In this case, the two actions B

and W are treated as having equal weights by all players in the network.

Definition 4.4.2. Given a pair (G, k) in (9, X Kn)\Sn, we construct a pair (G', k')

in 9' x K' as outline by procedure to follow. We refer to (G', k') as a one-step

symmetric-expansion of (G, k).

One-step symmetric-expansion procedure - Given a pair (G, k) in (9, x

K) \Sn, we construct a pair (G', k') in 9' x K' as follows. We suppose that G is

equal to (In, E), and choose a player i in I such that either di is even, or di is

odd and ki is not equal to (di + 1)/2. Surely such a node exists since (G, k) does

not belong to S,. We call the node i the pivot node in the one-step symmetric-

expansion of (G, k) into (G', k'). Let bi be an integer equal to ki, and consider wi an

integer equal to di - bi + 1. In this sense, if a is an action configuration in An, bi

would be considered to be the least number of B-playing neighbors needed by player

i to play B when Gk acts on a, whereas w would be the least number of W-playing

neighbors needed by player i to play W. We shall construct an instance (G', k') in

9 n+3b+3wi X /Cn+3bi+3wi. We suppose that G' is equal to (In+3b1 +3wi, E') and partition

In+3bi+3w1 into In, Pf, ... , Pw, Pb, -. , where each partition different than I, has

cardinality exactly equal 3.
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We define E' to be the undirected set of edges such that E' contains E. Fur-

thermore, for every m, suppose P" {j, jj' j"}, we let E' contain jj', jj" and ij.

Similarly, for every 1, suppose Pb -- f ' j"} we let E' contain jj', jj" and ij. To

visualize the obtained graph structure G', we attached bi+ wi 3-node Y-shaped graphs

to node i.

Finally, we set k' to be equal to k on In\{i}, to be equal to (di + bi + wi)/2 at i,

equal to 2 on the remaining nodes having degree 3 and equal to 1 everywhere else.

Iterated one-step symmetric-expansion of pair in (9, x KA3)\S, eventually yields

a pair in S,. We formalize the idea:

Definition 4.4.3. Given a pair (GO, ko) in (!, x k,)\Sn, we construct a finite se-

quence (Go, ko), (G1 , k1 ), - - - , (Gm, kin) for some positive integer m, where (GI, ki) is

a one-step symmetric-expansion of (G 1 1, ki_1) and (Gm, k.) belongs to Sn, for some

n'. We refer to (Gm, ki) as the symmetric-expansion of (G, k).

A specific note to be made, is that the symmetric-expansion of (G, k) is uniquely

defined (up to isomorphism') regardless of the order the pivot nodes were chosen.

However, we shall not write a formal proof for this fact, it would suffice to say that

when we perform the one-step symmetric expansion of a pair (G, k), we leave all

neighborhoods and thresholds unchanged for all nodes different than the pivot.

We proceed to present some properties of the (one-step) symmetric-expansion

and bipartite-expansion, and begin linking expansions to convergence cycle proper-

ties. Some of the claims are rather and simple, nevertheless we mention them first

for completeness and second to develop intuition and ease while dealing with such

matters, and ensure that no insight escapes.

Proposition 4.4.4. Given a pair (G, k) in (Gn x Kn)\Sn. Let (G', k') be the one-step

symmetric-expansion of (G, k), then G is bipartite if and only if G' is biparite.

Proof. If G' is biparite, then G is bipartite being an induced subgraph of G'. To show

the converse, let i be the pivot node in the one-step symmetric-expansion of (G, k)

3 Two pairs (G, k) and (G', k') in gn x /CA are said to be isomorphic if there exists a bijective map
# from V(G) into V(G') such that ij E E(G) if and only if #j#j c E(G') and ki = (k' o #)i for i in
V(G).
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into (G', k'), and let (P, Pe) be a two partition of I with respect to G. Let R and

L be the set of nodes in V(G')\IE having degree equal to 3 and 1 respectively. If

i belongs to P, then (P, U L, Pe U R) is a 2-partition of V(G') with respect to G'.

Therefore G' is bipartite. E

Proposition 4.4.5. Given a pair (G, k) in (gn\4') x Kn. Let (G', k') be the bipartite-

expansion of (G, k), then (G, k) belongs to Sn if and only if (G', k') belongs to S 2 n.

Proof. If (G, k) belongs to Sn, then clearly (G', k') belongs to S2n by construction.

Conversely, if (G', k') belongs to S2n, then k = k'[In and dG = d9' for i in In. D

Definition 4.4.6. We define the set M to be a subset Jn>1 n X ICn such that (G, k)

in gn x Cn belongs to M if and only if for every C in CYCLEn (G, k), the cardinality

of C is less than or equal to 2.

What we ultimately show is that M = Un>1 g. x Cn.

Lemma 4.4.7. Given a pair (G, k) in (9n x KC,)\S,, define (G', k') to be the one-step

symmetric-expansion of (G, k). If (G', k') belongs to M then (G, k) belongs to M.

Proof. Let node i be the pivot node in the one-step symmetric-expansion of (G, k)

into (G', k'). We suppose G' belongs to gn, and consider the induced subgraph H in

G' over the vertex set In, \In. The subgraph H necessarily consists (by construction of

G') of di + 1 connected components, each consisting of three vertices. We set integers

bi and wi to be equal to ki and di - ki + 1 respectively, we then partition In,\I into

W1, . - - , W, B 1, . - - , B,, such that each partition contains the set of nodes in one of

the connected components. Suppose that (G', k') belongs to M, we show that (G, k)

belongs to M. Let C be an element of CYCLE,(G, k) and suppose C has cardinality

greater or equal to 3. In particular, suppose C is equal to {ai,. -, am} for m > 3

where ai+ = Gkat for 1 < I < m and ai = Gkam.

We define a map a from A, into An, such that for a in An,

a on In

aa= B on B1 u--- uB, .

W onW1U...UWb,
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First, the map a is clearly injective. Then, aa 1 ,. , aa, are distinct elements of An,

Second, it can be checked that

a(Gka) = G',(aa).

To see this fact, notice that for every bi and b2 in An every node in In,\In has the same

color both in abi and ab2 , and the same color both in abi and G',abi. Since every

node in I, other than the pivot i keeps the same neighborhood and threshold, we need

only show that (aGka)i = (G',aa)i. To this end, node i is B in Ga if and only if at

least ki neighbors of i in G are B in a, and that is the case if and only if at least ki + wi

neighbors of i in G' are B in aa, or equivalently at least dG(i _ 1 - (dG'(i) + 1)/2

neighbors of i in G' are B in aa. Finally, it follows that aC = {aai, - , aam} is a

cycle in CYCLE,, (G', k') contradicting the fact that m > 3. E

Lemma 4.4.8. Given a pair (G, k) in (g, x Cn)\Sn, define (G', k') to be the symmetric-

expansion of (G, k). If (G', k') belongs to M then (G, k) belongs to M.

Proof. Given that the pair (G, k) belongs to (9n x Kn)\S,, we can construct a finite se-

quence (G1, ki), -- - , (Gm-1, km-) in such a way that (G1 , ki) is the one-step symmet-

ric expansion of (G, k), (G', k') is the one-step symmetric-expansion of (Gm-I, km-1)

and (GI, kj) is the one-step symmetric-expansion of (Gi 1 , ki_1) for 1 < 1 < m. If

(G', k') belongs to M, then (Gm-, km-) belongs to M by Lemma 4.4.7. Recur-

sively, it follows that (G, k) belongs to M. E

Lemma 4.4.9. Given a pair (G, k) in (g"\gb) x K, define (G', k') to be the bipartite-

expansion of (G, k). If (G', k') belongs to M then (G, k) belongs to M.

Proof. The graph G' is bipartite and has vertex set 12n, let us partition §E2n into In

and J, then (In, J) forms a 2-Partition with respect to G' by construction. We define

a bijection # from J into I, such that for ji and j2 in J, ji#(J2 ) E E' if and only if

#(ji)#(j 2 ) c E. Given an action configuration in An, we define the map a from An

into A2n such that for a in An we have:

aa = (a, a o #).
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It then follows that:

G'(aa) = a(Gka).

The map a is clearly injective, it then follows that for any cycle C = {ai,-. ,a

in CYCLE,(G, k) with m > 2, aC ={aai, - - - , aam} is a cycle in CYCLE,(G', k')

contradicting the fact that (G', k') belongs to M. E

Proposition 4.4.10. Given a pair (G, k) in (( \\) x S, we define (G1 , k1 )

and (G 2, k2) to be respectively the bipartite-expansion and the symmetric expansion of

(G, k). If (GI, k') is the symmetric-expansion of (G1, k1) and (G', k) is the bipartite-

expansion of (G 2, k2), then (G', k') is equal to (G', k) (up to isomorphism4 ).

Proof. It suffices to prove existence of a bijective map # from V(G') to V(G'), such

that ij E E(G') if and only if #jbj C E(G') and (k')i = (k'o #)i for i in V(G'). Such

a map could be easily constructed following the expansion procedure. We omit the

construction. D

Lemma 4.4.11. Given a pair (G, k) in ((gn\,) x Kn)\Sn, define (G', k') to be the

bipartite-expansion of (G, k) and (G", k") to be the symmetric-expansion of (G', k').

If (G", k") belongs to M then (G, k) belongs to M.

Proof. If (G", k") belongs to M4, then (G', k') belongs to M4 by Lemma 4.4.8. It

follows that (G, k) belongs to M4 by Lemma 4.4.9. El

Lemma 4.4.12. The set M is equal to J> 1 n X Cn if and only if M contains

S,, n (G' x kn) for every positive integer n.

Proof. It is clear that if M = Un> 1 gnxrn then Sn n (GbxK 1 ) C M. To prove

the converse, given (G, k) an element of U> 1 gn Xn, we define (G', k') to be the

bipartite-expansion of (G, k) and (G", kl') to be the symmetric-expansion of (G', k').

We have that (G", k") belongs to Sn n (G'xK C). If M contains Sn n (G xC ), it

then follows by Lemma 4.4.11 that M4 contains (G, k). E

We proceed to show that M contains Sn n (Gnx KI) for every positive integer n.

4See footnote 3.
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Lemma 4.4.13. Given a pair (G, k) in G bx KC, we consider a 2-Partition (F0 , Pe)

of In with respect to G. Then (G, k) belongs to M if and only if for every a in An,

there exists some integer T, such that (Gk1p, Gkpo)T a = (Gk p,Gkp 0)T1'a.

Proof. It would be enough to say that the statement of this lemma is equivalent to

the statement of Proposition 4.3.7. D

Definition 4.4.14 (Conflict Link). Given (G, a) in gn x An with G = (I, E), we call

a conflict link in G with respect to a, an element ij of E such that ai and aj are not

equal. We denote by Ej(a) the set of all conflict links in G with respect to a.

Lemma 4.4.15. The set M contains Sn n (G' x/Cn) for every positive integer n.

Proof. Let (G, k) in Sn n (G b xICn) be given and consider a 2-Partition (F0 , Pe) of In.

Let a be an action profile in An. By Lemma 4.4.13 it would be enough to show that

(GkIp,Gk p)T a = (GkpeGk lp )T+1a for some non-negative integer T. In that case, it

would be enough to prove that for every b in An:

Gklp b f b if and only if |Ec(Gk p0b)| < |Ec(b)|.

and similarly:

Gklpeb 5 b if and only if |Ec(Gk pb)| < |Ec(b)|.

To show that we state the following, for node i in In, ai $ (Gka)i if and only if the

majority of the players in i are not playing ai, or equivalently, if and only if i can

decrease the number of conflict edges by switching action. E

Theorem 4.4.16. For every positive integer n, every (G, k) in gn x Cn and every C

in CYCLEn(G, k), the cardinality of C is less than or equal to 2.

Proof. The statement of the theorem is equivalent to M = Un>1 gn x /Cn. The fact

that M = U> 1  xngXIC follows directly from Lemma 4.4.15 and Lemma 4.4.12. E

Finally, we extend the lengths of convergence cycle results to the extension model

allowing non-equal weights on edges.
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4.5 On Convergence Cycles under Weighted Edges

Given a pair (G, q) in g, x Qn, where G has edge set E, we assign every edge ij in E

a positive weight wij = wji. Modifying the utility function to incorporate a weighted

sum of the payoffs from neighboring interactions, we have the following rule. We

denote by ai,T the action played by player i at time T. If we let a be the initial action

configuration, namely ai,o = a, then for every positive integer T, player i plays action

aT = B at time step T if and only if

Ewij1(ay (aj,r_1) > Oi,

where we define 0, = qi EjE w.

We shall then expand g to incorporate the weights. We shall define W to be the

set of connected graph over the vertex set I, with weighted edges. Given a weighted

graph W of W, we shall denote the set of edges by E(W), the weight on edge ij in

E(W) is then denoted by wij. As a natural extension of previous definitions, given a

pair (W, q) we define the map Wq from An into An such that (Wqa)i = B if and only

if Ejwe{ij 1 B}(a) qi ZjeA ij'

We put no restrictions on the weights in /Vn other than being non-negative reals.

We first show that with no loss of generality, we may consider the weights to be

integers.

Lemma 4.5.1. For every pair (W, q) in /Vn x Qs, there exists a pair (W', q') in W, x

Q, where the weights are positive integers such that for every action configuration a

in An, we have Wqa = W',a.

Proof. It would be enough to show, that there exists a pair (W', q') in /V x Q, with

rational coefficient. If that is the case, since the graph is finite, we can make all

weights integral by multiplying the rational weight by some integer. This said, we

state again that it should be enough to prove that given (W, q) in W, x Q, and an

edge e in E(W), there exists a pair (W', q') in )/V x Qn such that Wqa = W',a for

all a in An, w' is rational, and we, = w', for all edges e' in E(W) = E(W') different
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than e.

To prove this, pick an edge ij in E(W), and suppose wij is irrational. Let us

denote by 0, the quantity qj Ejev wi, we then define the map Ai from A, into R

such that for a in A,:

Aj(a) = O6 - w il1{f B (a,) - wi.
Icefi\{j}

We set:

6i = min JA(a)|.
aEAn : Ai(a)>O

Similarly, we define the map A\ from A, into R such that for a in A,:

Aj (a) = Oj - E w ,1{ (aj) - wig.

1eA/s~\{i}

We also set:

6i- min JA(a)|.
aEA, : Ay(a)>O

Both 6i and oj are well defined being smallest elements in finite non-empty sets.

Pick any rational weight w'j in [wij, wij+6 A 6j). Set q' to be equal to q on I,\{i, j},

q' = 01/ (0; - wij + wO) for I E {i, j}. We get pair (W', q') with w' = we for all

e c E(W) and wij rational. El

With this result in mind, we redefine the set W, to be the set of connected graph

over the vertex set T, with integral weighted edges, i.e. weights in N. Following a

similar reason as in Chapter 3, without any loss in generality, we substitute the set

Q, with the set C, as defined. For a pair (W, k) in Wri x K/C, the map Wk extends

naturally from W for the pair (W, q) in /X2 x Qn, in the way that for an action

configuration a in An, (Wka)i = B if and only if Ej~v- wijl{i}(aj) > ki. Similarly,

we define CYCLE,,(W, k) to extends naturally from Chapter 3.

Theorem 4.5.2. For any positive integer n, and any pair (W, k) in Wn X /Cn, every

cycle C in CYCLEn(W, k) has cardinality less than or equal to 2.
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Proof. Given a pair (W, k) in VV x IK,, we shall construct an instance (G, k) in gn x K.

We define N to be equal to 1HijEEWij, and we consider the set of players INn. We now

partition INn into sets of n players. Given the size of the object in hand, it would be

appropriate to identify the partitions with the following IEJ-dimensional space:

Q = HeEE [We]

where [we] {1,.- , We}. Specifically, we define a map P from Q into 21Nn such that

|P(1,... , 1)= In, |P(w)| = n for all w, and P(w) n P(w') = 0 for w $ w'. Then

the collection {P(w) : w C Q} is a partition of INn. For each w, we define a bijection

#, from -En into P(aw), such that #(1,- 1) is the identity map. We now define a graph

G over the vertex set INn with an empty edge set E. Then for each ij that belongs

to E(W), for all w in YeEE\ij[Wel, m and m' in [wijl (non-necessarily distinct), we let

4(,m) (i)#(w,m')(j) belongs to E. We finally construct a threshold distribution k' on

In in such a way that k' equal k' o #- on P(w) for all w in Q.

To put a note on the construction, given any node i in In, suppose j is a neighbor

of i, with weight wij on the edge. For any w in Q, phi,(i) has threshold ki is connected

to exactly wij nodes having thresholds kj. This large graph is interconnected such

that if we restrict the space of action configurations accordingly, the update are locally

equivalent.

To this end, let us define the extension map a from A, into ANn in such a way

that for all a in A,, for all w and i in P(w),

(aa)= a,- .()

It can be checked that for all a in A,:

a(Gka) G',(a a)

The map a is injective, and following the same reasoning as in the proof of Lemma

4.4.9, the result then follows since any cycle in CYCLENn(G', k') has cardinality at

59



most equal to 2 by Theorem 4.4.16.

We move on to extend the result to multigraphs.

4.6 On Convergence Cycles for Multigraphs

We shall not provide a formal description of the model, but rather build on the

description provided in the previous section. Given a graph G in g, we allow E(G)

to contain self-loops, and for every edge ij in E we assign to it a positive weight

wij = w32. With a similar reasoning as in Lemma 4.5.1, without any loss of generality

we assume that the weights are integers. We do not provide a formal proof for this

fact. To sketch the idea, make a duplicate G' of G, and connect each node i in G

with its copy in G' putting on the edge a weight wij. Remove all self-loops in the new

graph to get the model defined in the previous section and apply Lemma 4.5.1.

This done, we then define On to be the set of all connected multigraphs over the

vertex set I. Given a multigraph G in on, and a node i in I, we redefine the

neighborhood i of i be a multiset where each node in N/ has multiplicity equal to

the number of edges connecting it to i. In this case, the rule of Proposition 3.1.1

governs the dynamics in this setting.

Theorem 4.6.1. For any positive integer n, any multigraph G in On and any thresh-

old distribution k in KC, every cycle C in CYCLEn(G, k) has a cardinality less than

or equal to 2.

Proof. Given a pair (G, k) in On x /C such that G contains at least one self-loop,

let (G', k') be its bipartite expansion. Then (G', k') contains no self-loops and is

necessarily connected (because of the self-loop). We can easily extend from previous

lemmas that if every cycle C in CYCLE 2,(G', k') has a cardinality less than or equal

to 2, then every cycle C in CYCLEn(G, k) has a cardinality less than or equal to 2.

But G' contains only multiple edges, which is equivalent to having positive weights

on single edges. The result then follows by Theorem 4.5.2. l

We proceed to discuss convergence time in the following chapter.
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Chapter 5

On Convergence Time

This chapter studies the following problem: given a graph G in g, a threshold

distribution k in KC, and an initial action configuration a, how many times do we need

to iteratively apply Gk on a to reach some cycle C in CYCLE,(G, k)? Recall that

for every positive integer n, and every (G, k, a) in gfXA ZxA, we define 6,(G, k, a)

to be equal to the smallest non-negative integer T such that there exists a cycle C

in CYCLE,(G, k) and b in C with G Ta = b. The quantity 6n(G, k, a) denotes to the

minimal number of iterations needed until a given action configuration a reaches a

cycle, when iteratively applying Gk. We refer to 6,(G, k, a) as the convergence time

from a under Gk. We begin by showing that there exists some positive integer m, such

that for every positive integer n, and every (G, k, a) in g; x A x A, the convergence

time (G, k, a) is less than or equal to mn2 . We then proceed to improve the bound

to being equal to be linear in the size of the network for some graph structure cases.

Formally, for all positive integers n, and every (G, k, a) in gn xk, x A, where G is a

cycle graph, a complete graph or a tree, the convergence time 6n(G, k, a) is less than

or equal to n. We end the chapter by discussing tighter bound on the convergence

time over general graphs.
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5.1 On Quadratic Time over General Graphs

As a quick follow-up of the infrastructure built in the section on convergence cycle,

we have the following bound:

Theorem 5.1.1. For all positive integers n, and every (G, k, a) in gx 1Cx An, the

convergence time 6,(G, k, a) is less than or equal to mn 2 for some positive integer m.

Proof. Given a positive integer n, let (G, k) be a point in g x Kn, let (G', k') be the

symmetric-expansion of (G, k) in S,' , and let (G", k") be the bipartite-expansion of

(G', k') in S 2n,. We have the following fact:

6n (G, k ) < 6n,(G', k') <_ 62,1(G", k" 1).

Moreover, we have that:

62n,(G", k") < max | E,"(a)|

The fact follows from the fact that Gklpb # b if and only if Ec(Gkjplb) < Ec(b) and

Gkeb / b if and only if Ec(Gklpeb) < Ec(b). Additionally for all a in A2n' we have:

|Ef"(a) I |E"| < 2|E'| < 2[n2 + 3 ( bi + wi],
iEln

where E' and E" denotes the set of edges of G' and G" respectively. Finally:

E bi + wi = di + 1 = 2|E|+ n.
iEln iEln

The result follows. E

The constant m in the theorem statement can be optimized, but it is of no interest.

Instead it would be interesting to prove a bound below quadratic. One thing to notice

from the proof above is that if the graph has bounded degrees, the convergence time

is less than a linear function of the size of the network. We turn back to the cases of

cycle graphs, complete graphs and trees and derive tighter upper bounds.
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5.2 On Linear Time over Cycle Graphs

We shall restrict the analysis in the section to even positive integers n. In this case,

every 2-regular connected graph in 9n is bipartite and we make use of the bipartite

property. Let G be cycle graph in gn. Recall from Section 4.1 that we defined s and

p to be maps from LE into I (we refer to them successor and predecessor) such that

for node i in 1, i and si are neighbors, i and pi are neighbors and (sp)j = (ps)= i.

In this setting, (ss)i refers to the successor of the successor of node i and is denoted

as s . Recursively, the notation s7", where m is some non-negative integer, denotes

the node obtained by iteratively applying (m times) the successor function s on i. A

similar notation holds for the predecessor function p. We now pick a player i in I7,

and consider the subset {s m : m > 0} of I. First, {s2m : m > 0} is not equal to

In, this follows from the fact that n is even. Furthermore, {sm : m > 0} is equal

to {p2m : m > 0}. The implies that the update rule over two time steps of player

i depend only on the information available in the actions taken by the players in

{s2m : M 0}. We consider a 2-Partition (P, Pe) of L, with respect to G, and point

out that the sequence a, G 2a, ,-- is constant after time step 2T if and only if

both sequences a [P,, G2a [P,, Ga [P,--- and a [Pe, G2a F e, Ga [Pe,-- are constant

after time step 2T.

Proposition 5.2.1. For all positive even integers n, and every (G, k, a) in gx ICn x An

where G is 2-regular, the convergence time 6n(G, k, a) is less than or equal to n.

Proof. Let us then consider the sequence a [P, G2a [PO, G'a P ... , we define T to

be the minimum integer m such that G2ma = Gm+2a. We claim that the integer

T is less than or equal to the cardinality of P. Let S(b) be the number of players

playing the strong assignment in action configuration b, then if b $ Gib then S(b) <

S(G2b) for all action configuration b. But G ma # G2m+2 a for all m < T and so

Po > S(G2T a) > S(a) + T. But Po = n/2, and so the result follows. El

In other words, as long as the sequence is not constant, one player is switching his

action over two time steps. However, every player has a strong assignment (non-valid
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nodes trivially have a strong assignment), and so each player is allowed to flip only

once over two time steps if ever. After 2T time steps, no player is able to flip over

two time steps.

5.3 On Linear Time over Complete Graphs

Recall that for a pair (G, k) in g, x 1C, where G is complete, Bk is the subset of A,

such that a belongs to Bk if and only if for every player i in 1", if player i plays B in

a, then each player j with kj < ki plays B in a.

Definition 5.3.1. It is said that a E 13k is at level L (or L is the level of a) if and

only if at least some node i in In having ki = L is playing B in a and every node

having kj > L is playing W in a. If a is W everywhere on In, we say that a is at

level -1.

Proposition 5.3.2. For any pair (G, k) in gn X kn where G is complete, every action

configuration in Gk (A,) is at level L for some L in {-1} U N.

Proof. The result follows from Proposition 4.2.1, i.e. Gk(An) C Bk. E

Proposition 5.3.3. For any pair (G, k) in g x C, where G is complete and any

configuration a in An, if Gka is at level -1, then Gina is W for all positive integers

m.

Proof. If Gka is at level -1, then Gka is equal to W everywhere on -In and all nodes

have a positive threshold. Therefore, G2a is also at level -1. The result follows by

induction. E

Proposition 5.3.4. For any pair (G, k) in gn X Kn where G is complete and any

configuration a in Gk(An), if a, Gka and G a are all at level L, then Gma is at level

L for all non-negative integers m.

Proof. We will suppose that neither a not Gka is not a fixed point of Gk, otherwise

the statement trivially holds. It follows that a, Gka and G2a are all at level L only if
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k- 1(L)I is even, L = k- 1 (L)|/2 and Ik-(L) n a-1(B)| = Ik-1 (L) n a- 1(W)1. In that

case, we get |k- 1(L) n Gka-1(B)| = k- 1(L) n Gka-'(W)I and by induction we obtain

k- 1 (L) n (G a)- 1 (B)j = jk- 1 (L) n (G a)-1 (W)j for all non-negative integers m. E

Proposition 5.3.5. For any pair (G, k) in gxnIC, where G is complete and any

configuration a in Gk(A,), consider the sequence Lo, L 1, L 2, -where Lm is the level

of Gma. Then L,_ 1 = Ln-1+m for all non-negative integers m.

Proof. Without any loss of generality we may assume that a is at level L / -1. If

condition bla happens then we are done. So suppose such a condition is not there,

then either LO # Li or LO = L1 # L 2. If Lo # L 1, then by monotonicity of action

configurations, the sequence LO, L1, L 2, - starts as strictly monotone, then becomes

constant at some L. However the sequence LO, L 1 , L 2 , - can contain at most n

levels since we have n nodes, and so L,_ 1 = Ln-m for all non-negative integers

m. If Lo = Li f L 2, then by monotonicity of action configurations, the sequence

L 1 , L 2, - - starts as strictly monotone, then becomes constant at some L. However,

k- 1 (Lo) contains more than one node, otherwise either LO # L1 or the sequence is

constant. Therefore, there are at most n - 1 levels and so the sequence L1 , L 2 , - - -can

contain at most n - 1 levels, therefore Ln_1 = Ln-+m for all non-negative integers

m. E

Proposition 5.3.6. For all positive even integers n, and every (G, k, a) in g, x K3" x A,

where G is complete, the convergence time 6,(G, k, a) is less than or equal to n.

Proof. If a belongs to Gk(An), then 6n(G, k, a) < n - 1 by the previous proposition.

To get the result, we need to apply Gk once on an action configuration to get an

action configuration in Gk(An).

If the sequence LO, L 1, L 2 , or LI, L 2 , ... starts as strictly monotone then at n

it has reached a fixed point by monotonicity. If the sequence is constant, then it is

either at a cycle of length 2 or at a fixed point.
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5.4 On Linear Time over Trees

In this section, the letter T shall always be used to denote trees, and never time as

was done sometimes in previous sections. We shall prove a lemma, and then derive

our result from it. We begin by a definition.

Definition 5.4.1. Given a triplet (G, k, a) in Qn X Kn xAn and a 2-Partition (Po, Pe)

of In with respect to G. It is said that a[P0 is reachable in (G, k) if there exists

a' in A, such that a [P 0 = (Gk p 0 a) [Po. In this case, it is said that a' Pe induces

a [P 0 . Similarly, a [Pe is reachable in (G, k) if there exists a' in An such that a[Pe =

(Gk pea )[Pe. And again, it is said that a'rPo induces a[Pe.

Proposition 5.4.2. Given a triplet (G, k, a) in gnx/Kn x/An and a 2-Partition (Po, Pe)

of In with respect to T. If node i in Pe is non-valid and a[Pe is reachable in (G, k),

then ((GklpeGklpo)ma)i = ai for all non-negative integers m.

Proof. The proposition is rather trivial and follows from the definition of non-validity

and reachability. l

Proposition 5.4.3. Given a triplet (T,k) in g!xAIn where T is a tree, and a 2-

Partition (Po, Pe) of In with respect to T. Pick a node r to be the root of T, then if

player i in Pe has only leaves as children (with respect to r) and 1 < ki < di then

((TklpeTklpo)ma)i ai for all non-negative integers m.

Proof. In the case where 1 < ki < di, both actions, W and B, are strong assignments

for node i. l

Proposit ion 5.4.4. Given a triplet (T, k, a) in ! X x n x An where T is a tree, and

a 2-partition (PO, Pe) of In with respect to T. Suppose a [P0 is reachable and a [P 0

induces a [Pe both in (T, k). Then if Pe consists of only one node, that node will never

change its action.

Proof. We suppose that the node in Pe is valid, otherwise nothing is to be done.

Furthermore, without any loss of generality we may assume the nodes in P0 to also

be valid, otherwise they will never switch actions given that a [P0 is reachable, and
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so we may remove them from the network. It follows that both B and W are strong

assignments for the node in Pe.

Lemma 5.4.5. For every positive integer n, given a triplet (T, k, a) in gbxC xAn

where T is a tree and a 2-Partition (P, Pe) of In with respect to T. If a [P, is

reachable and a[PO induces a[Pe both in (T, k), then there exists a player i in Pe,

such that ((TpeTkp 0 )ma)ji = ai for all non-negative integers m.

Proof. Given the nice structure the tree possesses, there are several ways we can

perform the induction. We shall proceed by induction on the number of nodes in

the tree. We start with the base case that refers to a two node graph with a single

edge. In this setting, there are only six cases of possible threshold distribution. It

is fairly straightforward to exhaustively check them, so we omit the proof for n = 2.

We suppose that the statement holds for graphs with n nodes, and we show that it

holds for graphs with n + 1 nodes.

We pick a triplet (T, k, a) in gb x /C, x A, where T(I, E) is a tree, and a 2-Partition

(P, Pe) of I with respect to T. We suppose that a LP, is reachable and a [P induces

a [Pe both in (T, k). If there exists a player in Pe that is non-valid with respect to

(G, k), the statement trivially holds by Proposition 5.4.2. We will assume that all

nodes Pe are valid nodes. We may also assume that all nodes in P are valid nodes,

otherwise they would never change actions and so can be removed. We pick a node

r in P, to be the root of the tree. If there exists some player i in Pe that has only

leaves as children (with respect to r) and 1 < ki < di, then the statement holds by

proposition 5.4.3. Then we will assume that no such player exists. Moreover, if a

player in Pe is playing a strong assignment, then the statement trivially holds. So, we

shall assume that no player is playing a strong assignment. And finally, if Pe contains

only one node, then the statement holds by Proposition 5.4.4. We shall then assume

that Pe contains at least two players.

We argue by contradiction. Suppose that for every player i in Pe, there exits a

positive integer Mi such that ((Tkl pTk lp)Mia)i $ a2 and ((Tk epTkp)ma)j = ai for

m < Mi. We set Mf to be maxi Mi, and pick a node e in Pe such that Me = Mf. We
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consider an edge eo in E such that a, = ae and if e has only leaves as children, the

connected components of (I, E\{oe}) contain at least one node in Pe. Such an edge

always exists given what we assumed earlier.

We then construct a pair (T', k') as follows. Define T' to be the connected com-

ponent of the graph with vertex set I and edge set E\{oe} not containing e. Set k'

to be equal to k on V(T')\{o}, k on {o} if ac = W, and (k - 1) V 0 on {o} if ac = B.

One can check that ar(Po nV(T')) is reachable and a [(Po n V(T')) induces a F(Pe n
V(T')) both in (T', k'). In this case, there exists a player i in Pe n V(T'), such that

((TJ,|peT,|jp0)ma)j = ai for all non-negative integers m. Then ((TklpeTijpo )a)i - ai

for all positive integer m such that

((TkIPTk Ip)la-1ae = ae,

that is for m < Mf. Then, player i can only flip in (T, k) after Mf, contradicting the

definition of Mf. E

Proposition 5.4.6. For all positive integers n, and every (T, k, a) in g, xK ,x A,

where T is a tree, the convergence time 6n(T, k, a) is less than or equal to n.

Proof. Let T be a tree in g, and consider a 2-Partition (PO, Pe) of I, with respect

to T such that Fe |Pol. For any k in k, and a in An, if we consider (a", ae)

(Tka [Po, T2a [Pe), then a0 is reachable, and ae induces ao. Then by Lemma 5.4.5,

there exists at least one node in Pe such that ((Tjp,Tkp 0 )m(a0, ae)), = ae for all non-

negative integers m. Let T' be a connected component of the induced subgraph of T

over In\{i} such that |V(T') n Pe is maximal. Define k' to be equal to k[V(T') on

V(T')\Ai, equal to k on V(T') njV if a' = W, and equal to (k - 1) V O on V(T') n

if a? = H. Then,

S,(T, k, a) = 2 + 6(T, k, Tka) = 2 + 6(T', k', (Tka) [V(T')) < 2|Pe| (5.1)

by successive application of Lemma 5.4.5. But since Pe l Pol, we get Fej < n/2

and the result follows. E
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Notice that leaving the bound at 21PeI in the preceding proof gives a better bound

that is equal to twice the size of a minimal vertex cover. We proceed to discuss

extending such results to the general case.

5.5 On Linear Time over General Graphs

Unfortunately, Lemma 5.4.5 does not hold over all bipartite graphs. We shall provide

a counterexample, namely we give a triplet (G, k, a) in 9, x C, x A, and a 2-Partition

(P, Pe) of I, with respect to G, such that a [P, is reachable and a rP, induces aF e

both in (G, k), but for each player i in Pe, there exists a non-negative integer m such

that ((GkjpeGkjpma)ji f aj.

To this end, consider we consider the set 12n-1 for some odd n large enough. Let

T(I 2n- 1 , E) be a complete binary tree over I. Let L be the subset of T containing

the leaves, and let r be the root. We construct a new edge set E' = E UI {lr} and

consider the graph G(12,, E). Since n is odd, then G is bipartite. We set k to be

equal to 1 on {r} U L and equal to 2 elsewhere. We consider a two partition (P, Pe)

on 12n-i with respect to G such that r belongs to P. We say that node i is at depth

D if and only if the edge path from r to i consists of D edges. Then, all the leafs are

at depth n - 1.

We now consider the action configuration a' in A 2 n-i that is equal to B on all

nodes at depth n - 3, and W everywhere else. Consider a = Gk|PeGkFoa', then aLP0

is reachable and a LP induces a [Pe both in (G, k). The action configuration a is B on

all nodes at depth n - 5 and W everywhere else.

We now claim that for each player i in Pe, there exists a non-negative integer m

such that ((GklpeGklp)ma)i z ai. To show this, we will claim three things that can

be easily checked. First, if all the nodes at depth n - 1 are B in (GklPeGk l 0)ma

for some m, then all nodes will play B at the limit. Second, for each node i, there

exists a non-negative integer m such that ((GklpeGkp)ma)j = W. We can simply

consider m = 0 and m = 1 where m = 0 corresponds to a, and m = 1 corresponds to

Gk FeGk Fa that is equal to B only on nodes at depth n - 7. Third, all the nodes at
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depth n - 1 are B in (Gk p,Gk p)ma for some m. It is easy to see that there exists an

m such that (GkJPo(GknpeGkpo) l a), = B, then Gk peGnk,(Gk pGk pm)m-la will be

B on L since k = 1 on L.

Although this disproves that the lemma holds for all bipartite graphs, the conver-

gence time in this counterexample is still not more than n. We end this section with

a rough conjecture that the convergence time for bipartite graph is less than or equal

to n. However, in this case the convergence time for general non-bipartite graphs is

not more than 2n. To have that bound, we claim that the convergence time for a pair

(G, k) is at most that of its bipartite expansion.

We finally show that if 2n is an upper bound, it is rather tight. It is possible to

construct an instance of (G, k, a) in g, x IC, x A that has a convergence time of 2n -3.

Indeed, we consider the set _T. and construct a graph G as follows. We connect n - 2

players in a line, pick one of the nodes having degree 1, connect the remaining two

players to it, and connected those two players together (one gets a line ending with

a triangle). We set k in K, to be equal to 1 over _i, and a is B on the only player

with degree 1, and W everywhere else. One can check that 2n - 3 steps are needed

to reach a cycle. In this case, the cycle consists of one action profile.

5.6 On Convergence Time of the Extension Model

In this section, we show that the conjecture on convergence time being at most

n steps for bipartite graphs would fail if we allow weighted edges for the graphs.

To show that, we consider an example induced by the counterexample in the last

section by simply collapsing the node on the same level. We consider a pair (W, k)

in V6 x K6 where W is a weighted graph over 16 {ii, i 2, i 4, is, i1 6 , i}, with edge set

{iii 2 , i 2 z4 , i4zs,2 z81, i 1 i1, i1 ii}, thresholds (kil,ki 2 I k 4, ki, ki 16, kil) (1, 2,4,8,16, 1)

and weights (wiii2 , Wi2i4, Wi4is, Wisil, I , wi 1 ii) = (1, 2,4, 8, 16, 1).

Finally, consider the action configuration a in A5 equal to B on i 4 and W every-

where else. We get the following sequence of action profiles:
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16 8 4 2 1
1 16 8 4 2 1

Figure 5-1: Partial visualization of the pair (WT, k).
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Notice, that we arrived to

size of the network would

a cycle in 7 steps instead of 6. Furthermore, increasing the

yield a bigger gap asymptotically reaching 2n.

It is important to clarify that we did not actually establish quadratic convergence

time for the extension model allowing weighted edges. In fact, the construction pro-

vided in Chapter 4 to prove the length of convergence cycles for weighted-edge graphs

cannot be used to extend the quadratic convergence time. But we shall not explicitly

tackle this question, instead we keep the problem to a rough conjecture. Although

the counterexample provided above disproves the convergence time in at most n step,

linear convergence time is still plausible for the extension model allowing weighted

edges. In that case, a linear convergence time for multigraphs would also follow.

We now proceed to characterize the number of limiting cycles.
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Chapter 6

On the Complexity of Counting

So far, we have been dealing with bounds that are uniform over all graphs, all thresh-

olds and all action configuration. The natural coming step would be to find bounds

on the number of cycles (fixed-points and non-degenerate cycles), the number of

fixed points and the number of non-degenerate cycles for all graphs G in g, and all

threshold distributions k in k,,. We let F and F be respectively the maximum and

minimum number of fixed-points over all pair (G, k) in g, xJC2 . Likewise, let C and

C be respectively the maximum and minimum number of non-degenerate cycles over

all pair (G, k) in Gn x C.

Proposition 6.0.1. The lower bound F is upper bounded by 2.

Proposition 6.0.2. The lower bound C is equal to 0.

Proof. To prove those two proposition, it would be enough to consider any 2-connected

regular graph of n players where n is odd, and provide each player with a threshold

equal to 1. All players playing B and all players playing W are the only fixed-points.

No non-degenerate cycles exist at the limit. E

Proposition 6.0.3. The upper bound F is lower bounded by 2n/3.

Proposition 6.0.4. The upper bound C is lower bounded by 2"/3 - 1

Proof. Consider the 2-connected regular graph of n players where n is a multiple of

3 not equal to 3. Assign n/3 nodes a threshold of 2 and 2n/3 nodes a threshold of 1
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in such a way that each node of threshold 1 has exactly one neighbor of threshold 1

connected to it. In this case, we have n/3 pairs of neighbors having thresholds of 1,

and so we can construct at least 2n/3 fixed points where the neighbors in each pair

are either playing both B or both W. We can similarly construct at least 2n/3 _ I

non-degenerate cycles by having for each pair of such neighbors, either both neighbors

as W or exactly one of the neighbors as B. E

We are not concerned about exact bounds, those claim serve only to show that we

are dealing with a rather wide range of number of limiting outcomes. This said, we will

study whether we can have an arbitrarily good characterization of the count. Instead

of providing bounds, we will study how tractable is it to count equivalence classes,

fixed points and non-degenerate cycles. Ultimately, we show that those counting

problems are #P-Complete. We begin by providing a quick review of complexity

theory.

6.1 On Languages and Turing Machines

We shall not delve deeply into defining and presenting the basic concept, we refer the

reader to [17] for a thorough exposition.

Given an alphabet E {0, 1}, we refer to E* as the set of all binary strings

constructed from elements of E.1 The set E* may be identified with U, oE" where

E0 contains the empty set.

Definition 6.1.1. A language is a subset of E*.

Given a language A, we aim to design a unit (machine) such that given a string

s in E*, this unit is able to decide whether s belongs A or not. Let us consider the

case of a generic yes/no question. Suppose a language A consists of the instances

of the question where the answer is yes, and suppose some unit M accept strings

'The unary operator * is called the Kleene star.
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representing the questions that admit yes as an answer i.e. accepts only strings that

are in A, then this unit can basically answer our questions.

To this end, we use the model of a Turing machine (TM) as a computation device,

and we settle on an informal description of it; this is more than enough for our purpose.

The Turing machine will only serve as a precise model for the definition of algorithm

as intuitively understood.

A (deterministic) Turing machine consists of a finite state machine, an infinite

tape partitioned into an infinite number of consecutive cells (a cell can have at most

two adjacent cells one on its right and one on its left) and a read/write head positioned

on that tape over a cell.

We first consider the tape: each cell in the tape may contain a symbol in E.2

Furthermore, we assume (without any loss of generality) that the tape is one-sided

in the sense that every cell in the tape has finitely many cells on its left and infinitely

many cells on its right. Second, the finite state machine contains a starting state, an

accept state and a reject state. Third, the TM is allowed to both write on the tape

or read from it (one cell at a time), and the read/write head is allowed to move left

or right along the tape.

We initialize the Turing Machine as follows. We require the TM to be fed a string

in E* as input, and so we initially scribe that string on the tape where the first symbol

is written in the leftmost cell, and the other symbols are written in order (each in one

cell) as we move right along the tape. We initialize the finite state machine to be in

the initial state, and we set the read/write head to be positioned on the leftmost cell.

We will simply refer to the TM as being in a state instead of explicitly mentioning

the finite state machine.

We now run the TM. The TM reads the symbol in the cell where the head is

positioned. Depending on the current state and the symbol read, it writes a new

symbol (replacing the old symbol) on the cell where the head is positioned, transitions

to a new state and moves the head either left or right by one cell. Put differently, the

2For convenience, it would be necessary to define a 'blank' symbol to be written in a cell when

that cell is supposed to contain no symbol in E. However, we shall not worry about this issue since

we keep the description rather informal.
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TM is governed by a transition function takes a pair of state and symbol as input, and

outputs a triplet consisting of a state, a symbol and a move direction for the head.

The TM repeats this procedure moving from state to state. As mentioned, there are

two special states: the accept state and the reject state. If the machine reaches any

of them, it halts. If the machine reaches the accept state, it accepts the input. If the

machine reaches the reject state, it rejects the input.

However, we note that a Turing Machine need not necessarily reach an accept

state or a reject state. In this case, it never halts.

Definition 6.1.2. A Turing Machine M is said to decide a language A if and only

if M accepts every string in A and rejects every string not in A. A language is said

to be decidable if there exists a TM that decides it.

We shall restrict the description to languages that are only decidable, in the sense

that there exists a Turing machine that halts on every input, and accepts a string

if and only if it is in the language. Our need for the Turing Machine stands as to

have it solve problems and answer questions for us. However, we note that Turing

Machines always takes a string as input, so we are required to encode our questions

and problems as string. A decoder can then be built-in within the Turing Machine as

part of its states, transition rules, and read/write operations. We proceed to define

the central notion of time complexity.

Definition 6.1.3. Let M be a deterministic Turing machine that halts on all input

strings. The running time or time complexity of M is a function f from N into N

such that f(n) is the maximum number of steps that M uses on any input of length

n.

If f(n) is the running time of M, we say that M runs in time f(n) and that M is

an f(n) time Turing Machine.

Finally, a variant of the deterministic TM model is the non-deterministic Tur-

ing machine (NTM). Building on the previous description, for every symbol read

on the tape and every state the finite state the NTM is in, the NTM can branch
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out to multiple possibilities and check them at the same time. Going back to the

transition function perspective as considered earlier, the NTM is governed by a tran-

sition function takes a pair of state and symbol as input, and outputs a collection of

triplets each consisting of a state, a symbol and a move direction for the head. The

transition function is then applied to the pair of state and symbol in each of those

triplets. This said, the NTM has simultaneous computation paths. If one of the path

leads the NTM to an accept state, the machine accepts the input.

We go on defining both decision and function problems in the following sections.

6.2 On Decision Problems

Decision problems are questions that require yes/no answers. To illustrate, let us

consider the following problem: given a graph G C gn as input, is the graph G

bipartite? This a yes or no question, and the language is-Bipartite 'describing' it can

be the set of all graphs in go that are bipartite. Notationally,

is-Bipartite = {(G) : G E Gb}. (6.1)

Given an encoding for graphs (those may be easily encoded by their adjacency matrix)

into strings in E*, we may construct a Turing machine that decides is-Bipartite.

Definition 6.2.1 (Polynomial Time). The class P is the class of languages that are

decidable in polynomial time on a deterministic Turing machine.

Equivalently, we can devise a (deterministic) polynomial time algorithm to decide

whether an input belongs to the language, i.e. to answer the question. Going back to

the bipartite testing case, it is fairly straightforward to polynomially decide whether

a graph is bipartite or not. However, also note that G b consists only of connected

graphs. Therefore, we also need to test connectedness along the way, but that also

can be solved in polynomial time. Therefore, is-Bipartite belongs to the class P. It is
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crucial to note that the algorithms considered in this case are deterministic. We turn

to non-determinism, but let us define verifiers first.

Definition 6.2.2. A verifier for a language A is an algorithm V, such that w is in A

if and only if there exists a string c (called certificate) such that V accepts the input

(w,c). A polynomial time verifier runs in polynomial time in the length of w.

Building on that definition, we define:

Definition 6.2.3 (Non-Deterministic Polynomial Time). The class NP is the class

of languages that have polynomial time verifiers.

Going back to the is-Bipartite language. Given a graph G, the certificate in that

case would be a 2-Partition of the nodes in G and a spanning tree over the nodes in G

to prove connectedness. This said, we may devise a polynomial time algorithm such

that given a pair (G, (p, T)) as input, where G is a graph, p is a partition of the vertex

set of G and T is a subgraph of G, accepts the input if only if p is a 2-Partition of G

and T is a spanning tree of G. We have that is-Bipartite belongs to NP. Equivalently,

we may define the class NP as follows.

Proposition 6.2.4. A language is in NP if and only if it is decided by some nonde-

terministic polynomial time Turing machine.

Proof. We shall only give out a sketch of the proof. The idea is rather simple. If

a language A is in NP, then it has a polynomial time verifier V. We can construct

a TM that non-deterministically goes over all possible certificate, and tests each

candidate with V along one branch. Conversely, if a language A is decided by some

nondeterministic polynomial time Turing machine, we may construct a polynomial

time verifier as follows. Given an input (w, c) where both w and c are strings, run the

non-deterministic Turing machine treating c as a description of the non-deterministic

choices to make. If along those choices the machine accepts w, the algorithm accepts

(w, c). E

From this, we see that P is a subset of NP. The famed open question is whether NP

is a subset of P. Let us give out a different language in NP that is of different nature
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than is-Bipartite. Consider the language CLIQUE to be { (G, m) : G is an undirected

graph having a clique of size m as subgraph }. In this context, given a graph G, a

certificate would be a set of m vertices in V(G) forming a clique in G. A polynomial

time verifier may be easily devised for this language, and so CLIQUE belongs to NP.

The reason why we mention CLIQUE is that some problems in NP have a complexity

that is related to the entire class, by this we mean that if a polynomial time algorithm

exists for any of these problems, one exists for all the problems in NP. Such problems

are called NP-Complete. We formalize the idea.

Definition 6.2.5. A function f from E* into E* is a polynomial time computable

function if some polynomial time Turing machine M exists that halts with just f(w)

on its tape, when started on any input w.

Definition 6.2.6. Language A is polynomial time mapping reducible, or simply poly-

nomial time reducible, to language B, written A <p B, if a polynomial time com-

putable function f from E* into E* exists such that w G A if and only if f(w) G B.

The function f is called a polynomial time reduction of A to B.

Definition 6.2.7. A language B is NP-hard if every A in NP is polynomial time

reducible to B.

Definition 6.2.8. A language B is NP-complete if B is in NP and B is NP-Hard.

Usually, to check that a language C is NP-complete, we do not directly show that

every problem in NP may be reduced to C. We make use of the following:

Theorem 6.2.9. If B 'is NP-complete and B <p C for C in NP, then C is NP-

complete.

Proof. The only fact that needs to be checked is that every A in NP is polynomial

time reducible to C. Let A be a language in NP. Since B is NP-complete, then A

is polynomial time reducible to B. Let f be a polynomial time reduction of A to B.

We also know that B <p C. Let g be a polynomial time reduction of B to C, the

composition g o f is then a polynomial time reduction of A to C. D
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However to be able to use that theorem, we need a repertoire of NP-hard problems.

We present some:

Definition 6.2.10. The language SAT is the collection of boolean formulas that have

a satisfying assignment.

The following is due to the work of S. Cook and L. Levine in the early 1970s:

Proposition 6.2.11. SAT is NP-Complete.

Deciding satisfiability remains hard even if we restrict the set of boolean formulas

as follows:

Definition 6.2.12. A boolean formula is in Conjunctive Normal Form (CNF) if it

is a conjunction of disjunction clauses. Formally, let x 1,..- x,, be boolean variables,

a boolean formula # is in CNF-form if # is written as

m

#(x1, - xn) = (yo, V -.-. V yi,k,.)
i=1

where for each m, km is a positive integer, and y. represents either xi of -,xi for some

i. 3 For each possible i and j, yi,, is called a literal. For each m, the disjunction of

literals (yi,1 V ... V yi,km) is called a clause.

We may define the following problem:

Definition 6.2.13. The language 3SAT is the collection of boolean formulas having

a satisfying assignment, that which in CNF consist of clauses having at most three

literals.

Proposition 6.2.14. 3SAT is NP-Complete.

We proceed to overview function problems.

3Let x be a boolean variable, then -,x is the negation of x, i.e. -,x = 1 if and only if x = 0.
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6.3 On Function and Counting Problems

Function problems would roughly include problems of the form: given some input w,

compute f (w). This said, it would be useful to keep in mind a different character-

ization of functions in general. We define a rule of assignment is to be a relation r

subset of some product set C x D where for every c in C there exists a unique d in D

such that (c, d) belongs to r. The set C is considered to be the domain of r, the set

{d E D : (c, d) c r for some c in C} is said to be the range of r. A function f is then

a rule of assignment r along with a set B containing the image set of r. The domain

of the rule r is the domain of f; the image set of r is the image set of f. The set B

is the range of f. With this in mind, we provide the following definition:

Definition 6.3.1. A (binary) relation R c E* x E* is said to polynomial bounded if

and only if there exists a real polynomial p such that for all x and y in E*, if xRy

then |y| < p(|x|).

The above definition also extends to functions. A function f is then polynomial

bounded, if and only if there exists a real polynomial p such that for every x in domain

of f, jf(x)I < p( x ). We now go on to formally define function problems.

Definition 6.3.2 (Function P). A polynomial bounded (binary) relation R C E* x E*

is in FP if and only if there exists a deterministic Turing machine such that given

an x in E*, if there exists some y in E* where xRy, it outputs such a string y, else it

outputs 'no'.

Definition 6.3.3 (Function NP). A polynomial bounded (binary) relation R C E* x

E* is in FNP if and only if there exists a non-deterministic Turing machine such

that given an x in E*, if there exists some y in Z* where xRy, it outputs such a string

y, else it outputs 'no'.

The terminology of function is a bit misleading in the sense that given an x, several

y might satisfy xRy. We move to counting problems.
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Definition 6.3.4 (Counting Problems). Given a (binary) relation R C E* x E*, the

counting problem #R associated with R is the function from E* into N such that for

x in E*, #R(x) = I{y E E* : xRy}|.

We now define the class #P.

Definition 6.3.5 (#P). Given a polynomial bounded (binary) relation R C E* x E*,

the counting problem #R is in #P if and only if there exists a deterministic Turing

machine M that can decide R in polynomial time.

Put differently, the class #P is the class of counting problem associated with

languages in NP. The class #P was initially introduced by L. Valiant in 1979. We

shall give a natural alternate definition, we define a counting Turing Machine as

defined in Valiant's paper (see [15]).

Definition 6.3.6. A counting Turing machine is a non-deterministic TM with an

auxiliary output device that prints in elements of E on a special tape the number of

accepting computations induced by the input. It has (worst-case) time complexity f (n)

if the longest accepting computation induced by the set of all inputs of size n takes

f (n) steps (when the TM is regarded as a standard nondeterministic machine with no

auxiliary device).

The class #P is then defined as follows:

Definition 6.3.7. A function f is in #P if it can be computed by a counting Turing

machine with polynomial time complexity.

We would expect a function f to be #P-Hard, if it is at least as hard as any

function in #P. From this perspective, suppose we already know that a function g is

#P-Hard, given a function f, if we can reduce the problem of computing the function

g to simply computing the function f and derive the value of g from that of f, we

should be able to prove hardness of f. However, we need one specific ingredient,

in that if we happen to have an answer for f, we can compute the answer for g in

polynomial time. Thus, if f can be computed efficiently, we would know that g can

be computed efficiently contradicting the fact that g is #P-hard.
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The notion of reduction that will be used is one by oracles as described in [15].

An oracle can be thought of a black-box that can answer queries in one time step.

An oracle Turing machine is Turing machine with a query tape, an answer tape, and

some working tape. To consult the oracle, the Turing machine prints a string on the

query tape and, on going into a special query state, an answer is returned in unit

time on the answer tape, and a special answer state is entered.

Definition 6.3.8. An oracle Turing machine is said to be in FP, if and only if for

all polynomial bounded oracles, it behaves like a machine in FP.

If M is a class of oracle TMs, and f a polynomial bounded function, then we

denote the class of function that can be computed by oracle TMs in M with oracles

for f, by Mf.

Definition 6.3.9. A polynomial bounded function f is #P-Hard if and only if #P

c FPf. A polynomial bounded function f is #P- Complete if and only if #P C FPf

and f belongs to #P.

In other words, f is #P-Hard if and only if for every function in #P, there exists

an oracle Turing machine from FP with oracle for f that can compute it. Given a

counting problem #R, to prove that #R is #P-hard, it would be enough to find a

problem that is #P-hard, and then reduce this problem to #R. Reduction should be

done in such a way that, the construction of the new problem is in polynomial time,

and computing the output from the output is in polynomial time. This done, given

an oracle TM that has oracle #R, we can compute the other function in polynomial

time contradicting Hardness.

It would suffice to mention three counting problems that would be of interest in

this thesis. We define the following counting problem:

Definition 6.3.10. The counting problem #3SAT takes < $ > as input where $ is

a boolean formula in 3-CNF and computes the number of satisfying assignments.

Proposition 6.3.11. #3SAT is #P-Complete.
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Proof. The fact that #3SAT belongs to #P is rather trivial since deciding the lan-

guage consists of plugging in the values of the variables and checking if it satisfies

the formula. Hardiness follows from the fact that 3CNF is NP-hard. Any polynomial

time algorithm used to compute #3CNF may be trivially used to check whether this

formula has a satisfying assignment or not. E

One interesting feature is that many decision problems that are easy, have hard

counting version. In what follows, we identify a problem that is to be used.

Definition 6.3.12. A boolean formula in CNF is monotone if no clause contains a

negation of a variable.

Definition 6.3.13. The counting problem #monotone-2SAT takes < $ > as input

where $ is a monotone boolean formula in 2-CNF and computes the number of satis-

fying assignments.

Proposition 6.3.14. #monotone-2-SAT is #P-Complete.

Proof. See [16]. El

Definition 6.3.15. A boolean formula is in Disjunctive Normal Form (DNF) if it is

a disjunction of conjunction clauses. Formally, let X1, --. xn be boolean variables, a

boolean formula @ is in DNF-form if $ is written as

m

$(xi - n - -, ) V (yi,1 A ... A Yi,km) (6.2)
i=1

where for each m, km is a positive integer, and the literal y. represents either xi of

-xi for some i.

Definition 6.3.16. A boolean formula in DNF is monotone if no clause contains a

negation of a variable.

We now prove that the DNF case is also hard.

Definition 6.3.17. The counting problem #monotone-2DNF takes < $ > as in-

put where $ is a monotone boolean formula in 2-DNF and computes the number of

satisfying assignments.
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Lemma 6.3.18. #monotone-2-DNF is #P-Complete.

Proof. Let # = AiL(yi V zi) be a monotone 2-CNF formula. Then the number

of satisfying assignment of # equals the number of non-satisfying assignment of

V i-(,yi A -z) which in turn is equal to the number of non-satisfying assignments

of \/i(yj A zi) by monotonicity and symmetry. Finally, V 1 (yj A zi) is a monotone

2-DNF, and clearly the number of non-satisfying assignments equals 2" minus the

number of satisfying assignments. F

We turn back to our model.

6.4 The Complexity of Counting Cycles and Fixed

Points

We characterize the number of equivalence classes, fixed points and cycles of length

two. To this end, we define three counting problems: one for each.

Definition 6.4.1. The counting problem #CYCLE takes < n, G, k > as input, where

n is a positive integer and (G, k) belongs to 9, x IC, and outputs the cardinality of

CYCLEn(G, k)

Definition 6.4.2. The counting problem #FIX takes < n, G, k > as input, where

n is a positive integer and (G, k) belongs to gn x Kn, and outputs the cardinality of

{C E CYCLEn(G, k) : |C|= 1}

Definition 6.4.3. The counting problem #2CYCLE takes < n, G, k > as input,

where n is a positive integer and (G, k) belongs to gn x Cn, and outputs the cardinality

of {C G CYCLEn (G, k) : |C| = 2}

Note that in this setting, given an input < n, G, k >, the output of #CYCLE is

equal to the sum of the outputs of both #FIX and #2CYCLE when fed with the

same input. Referring to the networked coordination game defined in the primary

model, #FIX refers to counting the number of pure Nash equilibria of the networked

game. We show the following:
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Theorem 6.4.4. #CYCLE is #P-Complete.

Theorem 6.4.5. #FIX is #P-Complete.

Theorem 6.4.6. #2CYCLE is #P-Cormplete.

One has to be subtle towards what such result entails. This result does not imply

that no characterization of the number of cycles is possible whatsoever, but rather

that we would be unable to get an arbitrarily refined characterization of that number.

A Note on Encoding: To reconciliate with the language definition provided

earlier: given an input < n, G, k >, we have that n is an integer and can be easily

encoded as a string in {0, 11*, the graph G may be represented by its adjacency ma-

trix, and the function k as an array of non-negative integers taking values less than

n + 2.

For technical insight, we may further note that no result in those three implies

another, and no two results imply the third (or at least that no deduction may be

made simply from the statements above with no additional information whatsoever).

In that we mean, if it is hard to count the number of fixed points, counting the

number of cycles is not necessarily hard because of set inclusion. As a quick example,

consider counting the number of total action configurations, surely this set includes

the number of fixed points. However, counting them is trivial given the network size.

Similarly, no hardness can directly be deduced by the fact that #CYCLE outputs

the sum of #FIX and #2CYCLE when all the counting problems are fed with the

same input. To illustrate quickly, consider counting the number of non-fixed point

action configurations, this problem is hard since counting the number of fixed points

is hard itself, however counting the number of fixed-points and non-fixed-points is

again trivial given the size of the network.

We will prove our results as follows, we will restrict our input to only bipartite

graphs. Within this restricted space, those three problems share a common ground

that will be stated in two lemmas to follow. Mainly, either all of them are hard, or
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none of them is hard. We then prove the three theorems in one instance by showing

that with restricted inputs one of the problems is #P-Hard.

Building on the framework defined in Chapter 4, we begin by this crucial obser-

vation.

Lemma 6.4.7. Let n be a positive integer, (G, k) be in g, x kn with G = (1, E) and

(P, Pe) a 2-Partition of In with respect to G. For a in An, a is a fixed point of Gk

if and only if a is a fixed point of Gk p,Gk kP,

Proof. It is clear that, if Ga = a, then Gk lpa = Gkela = a and so a is fixed

point of GklPeGklp. To show the converse, suppose that GklpeGklpa = a, then

(GkPGklp a)j - a1 for all i in In. If i is in P, it follows that (Gklpa)i - ai since

Gk le, cannot modify aj, and so Gk P(a) = a since (Gk pa) = ai for i in Pe. It follows

that Gk P,(a) = a. But (Gka)i = (Gkjplya)j if i is in P, and (Gka) = (Gk lpa)i if i is

in Pe. Therefore, Gk(a) = a. E

With this in mind, we may proceed to the following curcial lemma.

Lemma 6.4.8. Let (G, k) be in g x IC and let F be equal to FIXn(G, k) , then

|2CYCLEn(G, k) = F(F - 1)/2 and |CYCLE,(G, k)| = F(F - 1)/2 + F.

Proof. Let (G, k) be in gb XC with G = (I, E) and (P, P) be a 2-Partition of In

with respect to G. To prove the result, it would be enough to construct a bijection

from the set of non-degenerate cycles in CYCLEn(G, k) (having a cardinality equal

to 2) to {(a', a") c FIXn(G, k) 2 : a' / a"}. To this end, consider two distinct

elements a' and a" in FIX,(G, k). By Lemma 6.4.7, we know that a' and a" are fixed

points of GlpGkPO. Construct ai = (a" [P, a'rPe) and a 2 = (a'[Po, a"[Pe). We get

that {ai, a 2 } is a non-degenerate cycle in CYCLE,(G, k). Indeed, Gkal = a2 and

Gka2 = a1 . Finally, clearly the map

(a', a") - ((a" LPo, a'rPe), (a'rPo, a"[Pe))

is bijective. The result follows for 12CYCLEn (G, k) from the fact that a cycle
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in CYCLE,(G, k) is an unordered pair of action configurations. The result for

CYCLEn(G, k)| is then immediate. D

This lemma states that we need only prove the result for counting fixed-points

over bipartite graphs. We begin by a technical lemma.

Lemma 6.4.9. Consider a graph (G, k) in gn XiCn where G = (In, E). Suppose that

there exists P, and Pc disjoint subsets of In such that k is equal to 2 on P, U Pc and

" The cardinality of Ps is exactly equal to 3.

" The cardinality of Pc is greater than or equal to 3.

* For all (s, c) in P, x Pc, we have sc C E.

" For each s in P, there exists no node j in In\Pc such that sj G E.

" Every node in Pc has degree less than or equal to 4.

If a in A, is a fixed point of Gk, then a can take only one value over Ps U P.

Proof. Let a be a fixed point of Gk, and suppose there are at least two nodes i and

j in Pc such that, ai = a3 = B. Since a is a fixed point, a is equal to B on P, it then

follows that a is equal to B on Pc. Similarly, suppose there is at most one node i in

Pc such that ai is B. Since a is a fixed point, a is equal to W on P, it then follows

that ai = W, contradicting the assumption.

Let us define #bipartite-FIX to be the counting problem #FIX while restricting

an input < n, G, k > to have G being a bipartite graph in !9. We get the following

theorem:

Theorem 6.4.10. The counting problem #bipartite-FIX is #P-Complete.

Proof. Clearly #bipartite-FIX is in #P, an action configuration can be easily verified

to be a fixed-point in polynomial time. Let # be a monotone 2-DNF formula of m

clauses and n literals x 1 ,--- , x,. Namely,

m

#(li, , Xn) = V(xyc A x,), (6.3)
C=1
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where y and z are maps from {1, - - - , m} into {1, - - - , n}. Without any loss of gener-

ality we will assume that all literals appear in the formula, otherwise we can reduce

it to formula having a fewer number of literals. Moreover, if a clause consists on only

one literal x, we will write it as x A x.

We construct a graph G(I3(n+2m+m+1), E) of size 3(n

We consider '3(n+2mm+1) and label the players as

Ss1, s 2s i for p E I, - -, n}.

y 2, y, y z z2 for c ,m}.

* blb , b 3for c E {1, ...

+ 2m + m + 1) as follows.

,m}.

* d1,d2, d.

We now let the edge set E contain the following edges:

Sbly1 and bzi for all 1 E {1, 2, 3} and cc {1, ,m}.

*dbl foralll E {1,2,3} andc E{1, ... ,m}.

SyCyC if Yc =yc, for c,c' in {1,- , m} and 1,1' in {1,2,3}, c7 c' or 1 1 '.

SzCzC if ze = zc' for c, c' in {1, - ,m} and 1,1' in {1,2,3}, c 5c' or 1$ l'..

SyCzC if ye= zc, for c,c' in {1,.- ,m} and 1,1' in {1,2,3}.

1 s* if Yc = p for p in {1, ... , n}, c in {1, , m} and 1, ' in {1, 2, 3}.

We define k in IC3(n+2m+m+1) such that k is equal to 2 everywhere on '3(n+2mf+m+1)

except at d',d 2 and d3 where it is equal to 1.

Let f be an assignment for #. Define Af to be the subset of FIX 3 (n+2m+m+1) (G, k)

such that for a in Af,

* a(y ) = B iff f (y) = 1, for c in {1,-- ,m} and I in {1, 2, 3},

ea(z') =B iff f(zc) = 1, forcin {1,-,m} and I in {1,2,3}.
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We claim three things. First, for every satisfying assignment sat of #, the cardi-

nality of Asat is equal to 1. Second, If 0 is the all zero assignment of #, the cardinality

of AO is equal to 1. Third, for every non-satisfying assignment nsat of # different

than the all zero assignment, the cardinality of Ansat is equal to 8.

Let sat be a satisfying assignment of #, namely a mapping sat from {1, - -, n}

into {0, 1} such that #(sat) = 1. For a in Asat, all nodes corresponding to the same

literals have the same action, and by lemma 6.4.9, since a is a fixed point, all s' have

the same color as the nodes connected to them. Since sat is a satisfying assignment,

at least one clause is satisfied. Let that clause be Csat. It then follows that since a is

a fixed point, b1 is B, and so d' is B. All other actions are then deterministically

set. Therefore, Asat ={a}.

In the case of the all zero assignment 0, let a be an element of A0 . Again, all

nodes corresponding to the same literals have the same action, and by Lemma 6.4.9,

all s' have the same color as the nodes connected to them. The assignment 0 is

non-satisfying, therefore d' is W. It then follows the all nodes in the graph are W.

Therefore Ao {a}.

Finally, let nsat be a non-satisfying assignment of # different than the all zero

assignment, and let a be an element of Ansat. First we have that all s' have the same

color as the nodes connected to them. Since nsat is not the all zero assignment, there

exists c such that either y' is B or z' is B. Pick 1 in {1, 2, 3}. Suppose that al is B

then b1 is B and the color of all bl, with c $ c' are deterministically set. Suppose that

al is W then bl, is W for all c'. Therefore, |Ansat|= 8.

For assignments f and f' for #, clearly if f # f' then Af n Af, = 0. It also follows

from Lemma 6.4.9 that for any fixed point a of Gk, there exists an assignment f of

# such that a C Af. Indeed all the nodes corresponding to the same literal share the

same color. Then consider a set of n nodes corresponding to the different literals (such

a set exists since we assumed that all literals appear in the formula), the coloring of

those nodes translates to an assignment f of # such that Af contains the fixed point

considered.

Let #sat and #nsat be respectively the number of satisfying and non-satisfying
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assignments of <5. Let F be the cardinality of FIX3(n+2mm+ )(G, k), then

#sat + #nsat = 2" and #sat + 8(#nsat - 1) + 1 = F.

The graph can be constructed in polynomial time, the system of equation can also

be solved in polynomial time. 0

If we define #bipartite-CYCLE and #bipartite-2CYCLE to be respectively the

counting problems #CYCLE and #2CYCLE while restricting an input < n, G, k >

to have G a bipartite graph in Gn, we arrive to the following corollaries.

Corollary 6.4.11. #bipartite- CYCLE is #P-Complete.

Proof. Combine Lemma 6.4.8 and Theorem 6.4.10. D

Corollary 6.4.12. #bipartite-2 CYCLE is #P-Complete.

Proof. Combine Lemma 6.4.8 and Theorem 6.4.10. E

The results stated in theorem 6.4.4, 6.4.5 and 6.4.6 hold then by inclusion. We

can even claim stronger statements, notice that we only used k equal to 1 or 2. Even

more, we could make the construction by restricting k to be only equal to 2 everywhere

only by doubling the number of nodes in the graph. In some sense, the complexity

is not truly coming from the heterogeneity of the threshold, but rather from the

threshold rule and the network complexity. To formalize the idea, let us denote

by #2-bipartite-FIX, #2-bipartite-CYCLE and #2-bipartite-2CYCLE respectively

the counting problems #bipartite-FIX, #bipartite-CYCLE, and #bipartite-2CYCLE

while restricting an input < n, G, k > to having both G a bipartite graph in G' and

k equal to 2 on all nodes. We get:

Theorem 6.4.13. The counting problems #2-bipartite-FIX is #P-Complete.

Proof. The proof follows exactly from that of Theorem 6.4.10, however we will first

make two copies of the obtained graph and threshold distribution. We then pair the

nodes having a threshold equal to 1 and connect each pair with an edge. We finally
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contract the edges in each obtained pair: each pair becomes a single node. We finally

impose a threshold equal to 2 on those new formed nodes. E

Corollary 6.4.14. #2-bipartite- CYCLE is #P-Complete.

Proof. Combine Lemma 6.4.8 and Theorem 6.4.13. E

Corollary 6.4.15. #2-bipartite-2CYCLE is #P-Complete.

Proof. Combine Lemma 6.4.8 and Theorem 6.4.13. E

General graph structures incur a good amount of complexity, however ordered

graph structure can fairly tractable. In what follows we revisit the case of the complete

graphs and show that counting over complete graphs is in FP.

6.5 Counting on Complete Graphs

We show that counting cycles, fixed points and non-degenerate cycles are in FP when

the graph structure is restricted to complete graphs. We shall not provide algorithm,

we would settle on providing enough lemmas and insight to be able to fill up any gap

leading to a construction of an algorithm.

Given a pair (G, k) in g xIC, where G is a complete graph, recall that an action

configuration a in A, belongs to Bk if and only if for every player i in 1, if player

i plays B in a, then each player j with kj < ki plays B in a. Moreover, recall that

a E Bk is said to be at level L if and only if some node i in I is playing B in a

and every node j having kj > L is playing W in a. If a is W everywhere, it is said

that a is at level -1. Furthermore, from Proposition 5.3.2, we know that each action

configuration a in Bk is at some level L in {-1} U N. Therefore, given a pair (G, k), if

we define AL to be the collection of action configuration in Bk at level L, for a finite

subset L in {-1} U N, the set AL = {AL : L E L} partitions Bk. Moreover, since

we have n players, L can be chosen in suth a way that JAL = O(n). Indeed, each

threshold value would correspond to one level L and -1 is appended to the set.
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We shall consider such a collection L where AL is non-empty for each L in L. First,

we note that since Gk(a) - Bk, then the fixed points and non-degenerate cycles consist

only of action configurations in Bk. It follows by definition that each fixed point is at

only one level, and each non-degenerate cycle contains action configurations at only

one level. To show that the problem is in P, we first show that each level can be the

level of at most one fixed point, and each level can contain action configurations of at

most one non-degenerate cycle (up to isomorphism). We shall formalize those facts.

Proposition 6.5.1. A level L in L can be the level of at most one fixed-point of Gk.

Proof. If L = -1 the result trivially follows. We assume that L $ -1. Suppose that

a and b are two fixed-points of Gk that are at level L, then necessarily each node i

in L14 with threshold ki < L plays B in both a and b. Furthermore, each node i in 1L,

with threshold ki > L plays W by definition. It follows that a = b. D

Proposition 6.5.2. If a level L in L is the level of some action configuration in a

non-degenerate cycle, it is the level of action configurations of (U ) /2 non-degenerate

cycle of Gk where m = k- (L).

Proof. First, each non-degenerate cycle contains action configurations at levels differ-

ent than -1. All nodes playing W can only be a fixed-point. This said, we suppose L

is different than -1. It is simple to see that every non-degenerate cycle contains action

configurations in at most one level. Furthermore, assume that L is the level of some

action configuration in a non-degenerate cycle. A non-degenerate cycle can exist at

level L only if k- 1(L) is even by Proposition 4.2.5. In that case, every non-degenerate

cycles contains action configurations that are B on half of the nodes having threshold

L and W on the other half. Furthermore, each non-degenerate cycle would consist of

two action configuration such that a' / a2 for all i. If m = k- 1(L), we would have

( ) /2 such non-degenerate cycles. D

Define Lmax = max L. For L 7 Lmax in L, define L+ to be the smallest L' in L

greater than L. Furthermore, for every L in L, define SL to be the number of nodes

having threshold less than or equal to L.
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Proposition 6.5.3. The level Lmax is a level of a fixed-point if and only if Lmax < n.

Proof. The only candidate to be a fixed-point at level Lmax is the action configuration

where all nodes are playing B. This configuration can only be sustained if Lmax < n.

Conversely, if Lmax < n, all nodes playing B is clearly a fixed-point. E

Proposition 6.5.4. A level L / Lmax in L is a level of a fixed point if and only if

L+>SL and SL-1>L.

Proof. If L+ > SL, then if a is at level L, Gka is at a level less than L+. If SL - 1 > L,

if a E Bk is such that all players at level L are playing B, then Gka is necessarily at a

level greater than or equal to L. Having those two conditions imply that if a E Bk is

at level L in such a way that all players at level L are playing B, then Gka = a. The

converse is straightforward. U

Proposition 6.5.5. A level L is a level of action configurations in a non-degenerate

cycle if and only if m =|k-1 (L) is even, and SL - m/2 = L - 1.

Proof. The proof follows from Proposition 4.2.5. El

To end the section, checking if a level L is a level for either fixed points or action

configurations of non-degenerate cycles may be done in 0(n). Using the propositions

presented, we can in 0(n) steps go over each level in L and count the number of

fixed-points and non-degenerate action configurations residing in each.

Restricting the counting to graph structure being cycle graphs and trees with

bounded degrees can be also shown to be in FP, though we will not provide any

details.

6.6 On Reachability and Counting Predecessors

A different question of interest is to decide whether given a graph structure G, a type

distribution k and some action configuration a, the action configuration a is reachable

from some configuration b. We define the following:
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Definition 6.6.1. The language PRED consists of all 4-tuples < n, G, k, a >, where

n is a positive integer, (G, k, a) belongs to gn x Cn x An with Gk(a)-' 0.

We get the following result:

Theorem 6.6.2. PRED is NP-Complete.

Proof. First, clearly PRED is in NP. We now perform a reduction from 3SAT. Let #
be a 3-CNF formula of m clauses and n literals x,--- , xn. Namely,

m

#(zi, -- Xn) = A(yc v we v zc) (6.4)
c=1

We construct an undirected graph G(I4n+m+1, E) as follows. We consider 4n+m and

label the players as

* v v' for 1 < p < n.

* sc for 1 < c < m.

* U.

We let E contains the following undirected edges:

* opVp, opv', tyv,, and tyv' for all p.

* scv if and only if Xp E {ycl we, zc} and sco' if and only if ,- E {yc, we, zc} for

all p and c.

* uvp and uv' for all p.

We define k in C4n+m+1 to be equal to 1 everywhere on '4n+m+1 except at ti, - - - , tm

where it is equal to 2. Finally, construct a in A4n+m+1 such that a is B on '4nm+1

except at ti, -, tm where it W. We claim that there exists b in A4n+m such that

a = Gkb if and only if # is satisfiable. To see that, suppose such a b exists. We

have that vp and v' represent the variable Xn and its negation -,Xz respectively. The

node op being B enforces either v, to be R or v' to be B, tp being W enforces either

v, to be W or to be W. It follows that v, and o' are of opposite colors in b.
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Finally, sc being B enforces that clause c is satisfied. The node u is only needed to

ensure connectedness of the graph. To prove the converse, suppose # has a satisfying

assignment, let sat be such an assignment. Construct b as follows: make b equal to B

everywhere on 4n+m+1 except on v, and ' for all p. Finally, set b, = B if and only

if x, = 1 and by; = B if and only if x, = 0 for all p. Finally, the construction of the

graph is done in polynomial time. E

Given a graph structure G, a type distribution k and a configuration a, suppose

we want to compute the number of configurations b from which a can be reached by

applying Gk only once on b. We define

Definition 6.6.3. The counting problem #PRED takes < n, G, k, a > as input,

where n is a positive integer and (G, k, a) and outputs the cardinality of Gk (a).

As a corollary from the hardness of PRED, we get:

Corollary 6.6.4. #PRED is #P-Complete.

However, suppose that we restrict the counting to only the action configurations

that are reachable from some action configuration. Specifically, we restrict the count-

ing to only the elements in PRED. From this perspective, we are computing the

'fan-in' of given configuration.

Definition 6.6.5. The counting problem #reachable-PRED takes < n, G, k, a > as

input, where n is a positive integer, (G, k, a) belongs to g x ICn x An and Gk(a)-1 # 0

then outputs the cardinality of G--1 (a).

We get the following result:

Theorem 6.6.6. #reachable-PRED is #P-Complete.

Proof. First, the fact that #reachable-PRED belongs to #P is clear. We now perform

a reduction from #monotone-2-CNF. Let # be a Monotone-2-CNF formula of m

clauses and n literals xi,--- , x,. Namely,

m

#(xi, ,xn) A (yc V zc), (6.5)
C=1
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We construct a graph G(In+m+1, E) as follows. We consider the set Inm+1 and label

the nodes as follows vi , , ui, ... a m and d. Construct the E in such a way that,

ucv in E if and only if x, appears in clause c. Finally we let dv belong to E for

every p. Define k in ICn+m+1 to equal to 1 everywhere on In-n+1 except at ul for all

I where it is equal to 2.

Let a be the action configuration in An+m+1 such that a is equal to B everywhere.

Clearly a is reachable in (G, k) since it is a fixed-point. We claim that the number of

configurations preceding a, i.e. |Gk1 aI is equal to the number of satisfying assignments

for <. To show that we set up a bijection from Gk'a into the set of satisfying

assignment. Let b be any action configuration in Gk4 a, then necessarily b is B on

ua for all 1 and on d. Any coloring configuration on the v, and v' nodes that would

induce an action configuration in Gk 'a is actually a satisfying assignment, and any

satisfying assignment translates as a coloring on the v, and o' nodes that yields an

action configuration in Gk7a. Finally, clearly #reachable-PRED is in #P. EO

We transition to the resilience analysis context in the next chapter.
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Chapter 7

Resilience of Networks

In this section, we revert back to the primary model (see Section 2. 1)where we consider

types instead of thresholds, namely Q, instead of Cn. All the needed definitions in

this thesis including Kn naturally extend to the set Qn. Mainly, for G(In, E) in g,

and q in Qn, we denote by Gq the map from A, into An such that for player i,

(Gka)i = B if and only if at most qidi players are in a-1 (B) nA.

7.1 The Resilience Measure

We consider the following resilience problem. Define | to be the map from Q, into

R such that, for q in Qs,

||Jq| =I, qj.

We restrict the analysis in the thesis to the map ||.11. Let K be a positive integer,

we denote by AfK the subset of A, such that, a is in A [ if and only if the cardinality

of a- (B) is at most K. We denote respectively by Wn and B" the (constant) action

configurations in An mapping each player in -En into W and B respectively. Recall

that for a and b in An, we have bRcqa if and only if b = G'a for some non-negative

integer m (See Chapter 3). Given a graph G in Gn, we define Q9 ,K to be the subset

of Qr such that for every q in QG,K and a in AfK, we have W"R'Gqa . We define
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pu(G) to be the resilience measure of a graph G with respect to K deviations to be

p' (G) = inf{ ||q||H : q C QGK }.

Note that without any loss of generality, we may assume that for any q in Q GK, qi is

of the form m/di for 0 < m < di.

We explain the problem formulation. Given a graph structure G and a positive

integer K, we suppose that at most K players in the network start playing action B.

The goal is to allocate a type distribution q over the players, so that the dynamics

depicted in Proposition 2.1.1 lead the agents to play action W at the limit. From this

perspective, the measure y captures the minimal cost of type investment required to

recover the network G from a perturbation of magnitude K. In this sense, the lower

the resilience measure is for a graph G, the more robust G is against perturbations,

in that we mean the less costly it is to allocate types to have G recover. We prove

some bounds.

7.2 On Lower Bounds

We prove lower bounds on the resilience measure.

Theorem 7.2.1. The resilience measure pn[is greater than or equal to 1 for every

positive integer K < n.

Proof. Without any loss of generality, we may assume that K = 1. Let G(In, E) be

a graph in gn, and set dmax = n - 1 - m = maxiE di, for some non-negative integer

m < n - 1. Let q in Qn be given, and let k be the number of zero coordinates in q,

namely the cardinality of q-1 (0). If k = n, then at least two nodes i and j with zero

qi and qj satisfy ij C E, and it would follow that q ( QG,. We then have k < n.

Every player i with qj = 0 will add 1/dj to every q, with j in N(i. If m + 1 > k

then n - k > dmax and since q-'(0) has cardinality k, we get

1 > n - k >1.
dmax
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Suppose that m + 1 < k, then there exists at least one player that is connected to

n-rn-I players, or put differently, that leaves m players not connected to it. Suppose

that player i with di = dmax has qi = 0, it would follow that |ql|1 > dmax/dmax > 1.

So assume that at least some player i with di = dwax has qi > 0. Then the players in

q-'(0) can be connected to at most 1 + m distinct players, one of them being player

i, and so

k + n-(m+1) >
dmax dmax

We show that the bound is tight.

Proposition 7.2.2. This bound is achieved by the star graph Sn for all n and K.

The star graph Sn is the unique optimal solution for K > 1.

Proof. To show that the bound is achieved by the star network, allocate types on the

graph such that the node with degree n - 1 has a type of 1 and the rest a type of 0.

We now prove uniqueness for K > 1.

Given n, suppose dmax= n - m - 1, and let k be the number of zeros in the graph.

If m + 1 > k, we are done since

li >n-k >1. (7.1)
dmax

So suppose m + 1 < k, and suppose we can minimally cover those k nodes with p

nodes. That is, let S be a subset of V(G) having the smallest cardinality, such that

each node of those k nodes is connected to a node in S. We suppose that S = p.

Then 1 < p < m + 1. If p = 1, we have the case of the star network. So suppose

p > 1, then

Hqjj > k n-k-p> n-p
dmax dmax dmax

Therefore, if p < m + 1, we have that ||q||1 > 1. We then suppose p = m + 1.

Furthermore, we suppose two of the nodes in S are connected by an edge. Since

101



K = 2, one of those nodes (call it i) has a type equal to at least 2/di, and so:

k 1 n-k
|ql ±> + + >1.

dmax dmax dmax

Finally, suppose none of those two nodes are connected, then each can have a maxi-

mum degree of n - 1 - m - 1, since each node is not connected to the m others and

at least one of the zeros is not connected to it. It follows that:

k n - k
|qli > + > 1.

dmax - 1 dmax

For K = 1, the complete graph is also an optimal solution.

7.3 On Upper Bounds

Theorem 7.3.1. The resilience measure piis less than or equal to n/2 for every

positive integer K < n.

Proof. Without any loss of generality, we may assume that K = n. In this case, the

players start by playing the action configuration IB", and we need all the players to

play W at the limit. Impose a strict order relation < on I, such that for every i and

j in In,

i < j if di < dj. (7.2)

It is to note that the statement in (7.2) is not an only if statement. The case where

di = dj is taken care of by the fact that < is a strict order. We construct q as follows:

for i in I, set

qj Z d7 1.
jENr:j<i

We are iterating over all edges i, j, and adding dj 1 to qk of player k in {i, j} that has

the highest degree, or if the degrees are equal that is the tie breaker set by the order

relation <.
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Then, the type distribution q is in QGn" To show that, we set up an order

preserving bijection r-' from (In, <) into ({1, ... , n}, >), and we refer to player r(k)

as simply player k, for k in {1, ... ,n}. So player 1 refers to the 'largest' player. We

claim that player k will be playing W after applying G'. We prove this by induction.

Player 1 will have necessarily have q,(1) = 1, and so will necessarily play W when we

apply Gq. Suppose the statement is true for player k, we show that the statement is

true for player k + 1. After G', all players k' with k' < k are playing W. Assume

node k + 1 has degree dr(k+1), and suppose it is connected to m players 'smaller' than

it, then it has qr(k+1) = md-j 1, and so it needs more than m neighbors B to play B,

but all the players that are 'larger' than it are playing W, so player k + 1 will play

W when Gk is applied one more time.

Finally, ||qlli < n/2. To prove that, each node i has degree di, and so can

contribute no more than di d = I to ||qfli. If we give each player i a type qj 1,

each edge is then counted twice in the summation, then

iG-En jE~ri ijcE3

A 1 V . (7.3)
ijEE 3j di 3

But by construction, we know that

||qlli A .(7.4)
ijcE d

The result follows since d-1 A d71 < d 1 V d1- E

We show that the bound is tight for large K.

Proposition 7.3.2. This bound is achieved by the 2-regular connected graph Rn for

all n and K > [n/2].

Proof. It would be enough to show that the bound is achieved for K= [n/2] by the

2-regular connected graph.
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Let us consider the case where n is even. We begin by claiming, that for any

distinct i and j in In, if both qi and qj are 0, then for any (vertex) path P from

i to j there exists a node k in In (distinct from i and j) such that k lies on the

(vertex) path and k has a type equal to 1. To prove that, we pick two nodes i and

j, and consider a path (i, iiI -- , im, j) from i to j. Since i and j are distinct, then

m < n -2. We now suppose there are no nodes having a type equal 1 along the path,

then all the types along the path are less than 1. Consider some a in A' such that

ai, ai2 , - ,aim are all B, that is possible since m/2 + 1 < n/2, applying Gq once on a

yields ail, - , aim,, a3 are all B, applying it one more time yields ai, ai2, - -- , aim are

all B again. Therefore, there exists a in AK such that a is not in the same equivalence

class as B", i.e. (B", a) ( RGq*

The second claim is that we need at least one node in the graph having a type

equal to 1, otherwise not all nodes will play W at the limit. To see that, suppose no

such node exists. We construct a in A'[ such that no two neighboring players have

the same action. Applying Gq once on a makes at least all the players that were

playing W play B, and applying it one more time makes the initial players that were

B play B again. Therefore, a does not belong to A.

We cannot have more than n/2 nodes with type 0 in the graph, otherwise nec-

essarily two nodes with type 0 will be connected. Then, suppose we have k nodes

having type 0, we get at least k nodes having type 1 and the rest is 1/2. If we sum

the types, we get n/2.

For the case where n is odd, following a similar argument, we establish that we

should have at least one node with a type equal to 1 in the network. Then, for any

two disjoint players, every (vertex) path connecting the two players should contain

at least one node having a type equal to 1. E

7.4 Resilience of Cycle Graphs and Complete Graphs

We derive the resilience of path graphs, cycle graphs and complete graphs.

Proposition 7.4.1. The path graph Fn of size n has a resilience measure pK(Rn)
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equal to (n - L2K- ])/2 for K < [n/2].

Proof. The nodes at end points of the path have necessarily a type equal to 0. Suppose

no node has a type equal to 1, then types are either equal to 0 or equal to 1/2. Given

that K players start playing B, each two players with type equal to 0 should be

separated by at least 2K players each with type equal to 1/2. If k is the number of

players with type equal to 0, then (n - k)/(k - 1) > 2K. Maximizing (n - k)/(k - 1)

over the number of type 0 nodes, yields k = [2 7KJ. Suppose a node with type 1

exists, we may split the path into two smaller paths, and it can be checked that is

yield only a suboptimal type distribution. E

Proposition 7.4.2. The cycle graph R, of size n has a resilience measure pft n)

equal to (n - ]21)/2 for K < [n/2].

Proof. We first show that there exists an optimal allocation of types that is nowhere

equal to 1 on In. Suppose some node has a type equal to 1, then we can delete that

node and obtain a path. The optimal allocation in that path is one with no node

having a type equal to 1. Therefore, we can only have one node having type equal to

1 if ever. If this node is connected to a node with type equal to 0, we can replace the

two types by 1/2 while keeping a type distribution in Q[. If this node is connected

to two nodes with types equal to 1/2, we can swap the types of one of the neighbors

with the initial node while keeping a type distribution in Q[. We can keep 'moving'

the type equal to 1 till its corresponding node is connected to a node having a type

of 0. We then apply the previous argument.

This said, an optimal allocation need not create a node having type equal to 1.

Let us assume we have such an allocation, and let us determine the maximum number

of type 0 nodes we can include. Repeating a similar argument to that of the previous

proof yields k =2K±1). The result follows. D

Proposition 7.4.3. The complete graph Kn of size n has a resilience measure pn4(Kn)

equal to K(K-1)/2+K(n-K) for all K.

Proof. We consider the type distribution such that 4 equals K/d on exactly n - K

players, and is injective when restricted to the remaining players taking values in
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{O, 1/d, ... , (K - 1)/d}. We claim that 4 belongs to Q[. To see that, we argue as

follows. Each node is initially connected to either K or K - 1 neighboring nodes

playing B. Therefore, the type distribution q equal to K/d everywhere is in QK.

This distribution is however not optimal. We can allow K nodes in Kn to have types

equal to (K - 1)/d, while the rest have types of K/d and keep the distribution in

QK. Let that distribution be q'. Given any initial configuration in AK, after one

application of Gqi, only K of the nodes can play B. The n - K nodes having types

equal to K/d will always play W, therefore we can delete them from the network.

Reapplying the same procedure on the remaining nodes, we can make K - 1 of them

have a type of (K - 2)/d. We keep on iterating till we get the type distribution 4

such that q equals K/d on exactly n - K players, and is injective when restricted to

the remaining players taking values in {O, 1/d, - - - , (K - 1)/d}.

Can we find a type distribution q that belongs to QK such that q < 41. Sup-

pose we can, then building on the tools of Chapter 6 on complete graphs, necessarily

an action configuration in A[ is a fixed-point contradicting the fact that q belongs

to QK. D

To end this chapter, we give a small piece of insight. High degree nodes lower the

resilience measure in the graph. One manifestation of this fact lies in the examples

that meet the bounds. However, if we consider the complete graph, it has a resilience

measure of 1 for K = 1 that grows linearly to n/2 for K = n. This said, although high

degree nodes increase the resilience of a network, having a large number of high degree

nodes in the network makes the network more fragile against large perturbation, and

hence it is more costly to ensure its recovery.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we considered a linear threshold model where agents are allowed to

switch their actions multiple times. We focused on characterizing the behavior of the

dynamics.

We established that in the limit, the agents in the network cycle among action

profiles. We studied the lengths of such cycles, and the required number of time steps

needed to reach such cycles. In particular, we showed that for any graph structure and

any threshold distribution over the agents, such cycles consist of a most two action

profiles. Namely, in the limit, each agent either always plays one specific action or

switches action at every single time step. We also extend those results to multigraph

structures over the players. We also showed that over all graph structure (of size n)

and all threshold distributions no more than mn 2 time steps are required to reach

such cycles, where m is some integer. We also improve convergence time results to be

not more than n steps when the underlying graph is either a cycle graph, a complete

graph or a tree. Our methods follow a combinatorial approach, and are based on

two techniques: transforming the general graph structure into a bipartite structure,

and transforming the parallel dynamics on this bipartite structure into sequential

dynamics.

We also studied the problem of counting the number of cycles (fixed-points and
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non-degenerate cycles), the number of fixed-points and the number of non-degenerate

cycles. We showed that those counting problems are #P-Complete. We further

showed that deciding whether an action profile is reachable is NP-Complete and that

counting the number of predecessors (preceding action configurations) of a reachable

action configuration is #P-Complete.

Finally, in the setting of resilience of networks, we defined a measure PK that

captures the minimal cost of threshold investment required to recover the network

G from a perturbation of magnitude K, whereby we suppose that K agents will

initially deviate from action W and play action IB. We show that this measure is

lower-bounded by 1, and that it is upper-bounded by n/2, where n is the size of

the network. We finally provide an interpretation of how this measure varies with

respect to the network structures. High degree nodes add resilience to the network,

however too many high degree nodes can make the network fragile against strong

perturbations.

8.2 Future Directions

There are several questions that could be undertook, however we shall keep the list

brief. We consider each chapter, and provide one or two questions that could be

further developed. In Chapter 4, it would be interesting to provide a characterization

of the initial configurations that lead to non-degenerate cycles and those that lead to

fixed points. In Chapter 5, we believe we can improve the convergence time bound

for general graphs to be linear in the size of the network. In Chapter 6, it would

be interesting to characterize subclasses of ga xC, where the counting problems are

tractable and devise approximation algorithms if possible for the hard cases. We need

to compute resilience measures for more graph structures in Chapter 7, and mainly

devise a systematic way to compute the measure. We may further consider different

cost functions on the type distribution.
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