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Abstract

The statistical query learning model can be viewed as a tool for creating (or demon-

strating the existence of) noise-tolerant learning algorithms in the PAC model. The

complexity of a statistical query algorithm, in conjunction with the complexity of sim-

ulating SQ algorithms in the PAC model with noise, determine the complexity of the

noise-tolerant PAC algorithms produced. Although roughly optimal upper bounds have

been shown for the complexity of statistical query learning, the corresponding noise-

tolerant PAC algorithms are not optimal due to ine�cient simulations. In this paper

we provide both improved simulations and a new variant of the statistical query model

in order to overcome these ine�ciencies.

We improve the time complexity of the classi�cation noise simulation of statistical

query algorithms. Our new simulation has a roughly optimal dependence on the noise

rate. We also derive a simpler proof that statistical queries can be simulated in the

presence of classi�cation noise. This proof makes fewer assumptions on the queries

themselves and therefore allows one to simulate more general types of queries.

We also de�ne a new variant of the statistical query model based on relative error, and

we show that this variant is more natural and strictly more powerful than the standard

additive error model. We demonstrate e�cient PAC simulations for algorithms in this

new model and give general upper bounds on both learning with relative error statistical

queries and PAC simulation. We show that any statistical query algorithm can be

simulated in the PAC model with malicious errors in such a way that the resultant PAC

algorithm has a roughly optimal tolerable malicious error rate and sample complexity.

Finally, we generalize the types of queries allowed in the statistical query model. We

discuss the advantages of allowing these generalized queries and show that our results

on improved simulations also hold for these queries.
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1 Introduction

The statistical query model of learning was created so that algorithm designers could construct

noise-tolerant PAC learning algorithms in a natural way. Ideally, such a model of robust learning

should restrict the algorithm designer as little as possible while maintaining the ability to e�ciently

simulate these new algorithms in the PAC model with noise. In this paper, we both extend and

improve the current statistical query model in ways which both increase the power of the algorithm

designer and decrease the complexity of simulating these new algorithms. We begin by introducing

the various models of learning required for the exposition that follows.

Since Valiant's introduction of the Probably Approximately Correct model of learning [19], PAC

learning has proven to be an interesting and well studied model of machine learning. In an instance

of PAC learning, a learner is given the task of determining a close approximation of an unknown

f0; 1g-valued target function f from labelled examples of that function. The learner is given access

to an example oracle and accuracy and con�dence parameters. When polled, the oracle draws

an example according to a distribution D and returns the example along with its label according

to f . The error rate of an hypothesis output by the learner is the probability that an example

chosen according to D will be mislabelled by the hypothesis. The learner is required to output an

hypothesis such that, with high con�dence, the error rate of the hypothesis is less then the accuracy

parameter. Two standard complexity measures studied in the PAC model are sample complexity

and time complexity. E�cient PAC learning algorithms have been developed for many function

classes [1], and PAC learning continues to be a popular model of machine learning.

One criticism of the PAC model is that the data presented to the learner is assumed to be

noise-free. In fact, most of the standard PAC learning algorithms would fail if even a small number

of the labelled examples given to the learning algorithm were \noisy." Two popular noise models

for both theoretical and experimental research are the classi�cation noise model introduced by

Angluin and Laird [2, 14] and the malicious error model introduced by Valiant [20] and further

studied by Kearns and Li [13]. In the classi�cation noise model, each example received by the

learner is mislabelled randomly and independently with some �xed probability. In the malicious

error model, an adversary is allowed, with some �xed probability, to substitute a labelled example

of his choosing for the labelled example the learner would ordinarily see.

While a limited number of e�cient PAC algorithms had been developed which tolerate classi�-

cation noise [2, 11, 16], no general framework for e�cient learning
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in the presence of classi�cation

noise was known until Kearns introduced the Statistical Query model [12].

In the SQ model, the example oracle of the standard PACmodel is replaced by a statistics oracle.

An SQ algorithm queries this new oracle for the values of various statistics on the distribution of

labelled examples, and the oracle returns the requested statistics to within some speci�ed additive

error. Upon gathering a su�cient number of statistics, the SQ algorithm returns an hypothesis

of the desired accuracy. Since calls to the statistics oracle can be simulated with high probability

by drawing a su�ciently large sample from the example oracle, one can view this new oracle as

an intermediary which e�ectively limits the way in which a learning algorithm can make use of

labelled examples. Two standard complexity measures of SQ algorithms are query complexity, the

maximum number of statistics required, and tolerance, the minimum additive error required.

Kearns [12] has demonstrated two important properties of the SQ model which make it worthy

of study. First, he has shown that nearly every PAC learning algorithm can be cast within the SQ

model, thus demonstrating that the SQ model is quite general and imposes a rather weak restriction

on learning algorithms. Second, he has shown that calls to the statistics oracle can be simulated

(with high probability) by a procedure which draws a su�ciently large sample from a classi�cation

noise oracle. An immediate consequence of these two properties is that nearly every PAC learning

1

Angluin and Laird [2] introduced a general framework for learning in the presence of classi�cation noise. However,

their methods do not yield computationally e�cient algorithms in most cases.
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algorithm can be transformed into one which tolerates arbitrary amounts of classi�cation noise.

Decatur [7] has demonstrated that calls to the statistics oracle can also be simulated (with high

probability) by a procedure which draws a su�ciently large sample from a malicious error oracle.

The amount of malicious error tolerable in such a simulation is proportional to the tolerance of the

SQ algorithm.

The complexity of a statistical query algorithm in conjunction with the complexity of simulating

SQ algorithms in the various noise models determine the complexity of the noise-tolerant PAC

learning algorithms obtained. Kearns [12] has derived bounds on the minimum complexity of SQ

algorithms, and Aslam and Decatur [4] have demonstrated a general technique for constructing SQ

algorithms which are nearly optimal with respect to these bounds. In spite of this, the robust PAC

learning algorithms obtained by simulating SQ algorithms in the presence of noise are ine�cient

when compared to known lower bounds for PAC learning in the presence of noise [8, 13, 18]. In

fact, the PAC learning algorithms obtained by simulating SQ algorithms in the absence of noise

are ine�cient when compared to the tight bounds known for noise-free PAC learning [6, 8]. These

shortcomings could be consequences of either ine�cient simulations or a de�ciency in the model

itself. In this paper, we show that both of these explanations are true, and we provide both new

simulations and a variant of the SQ model which combat the current ine�ciencies of PAC learning

via statistical queries.

We improve the complexity of simulating SQ algorithms in the presence of classi�cation noise

by providing a more e�cient simulation. If �

�

is a lower bound on the minimum additive error

requested by an SQ algorithm and �

b

< 1=2 is an upper bound on the unknown noise rate, then

Kearns' original simulation essentially runs �(

1

�

�

(1�2�

b

)

2

) di�erent copies of the SQ algorithm and

processes the results of these runs to obtain an output. We show that this \branching factor" can

be reduced to �(

1

�

�

log

1

1�2�

b

), thus reducing the time complexity of the simulation. We also provide

a new and simpler proof that statistical queries can be estimated in the presence of classi�cation

noise, and we show that our formulation can easily be generalized to accommodate a strictly larger

class of statistical queries.

We improve the complexity of simulating SQ algorithms in the absence of noise and in the

presence of malicious errors by proposing a natural variant of the SQ model and providing e�cient

simulations for this variant. In the relative error SQ model, we allow SQ algorithms to submit

statistical queries whose estimates are required within some speci�ed relative error. We show that

a class is learnable with relative error statistical queries if and only if it is learnable with (standard)

additive error statistical queries. Thus, known learnability and hardness results for statistical

queries [5, 12] also hold in this variant.

We demonstrate general bounds on the complexity of SQ learning with relative error statistical

queries, and we show that many learning algorithms can naturally be written as highly e�cient,

relative error SQ algorithms. We further provide simulations of relative error SQ algorithms in both

the absence and presence of noise. These simulations in the absence of noise and in the presence

of malicious errors are more e�cient than the simulations of additive error statistical queries and

yield PAC learning algorithms using roughly optimal number of examples. These results hold for

all classes which are learnable from statistical queries.

Finally, we show that our simulations of SQ algorithms in the absence of noise, in the presence

of classi�cation noise, and in the presence malicious errors can all be modi�ed to accommodate

a strictly larger class of statistical queries. In particular, we show that our simulations can ac-

commodate real-valued and probabilistic statistical queries. Probabilistic queries arise naturally

when applying boosting techniques to algorithms which output probabilistic hypotheses [4], while

real-valued queries allow an algorithm to query the expected value of a real-valued function of la-

belled examples. Our results on improved simulations hold for these generalized queries in both

the absence and presence of noise.

The remainder of the paper is organized as follows. In Section 2, we formally de�ne the learning
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models of interest. In Section 3, we describe the improved simulation of statistical query algorithms

in the presence of classi�cation noise. We introduce the model of statistical queries with relative

errors in Section 4 and give results relating to this model. In Section 5, we generalize the types of

queries permitted in a statistical query algorithm. We conclude the paper with some open questions

in Section 6.

2 Learning Models

In this section, we formally de�ne the relevant models of learning necessary for the exposition that

follows. We begin by de�ning the example-based PAC learning model as well as the classi�cation

noise and malicious error variants. We then de�ne the standard statistical query model which we

later generalize.

2.1 Example-Based PAC Learning

In an instance of PAC learning, a learner is given the task of determining a close approximation of

an unknown f0; 1g-valued target function from labelled examples of that function. The unknown

target function f is assumed to be an element of a known function class F de�ned over an example

space X . The example space X is typically either the Boolean hypercube f0; 1g

n

or n-dimensional

Euclidean space <

n

. We use the parameter n to denote the common length of each example x 2 X .

We assume that the examples are distributed according to some unknown probability distribu-

tion D on X . The learner is given access to an example oracle EX (f;D) as its source of data. A

call to EX (f;D) returns a labelled example hx; li where the example x 2 X is drawn randomly and

independently according to the unknown distribution D, and the label l = f(x). We often refer to

a sequence of labelled examples drawn from an example oracle as a sample.

A learning algorithm draws a sample from EX (f;D) and eventually outputs an hypothesis h

from some hypothesis class H de�ned over X . For any hypothesis h, the error rate of h is de�ned

to be the distribution weight of those examples in X where h and f di�er. By using the notation

Pr

D

[P (x)] to denote the probability of drawing an example in X according to D which satis�es

the predicate P , we may de�ne error(h) = Pr

D

[h(x) 6= f(x)]. We often think of H as a class

of representations of functions in F , and as such we de�ne size(f) to be the size of the smallest

representation in H of the target function f .

The learner's goal is to output, with probability at least 1� �, an hypothesis h whose error rate

is at most �, for the given error parameter � and con�dence parameter �. A learning algorithm is

said to be polynomially e�cient if its running time is polynomial in 1=�, 1=�, n and size(f).

2.1.1 Classi�cation Noise

In the classi�cation noise model, the labelled example oracle EX (f;D) is replaced by a noisy

example oracle EX

�

CN

(f;D). Each time this noisy example oracle is called, an example x 2 X

is drawn according to D. The oracle then outputs hx; f(x)i with probability 1 � � or hx;:f(x)i

with probability �, randomly and independently for each example drawn. Despite the noise in the

labelled examples, the learner's goal remains to output an hypothesis h which, with probability at

least 1� �, has error rate error (h) = Pr

D

[h(x) 6= f(x)] at most �.

While the learner does not typically know the exact value of the noise rate �, the learner is given

an upper bound �

b

on the noise rate, 0 � � � �

b

< 1=2, and the learner is said to be polynomially

e�cient if its running time is polynomial in the usual PAC learning parameters as well as

1

1�2�

b

.
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2.1.2 Malicious Errors

In the malicious error model , the labelled example oracle EX (f;D) is replaced by a noisy example

oracle EX

�

MAL

(f;D). When a labelled example is requested from this oracle, with probability 1��,

an example x is chosen according to D and hx; f(x)i is returned to the learner. With probability

�, a malicious adversary selects any example x, selects a label l 2 f0; 1g, and returns hx; li. Again,

the learner's goal is to output an hypothesis h which, with probability at least 1� �, has error rate

error(h) = Pr

D

[h(x) 6= f(x)] at most �.

2.2 Statistical Query Based Learning

In the SQ model, the example oracle EX (f;D) from the standard PAC model is replaced by a

statistics oracle STAT(f;D). An SQ algorithm queries the STAT oracle for the values of various

statistics on the distribution of labelled examples (e.g. \What is the probability that a randomly

chosen labelled example hx; li has variable x

i

= 0 and l = 1?"), and the STAT oracle returns the

requested statistics to within some speci�ed additive error. Formally, a statistical query is of the

form [�; � ]. Here � is a mapping from labelled examples to f0; 1g (i.e. � : X � f0; 1g ! f0; 1g)

corresponding to an indicator function for those labelled examples about which statistics are to be

gathered, while � is an additive error parameter. A call [�; � ] to STAT(f;D) returns an estimate

^

P

�

of P

�

= Pr

D

[�(x; f(x))] which satis�es j

^

P

�

� P

�

j � � .

A call to STAT(f;D) can be simulated, with high probability, by drawing a su�ciently large

sample from EX (f;D) and outputting the fraction of labelled examples which satisfy �(x; f(x)) as

the estimate

^

P

�

. Since the required sample size depends polynomially on 1=� and the simulation

time additionally depends on the time required to evaluate �, an SQ learning algorithm is said to

be polynomially e�cient if 1=� , the time required to evaluate each �, and the running time of the

SQ algorithm are all bounded by polynomials in 1=�, n and size(f).

An SQ learning algorithm is said to use query space Q if it only makes queries of the form [�; � ]

where � 2 Q. Let �

�

be the lower bound on the additive error of every query made by an SQ

algorithm.

3 Classi�cation Noise Simulations of SQ Algorithms

In this section, we describe an improved method for e�ciently simulating a statistical query algo-

rithm using a classi�cation noise oracle. The advantages of this new method are twofold. First, our

simulation employs a new technique which signi�cantly reduces the running time of simulating SQ

algorithms. Second, our formulation for estimating individual queries is simpler and more easily

generalized.

Kearns' procedure for simulating SQ algorithms works in the following way. Kearns shows that

given a query �, P

�

can be written as an expression involving the unknown noise rate � and other

probabilities which can be estimated from the noisy example oracle EX

�

CN

(f;D). We note that

the derivation of this expression relies on � being f0; 1g-valued. The actual expression obtained is

given below.

P

�

=

1

1�2�

P

�

�

+

�

1�

1

1�2�

�

p

2

P

2

�

�

�

1�2�

p

1

(1)

In order to estimate P

�

with additive error � , a sensitivity analysis is employed to determine

how accurately each of the components on the right-hand side of Equation 1 must be known.

Kearns shows that for some constants c

1

and c

2

, if � is estimated within additive error c

1

�(1� 2�)

2

and each of the probabilities is estimated within additive error c

2

�(1 � 2�

b

), then the estimate

obtained for P

�

from Equation 1 will be su�ciently accurate. Since the value of � is not known,

the procedure for simulating SQ algorithms essentially guesses a set of values for �, f�

0

; �

1

; : : : ; �

i

g,
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such that at least one �

j

satis�es j�

j

� �j � c

1

�

�

(1� 2�)

2

where �

�

is the minimum tolerance of the

SQ algorithm. Since c

1

�

�

(1� 2�

b

)

2

� c

1

�

�

(1� 2�)

2

, the simulation uniformly guesses �(

1

�

�

(1�2�

b

)

2

)

values of � between 0 and �

b

. For each guess of �, the simulation runs a separate copy of the SQ

algorithm and estimates the various P

�

's using the formula given above. Since some guess at � was

good, at least one of the runs will have produced a good hypothesis with high probability. The

various hypotheses are then tested to �nd a good hypothesis, of which at least one exists. Note

that the �-guessing has a signi�cant impact on the running time of the simulation.

In what follows, we show a new derivation of P

�

which is simpler and more easily generalizable

than Kearns' original version. We also show that to estimate individual P

�

's, it is only necessary to

have an estimate of � within additive error c�(1�2�) for some constant c. We further show that the

number of �-guesses need only be O(

1

�

�

log

1

1�2�

b

), thus signi�cantly reducing the time complexity

of the SQ simulation.

3.1 A New Derivation for P

�

In this section, we present a simpler derivation of an expression for P

�

. In previous sections, it

was convenient to view a f0; 1g-valued � as a predicate so that P

�

= Pr

D

[�(x; f(x))]. In this

section, it will be more convenient to view � as a function so that P

�

= E

D

[�(x; f(x))]. Further,

by making no assumptions on the range of �, the results obtained herein can easily be generalized;

these generalizations will be discussed in Section 5.

Let X be the example space, and let Y = X � f0; 1g be the labelled example space. We

consider a number of di�erent examples oracles and the distributions these example oracles impose

on the space of labelled examples. For a given target function f and distribution D over X , let

EX (f;D) be the standard, noise-free example oracle. In addition, we de�ne the following example

oracles: Let EX (

�

f;D) be the anti-example oracle, EX

�

CN

(f;D) be the noisy example oracle and

EX

�

CN

(

�

f;D) be the noisy anti-example oracle. Note that we have access to EX

�

CN

(f;D) and we can

easily construct EX

�

CN

(

�

f;D) by simply ipping the label of each example drawn from EX

�

CN

(f;D).

Each of these oracles imposes a distribution over labelled examples. Let D

f

, D

�

f

, D

�

f

and D

�

�

f

be these distributions, respectively. Note that P

�

= E

D

[�(x; f(x))] = E

D

f

[�].

Finally, for a labelled example y = hx; li, let y = hx; li. We de�ne �(y) = �(y). Note that � is

a new function which, on input hx; li, simply outputs �(x; l). The function � is easily constructed

from �.

Theorem 1

P

�

= E

D

f

[�] =

(1��)E

D

�

f

[�]��E

D

�

f

[�]

1�2�

(2)

Proof: For simplicity of exposition, we assume that X is a �nite, discrete space (e.g. the Boolean

hypercube f0; 1g

n

) so that D(x) is well de�ned. In general, the theorem holds for any probability

space (X;�; D) where D is a probability measure on �, a �-algebra of subsets of X .

We �rst make some observations regarding the relationship between the various distributions

de�ned above.

D

�

f

(y) = D

f

(y)

D

�

f

(y) = (1� �)D

f

(y) + �D

f

(y)

= (1� �)D

f

(y) + �D

�

f

(y) (3)

D

�

�

f

(y) = (1� �)D

�

f

(y) + �D

�

f

(y)

= (1� �)D

�

f

(y) + �D

f

(y) (4)

= D

�

f

(y) (5)
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Multiplying Equation 3 by (1� �) and Equation 4 by �, we obtain:

(1� �)D

�

f

(y) = (1� �)

2

D

f

(y) + �(1� �)D

�

f

(y) (6)

�D

�

�

f

(y) = �(1� �)D

�

f

(y) + �

2

D

f

(y) (7)

Subtracting Equation 7 from Equation 6 and solving for D

f

(y), we �nally obtain:

D

f

(y) =

(1� �)D

�

f

(y)� �D

�

�

f

(y)

1� 2�

This implies that

E

D

f

[�] =

(1� �)E

D

�

f

[�]� �E

D

�

�

f

[�]

1� 2�

and since E

D

�

�

f

[�] = E

D

�

f

[�] (by Equation 5 and the de�nition of �), we obtain Equation 2. 2

Note that in the derivation given above, we have not assumed that � is f0; 1g-valued. This

derivation is quite general and can be applied to estimating the expectations of probabilistic and

real-valued �'s. These results are given in Section 5.

Finally, note that if we de�ne �

�

(y) =

(1��)�(y)���(y)

1�2�

, then P

�

= E

D

f

[�] = E

D

�

f

[�

�

]. Thus,

given a � whose expectation we require with respect to the noise-free oracle, we can construct a

new � whose expectation with respect to the noisy oracle is identical to the answer we require. This

formulation may even be more convenient if one has the capability of estimating the expectation

of real-valued functions; we discuss this generalization in Section 5.

3.2 Sensitivity Analysis

In this section, we provide a sensitivity analysis of Equation 2 to determine the accuracy with

which various quantities must be estimated. We make use of the following claim which can easily

be shown.

Claim 1 If 0 � a; b; c; � � 1 and fa = b=c; a = b � c; a = b � cg, then to obtain an estimate

of a within additive error � , it is su�cient to obtain estimates of b and c within additive error

fc�=3; �=3; �=2g, respectively.

Lemma 1 Let �̂,

^

E

D

�

f

[�] and

^

E

D

�

f

[�] be estimates of �, E

D

�

f

[�] and E

D

�

f

[�] each within additive

error �(1� 2�)=18. Then the quantity

(1� �̂)

^

E

D

�

f

[�]� �̂

^

E

D

�

f

[�]

1� 2�̂

is within additive error � of P

�

= E

D

f

[�].

Proof: To obtain an estimate of the right-hand side of Equation 2 within additive error � , it is

su�cient to obtain estimates of the numerator and denominator with additive error (1 � 2�)�=3.

This condition holds for the denominator if � is estimated with additive error (1� 2�)�=6.

To obtain an estimate of the numerator within additive error (1 � 2�)�=3, it is su�cient to

estimate the summands of the numerator with additive error (1 � 2�)�=6. Similarly, to obtain

accurate estimates of these summands, it is su�cient to estimate �, E

D

�

f

[�] and E

D

�

f

[�] each with

additive error (1� 2�)�=18. 2

Estimates for E

D

�

f

[�] and E

D

�

f

[�] are obtained by sampling, and an \estimate" for � is obtained

by guessing. We address these issues in the following sections.
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3.3 Estimating E

D

�

f

[�] and E

D

�

f

[�]

One can estimate the expected values of all queries submitted by drawing separate samples for each

of the corresponding � and �'s and applying Lemma 1. However, better results are obtained by

appealing to uniform convergence.

Let Q be the query space of the SQ algorithm and let Q = f� : � 2 Qg. The query space of

our simulation is Q

0

= Q [ Q. Note that for �nite Q, jQ

0

j � 2jQj, and for all Q, VC-dim(Q

0

) =

�(VC-dim(Q)).

If �

�

is a lower bound on the minimum additive error requested by the SQ algorithm and �

b

is

an upper bound on the noise rate, then by Lemma 1, (1� 2�

b

)�

�

=18 is a su�cient additive error

with which to estimate all expectations. Standard uniform convergence results can be applied to

show that all expectations can be estimated within the given additive error using a single noisy

sample of size

m

1

= O

�

1

�

2

�

(1�2�

b

)

2

log

jQj

�

�

in the case of a �nite query space or a single noisy sample of size

m

1

= O

�

VC-dim(Q)

�

2

�

(1�2�

b

)

2

log

1

�

�

(1�2�

b

)

+

1

�

2

�

(1�2�

b

)

2

log

1

�

�

in the case of an in�nite query space of �nite VC-dimension.

3.4 Guessing the Noise Rate �

By Lemma 1, to obtain estimates for P

�

, it is su�cient to have an estimate of the noise rate �

within additive error (1�2�)�

�

=18. Since the noise rate is unknown, the simulation guesses various

values of the noise rate and runs the SQ algorithm for each guess. If one of the noise rate guesses

is su�ciently accurate, then the corresponding run of the SQ algorithm will produce the desired

accurate hypothesis.

To guarantee that an accurate �-guess is used, one could simply guess �(

1

�

�

(1�2�

b

)

) values of �

spaced uniformly between 0 and �

b

. This is essentially the approach adopted by Kearns. Note that

this would cause the simulation to run the SQ algorithm �(

1

�

�

(1�2�

b

)

) times.

We now show that this \branching factor" can be reduced to O(

1

�

�

log

1

1�2�

b

) by constructing

our �-guesses in a much better way. The result follows immediately from the following lemma when

 = �

�

=18.

Lemma 2 For all ; �

b

< 1=2, there exists a sequence of �-guesses f�

0

; �

1

; : : : ; �

i

g where i =

O(

1



log

1

1�2�

b

) such that for all � 2 [0; �

b

], there exists an �

j

which satis�es j� � �

j

j � (1� 2�).

Proof: The sequence is constructed as follows. Let �

0

= 0 and consider how to determine �

j

from

�

j�1

. The value �

j�1

is a valid estimate for all � � �

j�1

which satisfy ��(1�2�) � �

j�1

. Solving

for �, we �nd that �

j�1

is a valid estimate for all � 2 [�

j�1

;

�

j�1

+

1+2

]. Consider an �

j

>

�

j�1

+

1+2

. The

value �

j

is a valid estimate for all � � �

j

which satisfy � + (1� 2�) � �

j

. Solving for �, we �nd

that �

j

is a valid estimate for all � 2 [

�

j

�

1�2

; �

j

]. To ensure that either �

j�1

or �

j

is a valid estimate

for any � 2 [�

j�1

; �

j

], we set

�

j�1

+

1+2

=

�

j

�

1�2

:

Solving for �

j

in terms of �

j�1

, we obtain

�

j

=

1�2

1+2

�

j�1

+

2

1+2

:

Substituting 

0

= 2=(1+ 2), we obtain the following recurrence:
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�

j

= (1� 2

0

)�

j�1

+ 

0

Note that if  < 1=2, then 

0

< 1=2 as well.

By constructing �-guesses using this recurrence, we ensure that for all � 2 [0; �

i

], at least one

of f�

0

; : : : ; �

i

g is a valid estimate. Solving this recurrence, we �nd that

�

i

= 

0

i�1

X

j=0

(1� 2

0

)

j

+ �

0

(1� 2

0

)

i

:

Since �

0

= 0 and we are only concerned with � � �

b

, we may bound the number of guesses required

by �nding the smallest i which satis�es



0

i�1

X

j=0

(1� 2

0

)

j

� �

b

:

Given that



0

i�1

X

j=0

(1� 2

0

)

j

= 

0

1�(1�2

0

)

i

1�(1�2

0

)

=

1�(1�2

0

)

i

2

we need (1 � 2

0

)

i

� 1 � 2�

b

. Solving for i, we �nd that any i � ln

1

1�2�

b

= ln

1

1�2

0

is su�cient.

Using the fact that 1=x > 1= ln

1

1�x

for all x 2 (0; 1), we �nd that

i =

1

2

0

ln

1

1�2�

b

=

1+2

4

ln

1

1�2�

b

is an upper bound on the number of guesses required. 2

3.5 The Overall Simulation

We now combine the results of the previous sections to obtain an overall simulation as follows:

1. Draw m

1

samples from EX

�

CN

(f;D) in order to estimate expectations in Step 2.

2. Run the SQ algorithm once for each of the O(

1

�

�

log

1

1�2�

b

) �-guesses, estimating the various

queries by applying Lemma 1 and using the sample drawn.

3. Draw m

2

samples and test the O(

1

�

�

log

1

1�2�

b

) hypotheses obtained in Step 2. Output one of

these hypotheses whose error rate is at most �.

Step 3 can be accomplished by a generalization of a technique due to Laird [14]. The sample

size required is

m

2

= O

�

1

�(1�2�

b

)

2

log(

1

��

�

log

1

1�2�

b

)

�

:

Since 1=�

�

= 
(1=�) for all SQ algorithms [12], the sample complexity of the overall simulation is

O

�

1

�

2

�

(1�2�

b

)

2

log

jQj

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

in the case of a �nite query space or

O

�

VC-dim(Q)

�

2

�

(1�2�

b

)

2

log

1

�

�

(1�2�

b

)

+

1

�

2

�

(1�2�

b

)

2

log

1

�

�
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in the case of an in�nite query space of �nite VC-dimension.

To determine the running time of our simulation, one must distinguish between two di�erent

types of SQ algorithms. Some SQ algorithms submit a �xed set of queries independent of the

estimates they receive for previous queries. We refer to these algorithms as \batch" SQ algorithms.

Other SQ algorithms may submit various queries based upon the estimates they receive for previous

queries. We refer to these algorithms as \dynamic" SQ algorithms.

2

Note that multiple runs of a

dynamic SQ algorithm may produce many more queries which need to be estimated.

With respect to �, Simon [18] has shown a sample complexity, and therefore time complexity,

lower bound of 
(

1

(1�2�)

2

) for PAC learning in the presence of classi�cation noise. We therefore

note that by reducing the \branching factor" of the simulation from �(

1

�

�

(1�2�

b

)

2

) to �(

1

�

�

log

1

1�2�

b

),

the running time of our simulation is optimal with respect to the noise rate (modulo lower order

logarithmic factors) for both dynamic and batch algorithms. For dynamic algorithms, the time

complexity of our new simulation is in fact a

~

�(

1

(1�2�

b

)

2

) factor better than the current simulation.

3

4 Statistical Queries with Relative Error Estimates

In the standard model of statistical query learning, a learning algorithm asks for an estimate of the

probability that a predicate � is true. The required accuracy of this estimate is speci�ed by the

learner in the form of an additive error parameter. The limitation of this model is clearly evident

in even the standard, noise-free statistical query simulation [12]. This simulation uses 
(1=�

2

�

)

examples. Since 1=�

�

= 
(1=�) for all SQ algorithms [12], this simulation e�ectively uses 
(1=�

2

)

examples. However, the �-dependence of the general bound on sample complexity for PAC learning

is

~

�(1=�) [6, 8].

This 
(1=�

2

�

) = 
(1=�

2

) sample complexity results from the worst case assumption that large

probabilities may need to be estimated with small additive error. Either the nature of statistical

query learning is such that learning sometimes requires the estimation of large probabilities with

small additive error, or it is always su�cient to estimate each probability with an additive error

comparable to the probability. If the former were the case, then the present model and simulations

would be the best that one could hope for. We show that the latter is true, and that a model in

which queries are speci�ed with relative error is a more natural and strictly more powerful tool.

We de�ne such a model of relative error statistical query learning and we show how this new

model relates to the standard additive error model. We also show general upper bounds on learning

in this new model which demonstrate that for all classes learnable by statistical queries, it is

su�cient to make estimates with relative error independent of �. We then give roughly optimal

PAC simulations for relative error SQ algorithms. Finally, we demonstrate natural problems which

only require estimates with constant relative error.

4.1 The Relative Error SQ Model

Given the motivation above, we modify the standard model of statistical query learning to allow

for estimates to be requested with relative error. We replace the additive error STAT(f;D) oracle

with a relative error Rel-STAT(f;D) oracle which accepts a query �, a relative error parameter �,

and a threshold parameter �. The value P

�

= Pr

D

[�(x; f(x))] is de�ned as before. If P

�

is less

than the threshold �, then the oracle may return the symbol ?. If the oracle does not return ?,

then it must return an estimate

^

P

�

such that

P

�

(1� �) �

^

P

�

� P

�

(1 + �)

2

Note that we consider any SQ algorithm with a polynomially sized query space to be a \batch" algorithm since

all queries may be processed in advance.

3

When b > 1, we de�ne

~

O(b) to mean O(b log

c

b) for some constant c > 0. When b < 1, we de�ne

~

O(b) to mean

O(b log

c

(1=b)) for some constant c > 0. We de�ne

~


 similarly for some constant c < 0 and de�ne

~

� to mean

~

O and

~


.
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Note that the oracle may chose to return an accurate estimate even if P

�

< �. A class is said to

be learnable by relative error statistical queries if it satis�es the same conditions of additive error

statistical query learning except we instead require that 1=� and 1=� are polynomially bounded.

Let �

�

and �

�

be the lower bounds on the relative error and threshold of every query made by an SQ

algorithm. Given this de�nition of relative error statistical query learning, we show the following

desirable equivalence.

Theorem 2 F is learnable by additive error statistical queries if and only if F is learnable by

relative error statistical queries.

Proof: One can take any query � to the additive error oracle which requires additive tolerance �

and simulate it by calling the relative error oracle with relative error � and threshold � . Similarly,

one can take any query to the relative error oracle which requires relative error � and threshold � and

simulate it by calling the additive error oracle with tolerance ��. In each direction, the simulation

uses polynomially bounded parameters if and only if the original algorithm uses polynomially

bounded parameters. 2

Kearns [12] shows that almost all classes known to be PAC learnable are learnable with additive

error statistical queries. By the above theorem, these classes are also learnable with relative error

statistical queries. In addition, the hardness results of Kearns [12] for learning parity functions and

the general hardness results of Blum et al. [5] based on Fourier analysis also hold for relative error

statistical query learning.

One can convert an additive error SQ algorithm to a relative error SQ algorithm in a more

e�cient way than described in the proof of Theorem 2. The key idea is that for each query [�; � ],

we search for P

�

starting at � by successive doubling.

Theorem 3 An additive error query [�; � ] can be simulated by O(log(P

�

=�)) relative error queries

[�; �

i

; �

i

] where, for each i, �

i

�

i

= 
(�) and �

2

i

�

i

= 
(�

2

=P

�

).

Proof: We �rst give the search algorithm, then prove it correctness, and �nally prove bounds on

the number and complexity of the queries made.

Let �

0

= 1=4 and �

0

= � . Let �

i+1

= �

i

=2 and �

i+1

= 2�

i

. If the response

^

P

i

�

to the query

[�; �

i

; �

i

] is ? then 0 is returned. If

^

P

i

�

� �(1 � �

i

)=�

i

then

^

P

i

�

is returned. Otherwise, the next

query [�; �

i+1

; �

i+1

] is asked.

Note that for all i > 0, �

i

= �=2�

i�1

. Since �

i�1

� 1=4 we have (1 � �

i�1

)=(1 + �

i�1

) �

3=5 > 1=2. If we ask query i > 0, it must have been true that

^

P

i�1

�

> �(1� �

i�1

)=�

i�1

, and since

^

P

i�1

�

� P

�

(1 + �

i�1

), we can show that P

�

> �

i

as follows:

P

�

�

^

P

i�1

�

=(1 + �

i�1

)

> �=�

i�1

� (1� �

i�1

)=(1 + �

i�1

)

> �=2�

i�1

= �

i

Thus, after the �rst query, no query will be asked which could be answered ?. If the �rst query is

answered ?, then returning 0 is correct since P

�

� � .

When

^

P

i

�

is returned, we know that

^

P

i

�

� �(1��

i

)=�

i

which implies that P

�

� �=�

i

. But since

the additive di�erence between P

�

and

^

P

i

�

is guaranteed to be no more than �

i

P

�

, this gap is no

more than � , and therefore the returned value is su�ciently accurate.

It is trivial to verify that for all i, �

i

�

i

= �=4 and �

2

i

�

i

= 2

�i

�

2

0

�

0

= 2

�i

�=16. The search

will end when �

i

is small enough to force

^

P

i

�

� �(1 � �

i

)=�

i

. This condition is guaranteed when

P

�

� �=�

i

� (1� �

i

)=(1 + �

i

) and therefore when P

�

� �=2�

i

. Since �

i

= �

0

=2

i

, this holds for the

�rst i such that 2

i

� 2�

0

P

�

=� . Therefore, the maximum number of queries made is O(log(P

�

=�))

and the worst case �

2

i

�

i

= 2

�i

�=16 = 
(�

2

=P

�

). 2
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4.2 A Natural Example of Relative Error SQ

In this section we examine a learning problem which has both a simple additive error SQ algorithm

and a simple relative error SQ algorithm. We consider the problem of learning a monotone con-

junction of Boolean variables in which the learning algorithm must determine which subset of the

variables fx

1

; : : : ; x

n

g are contained in the unknown target conjunction f .

We construct an hypothesis h which contains all the variables in the target function f , and

thus h will not misclassify any negative examples. We further guarantee that for each variable x

i

in h, the distribution weight of examples which satisfy \x

i

= 0 and f(x) = 1" is less than �=n.

Therefore, the distribution weight of positive examples which h will misclassify is at most �. Such

an hypothesis has error rate at most �.

Consider the following query: �

i

(x; l) = (x

i

= 0 ^ l = 1). P

�

i

is simply the probability that x

i

is false and f(x) is true. If variable x

i

is in f , then P

�

i

= 0. If we mistakenly include a variable x

i

in our hypothesis which is not in f , then the error due to this inclusion is at most P

�

i

. We simply

construct our hypothesis to contain all target variables, but no variables x

i

for which P

�

i

> �=n.

An additive error SQ algorithm queries each �

i

with additive error �=2n and includes all variables

for which the estimate

^

P

�

i

� �=2n. Even if P

�

i

= 1=2, the oracle is constrained to return an estimate

with additive error less than �=2n. A relative error SQ algorithm queries each �

i

with relative error

1=2 and threshold �=n and includes all variables for which the estimate

^

P

�

i

= 0 or ?.

The sample complexity of the standard, noise-free PAC simulation of additive error SQ algo-

rithms depends linearly on 1=�

2

�

[12], while in Section 4.4, we show that the sample complexity of

a noise-free PAC simulation of relative error SQ algorithms depends linearly on 1=�

2

�

�

�

. Note that

in the above algorithms for learning conjunctions, 1=�

2

�

= �(n

2

=�

2

) while 1=�

2

�

�

�

= �(n=�). We

further note note that the �

�

is constant for learning conjunctions. We show in Section 4.3 that no

learning problem requires �

�

to depend on � and in Section 4.5 that �

�

is actually a constant in

many algorithms.

4.3 General Bounds on Relative Error SQ Learning

In this section we prove general upper bounds on the complexity of relative error statistical query

learning. We do so by applying boosting techniques [9, 10, 17] and speci�cally, these techniques

as applied in the statistical query model [4]. We �rst prove some useful lemmas which allow us to

decompose relative estimates of ratios and sums.

Lemma 3 Let a = b=c where 0 � a; b; c � 1. If an estimate of a is desired with (�; �) error

provided that c � �, then it is su�cient to estimate c with (�=3;�) error and b with (�=3; ��=2)

error.

Proof: If the estimate ĉ is ? or less than �(1��=3), then c < �. Therefore an estimate for a is not

required, and we may halt. Otherwise ĉ � �(1��=3), and therefore c � �(1��=3)=(1+�=3)� �=2

since � � 1. If the estimate

^

b is ?, then b < ��=2. Therefore a = b=c < �, so we may answer

â = ?. Otherwise,

^

b and ĉ are estimates of b and c, each within a 1��=3 factor. It is easy to show

that

^

b=ĉ is within a 1� � factor of a. 2

Lemma 4 Let s =

P

p

i

z

i

where the fp

i

g are known, 0 � s; p

i

; z

i

� 1 and

P

i

p

i

� 1. If an estimate

of s is desired with (�; �) error, then it is su�cient to estimate each z

i

with (�=3; ��=3) error.

Proof: Let B = fi : estimate of z

i

is ?g, E = fi : estimate of z

i

is ẑ

i

g, s

B

=

P

B

p

i

z

i

and s

E

=

P

E

p

i

z

i

. Note that s

B

< ��=3. Let ŝ

E

=

P

E

p

i

ẑ

i

. If ŝ

E

< �(1� �=3)

2

then we return ?, otherwise

we return ŝ

E

.

If ŝ

E

< �(1��=3)

2

, then s

E

< �(1��=3). But in this case s = s

E

+s

B

< �(1��=3)+��=3 = �,

so we are correct in returning ?.
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Otherwise we return ŝ

E

which is at least �(1� �=3)

2

. If B = ;, then it is easy to see that ŝ

E

is

within a 1 � �=3 (and therefore 1 � �) factor of s. Otherwise, we are implicitly setting ẑ

i

= 0 for

each i 2 B, and therefore it is enough to show that ŝ

E

� s(1� �).

Since ŝ

E

� �(1 � �=3)

2

, we have s

E

� �(1 � �=3)

2

=(1 + �=3). Using the fact that for all

� � 1, (1 � �=3)=(1 + �=3) � 1=2, we have s

E

� �(1 � �=3)=2. If ŝ

E

� (��=3 + s

E

)(1� �), then

ŝ

E

� s(1 � �) since s

B

< ��=3 and s = s

B

+ s

E

. But since ŝ

E

� s

E

(1 � �=3), this condition

holds when s

E

(1 � �=3) � (��=3 + s

E

)(1 � �). Solving for s

E

, this �nal condition holds when

s

E

� �(1� �=3)=2 which we have shown to be true whenever an estimate is returned. 2

Theorem 4 If a concept class F is SQ learnable by algorithm A, then F is SQ learnable with

O(N

0

log

2
1

�

) queries each of relative error 
(�

0

) and threshold 
(�

0

�

0

�= log

1

�

). Here N

0

, �

0

and

�

0

are the number of queries, worst case relative error, and worst case threshold, respectively, of

algorithm A run with a constant accuracy parameter. Note that N

0

, �

0

and �

0

are independent

of �.

Proof: Aslam and Decatur [4] show that given an SQ learning algorithm A, one can construct a

very e�cient SQ algorithm by combining the output of O(log

1

�

) runs of A. Each run of A is made

with respect to a di�erent distribution and uses accuracy parameter � = 1=4. Each run makes at

most N

0

queries, each with relative error no smaller than �

0

and threshold no smaller than �

0

.

In run i + 1, the algorithm makes queries of the form STAT(f;D

i+1

)[�(x; f(x))] where D

i+1

is a

distribution based on D. Since the learning algorithm only has access to a statistics oracle for D,

they show that a query with respect to D

i+1

may be written in terms of new queries with respect

to D as follows:

STAT(f;D

i+1

)[�(x; f(x))] =

P

w

j=0

�

w

j

� STAT(f;D)[�(x; f(x))^ �

w

j

(x; f(x))]

P

w

j=0

�

w

j

� STAT(f;D)[�

w

j

(x; f(x))]

(8)

In the above equation w � i, the values �

w

j

2 [0; 1] are known, and

P

j

�

w

j

� 1. It is also the

case that if the denominator of Equation 8 is less than � = 
(�= log

1

�

), then the query need not

be estimated. Using Lemmas 3 and 4, it is easy to show that a query to STAT(f;D

i+1

) can be

estimated by making queries to STAT(f;D) with relative error at least �

0

=9 and threshold at least

�

0

�

0

�=18. Since a query with respect to D

i+1

requires O(i) queries with respect to D, the total

number of queries made is O(N

0

log

2
1

�

). 2

4.4 Simulating Relative Error SQ Algorithms

In this section we give the complexity of simulating relative error SQ algorithms in the PAC model,

both in the absence and presence of noise. We also give general upper bounds on the complexity

of PAC algorithms derived from SQ algorithms, based on the simulations and the general upper

bounds of Theorem 4.

The simulation of relative error SQ algorithms in the noise-free PAC model is based on a

standard Cherno� bound analysis. We obtain the following theorem on the sample complexity of

such a simulation. The proof of this theorem is identical to the proof of Theorem 7 below if in the

latter proof the malicious error rate is set to 0.

Theorem 5 If F is learnable by a statistical query algorithm which makes N queries from query

space Q with worst case relative error �

�

and worst case threshold �

�

, then F is PAC learnable

with sample complexity O(

1

�

2

�

�

�

log

jQj

�

) when Q is �nite or O(

N

�

2

�

�

�

log

N

�

) when drawing a separate

sample for each query.

Corollary 1 If F is SQ learnable, then F is PAC learnable with a sample complexity whose de-

pendence on � is

~

O(1=�).

12



Although one could use boosting techniques in the PAC model to achieve this nearly optimal

sample complexity, these boosting techniques would result in a more complicated algorithm and

output hypothesis (a circuit whose inputs were hypotheses from the original hypothesis class). If

instead we have a relative error SQ algorithm meeting the bounds of Theorem 4, then we achieve

this PAC sample complexity directly.

For SQ simulations in the classi�cation noise model, we achieve the sample complexity given in

Theorem 6 below. This sample complexity is essentially identical to the simulation of an additive

error SQ algorithm for which � = ��, and, in fact, this is one way of proving the result. Although

this result does not improve the sample complexity of SQ simulations in the presence of classi�cation

noise, we believe that to improve upon this bound requires the use of relative error statistical queries

for the reasons discussed in the introduction to Section 4.

Theorem 6 If F is learnable by a statistical query algorithm which makes N queries from query

space Q with worst case relative error �

�

and worst case threshold �

�

, then F is PAC learnable

in the presence of classi�cation noise. If �

b

< 1=2 is an upper bound on the noise rate, then the

sample complexity required is

O

�

1

�

2

�

�

2

�

(1�2�

b

)

2

log

jQj

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

when Q is �nite or

O

�

N

�

2

�

�

2

�

(1�2�

b

)

2

log

N

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

when drawing a separate sample for each query.

Corollary 2 If F is SQ learnable, then F is PAC learnable in the presence of classi�cation noise.

The dependence on � and �

b

of the required sample complexity is

~

O(

1

�

2

(1�2�

b

)

2

).

We next consider the simulation of relative error SQ algorithms in the presence of malicious

errors. Decatur [7] showed that an SQ algorithm can be simulated in the presence of malicious errors

with a maximum allowable error rate which depends on �

�

, the smallest additive error required by

the SQ algorithm. In Theorem 7, we show that an SQ algorithm can be simulated in the presence

of malicious errors with a maximum allowable error rate and sample complexity which depend on

�

�

and �

�

, the minimum relative error and threshold required by the SQ algorithm.

The key to this malicious error tolerant simulation is to draw a large enough sample such that

for each query, the combined error in an estimate due to both the adversary and the statistical

uctuation on error-free examples is less than the accuracy required for this query. We make use

of the following lemmas.

Lemma 5 (Cherno� Bounds [3]) Let X

1

; : : : ; X

m

be independent Bernoulli random variables,

each of whose expectation is p. Let Y be the random variable

1

m

P

i

X

i

. If 0 < � � 1 and m �

3

�

2

p

ln

2

�

, then p(1� �) � Y � p(1 + �) with probability at least 1� �.

Lemma 6 Let P

�

�

be the fraction of examples satisfying � in a noise-free sample of size m, and let

^

P

�

be the fraction of examples satisfying � in a sample of size m drawn from EX

�

MAL

(f;D). Then

to ensure, with high probability, jP

�

�

^

P

�

j � �

1

+ �

2

, it is su�cient to draw a sample of size m

which, with high probability, simultaneously ensures both:

(1) The adversary corrupts at most a �

1

fraction of examples drawn from EX

�

MAL

(f;D).

(2) jP

�

� P

�

�

j � �

2

.

Proof: Let m be a sample size large enough to ensure, with high probability, both conditions hold.

Consider a sample of size m drawn from a malicious error oracle in which the adversary decided

13



not to corrupt any examples for which it was given the opportunity. Then by Condition (2), with

high probability, the fraction of examples satisfying � on this sample is within �

2

of P

�

. But by

Condition (1), with high probability, the adversary may change the empirical fraction of examples

satisfying � by no more than �

1

. Thus the empirical fraction of examples is within �

1

+ �

2

of P

�

. 2

Theorem 7 If F is learnable by a statistical query algorithm which makes N queries from query

space Q with worst case relative error �

�

and worst case threshold �

�

, then F is PAC learnable

in the presence of malicious errors. The maximum allowable error rate is �

�

= 
(�

�

�

�

) and the

sample complexity required is O(

1

�

2

�

�

�

log

jQj

�

) when Q is �nite or O(

N

�

2

�

�

�

log

N

�

) when drawing a

separate sample for each query.

Proof: We �rst analyze the tolerable error and sample complexity for simulating a single query

and then determine these values for simulating the entire algorithm.

We assume that � � �

�

= �

�

�

�

=32. For a given query [�; �; �], P

�

is the probability with respect

to the noise-free example oracle which needs to be estimated with error (�; �). Let S be a sample of

size m =

c

1

�

2

�

�

�

ln

c

2

�

for which constants c

1

and c

2

are appropriately chosen. Note that this sample

size is su�cient to ensure with high probability that the adversary does not corrupt more than a

2�

�

fraction of the examples.

We �rst show that this sample is large enough to con�dently say that either P

�

< � or P

�

� �=8.

Let P

�

�

be the fraction of examples satisfying � in sample of size m drawn from EX (f;D). With

high probability

P

�

< �=8) P

�

�

< �=4 and P

�

� � ) P

�

�

� �=2:

Let

^

P

�

be the fraction of examples in a sample of size m drawn from EX

�

MAL

(f;D). With high

probability, the adversary corrupts no more than 2�

�

� �

�

�

�

=16 < �=8 fraction of the examples

and therefore by Lemma 6, with high probability

P

�

< �=8)

^

P

�

< 3�=8 and P

�

� � )

^

P

�

� 3�=8:

Thus if

^

P

�

< 3�=8, then P

�

< � and ? can be returned. Otherwise,

^

P

�

� 3�=8, and therefore

P

�

� �=8. In this case,

^

P

�

is returned, and we must show that

^

P

�

is within a 1� � factor of P

�

.

Since P

�

� �=8, a sample of size m ensures with high probability that P

�

�

is within a 1 � �=2

factor of P

�

, or equivalently that P

�

�

is within �P

�

�=2 of P

�

. The sample also ensures with high

probability that the adversary corrupts no more than a 2�

�

= �

�

�

�

=16 � P

�

�=2 fraction of the

examples. Therefore, Lemma 6 ensures with high probability that

^

P

�

is within �P

�

� of P

�

. Thus,

^

P

�

is within a 1� � factor of P

�

.

The total sample complexity required when drawing a separate sample for each query follows

directly from the above analysis. The total sample complexity required when using a �nite query

space follows by noting that on such a sample, the noise-free empirical estimates of all queries

converge to their true probabilities and the adversary corrupts no more than a 2�

�

fraction of the

examples. 2

Corollary 3 If F is SQ learnable, then F is PAC learnable in the presence of malicious errors.

The dependence on � of the maximum allowable error rate is

~


(�), while the dependence on � of the

required sample complexity is

~

O(1=�).

Note that we are within logarithmic factors of both the O(�) maximum allowable malicious

error rate [13] and the 
(1=�) lower bound on the sample complexity for noise-free PAC learn-

ing [8]. In this malicious error tolerant PAC simulation, the sample, time, space and hypothesis

size complexities are asymptotically identical to the corresponding complexities in our noise-free

PAC simulation.
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4.5 Very E�cient Malicious Error Learning

In previous sections, we showed general upper bounds on relative error SQ algorithms and the

e�ciency of PAC algorithms derived from them. In this section, we describe relative error SQ

algorithms which actually achieve these bounds and therefore have very e�cient, malicious error

tolerant PAC simulations. We �rst present a very e�cient algorithm for learning conjunctions

4

in

the presence of malicious errors when there are many irrelevant attributes. We then highlight a

property of this SQ algorithm which allows for its e�ciency, and we further show that many other

SQ algorithms naturally exhibit this property as well. We can simulate these SQ algorithms in

the PAC model with malicious errors with roughly optimal malicious error tolerance and sample

complexity.

Decatur [7] gives an algorithm for learning conjunctions which tolerates a malicious error rate

independent of the number of irrelevant attributes, thus depending only on the number of rele-

vant attributes and the desired accuracy. This algorithm, while reasonably e�cient, is based on

an additive error SQ algorithm of Kearns [12] and therefore does not have an optimal sample

complexity.

We present an algorithm based on relative error statistical queries which tolerates the same

malicious error rate and has a sample complexity whose dependence on � roughly matches the

general lower bound for noise-free PAC learning.

Theorem 8 The class of conjunctions of size k over n variables is PAC learnable with malicious

errors. The maximum allowable malicious error rate is 
(

�

k log

1

�

); and the sample complexity required

is O

�

k

2

�

log

2
1

�

logn+

k

�

log

1

�

log

1

�

�

:

Proof: We present a proof for learning monotone conjunctions of size k, and we note that this

proof can easily be extended for learning non-monotone conjunctions of size k.

The target function f is a conjunction of k variables. We construct an hypothesis h which is

a conjunction of r = O(k log

1

�

) variables such that the distribution weight of misclassi�ed positive

examples is at most �=2 and the distribution weight of misclassi�ed negative examples is also at

most �=2.

First, all variables which could contribute more than �=2r error on the positive examples are

eliminated from consideration. This is accomplished by using the same queries that the monotone

conjunction SQ algorithm of Section 4.2 uses. The queries are asked with relative error 1=2 and

threshold �=2r.

Next, the negative examples are greedily \covered" so that the distribution weight of misclassi-

�ed negative examples is no more than �=2. We say that a variable covers all negative examples for

which this variable is false. We know that the set of variables of f is a cover of size k for the entire

space of negative examples. We iteratively construct h by conjoining new variables such that the

distribution weight of negative examples covered by each new variable is at least a

1

2k

fraction of

the distribution weight of negative examples remaining to be covered.

Given a partially constructed hypothesis h

j

= x

i

1

^ x

i

2

^ � � � ^ x

i

j

, let X

-

j

be the set of negative

examples not covered by h

j

, i.e. X

-

j

= fx : f(x) = 0 ^ h

j

(x) = 1g. Let D

-

j

be the conditional

distribution on X

-

j

induced by D, i.e. for any x 2 X

-

j

, D

-

j

(x) = D(x)=D(X

-

j

). By de�nition, X

-

0

is the space of negative examples and D

-

0

is the conditional distribution on X

-

0

. We know that

the target variables not yet in h

j

cover the remaining examples in X

-

j

, and therefore there exists a

cover of X

-

j

of size at most k. Thus there exists at least one variable which covers a set of negative

examples in X

-

j

whose distribution weight with respect to D

-

j

is at least

1

k

.

Given h

j

, for each x

i

, let �

j;i

(x; l) = [AjB] = [x

i

= 0jl = 0 ^ h

j

(x) = 1]. Note that P

�

j;i

is

the distribution weight, with respect to D

-

j

, of negative examples in X

-

j

covered by x

i

. Thus there

4

By duality, identical results also hold for learning disjunctions.

15



exists a variable x

i

such that P

�

j;i

is at least

1

k

. To �nd such a variable, we ask queries of the above

form with relative error

1

3

and threshold

2

3k

. [Note that this is a query for a conditional probability,

which must be determined by the ratio of two unconditional probabilities. We show how to do

this below.] Since there exists a variable x

i

such that P

�

j;i

�

1

k

, we are guaranteed to �nd some

variable x

i

0
such that the estimate

^

P

�

j;i

0

is at least

1

k

(1 �

1

3

) =

2

3k

. Note that if

^

P

�

j;i

0

�

2

3k

, then

P

�

j;i

0

�

2

3k

=(1+

1

3

) =

1

2k

. Thus, by conjoining x

i

0

to h

j

, we are guaranteed to cover a set of negative

examples in X

-

j

whose distribution weight with respect to D

-

j

is at least

1

2k

. Since the distribution

weight, with respect to D

-

0

, of uncovered negative examples is reduced by at least a (1�

1

2k

) factor in

each iteration, it is easy to show that this method requires no more than r = O(k log

1

�

) iterations

to cover all but a set of negative examples whose distribution weight, with respect to D

-

0

(and

therefore with respect to D) is at most �=2.

We now show how to estimate the conditional probability query [AjB] with relative error � =

1

3

and threshold � =

2

3k

. We estimate both queries which constitute the standard expansion of

the conditional probability. Appealing to Lemma 3, we �rst estimate [B], the probability that a

negative example is not covered by h, using relative error �=3 = 1=9 and threshold �=2. If this

estimate is ? or less than �=2 � (1�1=9) =

4�

9

, then the weight of negative examples misclassi�ed by

h is at most �=2 so we halt and output h. Otherwise we have a lower bound of

4�

9

=(1 + 1=9) =

2�

5

on this probability and can therefore estimate [A^B] with relative error �=3 = 1=9 and threshold

�=2 � �=2 =

�

6k

.

For this algorithm, the worst case relative error is 
(1), the worst case threshold is 
(

�

k log

1

�

)

and log jQj = O(k log

1

�

logn). Therefore, the theorem follows from Theorem 7. 2

An important property of this statistical query algorithm is that for every query, we need only to

determine whether P

�

falls below some threshold or above some constant fraction of this threshold.

This allows the relative error parameter � to be a constant. The learning algorithm described in

Section 4.2 for monotone conjunctions has this property, and we note that many other learning

problems which involve \covering," such as learning axis parallel rectangles and decision lists, also

have this property. In all these cases we obtain very e�cient malicious error tolerant algorithms.

5 Probabilistic and Real-Valued Queries

Throughout this paper, we have assumed that queries submitted to the statistical query oracle

were restricted to being deterministic, f0; 1g-valued function of labelled examples. In this case,

the oracle returned an estimate of the probability that �(x; f(x)) = 1 on an example x chosen

randomly according to D.

We now generalize the SQ model to allow algorithms to submit queries which are probabilistic

and real-valued. Formally, we de�ne a probabilistic real-valued query to be a � such that for every

labelled example hx; li, �(x; l) is a random variable whose range is [0;M ] and whose expectation

exists.

5

We de�ne P

�

to be the expected value of � where the expectation is taken over the draw

of the example and the random value of � given the labelled example. Note that under these

conditions, P

�

always exists.

This generalization can be quite useful. If the learning algorithm requires the expected value

of some function of labelled examples, it may simply specify this using a real-valued query. Proba-

bilistic queries are required when applying boosting techniques to weak learning algorithms

6

which

output probabilistic hypotheses. When applying boosting techniques, the queries constructed are

functions of weak hypotheses. Thus if these weak hypotheses are probabilistic, the correspond-

5

The range [0;M ] is used so that we can show relative error simulations. For additive error, one may consider any

interval [a; a +M ] and simply translate �.

6

A weak learning algorithm is one which outputs an hypothesis whose accuracy is just slightly better than random

guessing.
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ing queries are also be probabilistic. Goldman, Kearns and Schapire [11] show that by allowing a

weak learning algorithm to output a probabilistic hypothesis, the complexity of learning is reduced.

Therefore this this generalization gives the algorithm designer more freedom and power. Further-

more, the ability to e�ciently simulate these algorithms in the PAC model in both the absence and

presence of noise is retained, as shown below.

Since the expectation P

�

always exists, the results given below (Theorems 9{14) may be proven

identically to the respective deterministic, f0; 1g-valued cases by simply applying Hoe�ding and

Cherno� style bounds for bounded real random variables (Lemmas 7 and 8). Note that when

the range of the queries is a unit sized interval, i.e. M = 1, these sample complexities and noise

tolerances are identical to those for deterministic, f0; 1g-valued queries.

Lemma 7 (Lemma 1.2 in [15]) Let X

1

; : : : ; X

m

be independent, identically distributed random

variables taking real values in the range [a; a+M ]. Let Y be the random variable

1

m

P

m

i=1

X

i

. Then

for any t > 0,

Pr[jY � E(Y )j � t] � 2e

�2mt

2

=M

2

:

Lemma 8 (Corollary 5.2 in [15]) Let X

1

; : : : ; X

m

be independent, identically distributed ran-

dom variables taking real values in the range [0; 1]. Let Y be the random variable

1

m

P

m

i=1

X

i

and

p = E(Y ). Then for any 0 < � < 1,

Pr[Y � p � �p] � e

��

2

mp=3

Pr[p� Y � ��p] � e

��

2

mp=2

:

Theorem 9 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case additive error �

�

, then F is PAC learnable with

sample complexity O(

M

2

�

2

�

log

jQj

�

) when Q is �nite or O(

NM

2

�

2

�

log

N

�

) when drawing a separate sample

for each query.

Theorem 10 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case relative error �

�

and worst case threshold �

�

,

then F is PAC learnable with sample complexity O(

M

�

2

�

�

�

log

jQj

�

) when Q is �nite or O(

NM

�

2

�

�

�

log

N

�

)

when drawing a separate sample for each query.

Theorem 11 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case additive error �

�

, then F is PAC learnable in the

presence of classi�cation noise. If �

b

< 1=2 is an upper bound on the noise rate, then the sample

complexity required is

O

�

M

2

�

2

�

(1�2�

b

)

2

log

jQj

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

when Q is �nite or

O

�

NM

2

�

2

�

(1�2�

b

)

2

log

N

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

when drawing a separate sample for each query.

Theorem 12 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case relative error �

�

and worst case threshold �

�

,

then F is PAC learnable in the presence of classi�cation noise. If �

b

< 1=2 is an upper bound on

the noise rate, then the sample complexity required is

O

�

M

2

�

2

�

�

2

�

(1�2�

b

)

2

log

jQj

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�
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when Q is �nite or

O

�

NM

2

�

2

�

�

2

�

(1�2�

b

)

2

log

N

�

+

1

�(1�2�

b

)

2

log log

1

1�2�

b

�

when drawing a separate sample for each query.

Theorem 13 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case additive error �

�

, then F is PAC learnable in

the presence of malicious errors. The maximum allowable error rate is 
(�

�

=M) and the sample

complexity required is O(

M

2

�

2

�

log

jQj

�

) when Q is �nite or O(

NM

2

�

2

�

log

N

�

) when drawing a separate

sample for each query.

Theorem 14 If F is learnable by a statistical query algorithm which makes N probabilistic, [0;M ]-

valued queries from query space Q with worst case relative error �

�

and worst case threshold �

�

,

then F is PAC learnable in the presence of malicious errors. The maximum allowable error rate is


(�

�

�

�

=M) and the sample complexity required is O(

M

�

2

�

�

�

log

jQj

�

) when Q is �nite or O(

NM

�

2

�

�

�

log

N

�

)

when drawing a separate sample for each query.

6 Open Questions

The question of what sample complexity is required to simulate statistical query algorithms in the

presence of classi�cation noise remains open. The current simulations of both additive and relative

error SQ algorithms yield PAC algorithms whose sample complexities depend quadraticly on 1=�.

However, in the absence of computational restrictions, all �nite concept classes can be learned in

the presence of classi�cation noise using a sample complexity which depends linearly on 1=� [14].

As discussed in Section 4.5, many classes which are SQ learnable have algorithms with a constant

worst case relative error �

�

. Can one show that all classes which are SQ learnable have algorithms

with this property, or instead characterize exactly which classes do?
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