1,271 research outputs found

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems

    Efficient Algorithms for Scheduling Moldable Tasks

    Full text link
    We study the problem of scheduling nn independent moldable tasks on mm processors that arises in large-scale parallel computations. When tasks are monotonic, the best known result is a (32+ϵ)(\frac{3}{2}+\epsilon)-approximation algorithm for makespan minimization with a complexity linear in nn and polynomial in logm\log{m} and 1ϵ\frac{1}{\epsilon} where ϵ\epsilon is arbitrarily small. We propose a new perspective of the existing speedup models: the speedup of a task TjT_{j} is linear when the number pp of assigned processors is small (up to a threshold δj\delta_{j}) while it presents monotonicity when pp ranges in [δj,kj][\delta_{j}, k_{j}]; the bound kjk_{j} indicates an unacceptable overhead when parallelizing on too many processors. For a given integer δ5\delta\geq 5, let u=δ21u=\left\lceil \sqrt[2]{\delta} \right\rceil-1. In this paper, we propose a 1θ(δ)(1+ϵ)\frac{1}{\theta(\delta)} (1+\epsilon)-approximation algorithm for makespan minimization with a complexity O(nlognϵlogm)\mathcal{O}(n\log{\frac{n}{\epsilon}}\log{m}) where θ(δ)=u+1u+2(1km)\theta(\delta) = \frac{u+1}{u+2}\left( 1- \frac{k}{m} \right) (mkm\gg k). As a by-product, we also propose a θ(δ)\theta(\delta)-approximation algorithm for throughput maximization with a common deadline with a complexity O(n2logm)\mathcal{O}(n^{2}\log{m})

    Very Large-Scale Neighborhoods with Performance Guarantees for Minimizing Makespan on Parallel Machines

    Get PDF
    We study the problem of minimizing the makespan on m parallel machines. We introduce a very large-scale neighborhood of exponential size (in the number of machines) that is based on a matching in a complete graph. The idea is to partition the jobs assigned to the same machine into two sets. This partitioning is done for every machine with some chosen rule to receive 2m parts. A new assignment is received by putting to every machine exactly two parts. The neighborhood Nsplit consists of all possible rearrangements of the parts to the machines. The best assignment of Nsplit can be calculated in time O(mlogm) by determining the perfect matching having minimum maximal edge weight in an improvement graph, where the vertices correspond to parts and the weights on the edges correspond to the sum of the processing times of the jobs belonging to the parts. Additionally, we examine local optima in this neighborhood and in combinations with other neighborhoods. We derive performance guarantees for these local optima

    On the Value of Job Migration in Online Makespan Minimization

    Full text link
    Makespan minimization on identical parallel machines is a classical scheduling problem. We consider the online scenario where a sequence of nn jobs has to be scheduled non-preemptively on mm machines so as to minimize the maximum completion time of any job. The best competitive ratio that can be achieved by deterministic online algorithms is in the range [1.88,1.9201][1.88,1.9201]. Currently no randomized online algorithm with a smaller competitiveness is known, for general mm. In this paper we explore the power of job migration, i.e.\ an online scheduler is allowed to perform a limited number of job reassignments. Migration is a common technique used in theory and practice to balance load in parallel processing environments. As our main result we settle the performance that can be achieved by deterministic online algorithms. We develop an algorithm that is αm\alpha_m-competitive, for any m2m\geq 2, where αm\alpha_m is the solution of a certain equation. For m=2m=2, α2=4/3\alpha_2 = 4/3 and limmαm=W1(1/e2)/(1+W1(1/e2))1.4659\lim_{m\rightarrow \infty} \alpha_m = W_{-1}(-1/e^2)/(1+ W_{-1}(-1/e^2)) \approx 1.4659. Here W1W_{-1} is the lower branch of the Lambert WW function. For m11m\geq 11, the algorithm uses at most 7m7m migration operations. For smaller mm, 8m8m to 10m10m operations may be performed. We complement this result by a matching lower bound: No online algorithm that uses o(n)o(n) job migrations can achieve a competitive ratio smaller than αm\alpha_m. We finally trade performance for migrations. We give a family of algorithms that is cc-competitive, for any 5/3c25/3\leq c \leq 2. For c=5/3c= 5/3, the strategy uses at most 4m4m job migrations. For c=1.75c=1.75, at most 2.5m2.5m migrations are used.Comment: Revised versio

    Very large-scale neighborhoods with performance guarantees for minimizing makespan on parallel machines

    Get PDF
    We study the problem of minimizing the makespan on m parallel machines. We introduce a very large-scale neighborhood of exponential size (in the number of machines) that is based on a matching in a complete graph. The idea is to partition the jobs assigned to the same machine into two sets. This partitioning is done for every machine with some chosen rule to receive 2m parts. A new assignment is received by putting to every machine exactly two parts. The neighborhood Nsplit consists of all possible rearrangements of the parts to the machines. The best assignment of Nsplit can be calculated in time O(mlogm) by determining the perfect matching having minimum maximal edge weight in an improvement graph, where the vertices correspond to parts and the weights on the edges correspond to the sum of the processing times of the jobs belonging to the parts. Additionally, we examine local optima in this neighborhood and in combinations with other neighborhoods. We derive performance guarantees for these local optima.operations research and management science;

    Fast Discrete Consensus Based on Gossip for Makespan Minimization in Networked Systems

    Get PDF
    In this paper we propose a novel algorithm to solve the discrete consensus problem, i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a networked system. Tokens are tasks to be executed by the nodes and the proposed distributed algorithm minimizes monotonically the makespan of the assigned tasks. The algorithm is based on gossip-like asynchronous local interactions between the nodes. The convergence time of the proposed algorithm is superior with respect to the state of the art of discrete and quantized consensus by at least a factor O(n) in both theoretical and empirical comparisons
    corecore