15,834 research outputs found

    On the density of sets of the Euclidean plane avoiding distance 1

    Full text link
    A subset A⊂R2A \subset \mathbb R^2 is said to avoid distance 11 if: ∀x,y∈A,∥x−y∥2≠1.\forall x,y \in A, \left\| x-y \right\|_2 \neq 1. In this paper we study the number m1(R2)m_1(\mathbb R^2) which is the supremum of the upper densities of measurable sets avoiding distance 1 in the Euclidean plane. Intuitively, m1(R2)m_1(\mathbb R^2) represents the highest proportion of the plane that can be filled by a set avoiding distance 1. This parameter is related to the fractional chromatic number χf(R2)\chi_f(\mathbb R^2) of the plane. We establish that m1(R2)≤0.25646m_1(\mathbb R^2) \leq 0.25646 and χf(R2)≥3.8992\chi_f(\mathbb R^2) \geq 3.8992.Comment: 11 pages, 5 figure

    On the density of sets avoiding parallelohedron distance 1

    Get PDF
    The maximal density of a measurable subset of R^n avoiding Euclidean distance1 is unknown except in the trivial case of dimension 1. In this paper, we consider thecase of a distance associated to a polytope that tiles space, where it is likely that the setsavoiding distance 1 are of maximal density 2^-n, as conjectured by Bachoc and Robins. We prove that this is true for n = 2, and for the Vorono\"i regions of the lattices An, n >= 2

    Density estimates of 1-avoiding sets via higher order correlations

    Get PDF
    We improve the best known upper bound on the density of a planar measurable set A containing no two points at unit distance to 0.25442. We use a combination of Fourier analytic and linear programming methods to obtain the result. The estimate is achieved by means of obtaining new linear constraints on the autocorrelation function of A utilizing triple-order correlations in A, a concept that has not been previously studied.Comment: 10 pages, 2 figure

    First passage times and distances along critical curves

    Full text link
    We propose a model for anomalous transport in inhomogeneous environments, such as fractured rocks, in which particles move only along pre-existing self-similar curves (cracks). The stochastic Loewner equation is used to efficiently generate such curves with tunable fractal dimension dfd_f. We numerically compute the probability of first passage (in length or time) from one point on the edge of the semi-infinite plane to any point on the semi-circle of radius RR. The scaled probability distributions have a variance which increases with dfd_f, a non-monotonic skewness, and tails that decay faster than a simple exponential. The latter is in sharp contrast to predictions based on fractional dynamics and provides an experimental signature for our model.Comment: 5 pages, 5 figure

    3D environment mapping using the Kinect V2 and path planning based on RRT algorithms

    Get PDF
    This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented.Peer ReviewedPostprint (published version
    • …
    corecore