6,470 research outputs found

    On the Specific Role of the Occipital Cortex in Scene Perception

    Get PDF

    Interaction of cortical networks mediating object motion detection by moving observers

    Full text link
    Published in final edited form as: Exp Brain Res. 2012 August ; 221(2): 177–189. doi:10.1007/s00221-012-3159-8.The task of parceling perceived visual motion into self- and object motion components is critical to safe and accurate visually guided navigation. In this paper, we used functional magnetic resonance imaging to determine the cortical areas functionally active in this task and the pattern connectivity among them to investigate the cortical regions of interest and networks that allow subjects to detect object motion separately from induced self-motion. Subjects were presented with nine textured objects during simulated forward self-motion and were asked to identify the target object, which had an additional, independent motion component toward or away from the observer. Cortical activation was distributed among occipital, intra-parietal and fronto-parietal areas. We performed a network analysis of connectivity data derived from partial correlation and multivariate Granger causality analyses among functionally active areas. This revealed four coarsely separated network clusters: bilateral V1 and V2; visually responsive occipito-temporal areas, including bilateral LO, V3A, KO (V3B) and hMT; bilateral VIP, DIPSM and right precuneus; and a cluster of higher, primarily left hemispheric regions, including the central sulcus, post-, pre- and sub-central sulci, pre-central gyrus, and FEF. We suggest that the visually responsive networks are involved in forming the representation of the visual stimulus, while the higher, left hemisphere cluster is involved in mediating the interpretation of the stimulus for action. Our main focus was on the relationships of activations during our task among the visually responsive areas. To determine the properties of the mechanism corresponding to the visual processing networks, we compared subjects’ psychophysical performance to a model of object motion detection based solely on relative motion among objects and found that it was inconsistent with observer performance. Our results support the use of scene context (e.g., eccentricity, depth) in the detection of object motion. We suggest that the cortical activation and visually responsive networks provide a potential substrate for this computation.This work was supported by NIH grant RO1NS064100 to L.M.V. We thank Victor Solo for discussions regarding models of functional connectivity and our subjects for participating in the psychophysical and fMRI experiments. This research was carried out in part at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41RR14075, a P41 Regional Resource supported by the Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health. This work also involved the use of instrumentation supported by the NCRR Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program; specifically, grant number S10RR021110. (RO1NS064100 - NIH; National Center for Research Resources (NCRR), National Institutes of Health; S10RR021110 - NCRR)Accepted manuscrip

    An fMRI study of parietal cortex involvement in the visual guidance of locomotion

    Get PDF
    Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved

    Contextual modulation of primary visual cortex by auditory signals

    Get PDF
    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’

    Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies

    Get PDF
    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processe

    Bottom-up retinotopic organization supports top-down mental imagery

    Get PDF
    Finding a path between locations is a routine task in daily life. Mental navigation is often used to plan a route to a destination that is not visible from the current location. We first used functional magnetic resonance imaging (fMRI) and surface-based averaging methods to find high-level brain regions involved in imagined navigation between locations in a building very familiar to each participant. This revealed a mental navigation network that includes the precuneus, retrosplenial cortex (RSC), parahippocampal place area (PPA), occipital place area (OPA), supplementary motor area (SMA), premotor cortex, and areas along the medial and anterior intraparietal sulcus. We then visualized retinotopic maps in the entire cortex using wide-field, natural scene stimuli in a separate set of fMRI experiments. This revealed five distinct visual streams or ‘fingers’ that extend anteriorly into middle temporal, superior parietal, medial parietal, retrosplenial and ventral occipitotemporal cortex. By using spherical morphing to overlap these two data sets, we showed that the mental navigation network primarily occupies areas that also contain retinotopic maps. Specifically, scene-selective regions RSC, PPA and OPA have a common emphasis on the far periphery of the upper visual field. These results suggest that bottom-up retinotopic organization may help to efficiently encode scene and location information in an eye-centered reference frame for top-down, internally generated mental navigation. This study pushes the border of visual cortex further anterior than was initially expected

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al
    corecore