10,272 research outputs found

    Chemical characterization of liquefaction products of an inertinite enriched northern Alaska coals

    Get PDF
    A Northern Alaskan coal rich in inertinites was further enriched by density gradient separations. The degree of condensation of the enriched coal was estimated to be low, mainly 3 ring. The reactivity of the inertinite enriched coal was determined by comparing yields from direct liquefaction with H2 at 0 and 30 minute residence times, 425°C, using an H-donor solvent in one case and moly-catalyst in the other with H2 pressures of 500 and 1000 psig respectively. Solid products were analyzed by Fourier Transform Infrared Spectroscopy while the hexane solubles were separated into various chemical classes, viz. alkanes, neutral polycyclic aromatic compounds, hydroxy polycyclic aromatic oxygen heterocycles, and secondary, tertiary amino polycyclic aromatic compounds. The chemical compounds in these fractions were further analyzed by gas chromatography - mass spectrometry (GC-MS)an dcapillary gas chromatography. This work confirmed earlier data showing that inertinites are not as determinental to liquefaction as previously thought

    Multicomponent gas sorption Joule-Thomson refrigeration

    Get PDF
    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas

    United States transportation fuel economics (1975 - 1995)

    Get PDF
    The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology

    Biocrude production by hydrothermal liquefaction of olive residue

    Get PDF
    Hydrothermal liquefaction (HTL) converts biomass into a crude bio-oil by thermally and hydrolytically decomposing the biomacromolecules into smaller compounds. The crude bio-oil, or biocrude, is an energy dense product that can potentially be used as a substitute for petroleum crudes. Liquefaction also produces gases, solids, and water-soluble compounds that can be converted to obtain valuable chemical species or can be used as energy vectors. The process is usually performed in water at 250°C-370°C and under pressures of 4-22 MPa: depending on the adopted pressure and temperature the process can be carried out in sub-critical or super-critical conditions. In the conditions reached in hydrothermal reactors, water changes its properties and acts as a catalyst for the biomass decomposition reactions. One of the main advantages of this process is that the energy expensive biomass-drying step, required in all the thermochemical processes, is not necessary, allowing the use of biomass with high moisture content such as microalgae or olive residue and grape mark. In this work, the feasibility of a hydrothermal process conducted under sub-critical conditions to obtain a bio-oil from the residue of olive oil production is investigated. The experimental tests were performed at 320°C and about 13 MPa, using a biomass to water weight ratio of 1:5. The influence of two different catalysts on the bio-oil yield and quality was investigated: CaO and a zeolite (faujasite-Na). CaO allows the increase of bio-oil yields, while the selected zeolite enhances the deoxygenation reactions, thus improving the bio-oil quality in terms of heating value

    Controlling colloidal phase transitions with critical Casimir forces

    Full text link
    The critical Casimir effect provides a thermodynamic analogue of the well-known quantum mechanical Casimir effect. It acts between two surfaces immersed in a critical binary liquid mixture, and results from the confinement of concentration fluctuations of the solvent. Unlike the quantum mechanical effect, the magnitude and range of this attraction can be adjusted with temperature via the solvent correlation length, thus offering new opportunities for the assembly of nano and micron-scale structures. Here, we demonstrate the active assembly control of equilibrium phases using critical Casimir forces. We guide colloidal particles into analogues of molecular liquid and solid phases via exquisite control over their interactions. By measuring the critical Casimir particle pair potential directly from density fluctuations in the colloidal gas, we obtain insight into liquefaction at small scales: We apply the Van der Waals model of molecular liquefaction and show that the colloidal gas-liquid condensation is accurately described by the Van der Waals theory, even on the scale of a few particles. These results open up new possibilities in the active assembly control of micro and nanostructures

    Coal pump development phase 3

    Get PDF
    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined

    Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines

    Get PDF
    In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal combustion supercritical steam power generation cycle is investigated through modeling and simulation using Aspen Plus® simulation software version 8.4. The study shows that the integration of LAPG process and the use of binary cycle heat engine which convert waste heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion supercritical steam power generation cycle improves the thermodynamic efficiency of the pressurized oxy-coal process. The analysis indicates that such integration can give about 12–15% increase in thermodynamic efficiency when compared with a standalone pressurized oxy-coal process with or without CO2 capture. It was also found that in a pressurized oxy-coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently expand the gaseous oxygen to the required combustor pressure than either compressing the atmospheric gaseous oxygen produced from the cryogenic ASU directly to the combustor pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the cryogenic ASU main heat exchanger. The power generated from the compressor heat in the flue gas purification, carbon capture and compression unit using binary cycle heat engine was also found to offset about 65% of the power consumed in the flue gas cleaning and compression process. The work presented here shows that there is a synergistic and thermodynamic advantage of utilizing the nitrogen-rich stream from the cryogenic ASU of an oxy-fuel power generation process for power generation instead of discarding it as a waste stream

    SubcriticalWater – a Perspective ReactionMedia for Biomass Processing to Chemicals: Study on Cellulose Conversion as aModel for Biomass

    Get PDF
    Biomass and water are recognized as a key renewable feedstock in sustainable production of chemicals, fuels and energy. Subcritical water (SubCW), or commonly referred as hot compressed water (HCW), is the water above boiling and below critical point (CP; 374 °C, 22.1 MPa). It has gained great attention in the last few decades as a green, cheap, and nontoxic reagent for conversion of biomass into valuable chemicals. In this paper, hydrothermal reactions of cellulose, as the model biomass substance, with subcritical water at mild temperature and pressure regimes have been studied. The experiments were done in a batch reactor in the temperature range of 220 ° – 300 °C. The main products distributed in liquid, gaseous and solid phase were separated and quantified. The conversions to each group of products were found strongly dependent on the temperature and residence time

    Progress on coal-derived fuels for aviation systems

    Get PDF
    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well
    corecore