27,121 research outputs found

    On the Feasibility of Maintenance Algorithms in Dynamic Graphs

    Full text link
    Near ubiquitous mobile computing has led to intense interest in dynamic graph theory. This provides a new and challenging setting for algorithmics and complexity theory. For any graph-based problem, the rapid evolution of a (possibly disconnected) graph over time naturally leads to the important complexity question: is it better to calculate a new solution from scratch or to adapt the known solution on the prior graph to quickly provide a solution of guaranteed quality for the changed graph? In this paper, we demonstrate that the former is the best approach in some cases, but that there are cases where the latter is feasible. We prove that, under certain conditions, hard problems cannot even be approximated in any reasonable complexity bound --- i.e., even with a large amount of time, having a solution to a very similar graph does not help in computing a solution to the current graph. To achieve this, we formalize the idea as a maintenance algorithm. Using r-Regular Subgraph as the primary example we show that W[1]-hardness for the parameterized approximation problem implies the non-existence of a maintenance algorithm for the given approximation ratio. Conversely we show that Vertex Cover, which is fixed-parameter tractable, has a 2-approximate maintenance algorithm. The implications of NP-hardness and NPO-hardness are also explored

    On the Feasibility of Maintenance Algorithms in Dynamic Graphs

    Full text link
    Near ubiquitous mobile computing has led to intense interest in dynamic graph theory. This provides a new and challenging setting for algorithmics and complexity theory. For any graph-based problem, the rapid evolution of a (possibly disconnected) graph over time naturally leads to the important complexity question: is it better to calculate a new solution from scratch or to adapt the known solution on the prior graph to quickly provide a solution of guaranteed quality for the changed graph? In this paper, we demonstrate that the former is the best approach in some cases, but that there are cases where the latter is feasible. We prove that, under certain conditions, hard problems cannot even be approximated in any reasonable complexity bound --- i.e., even with a large amount of time, having a solution to a very similar graph does not help in computing a solution to the current graph. To achieve this, we formalize the idea as a maintenance algorithm. Using r-Regular Subgraph as the primary example we show that W[1]-hardness for the parameterized approximation problem implies the non-existence of a maintenance algorithm for the given approximation ratio. Conversely we show that Vertex Cover, which is fixed-parameter tractable, has a 2-approximate maintenance algorithm. The implications of NP-hardness and NPO-hardness are also explored

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Expert System for Crop Disease based on Graph Pattern Matching: A proposal

    Get PDF
    Para la agroindustria, las enfermedades en cultivos constituyen uno de los problemas más frecuentes que generan grandes pérdidas económicas y baja calidad en la producción. Por otro lado, desde las ciencias de la computación, han surgido diferentes herramientas cuya finalidad es mejorar la prevención y el tratamiento de estas enfermedades. En este sentido, investigaciones recientes proponen el desarrollo de sistemas expertos para resolver este problema haciendo uso de técnicas de minería de datos e inteligencia artificial, como inferencia basada en reglas, árboles de decisión, redes bayesianas, entre otras. Además, los grafos pueden ser usados para el almacenamiento de los diferentes tipos de variables que se encuentran presentes en un ambiente de cultivos, permitiendo la aplicación de técnicas de minería de datos en grafos, como el emparejamiento de patrones en los mismos. En este artículo presentamos una visión general de las temáticas mencionadas y una propuesta de un sistema experto para enfermedades en cultivos, basado en emparejamiento de patrones en grafos.For agroindustry, crop diseases constitute one of the most common problems that generate large economic losses and low production quality. On the other hand, from computer science, several tools have emerged in order to improve the prevention and treatment of these diseases. In this sense, recent research proposes the development of expert systems to solve this problem, making use of data mining and artificial intelligence techniques like rule-based inference, decision trees, Bayesian network, among others. Furthermore, graphs can be used for storage of different types of variables that are present in an environment of crops, allowing the application of graph data mining techniques like graph pattern matching. Therefore, in this paper we present an overview of the above issues and a proposal of an expert system for crop disease based on graph pattern matching

    Analysis of Software Binaries for Reengineering-Driven Product Line Architecture\^aAn Industrial Case Study

    Full text link
    This paper describes a method for the recovering of software architectures from a set of similar (but unrelated) software products in binary form. One intention is to drive refactoring into software product lines and combine architecture recovery with run time binary analysis and existing clustering methods. Using our runtime binary analysis, we create graphs that capture the dependencies between different software parts. These are clustered into smaller component graphs, that group software parts with high interactions into larger entities. The component graphs serve as a basis for further software product line work. In this paper, we concentrate on the analysis part of the method and the graph clustering. We apply the graph clustering method to a real application in the context of automation / robot configuration software tools.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301
    corecore