50,799 research outputs found

    On Near-Linear-Time Algorithms for Dense Subset Sum

    Get PDF
    In the Subset Sum problem we are given a set of nn positive integers XX and a target tt and are asked whether some subset of XX sums to tt. Natural parameters for this problem that have been studied in the literature are nn and tt as well as the maximum input number mxX\rm{mx}_X and the sum of all input numbers ΣX\Sigma_X. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in nn. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time nO(1)n^{O(1)}. Our main question is: When can dense Subset Sum be solved in near-linear time O~(n)\tilde{O}(n)? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters n,t,mxX,ΣXn,t,\rm{mx}_X,\Sigma_X for which dense Subset Sum is in time O~(n)\tilde{O}(n). For notational convenience we assume without loss of generality that tmxXt \ge \rm{mx}_X (as larger numbers can be ignored) and tΣX/2t \le \Sigma_X/2 (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP'91], we show that Subset Sum is in near-linear time O~(n)\tilde{O}(n) if tmxXΣX/n2t \gg \rm{mx}_X \Sigma_X/n^2. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with tmxXΣX/n2t \ll \rm{mx}_X \Sigma_X/n^2, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Robust Near-Separable Nonnegative Matrix Factorization Using Linear Optimization

    Full text link
    Nonnegative matrix factorization (NMF) has been shown recently to be tractable under the separability assumption, under which all the columns of the input data matrix belong to the convex cone generated by only a few of these columns. Bittorf, Recht, R\'e and Tropp (`Factoring nonnegative matrices with linear programs', NIPS 2012) proposed a linear programming (LP) model, referred to as Hottopixx, which is robust under any small perturbation of the input matrix. However, Hottopixx has two important drawbacks: (i) the input matrix has to be normalized, and (ii) the factorization rank has to be known in advance. In this paper, we generalize Hottopixx in order to resolve these two drawbacks, that is, we propose a new LP model which does not require normalization and detects the factorization rank automatically. Moreover, the new LP model is more flexible, significantly more tolerant to noise, and can easily be adapted to handle outliers and other noise models. Finally, we show on several synthetic datasets that it outperforms Hottopixx while competing favorably with two state-of-the-art methods.Comment: 27 page; 4 figures. New Example, new experiment on the Swimmer data se

    Convex Hulls under Uncertainty

    Get PDF
    We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input site is described by a probability distribution over a finite number of possible locations including a \emph{null} location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of \some-hull that may be a useful representation of uncertain hulls
    corecore