210 research outputs found

    Offloading cryptographic services to the SIM card in smartphones

    Get PDF
    Smartphones have achieved ubiquitous presence in people’s everyday life as communication, entertainment and work tools. Touch screens and a variety of sensors offer a rich experience and make applications increasingly diverse, complex and resource demanding. Despite their continuous evolution and enhancements, mobile devices are still limited in terms of battery life, processing power, storage capacity and network bandwidth. Computation offloading stands out among the efforts to extend device capabilities and face the growing gap between demand and availability of resources. As most popular technologies, mobile devices are attractive targets for malicious at- tackers. They usually store sensitive private data of their owners and are increasingly used for security sensitive activities such as online banking or mobile payments. While computation offloading introduces new challenges to the protection of those assets, it is very uncommon to take security and privacy into account as the main optimization objectives of this technique. Mobile OS security relies heavily on cryptography. Available hardware and software cryptographic providers are usually designed to resist software attacks. This kind of protection is not enough when physical control over the device is lost. Secure elements, on the other hand, include a set of protections that make them physically tamper-resistant devices. This work proposes a computation offloading technique that prioritizes enhancing security capabilities in mobile phones by offloading cryptographic operations to the SIM card, the only universally present secure element in those devices. Our contributions include an architecture for this technique, a proof-of-concept prototype developed under Android OS and the results of a performance evaluation that was conducted to study its execution times and battery consumption. Despite some limitations, our approach proves to be a valid alternative to enhance security on any smartphone.Los smartphones están omnipresentes en la vida cotidiana de las personas como herramientas de comunicación, entretenimiento y trabajo. Las pantallas táctiles y una variedad de sensores ofrecen una experiencia superior y hacen que las aplicaciones sean cada vez más diversas, complejas y demanden más recursos. A pesar de su continua evolución y mejoras, los dispositivos móviles aún están limitados en duración de batería, poder de procesamiento, capacidad de almacenamiento y ancho de banda de red. Computation offloading se destaca entre los esfuerzos para ampliar las capacidades del dispositivo y combatir la creciente brecha entre demanda y disponibilidad de recursos. Como toda tecnología popular, los smartphones son blancos atractivos para atacantes maliciosos. Generalmente almacenan datos privados y se utilizan cada vez más para actividades sensibles como banca en línea o pagos móviles. Si bien computation offloading presenta nuevos desafíos al proteger esos activos, es muy poco común tomar seguridad y privacidad como los principales objetivos de optimización de dicha técnica. La seguridad del SO móvil depende fuertemente de la criptografía. Los servicios criptográficos por hardware y software disponibles suelen estar diseñados para resistir ataques de software, protección insuficiente cuando se pierde el control físico sobre el dispositivo. Los elementos seguros, en cambio, incluyen un conjunto de protecciones que los hacen físicamente resistentes a la manipulación. Este trabajo propone una técnica de computation offloading que prioriza mejorar las capacidades de seguridad de los teléfonos móviles descargando operaciones criptográficas a la SIM, único elemento seguro universalmente presente en los mismos. Nuestras contribuciones incluyen una arquitectura para esta técnica, un prototipo de prueba de concepto desarrollado bajo Android y los resultados de una evaluación de desempeño que estudia tiempos de ejecución y consumo de batería. A pesar de algunas limitaciones, nuestro enfoque demuestra ser una alternativa válida para mejorar la seguridad en cualquier smartphone

    Strong authentication based on mobile application

    Get PDF
    The user authentication in online services has evolved over time from the old username and password-based approaches to current strong authentication methodologies. Especially, the smartphone app has become one of the most important forms to perform the authentication. This thesis describes various authentication methods used previously and discusses about possible factors that generated the demand for the current strong authentication approach. We present the concepts and architectures of mobile application based authentication systems. Furthermore, we take closer look into the security of the mobile application based authentication approach. Mobile apps have various attack vectors that need to be taken under consideration when designing an authentication system. Fortunately, various generic software protection mechanisms have been developed during the last decades. We discuss how these mechanisms can be utilized in mobile app environment and in the authentication context. The main idea of this thesis is to gather relevant information about the authentication history and to be able to build a view of strong authentication evolution. This history and the aspects of the evolution are used to state hypothesis about the future research and development. We predict that the authentication systems in the future may be based on a holistic view of the behavioral patterns and physical properties of the user. Machine learning may be used in the future to implement an autonomous authentication concept that enables users to be authenticated with minimal physical or cognitive effort

    International roaming in the EU : current overview, challenges, opportunities and solutions

    Get PDF
    As technology evolves and globalization continues, the need for reasonably priced roaming services has never been higher. In 2007, the European Commission (EC) introduced a first set of regulatory decisions to cap the maximal roaming fee end users have to pay for voice services. In the years after, additional price caps have been introduced for SMS and data, initially only for end users, in a later stage also for the wholesale tariff. The final step, Roaming Like at Home (RLAH), will start to take effect in June 2017; from then on end users will pay the same price (for voice, SMS and data) when roaming like in their domestic country. The effect of RLAH on the business case of each mobile operator is hard to predict, as the different national markets are extremely heterogeneous and operators face large discrepancies in terms of roaming usage and network costs due to different travelling patterns and various other reasons that cannot be harmonized (geography, economics, working force, usage history, etc.). Furthermore, competition in the telecom market will no longer be a purely national matter, as the decision to abolish roaming tariffs will fully open up cross-border competition. This paper aims at providing insights in the effect of RLAH for both the end user as well as the mobile operators. Following a literature survey approach, including an overview of the roaming regulation process from 2007 up to now, the paper discusses possible effects the RLAH initiative might trigger, going from lower wholesale prices for mobile operators to higher retail prices for end Users. Additionally, as the European Commission strives for a digital single market, this paper presents a number of technical solutions (carrier portability, software-based SIMs, cross-border IMSI, Roaming like a Local, Wi-Fi offloading) that may pose a - partial or full - alternative for roaming and explains how these may impact cross-border competition both positively and negatively. The solutions are assessed against two axes: (1) generating the best possible outcome for the end customers (in all countries) and (2) ensuring the best level playing field for (virtual) mobile operators in Europe, which will of course involve trade-offs on different levels

    Middleware to Integrate Mobile Devices, Sensors and Cloud Computing

    Get PDF
    International audienc

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my first year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can find around us. We can edit our documents, look our and our friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&T’s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s infrastructure has not been able to cope with intense data traffic, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting financial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could find themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the user’s bank account, read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting user’s experience nowadays. We believe that finding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has significantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling traffic to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs – down to 7% in average of VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the user’s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difficult to replicate characteristic of each user. We proposed the Personal Marks and Community Certificates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certificates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenarios—with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by offloading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efficient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efficiently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These findings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up user’s data on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation offloading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my first year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can find around us. We can edit our documents, look our and our friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&T’s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s infrastructure has not been able to cope with intense data traffic, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting financial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could find themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the user’s bank account, read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting user’s experience nowadays. We believe that finding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has significantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling traffic to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs – down to 7% in average of VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the user’s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difficult to replicate characteristic of each user. We proposed the Personal Marks and Community Certificates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certificates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenarios—with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by offloading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efficient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efficiently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These findings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up user’s data on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation offloading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    Secure migration of WebAssembly-based mobile agents between secure enclaves

    Get PDF
    Cryptography and security protocols are today commonly used to protect data at-rest and in-transit. In contrast, protecting data in-use has seen only limited adoption. Secure data transfer methods employed today rarely provide guarantees regarding the trustworthiness of the software and hardware at the communication endpoints. The field of study that addresses these issues is called Trusted or Confidential Computing and relies on the use of hardware-based techniques. These techniques aim to isolate critical data and its processing from the rest of the system. More specifically, it investigates the use of hardware isolated Secure Execution Environments (SEEs) where applications cannot be tampered with during operation. Over the past few decades, several implementations of SEEs have been introduced, each based on a different hardware architecture. However, lately, the trend is to move towards architecture-independent SEEs. As part of this, Huawei research project is developing a secure enclave framework that enables secure execution and migration of applications (mobile agents), regardless of the underlying architecture. This thesis contributes to the development of the framework by participating in the design and implementation of a secure migration scheme for the mobile agents. The goal is a scheme wherein it is possible to transfer the mobile agent without compromising the security guarantees provided by SEEs. Further, the thesis also provides performance measurements of the migration scheme implemented in a proof of concept of the framework
    corecore