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Offloading cryptographic
services to the SIM card

in smartphones

Abstract

Smartphones have achieved ubiquitous presence in people’s everyday life
as communication, entertainment and work tools. Touch screens and a va-
riety of sensors offer a rich experience and make applications increasingly
diverse, complex and resource demanding. Despite their continuous evolu-
tion and enhancements, mobile devices are still limited in terms of battery
life, processing power, storage capacity and network bandwidth. Computa-
tion offloading stands out among the efforts to extend device capabilities and
face the growing gap between demand and availability of resources. As most
popular technologies, mobile devices are attractive targets for malicious at-
tackers. They usually store sensitive private data of their owners and are
increasingly used for security sensitive activities such as online banking or
mobile payments. While computation offloading introduces new challenges
to the protection of those assets, it is very uncommon to take security and
privacy into account as the main optimization objectives of this technique.

Mobile OS security relies heavily on cryptography. Available hardware
and software cryptographic providers are usually designed to resist software
attacks. This kind of protection is not enough when physical control over the
device is lost. Secure elements, on the other hand, include a set of protections
that make them physically tamper-resistant devices.

This work proposes a computation offloading technique that prioritizes
enhancing security capabilities in mobile phones by offloading cryptographic
operations to the SIM card, the only universally present secure element in
those devices. Our contributions include an architecture for this technique, a
proof-of-concept prototype developed under Android OS and the results of a
performance evaluation that was conducted to study its execution times and
battery consumption. Despite some limitations, our approach proves to be a
valid alternative to enhance security on any smartphone.

Keywords: Security Offloading, Cryptographic services, SIM card, Secure
computation
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Resumen

Los smartphones están omnipresentes en la vida cotidiana de las personas
como herramientas de comunicación, entretenimiento y trabajo. Las pantallas
táctiles y una variedad de sensores ofrecen una experiencia superior y hacen
que las aplicaciones sean cada vez más diversas, complejas y demanden más
recursos. A pesar de su continua evolución y mejoras, los dispositivos móviles
aún están limitados en duración de batería, poder de procesamiento, capaci-
dad de almacenamiento y ancho de banda de red. Computation offloading
se destaca entre los esfuerzos para ampliar las capacidades del dispositivo
y combatir la creciente brecha entre demanda y disponibilidad de recursos.
Como toda tecnología popular, los smartphones son blancos atractivos para
atacantes maliciosos. Generalmente almacenan datos privados y se utilizan
cada vez más para actividades sensibles como banca en línea o pagos móviles.
Si bien computation offloading presenta nuevos desafíos al proteger esos ac-
tivos, es muy poco común tomar seguridad y privacidad como los principales
objetivos de optimización de dicha técnica.

La seguridad del SO móvil depende fuertemente de la criptografía. Los
servicios criptográficos por hardware y software disponibles suelen estar dis-
eñados para resistir ataques de software, protección insuficiente cuando se
pierde el control físico sobre el dispositivo. Los elementos seguros, en cambio,
incluyen un conjunto de protecciones que los hacen físicamente resistentes a
la manipulación.

Este trabajo propone una técnica de computation offloading que prioriza
mejorar las capacidades de seguridad de los teléfonos móviles descargando
operaciones criptográficas a la SIM, único elemento seguro universalmente
presente en los mismos. Nuestras contribuciones incluyen una arquitectura
para esta técnica, un prototipo de prueba de concepto desarrollado bajo An-
droid y los resultados de una evaluación de desempeño que estudia tiempos
de ejecución y consumo de batería. A pesar de algunas limitaciones, nuestro
enfoque demuestra ser una alternativa válida para mejorar la seguridad en
cualquier smartphone.

Palabras clave: Offloading de seguridad, servicios criptográficos, tarjeta
SIM, computación segura
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Chapter 1

Introduction

1.1 Introduction

Smartphones have become one of the most popular computers. Mobile devices in general are
increasingly present in people’s everyday life as communication and entertainment tools. They
are used for personal as well as professional reasons and even work environments are progressively
moving towards the Bring Your Own Device (BYOD) model, which allows employees to bring
their personal devices such as smartphones, laptops, and tablets to the workplace and access the
company’s resources and information. The diversity of applications available in mobile platforms
is comparable to the existent for traditional PCs. On top of this, touch screens and a variety of
sensors offer an even richer experience and making the software that runs inside them increasingly
complex and resource demanding (such as video processing, augmented reality, games and all
sorts of content based services). Despite their continuous evolution and enhancements, mobile
devices are still considered limited when compared to a traditional PC. Their main limitations
are observed in battery life, processing power, storage capacity and network bandwidth. The
increasing gap between demand and resources availability has drawn the attention of both
academy and industry, who are dedicating efforts to extend the capacity of mobile devices and
networks. Computation offloading [62] is one of the solutions drawing most attention. Different
approaches exist to apply this optimization technique, but essentially all of them are based on
the idea of enhancing the device capabilities by migrating computation to a more resourceful
computer (such as servers on the network or peripherals). One of the main objectives is to enhance
application performance perceived by users and at the same time reduce energy consumption on
the device.

As most popular technologies, mobile devices are attractive targets for malicious attackers.
They suffer by definition from a broader attack surface than traditional computers because
of their strong connectivity. On top of this, they usually store sensitive private data of their
owners and are increasingly used for security sensitive activities such as online banking or mobile
payments. Unfortunately, as often happens with technology, security aspects are relegated in favor
of enhancements in functional or operational aspects. While the introduction of computation
offloading presents new challenges in terms of security and privacy, which are being addressed in
most research works in the area ([62] [60] [81] [68] [57] [42] [64]), it is very uncommon to apply
this technique with the purpose of addressing security related requirements.

Many mobile OS security features are highly dependent on cryptography, especially those
countermeasures aimed at protecting sensitive data and credentials from an attacker who has
gained physical access to a lost, stolen, decommissioned or unattended device [72] [22] [41]. File
or device encryption and secure keystores are typical examples of the former. Ironically, these
rely on cryptographic services that cannot claim to be secure at a hardware level. This kind of

1



1.1 Introduction 2

protection is instrumental when an adversary with limitless access can compromise the device
by inspecting or tampering with its hardware or the software it contains (Man-At-The-End or
MATE attacks [40]). Services currently found on most mobile devices are based on software
implementations or even hardware-backed ones that are designed to protect keys by introducing
some form of Trusted Execution Environment (TEE) [51] such as the one provided by ARM
TrustZone Technology [70]. The protection profile defined for a TEE [51] targets threats to its
assets that arise during the end-usage phase and can be achieved by software means. Attackers
have remote or physical (local) access to the device embedding the TEE and may use tools to
jailbreak/root/reflash the device in order to get privileged access to the main mobile OS or Rich
Execution Environment (REE) allowing the execution of a software exploit. The attacker may
have some level of expertise but the attacks do not require any specific equipment. The exploits
come from an identification phase attacker that discovers some vulnerability, conceives malicious
software and distributes it. This attacker may have software and/or hardware expertise and
access to low-budget equipment such as protocol analyzers or JTAG debuggers. Although in TEE
based services keys cannot be extracted by an attacker with REE root privileges, he may be able
to use them depending on how access controls (such as application binding or user authentication)
are enforced by the specific implementation (see Chapter 4). Neither TEE specifications nor
TrustZone’s cover how the interfaces provided by applications (such as a keystore service) to the
main OS should be protected. Also, since the design of those interfaces is application specific
too, it might be vulnerable to API-level attacks (see [45]) that attempt to compromise or use
secret keys.

Secure Elements [50] such as smart cards include a set of protections that make them physically
tamper resistant devices. They are usually designed to prevent keys from being extracted even by
advanced attackers with access to laboratory equipment, such as electron microscopes, that can
perform almost unlimited reverse engineering of the device. They have the ability to securely store
key material and to perform encryption and signature operations without secret keys ever leaving
the device’s isolated execution environment. Furthermore, user verification methods provided
(such as PINs) include countermeasures against brute-force attacks (such as try counters) and
can prevent key usage when their owner is not present. These capabilities suggest that their use
in the implementation of the above mentioned features can lead to more secure mobile systems.
Unfortunately, despite some very recent encouraging signs from Google by the introduction of
StrongBox Keystores in their latest Android version [2] and the Titan M chip in their Pixel
3 phones [10], the presence of cryptographic services based on Secure Elements is far from
being a standard in smartphones from most manufacturers and even the availability of TEE
based solutions is completely optional. According to the background information gathered (see
Chapter 2), while there are other alternative manufacturer-dependent form factors that may
be present on some devices, it is widely acknowledged that a SIM card can act as a universally
present Secure Element in mobile phones.

This work studies the state of the art of computation offloading in smartphones and how it
relates to security in those devices. Our main focus was in proposing an offloading technique
that prioritizes enhancing security capabilities in mobile phones. We present a rather original
approach where the computation load to be optimized are cryptographic operations and the
‘more resourceful computer’ to which we offload them is the SIM card, a richer environment in
terms of security. We were also interested in learning about power consumption and performance
for this scenario as secondary optimization variables.

We chose Android Operating System developed by Google as the environment for prototypes
and experiments, since it is the most widely deployed mobile OS. Also because it is open source
and the ecosystem surrounding it provides a wide variety of tools and information not available
in other environments. Android is in constant development and evolution. As of starting our
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research, 6.0.1 was the latest stable version and Android 7.0 was being released. A lot has
changed since, including a re-architecture of the Hardware Abstraction Layer in Android 8.0
and new Secure Element support in version 9.0. Although our prototype and initial background
study were based on Android 6.0.1, we provide notes about new features that are relevant for
the discussion of our results.

1.2 Objectives

The general goal of this work was to study how computation offloading approaches relate
to security and especially to find scenarios where it is applied with security purposes. The
first objective was to design a computation offloading technique that uses security as its main
optimization objective. After studying the state of the art on the subject and refining the research
domain the following more specific objectives were defined:

• Study the approach of offloading cryptographic operations from the main processor of
smart phones to the SIM card as an unconventional offloading technique with the purpose
of enhancing mobile security.

• Define an architecture to apply this approach in smart phones.

• Provide a proof of concept prototype for a widely used mobile OS.

• Learn about its performance in terms of response time and energy consumption, aspects
that reflect typical user concerns around mobile experience and are usually part of the
offloading optimization objectives.

1.3 Contributions

The main contributions of this work are:

• An architecture for offloading cryptographic operations to the SIM card in smart phones.

• A detailed exposition of how to implement its components under Android OS including a
proof of concept prototype.

• Performance benchmarking results comparing response times and energy consumption
of executing the most widely used cryptographic algorithms in both the SIM and the
smartphone main chip. Results of this type are a valuable input when conducting a
profiling analysis of a program’s components as a step of an offloading decision process.

These contributions were validated by the publication of a full paper in the proceedings of an
international conference [78].

Secondary contributions of this work include a discussion of possible applications of this
technique that might have an immediate impact on Android’s Security and the proposal of future
research lines and implementation work in that realm. These contributions were also validated
by a publication, in this case a short paper [77] was presented in the Student Forum of the same
conference, getting feedback from the community.
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1.4 Document outline

The rest of this document is structured as follows: Chapter 2 introduces background needed to
motivate and contextualize our work. Chapter 3 presents our proposed technique, architecture,
provides a detailed description of the developed prototype and the results of performing some
experiments and conducting a performance evaluation on a real phone. In Chapter 4 we compare
and link our work with similar research on the area, discuss potential applications and point out
some limitations of the followed approach. Finally, Chapter 5 concludes.



Chapter 2

Background

In this chapter we summarize the required background knowledge to help us put across the
motivation behind our work and discuss its potential. We will start by presenting the concept of
computation offloading, its relation with security and provide a summary of the state of the art
on the subject. We will later focus on some relevant threats to mobile security where our work
may prove to make an impact. We also go over some preexistent conditions (mostly common
features in state-of-the-art SIM cards and smartphones) that form the basis for our proposed
architecture and hint at some of the challenges identified, such as baseband modem’s exclusive
access to the UICC.

2.1 Computation Offloading

In this section we focus on the concept of computation offloading in mobile devices [62]. Different
approaches exist to apply this optimization technique, but essentially all of them are based on
the idea of enhancing the device capabilities by migrating computation to a more resourceful
computer. This involves making a decision regarding whether and what computation to migrate
in order to obtain benefits. One of the main objectives is to enhance application performance
perceived by users and at the same time reduce energy consumption on the device. It is very
uncommon to take security into account as one of the optimization objectives.

The rest of this section provides a summary of the state of the art of computation offloading
strategies in mobile devices and their relationship with security.

2.1.1 Motivation

In spite of the fast development of key components such as CPU, GPU, memory, wireless networks
and operating systems, mobile devices still present great disadvantages compared to a PC. The
main reasons for this are their limited processing power and that the battery, only energy source
in these terminals, has shown relatively slow progress in the last decade. Lithium-ion batteries,
currently the most used kind, have increased their energy density an average of 51% annually
since their emergence [66] and due to material limitations it is unreal to expect greater increases.
Moreover, at current rates projections show that density theoretical limits will be reached within
the next decade. In this scenario, if a new generation of batteries does not come into play,
significant increases in capacity would be tied to increases in volume, something that goes against
the demands of the smartphone and tablet market where hardware is expected to be lighter and
thiner every year. The emergence of cloud computing has changed completely the service model
of modern applications. It is possible to access infrastructure, platform, and software as a service
through the Internet, commercialized by cloud vendors (such as Amazon, Google, Microsoft,

5



2.1 Computation Offloading 6

etc.) in convenient ways following pay-as-you-go models. This offers resource provisioning on
demand in a reliable and flexible manner and at a low cost, allowing companies to grow fast
without the extra efforts of mounting and maintaining their own infrastructure or the extra costs
of over-provisioning. Mobile cloud computing can benefit from these advantages to expand device
capabilities.

Computation offloading is a mechanism that, by migrating computation tasks to a more
resourceful computer (such as servers on the network or peripherals), increases mobile device
capabilities over its physical limits and may extend battery charge intervals by saving energy.
This is different from a pure client-server model where a thin client always delegates computation
to a server. In computation offloading a decision process is in charge of determining if and which
part of the load is to be migrated. The process may determine that benefits are obtained by
migrating all or part of the load, but it also may conclude that it is more efficient to execute it
locally. This decision usually depends on several parameters including, bandwidth, server speed,
memory available or the amount of data exchanged between the terminal and the server through
the network.

Some of the main challenges presented by computation offloading systems include:

• Interoperability: a wide variety of mobile devices with different resource levels, bandwidth,
hardware and software may offload computation to one or more servers.

• Mobility and fault tolerance: the use of wireless networks may produce instability due
to congestion and mobility problems. The system must be fault tolerant and continue
executing tasks in the event of these problems.

• Security and privacy: these aspects are a concern, since programs and user data may be
sent to servers outside the mobile environment at risk of being accessed or tampered with
by third parties.

2.1.2 Models

We will start by introducing the offloading decision problem. Since not every component of an
application is suitable for executing remotely (outside of the main processing environment of
the device), as a first step towards offloading we need to distinguish between offloadable and
unoffloadable ones. Unoffloadable components normally include those that handle access to local
I/O (including peripherals such as the device’s camera) or user interface and interaction. Second,
a profiling analysis of the components is required to determine their computation costs in terms
of the optimization variables (i.e. execution time, energy consumption, etc.). An estimation of
intermediate data exchanged between components is also required. Next, we need to apply an
optimization algorithm to decide, based on these inputs, which of the offloadable components are
actually going to execute remotely. That is the result of the offloading decision and is referred
to as partitioning. Offloading decisions are usually represented as a graph [53]. Consider an
application consisting of an unoffloadable component and N offloadable ones. Even if more than
one unoffloadable component exists, we still can merge them without losing generality in this
representation. We will use a weighted directed graph G = (V,E) with |V | = N + 1 to represent
the relationship between components, see Fig. 2.1. Application execution is characterized by
the direction of edges. Each vertex v ∈ V denotes a component and the weight of a directed
edge (u, v) represents the size of data migration from vertex u to v. For example, in Fig.
2.1, component with index 2, before it is executed, requires the data from components with
indexes 0 and 1. The component with index 0 is unoffloadable and the other N components are
offloadable. The application execution completes when the component with index N returns the
result to component 0. Although vertices 1 to N represent possible offloading candidates, it is
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not convenient to apply a decision algorithm independently on each of them. Intermediate data
exchange (edge weights) must be taken into account. For example, if e12 is too large components
with index 1 and 2 should execute on the same system to guarantee local communication. An
optimal decision implies finding a balance between variables such as response times, energy
consumption and communication, which requires considering every vertex simultaneously.

Figure 2.1: Offloading decision graph model.

2.1.3 Categories

A variety of approaches exist to make offloading decisions. They can be classified according to
different factors. We will start by focusing on the optimization objective. As explained in [62],
the two alternatives that receive most attention in research works are enhancing performance
and saving energy. These objectives are not opposites, actually they depend on some common
variables. Performance optimization is generally measured in terms of response or execution time
of tasks. An alternative objective might be complying with real time restrictions. For example in
a navigation system where information from different sources must be analyzed simultaneously
to give real time feedback, restrictions on response time can be necessary so that feedback does
not lose its value. The other important categorization factor for offloading solutions is related
to ‘when’ the decision is taken. The alternatives include doing it statically during application
development or dynamically during its execution. When the decision is static the program is
partitioned during development reducing overhead introduced during execution. However, this
approach is only valid when parameters can be precisely predicted beforehand. For example,
execution time and energy consumption can usually be predicted for a specific system or a
minimum execution speed guaranteed by a cloud provider, while network bandwidth available
may vary at execution time in most scenarios. Different prediction techniques can be employed
in order to statically decide how to partition the application. We will see some of them in the
following section. On the other hand, dynamic decisions can adapt to changes in execution
conditions such as variable bandwidth. These approaches may also use prediction techniques to
make decisions. In this case parameter monitoring is required to later predict their behavior.
Monitoring execution conditions causes a higher overhead in this type of decisions. Although
the decision is dynamic, the process of identifying offloadable tasks is usually conducted during
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development, precisely to reduce the overhead of program analysis. According to the survey and
categorization presented on [62], since 2005 most works in the area use dynamic decisions.

2.1.4 Techniques

In this section we review the challenges faced when performing offloading decisions and the type
of techniques used to solve them.

The offloading decision problem, as many graph partitioning problems where vertices are
divided into sets with specific properties such that few edges cross between sets, is known to be
NP-complete even if all the parameters are known in advance [62]. This can be relevant since
graph sizes vary depending on the program and the decomposition strategy chosen. For example,
class [76] or function [62] level decompositions may lead to large graphs and so to hard problems.
There is a huge amount of research about partitioning graphs in polynomial time using heuristics,
but these techniques must be adapted to be applied for offloading decisions, since they can be
expensive and produce an amount of overhead incompatible with the optimization requirements.
For example [76] adapts a multilevel heuristic algorithm so that is light enough to make dynamic
offloading decisions based on metrics obtained on-the-fly.

There is a wide variety of options to implement dynamic decision algorithms. Alternatives
may vary from repeating partitioning in every execution taking metrics on-the-fly, to calculating
partitions that guarantee certain probability to remain optimal in the event of changes in order
to repeat the process less frequently or even monitoring execution context to trigger partitioning
only when a change in conditions dictates so. One of the most variable metrics in mobile systems,
which heavily affects offloading decisions, is available bandwidth. Solutions that assume it as a
constant value present great disadvantages. Some solutions monitor this type of variables and
dynamically react to changes using rules. Others, such as [83], model bandwidth as a random
variable and present the partition problem as an integer programming one with probability in
search of change resistant partitions. Here service time and energy are introduced as service
quality restrictions met by solutions with certain probabilities.

A set of frameworks and middlewares are available that simplify offloading implementation in
applications following certain patterns so that developing solutions to the most typical problems
is not required. Some examples of these are:

• MACS [61], a framework for Android that solves partitioning with resource monitoring and
adaptability.

• Cuckoo [59], a framework that transparently integrates offloading features into Android.

In [39] a recent work studies all available frameworks and provides a classification.

2.1.5 Offloading and security

Mobile devices are attractive targets for malicious attackers. The introduction of computation
offloading tends to bring even greater challenges in terms of security and privacy, since it usually
implies a broader attack surface including servers in the cloud and insecure networks. This causes
that security is at least presented as a concern in most research works in the area ([62] [60] [81]
[68] ) and that novel techniques are being employed to protect security [57] [42] and privacy
[64]. Besides the challenges it may present, offloading can also have a positive impact on these
aspects. Many security solutions are available in the form of applications directly installed on
the device. Although these on-device strategies may offer some advantages, they generally imply
significant resource consumption on the device leading to a reduction in battery charge duration.
As mentioned, it is possible to use computation offloading to migrate part of this load to remote
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servers. Some examples of this can be found in [73], [55] and [54]. It is rare to find research
works where offloading decisions take security or privacy as one of the optimization objectives.
They typically appear as statically imposed conditions or restrictions, but final decisions are
based on resource usage and response times.

2.2 Mobile Device Security

As their name suggests, one of the key differences between this type of devices and other
computation environments is mobility. In terms of security, it is the first reason why they
have always been significantly more vulnerable to attacks. As shown in the following section,
physical access is one of the main threat categories for this type of devices. Many of the typical
countermeasures to mitigate these threats (such as file or device encryption and secure keystores)
are highly dependent on cryptography, especially those aimed at protecting sensitive data and
credentials from an attacker who has gained physical access to a lost, stolen, decommissioned
or unattended device. The level of protection provided by such features is as reliable as the
cryptographic services behind them. In these scenarios cryptography modules are exposed to
attacks focused on their hardware support. The use of tamper resistant devices is an instrumental
countermeasure for this exposure, yet their presence has not been standardized by chip or phone
manufacturers.

2.2.1 Threats and countermeasures

In this section some relevant mobile threats catalogs and taxonomies are reviewed. We will
start with OWASP Mobile Security Project [21]. Table 2.1 provides an extract of the latest
Top 10 Mobile Risks released in 2016 [22]. We can observe that in ‘Insecure Data Storage’ and
‘Insufficient Cryptography’, two of the top five risks, an adversary with physical access to the
device is a key threat agent. We also observe that cryptography plays an important role in
the countermeasures for risks for M3, M4 and M5. Another concern raised is that encryption
protections are vulnerable to rooting.

The National Institute of Standards and Technology (NIST) has been working on a Mobile
Threat Catalog [72] in recent years. This catalog includes physical access as one of the twelve
categories selected to arrange the threats identified, table 2.2 shows some extracts. Two of the
main threats inside this category are ‘Device loss or theft’ and ‘Unauthorized access to device data
resulting from poor lifecycle management’ (for example improper disposal). The countermeasures
presented for these threats include enforcing data encryption and device lock policies such that
the recovery of data becomes highly improbable. The effectiveness of other countermeasures not
based on cryptography like remote wipe depends on device connectivity which might be disabled
by the attacker, for example simply turning the device off or removing its SIM card.

In [41] the authors present a recent review on Android data storage security. They propose
taxonomies of threats and countermeasures where the two main categories are Software Threats
and Physical Threats. The main physical threats presented (such as evil maid and cold boot
attacks) are viable because of the use of software based encryption systems and extraction of keys
from RAM and internal memory (see table 2.3). They explain how Android Full disk encryption
feature is vulnerable to some of these attacks. The countermeasures presented for this category
(see table 2.4) of attacks include enhanced encryption systems (such as Sentry, Armored or
Droidvault) where keys are stored in CPU registers, TrustZone [70] or other architecture provided
mechanisms. These types of protections are said to make attacks more difficult and expensive,
while leading to lower performance or turning the system more impractical for end-users.
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Table 2.1: OWASP Mobile Security Project TOP 10 Risks extracts.

Threat Agent Vectors Weaknesses

M2: Insecure Data
Storage

An adversary that has
attained a lost/stolen
mobile device.

In the event that an
adversary physically
attains the mobile de-
vice, the adversary
hooks up the mobile
device to a computer
with freely available
software.

Rooting or jailbreak-
ing a mobile device
circumvents any en-
cryption protections.

M3: Insecure Commu-
nication

An adversary that
shares your local net-
work (compromised
or monitored Wi-Fi).

The exploitability
factor of monitoring a
network for insecure
communications
ranges.

Mobile applications
frequently do not pro-
tect network traffic.
They may use SS-
L/TLS during authen-
tication but not else-
where.

M5: Insufficient Cryp-
tography

Anyone with physical
access to data that
has been encrypted
improperly.

Decryption of data
via physical access to
the device.

Weak encryption algo-
rithms or flaws within
the encryption pro-
cess.

2.3 Secure Computation

In this section we introduce and compare two forms of secure computation environments.
Understanding these two alternatives and how they differ is instrumental to appreciate how our
work’s proposal can have an impact on mobile security against the types of threats covered in
the previous section.

2.3.1 Trusted Execution Environments

GlobalPlatform defines specifications to standardize the concept of Trusted Execution Envi-
ronment (TEE) [51]. A TEE is an execution environment that runs alongside but isolated
from a Rich Execution Environment, has security capabilities and meets certain security related
requirements: It protects TEE assets from general software attacks, defines rigid safeguards as to
data and functions that a program can access, and resists a set of defined threats. There are
multiple technologies that can be used to implement a TEE, and the level of security achieved
varies accordingly. The TEE consists of three parts: hardware-based isolation technology (such
as Arm TrustZone [70]), trusted boot and a small trusted OS. The TEE can be used to run
multiple isolated trusted applications usually called trustlets which may be provisioned over the
air. In GlobalPlatform TEE documents, trusted storage indicates storage protected either by the
hardware of the TEE, or cryptographically by keys held in the TEE. A GlobalPlatform TEE
Trusted Storage is not considered hardware tamper resistant to the levels achieved by Secure
Elements [50].
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Table 2.2: NIST Mobile Threat Catalog extracts.

Category Threat Countermeasures

Physical access Device loss or theft. To mitigate the impact of a
lost or stolen device in the
possession of an attacker, use
remote lock, activation lock,
locate, or wipe capabilities as
deemed appropriate based on
the sensitivity of data stored
on or capabilities of the de-
vice.

Physical access Unauthorized access to device
data resulting from poor life-
cycle management.

Use EMM or MDM solutions
in combination with devices
that successfully enforce data
encryption and device lock
policies (unlock code set, un-
lock code strength require-
ments, auto-locking enabled,
and auto-wipe enabled) such
that the recovery of data from
an improperly retired device
becomes highly improbable.

Table 2.3: Android data storage security review extracts: Threats.

Category Threat Weakness

Physical threat Cold boot attack. RAM can be re-plugged to
another computer to get its
content such as encryption
keys. This attack can be
made against all software-
based encryption technologies.
Researchers determined this
type of attack can break An-
droid Full disk encryption
(FDE).

Physical threat Evil maid attack. Any software-based encryp-
tion needs a part of the disk
unencrypted; in Android, this
is the entire system partition.



2.3 Secure Computation 12

Table 2.4: Android data storage security review extracts: Countermeasures.

Category Countermeasure Strategy

Physical threat solution Sentry Avoid storing encryption/de-
cryption keys in RAM and use
ARM system-on-chip (SoC)
low capacity storage next to
the CPU instead.

Physical threat solution Armored Store the encryption keys and
intermediate values of AES in-
side the CPU registers of the
ARM microprocessor.

Physical threat solution Droidvault Utilize TrustZone to manipu-
late the unencrypted data

ARM TrustZone

Most mobile phones and tablets are based on an ARM processor. ARM does not produce
processors itself but rather licenses architecture designs to chip manufacturers, who add their
own features and produce the actual chips. As explained in [70], ARM TrustZone Technology
is an optional hardware security extension of the ARM processor architecture, that creates an
isolated secure world which can be used to provide confidentiality and integrity to the system.
This is achieved by partitioning all of the SoC’s hardware and software resources so that they
exist in one of two worlds. The secure world for the security subsystem and the non-secure
world for everything else. ARM has implemented this split-environment processor with various
hardware additions to enforce security restrictions while preserving the low power consumption
and other advantages of their designs. These hardware additions enable a single physical processor
core to safely execute code from both worlds in a time-sliced fashion, removing the need for a
dedicated security processor core. Each physical processor core provides two virtual cores, one
considered non-secure and the other secure, plus a mechanism to context switch between them.
The security state is encoded on the system bus and this enables trivial integration of the virtual
processors into the system security mechanism; the non-secure virtual processor can only access
non-secure system resources, but the secure virtual processor can see all resources. The main
bus contains a non-secure (NS) bit that indicates whether a read/write operation is directed to
secure or non-secure memory. A bridge between this bus and the peripheral bus allows for secure
communication between a CPU and peripherals by checking for appropriate permissions and
blocking unauthorized requests. The cache controller also looks for an NS bit. Since both worlds
share the same physical cache, the same location may have two distinct addresses, requiring
a controller to look up the correct location. This also includes L2 cache and other smaller
locations. The Direct Memory Access (DMA) Controller is used to transfer data to physical
memory locations instead of devoting processor cycles to this task. This controller can handle
secure and non-secure events simultaneously, with full support for interrupts and peripherals. It
prevents non-secure access of secure memory. Additions to several controllers prevent non-secure
access of secure memory, allow dynamic classification of memory-mapped devices as secure or
non-secure and prevent non-secure interrupts from unauthorized access, among other controls.
These extensions to enforce a separation are presented to be more resource efficient than actually
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using two separate processors.
The normal world is usually a general OS such as Linux or Android, while the secure world

can be anything between a full OS and a small library. As pointed out by [47], the hardware
features described do not implement or ensure a secure environment. Some functionalities (such
as context switching between the two worlds) are left to the software running in the secure world.
The communication of data between the two worlds is left to the software running in both worlds
to implement. To complete a secure execution environment and to allow multiple applications
to be run in the secure world a second OS is required. The secure world OS should schedule
resources and context switches between both the applications running in the secure world and
the operating system running in the normal world so that no data is leaked. Securely booting
both parts of this system is a key concern. Without proper verification of both images, the device
may inadvertently boot a malicious version, giving attackers an entry route. Therefore, ARM
has designed TrustZone-enabled systems to use a Secure Boot Sequence. To build a chain of
trust, each step can be cryptographically verified.

2.3.2 Secure Elements

GlobalPlatform defines a Secure Element (SE) [50] as a tamper resistant component which is
used in a device to provide the security, confidentiality, and multiple application environment
required to support various business models. It may exist in any form factor such as UICC,
embedded SE, smart SD, smart microSD, etc. A variety of Secure Elements may be present in
mobile devices, Fig. 2.2 shows the alternatives and their compatibility. The SIM card is the
only universally present SE in every smartphone. The embedded SE typically appears as part of
an NFC controller (when present). Recently the embedded SE has been deprecated in favor of
host-based card emulation in these controllers. The smartSD is basically an SD card with an
embedded SE chip. These memory cards comply with both the widely deployed SD architecture
and the Advanced Security SD (ASSD) standard [24] by the SD Association (global ecosystem
of companies setting industry-leading memory card standards). Their presence is completely
optional.

Figure 2.2: Secure Element form factors in mobile devices.

There are a few key differences between any Secure Element present in a mobile device and a
TEE solution like TrustZone [46].

• A Secure Element does not provide a trusted path. The secure world in TrustZone has
access to the display controller and peripherals providing a trusted path with the user.
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A Secure Element usually can only communicate with the main processor over a serial
channel and cannot control the display.

• Secure Elements are physically tamper resistant. In contrast, a TrustZone-enabled processor
does not necessarily have any physical tamper protection [43].

• Secure Elements are usually platforms with power constraints. As a result the computing
power of a Secure Element may be limited compared to the full computing power of all
cores on an ARM chip available to the TrustZone-based TEE.

In summary, while both Secure Element and TEE provide secure computation, a SE has
more physical security features while the TEE is safer for interaction with the user and provides
higher computing power.

2.4 The SIM card

The SIM (Subscriber Identity Module) card is a smart card used in mobile phones starting from
2G cellular networks. It is issued by mobile network operators and securely stores subscriber’s
service key (among other parameters) allowing consumers to establish secure and trusted voice
and data connections, as well as storing contact and SMS information. SIM cards are smart
cards, therefore they comply with physical and electrical specifications in ISO-7816 [12]. However,
not every smart card is necessarily capable of working as a SIM card. For this to be true, it
must comply with one of 3GPP (3rd Generation Partnership Project) [1] Technical Specifications
(TS) and be certified by SIMalliance [28] (SIMalliance members represent 90 % of the global
SIM card market). The use of this element became mandatory in GSM networks where it was
named SIM card and no distinctions were made between hardware and software that composed
it (see [32]). Its equivalent since 3rd generation UMTS networks is called USIM (Universal
Subscriber Identity Module) card or UICC (Universal Integrated Circuit Card). The UICC is
unequivocally defined as universal hardware that can execute multiple applications for different
mobile network technologies simultaneously (see [37]), an important advantage over original
SIM cards. An application always present, the USIM, is in charge of identifying the subscriber
to a service provider of one of the following standards: Universal Mobile Telecommunications
System (UMTS), High Speed Packet Access (HSPA) or Long Term Evolution (LTE). A separate
contacts application is also always present. Other optional applications include IP Multimedia
Services Identity Module (ISIM) for secure mobile access to multimedia services and payment
related applications. ETSI TS 102 266 [30] features an application called UICC Security Service
Module (USSM), a general security module, which offers services to other applications on the
UICC through an API. This short specification that has not evolved since its introduction in
2006 and its stage 2 in 2007 [31]. UICC standard applications do not provide general purpose
cryptographic services to mobile devices.

Over The Air (OTA), defined for UICCs in [34], is a mechanism that permits sending
commands to the card over binary SMS or other services, allowing operators to maintain control
over the card’s configuration after its issuance (includes installing and activating applications).
OTA requires command wrapping according to [33], which provides integrity check and encryption.
One of the main uses of OTA has been maintaining SIM Toolkit (STK) applications.

As it is commonly accepted, in this document the terms ‘SIM card’ and ‘UICC’ will be used
interchangeably. Although originally presented as Full-size (FF) smart cards, today most popular
SIM card sizes are Mini-SIM(2FF), Micro-SIM(3FF) and Nano-SIM(4FF).
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2.4.1 Current UICC

In terms of hardware and platform, first SIM cards (and first smart cards in general) were based
on a file system model, where elementary files (EF) and dedicated files (DF) were named with 2
byte identifiers. In those cards, defining an application consisted of describing its file structure in
terms of DFs and EFs. For example, GSM application’s DF identifier is ‘7F20’ and under USIM
application DF you can find an IMSI EF and a keys EF. Today most UICCs are based on the
Java Card technology (JC) [20] and comply with GlobalPlatform (GP) [8] specifications. In this
platform, mobile network applications are implemented as Java Card Applets and only emulate
a file system for backwards compatibility. An Applet in Java Card Framework is the application
unit and where the commands exposed are implemented. The Issuer Security Domain (ISD),
a GP component inside the card that represents its issuer, gives network operators exclusive
full control over card life cycle and content management. This is enforced by requiring the
establishment of a secure channel based on symmetric and asymmetric cryptography.

Since current SIM cards are multi-application UICCs, higher end smart cards are being
employed for this task. Examples of these are Gemalto’s Multi-tenant SIM [7] which includes
hardware support for RSA and ECC or Kona I LTE-NFC USIM [15] which includes hardware
RSA support.

2.4.2 Performance and energy consumption

Smart card processor designs are based on proven components [79]. Lower end processors include
16 bit CISC and RISC architectures which may feature symmetric cryptography co-processors
for algorithms such as Triple DES or AES. In fact, that has historically been very common
because of their standard use in payment or telecommunication applications. Also because
they can be efficiently implemented in hardware and execution times decrease is notorious. At
the upper end of the performance scale for smart card microcontrollers, 32-bit types manage
larger memories above the 64-KB limit and are suitable for the requirements of interpreter-based
platforms such as Java Card. The key selection criteria for processors include code density, power
consumption, and resistance to attacks. ARM has achieved great success in the smart card world
with their SecurCore 32 bit processor family, a RISC architecture based on ARM Cortex-M
series. SecurCore SC300 processors [5], designed specifically for high-performance smart cards,
currently occupy between 0.028 mm2 and 0.40 mm2 and present power consumptions between 13
µW/MHz and 162 µW/MHz. For calculations in the realm of public key algorithms, there are
specially designed calculation units that are located on the silicon along with the usual functional
components of the microcontroller. They are limited to performing some basic calculations
that are necessary for these types of algorithms: exponentiation and modulo on large numbers.
Both operations are essential elements of public-key encryption algorithms, such as RSA and
ECC. The speed of these components results from their very broad architectures and high clock
rates. According to [79], in their specific application area, some of them can even outperform a
high-performance PC.

2.4.3 Phone Integration

A fact sometimes overlooked is that smartphones as telecommunication devices compliant with
the already mentioned standards, general purpose application platforms and sensor rich hardware
are not composed from a single processor or controlled by a single operating system [49].

Complexity and diversity of mobile network protocols that must be supported by these
devices, require that their implementation is delegated to a dedicated hardware component, the
baseband processor or baseband modem. Although this hardware module may communicate
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with the main processor or main memory and there has been a general trend towards tighter
integrated hardware components (System on a Chip or SoC), the baseband is a separate processor
that runs its own operating system and is in charge of all radio related operations. This type of
functionality requires real time OS and architecture. ARM Cortex R architectures are commonly
chosen, as they are designed for this kind of task. OS is usually delivered as closed source
proprietary firmware provided by chip manufacturers.

Our main interest in the baseband modem comes because the UICC is directly connected
to it and the only way to access the card is through the interface provided by the modem. As
this is a proprietary interface, manufacturers must provide proper wrappers or drivers for mobile
operating systems such as Android or iOS. Although these wrappers always expose access to
the SIM for network authentication, contact management and STK execution, general APDU
commands exchange support is not mandatory. The only standard way to achieve this is using
extended AT commands as defined by [35]. Examples of these commands are AT+CSIM (Generic
SIM access) and AT+CGLA (Generic UICC Logical Channel Access).

Mobile operating systems do not usually expose SIM card low level access through the
application framework.

2.5 Android OS Security

Android provides an open source platform and application environment for mobile devices [3].
As Fig. 2.3 illustrates, the main Android platform building blocks are:

• Device hardware: Android runs on a wide range of hardware configurations including
smartphones, tablets, watches, automobiles, smart TVs, OTT gaming boxes, and set-top-
boxes. Android is processor-agnostic.

• Android operating system: The core operating system is built on top of the Linux kernel.
All device resources, like camera functions, telephony functions, network connections, etc.
are accessed through the OS.

• Hardware Abstraction Layer (HAL): A HAL defines a standard interface for hardware
vendors to implement, which enables Android to be agnostic about lower-level driver
implementations.

• Android Application Runtime: Android applications are most often written in the Java
programming language and run in the Android runtime (ART). However, many applications,
including core Android services and applications, are native applications or include native
libraries. Both ART and native applications run within the same security environment,
contained within the Application Sandbox. Applications get a dedicated part of the
filesystem in which they can write private data. There are two primary sources for
applications:

– Pre-installed applications: These function both as user applications and to provide
key device capabilities accessed by other applications. Pre-installed applications may
be part of the open source Android platform (phone, contacts, etc) or developed by
device manufacturers.

– User-installed applications: Android provides an open development environment that
supports any third-party application. Google Play offers users hundreds of thousands
of applications.
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Figure 2.3: Android Software Stack [3].

2.5.1 Overview

Android states in its official security documentation [3] that it seeks to be a secure and usable
operating system for mobile platforms by providing these key security features:

• Robust security at the OS level through the Linux kernel

• Mandatory application sandbox for all applications

• Secure interprocess communication

• Application signing

• Application-defined and user-granted permissions

As the base for a mobile computing environment, the Linux kernel provides Android with
several key security features, including:

• A user-based permissions model

• Process isolation

• Extensible mechanism for secure IPC

• The ability to remove unnecessary and potentially insecure parts of the kernel
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Android 6.0 and later supports verified boot and device-mapper-verity. Verified boot guaran-
tees the integrity of the device software starting from a hardware root of trust up to the system
partition. During boot, each stage cryptographically verifies the integrity and authenticity of the
next stage before executing it.

Android 7.0 and later supports strictly enforced verified boot, which means compromised
devices cannot boot.

2.5.2 Rooting of Devices

By default, on Android only the kernel and a small subset of the core applications run with
root permissions. Android does not prevent a user or application with root permissions from
modifying the operating system, kernel, or any other application.

As Android documentation states [3], the ability to modify an Android device they own is
important to developers working with the platform. On many Android devices users have the
ability to unlock the bootloader in order to allow installation of an alternate OS, allowing them
to gain root access for purposes of debugging applications and system components or to access
features not presented to applications by Android APIs.

On some devices, a person with physical control of a device and a USB cable is able to install
a new operating system that provides root privileges to the user. To protect any existing user
data from compromise the bootloader unlock mechanism requires that the bootloader erase any
existing user data as part of the unlock step. Root access gained via exploiting a kernel bug or
security hole can bypass this protection.

Encrypting data with a key stored on-device does not protect the application data from root
users. Applications can add a layer of data protection using encryption with a key stored off-device,
such as on a server or a user password. This approach can provide temporary protection while
the key is not present, but at some point the key must be provided to the application and it then
becomes accessible to root users. In the case of a lost or stolen device, full filesystem encryption
on Android devices uses the device password to protect the encryption key, so modifying the
bootloader or operating system is not sufficient to access user data without the user’s device
password. As [3] states, a more robust approach to protecting data from root users is through
the use of hardware solutions.

2.5.3 User Security Features

Android can be configured to verify a user-supplied password prior to providing access to a device.
Use of a password and/or password complexity rules can be required by a device administrator.

Android 3.0 and later provides full filesystem encryption, so all user data can be encrypted in
the kernel. Android 5.0 and later supports full-disk encryption, which uses a single key—protected
with the user’s device password—to protect the whole of a device’s userdata partition. Upon
boot, users must provide their credentials before any part of the disk is accessible. Android
7.0 and later supports file-based encryption, which allows different files to be encrypted with
different keys that can be unlocked independently.

2.5.4 Cryptography

Android provides a set of cryptographic APIs for use by applications [3]. These include im-
plementations of standard and commonly used cryptographic primitives such as AES, RSA,
DSA, and SHA. Additionally, APIs are provided for higher level protocols such as SSL and
HTTPS. These programming interfaces are based on a provider model, where different imple-
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mentations may coexist as separate providers. Android usually defaults to a software provider
called ‘AndroidOpenSSL’ and based on the OpenSSL Library [19].

The availability of a TEE in a SoC offers an opportunity for Android devices to provide
hardware-backed security services to the OS, platform services, and even to third-party applica-
tions. The API to access those services is called Keystore. It is provided by the Keymaster HAL
and made also available through standard application APIs by a specific cryptography provider.
If no hardware based implementation of the Keymaster is provided, either because a TEE is not
present or because drivers to take advantage of it are no provided, Android defaults to a software
based Keymaster, again using the OpenSSL Library. In Android 6.0, Keystore added access
control system for hardware-backed keys. Keys can be restricted to be usable only after the user
has authenticated, and only for specified purposes or with specified cryptographic parameters.
In Android 7.0, Keymaster 2 added support for key attestation and version binding (binds keys
to operating system and patch level version, preventing rollback attacks). In Android 9, updates
include support for embedded Secure Elements [2].

2.5.5 SE support

Although the different types of Secure Elements mentioned in section 2.3 may be present
in Android phones, the application framework has historically lacked of a standard API to
interact with them. SIMalliance defined the Open Mobile API Specification [65] (transfered to
GlobalPlatform at the end of 2016), with the goal to give applications access to the different
form factors of Secure Elements present in mobile devices. These can be integrated as a UICC,
embedded in the handset, connected to a SD card slot, accessed through a USB reader or even
through a wireless interface. An open source implementation (for compatible devices) of the
API is available from the SEEK for Android project [25] maintained by Giesecke & Devrient.
SEEK provides Android patches that implement a Service Manager (SmartCardService) that
can connect to any SE available (including the UICC) and extensions for Android’s Telephony
Framework that enable transparent APDU exchange with the card. From API level 21 (Android
5.0) onwards, Android’s framework already provides primitives to specifically interact with the
UICC as part of the Telephony Manager [4]. Both APIs require extended AT commands support
by the baseband modem and its wrappers in order to make the UICC available.

Most recently, since Android 9 release, the OS integrates an implementation of the Open Mobile
API in its core source tree [18]. Device manufacturers must provide SE HAL implementations
[2] to make GlobalPlatform-supported Secure Elements available through the Secure Element
Service.

2.5.6 TEE support

Android platform includes Trusty, which is a set of software components supporting a Trusted
Execution Environment (TEE). According to [3] Trusty consists of an operating system (the
Trusty OS) that runs on a processor intended to provide a TEE (such as TrustZone enabled
ones), drivers for the Android kernel (Linux) to facilitate communication with applications
running under the Trusty OS and a set of libraries for Android system software to facilitate
communication with trusted applications executed within the Trusty OS using the kernel drivers.
Trusted applications are written as event-driven servers (much like Java Card applets ) waiting
for commands from other applications running on the TEE or main processor. Currently all
Trusty applications are developed by a single party (usually manufacturers) and packaged with
the Trusty kernel image. The entire image is signed and verified by the bootloader during boot.

According to [46] chip manufacturers like Qualcomm and Texas Instruments provide pro-
prietary Keymaster trustlets and drivers to make available hardware-backed keystore services
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in Android phones based on their chips. Their implementations of access restrictions such as
application binding can be bypassed by a root attacker.



Chapter 3

Offloading cryptographic services to
the SIM card

Physical access to the device is one of the main threat categories in mobile security [72] [22] [41].
Cryptography plays a key role among the available countermeasures (see section 2.2). It is no
surprise that mobile OS security features aimed at protecting user data from this type of threats
are heavily based on it. Unfortunately, they often rely on software or TEE based cryptographic
services, which resist software attacks, but are not physically tamper resistant (see section 2.5).
Secure Elements on the other hand, as their main advantage over a TEE (see section 2.3), provide
that type of protections which are instrumental in this scenario. Because of this, their use in the
implementation of the above mentioned features can lead to more secure mobile systems.

It is widely acknowledged that the SIM card can act as a universally present Secure Element
in mobile phones [46] [49]. A further question to address is whether it is also possible that
offloading cryptographic operations from the main processor to the UICC results in lower power
consumption while achieving at least similar performance.

This chapter puts forward the main body of our work. In the following sections we present a
computation offloading method based on the UICC, an architecture for it, a proof-of-concept
prototype under Android OS and the results of conducting a performance evaluation in a real
phone in order to address our research questions and specific objectives.

3.1 Proposal

We propose a computation offloading method where applications or programs are decomposed
into cryptographic functions, i.e. tasks based on a sequence of cryptographic operations (e.g.
digest, cipher, signature, random number generation, etc.). These functions are the offloadable
parts of the application. Offloading a function here means that the required calculations are
delegated to the UICC, rather than being executed in the main processor. The main variables
to take into account in an offloading decision process for this method should be security, that
is enhanced by executing operations in the UICC and can be the main objective, alongside
execution time and energy consumption. These last variables affect user experience and should
comply with service quality restrictions or be secondary optimization objectives. This offloading
method does not present the typical problems of cloud computing based ones:

• It does not have the negative concerns in terms of security and privacy of data and code
leaving the device for remote servers.

• It does not have the instability factors of wireless connectivity and variable bandwidth.

21
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3.2 Architecture

We propose an architecture for offloading cryptographic services to the UICC in mobile devices.
Fig. 3.1 depicts its main composition, where black represents the standard hardware and
software of a smartphone’s computation environment and orange identifies components and
communication flows introduced by our work. At card level our architecture features a general
purpose cryptographic service application deployed by mobile network operators. To make these
services available at OS and application level we present a software service module inside the
phone that may expose different high level interfaces to access cryptographic primitives. This
module (represented as ‘Cryptographic Service’) encapsulates and makes transparent the fact
that the primitives are based on smart card commands (APDU commands) sent to the UICC
application and hide any low level communication channels involved. The architecture also
defines how this communication works and the hardware and software requirements the device
and its OS must meet to be compatible (shown in blue in Fig. 3.1).

Figure 3.1: Cryptography offloading architecture.

3.2.1 Crypto applet

In order to execute hash and encryption operations in the UICC a cryptographic application that
implements the proper commands, already specified at ISO 7816-8 [12], should be installed on the
card. The multi-application nature of the smart cards currently used as UICC (see section 2.4.1)
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is consistent with this idea. ISO 7816-8 provides a basic standard interface that only includes
key generation, signature, encryption and decryption, as well as hash calculations. Since it does
not support exporting secrets even in encrypted form or any high level operation that combines
multiple keys, we believe its design is not vulnerable to the most common API-level attacks, such
as the ones presented in [45]. Sensitive key operations, for example encryption, should always be
protected by user verification methods (such as PINs).

Section 2.4.1 explains how mobile network operators have exclusive full control over card life
cycle and content management of the UICC through the ISD, since they are by definition the
issuer. This makes it possible for them to install the intended application on the card. The UICC
representation in Fig. 3.1 shows our cryptographic application as a Java Card Applet called
‘Crypto Applet’ installed under the ISD. Installation could be performed during the initialization
and personalization phase, before the card enters SECURED state and is ready to be issued to the
customer. In the case of production cards, those already issued, the application could still be
installed using the OTA interface. Notice that we are making an important assumption here,
namely, that operators agree to host that application on their cards as a benefit to their clients.
On the other hand, mobile network standards already foresee the presence of a set of applications
related to multimedia services and payments so it is not unlikely that a security application could
became part of them, perhaps as an evolution of the USSM module mentioned in section 2.4.

3.2.2 Communication channel

At mobile device level we identified hardware as well as OS requirements. These are highlighted
in blue in Fig. 3.1. The diagram shows that communication with the UICC is achieved through
the baseband modem which is part of the hardware of a phone (the only possible alternative, see
section 2.4.3). Our first requirement is that this component’s hardware, drivers and OS integration
wrappers should support extended AT commands (see section 2.4.3), so that it is possible to send
custom APDUs to the card embedded through that channel. On top of this, since direct Radio
Interface Layer access is not usually available for applications, our second requirement is that
mobile OS and its application framework should provide access to the functionality enabled by
those AT commands through a higher level API. As covered in section 2.5.5 a theoretically cross
platform alternative for this interface is found in SIMAlliance/GlobalPlatform Open Mobile API
[65]. However, since it is only present in select Android models from some manufacturers, OS
specific APIs (such as Android’s Telephony Manager primitives) prove to be more cross device
compliant and are our preferred alternative. Since Android 9 [2] released a few months ago, an
Open Mobile API implementation is part of the OS and is probably the best choice from now on,
as it meets both criteria.

The two requirements explained above guarantee that a channel to send APDU commands
to the UICC application (represented by a green arrow in Fig. 3.1) can be established seamlessly
from application space, hiding the complexity of the hardware and software that compose the
phone.

3.2.3 Smartphone module

The goal of this module (presented as ‘Cryptographic Service’ in Fig. 3.1) is making cryptographic
services based on the Crypto Applet operations available to applications through high level
interfaces detaching them from smart card and communication channel specifics. This component
takes advantage of the communication channel explained in the previous section (green arrow in
the diagram) to send ISO 7816-8 cryptography related commands to the applet upon request of
cryptographic services by applications through the APIs exposed. The module may expose its
services to applications directly through its own API (see application 2 in Fig. 3.1) or integrate
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with the OS application framework so that applications may access its services through the
framework’s cryptographic API (see application 2 in Fig. 3.1). A good alternative for the
high level interface exposed might be PKCS#11 standard, a platform-independent API. Mobile
operating systems typically define a provider based cryptography architecture and standard
application framework APIs for cryptographic operations, where specific implementations must
comply with predefined requirements to achieve integration. PKCS#11 is usually one of the
integration options in most platforms, so it covers both OS integration as well as direct API
exposure scenarios. An alternative is achieving integration by implementing OS framework
specific provider interfaces. Note that despite the interface chosen, the actual operations provided
should be limited to acting as proxys to ISO 7816-8 basic commands. For example, PKCS#11
provides a wide interface aimed at supporting a variety of cryptographic devices including smart
cards and Hardware Security Modules (HSMs). While PKCS#11 may be vulnerable to API-level
attacks in HSMs that provide key wrapping commands (see [48]) it is safe for standard ISO 7816
cryptographic smart cards that do not support such instructions in their PKCS#11 drivers.

Lower level integration at purely OS level might also prove to be a good choice. For example
in Android, integration as a Keymaster device also exposes a keystore as a cryptographic provider
in the cryptography framework. Such implementation would be in the HAL, a couple layers
below the application framework (see section 2.5). To achieve a communication channel through
AT commands, the Keymaster implementation would have to access the RIL directly through its
HAL interfaces where primitives to send APDU commands to the UICC are also available. We
will discuss Keymaster integration in further detail in Chapter 4.

3.3 Prototype

In order to run experiments on a real phone and carry out a performance evaluation we developed
a prototype under Android OS, the most widely used mobile operating system, whose open
source ecosystem and relative manufacturer detachment gives us the flexibility needed for this
scenario. The main objective of the experiments is both to verify that it is possible to use the
UICC as a Secure Element (SE) in a smartphone and to learn about its performance compared
to OS default implementations.

3.3.1 Architecture

This prototype includes an implementation of all the components of our proposed architecture.
However, it is not considered a full one because the smartphone module does not expose a
high level interface to detach itself from applications and in turn is integrated as part of the
application that uses its services. We understood that achieving compliance with an interface
such as PKCS#11 was no relevant to the objectives of the prototype and the cost implied was
not justified. Another simplification is that each component only implements the operations and
algorithms required for the experimentation scenario. Fig. 3.2 depicts the prototype’s general
architecture, where black represents standard hardware and software components of an Android
smartphone and orange identifies the implemented modules and communication flows introduced
by our customizations. Inside our test SIM Card a reference implementation of the Crypto
Applet defined by our architecture is provided. The smartphone used for the experiments fulfills
the requirements defined to establish a communication channel to the UICC from application
space. An Android system application called ‘Crypto Test’ implements the functionality of the
smartphone module and also integrates with Android cryptography APIs to provide testing
features for both our solution and the system’s default providers. The following sections provide
further details of each hardware and software component.
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Figure 3.2: Cryptography offloading prototype under Android.

3.3.2 UICC

The first step in developing our prototype was to create a UICC capable of exposing general
purpose cryptographic services. As standard USIM cards do not include that functionality, our
architecture features a Java Card(JC) application that provides those services. This means the
reuse or development of such application was required. Also, since UICCs made available on
the market by network operators are closed cards which would not allow the installation of such
application, an alternative was required. It is important to note that, as expected, development
cards are not available from operators either as they are usually not willing to reveal details
about their network implementation. We also searched for development USIM cards offered by
manufacturers or suppliers, but found no options there either. Our best alternative was to get a
generic development JC card and turn it into a SIM card by also installing a USIM application
compliant enough with network standards to be acknowledged as such by a smartphone. In the
following subsections we provide details about hardware selection and the development of the
two required applications.
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Hardware

Choosing the right smart cards among the samples available in the market was instrumental
to the success of the prototype and experiments. We understand there are three key factors to
take into account in this type of decision: compatibility, functionality and performance. Since
the cards were to be used as SIM cards in a standard phone they must be compatible with
electrical specifications and other physical characteristics defined for the UICC in [36]. At an
OS and software level we needed multi-application smart cards based on GlobalPlatform and
Java Card. On top of this, according to the design of our experiments (see section 3.4) the
cards also needed to provide hardware support for the most popular symmetric and asymmetric
cryptography ciphers, as well as digest algorithms in its Java Card implementation. All of these
aspects allowed us to narrow our search by checking card specifications.

The final sorting criteria between the compliant candidates was performance. For this task
we took advantage of the results published by the JCAlgTest tool [13], which is devoted to
automatic testing of cryptographic smart cards running the Java Card platform. This tool
gathers and visualizes information about card’s hardware, supported cryptographic algorithms,
and performance in various settings. The results are contributed by the tool designers and the
community, creating the largest publicly available database with more than 50 different smart
cards. After comparing the compatible card samples available on the market we sorted them as
listed in Table 3.1, where the ones that presented the best combinations of response times for
the algorithms required by the experiments are at the top. Although we were able to acquire
samples for three of the first four alternatives, only two of them showed practical compatibility
with our experimentation scenario. The other was not accepted by our test smartphone at a
hardware level without providing much feedback due to scarce debug information available from
proprietary baseband modem firmware and drivers.

Table 3.1: Cryptography performance comparison of Java Cards. Extract from [13].

AES 256 (256B) SHA-2 (256B) RSA 2048

SHA-256 SHA-512 Pub Priv

(ms) (ms) (ms) (ms) (ms)

JavaCOS A40 3.63 35.13 118.37 7.98 147.04

JC30M48CR 3.60 27.0 146.66 8.49 155.55

NXP J2D081 7.66 21.18 n/a 17.65 594.93

Sm@rtCafé E. 6.0 80K 22.42 39.07 57.14 13.08 469.21

NXP J3A080 23.2 69.32 n/a 31.5 645.58

Sm@rtCafé 3.2 72K 17.1 114.26 n/a 28.53 2659.69

The first card used for our cryptographic SIM implementation was a Sm@rtCafé Expert 6.0
80K by Giesecke & Devrient. These are ISO 7816, Java Card 3.0.1 Classic and GlobalPlatform
2.1.1 compliant smart cards based on NXP P5CC081 [17] chips running Sm@rtCafé Expert
6.0 Operating System. They provide implementations for the most common cryptographic
algorithms, including up to 2048 bit RSA, AES 256 bit, DSA up to 1024 bit, Triple-DES 3-key,
ECDSA up to 256 bit, ECDH up to 256 bit, SHA-512 and Random Number Generator according
to NIST SP 800-90 [44]. P5CC081 chips include in their design Triple DES, AES and Public
Key (RSA, ECC) hardware co-processors to enhance the performance of these operations (Triple
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DES in less than 40µs) with reduced power consumption in all supported voltage classes. They
support 1.62V to 5.5V extended operating voltage range for class C, B and A and optional
extended class B operation mode (2.2V to 5.5V targeted for battery supplied applications).

The second card model tested was a JC30M48CR by JavaCardOS [14] with 48k EEPROM.
These are ISO 7816, Java Card 3.0.4 Classic and GlobalPlatform 2.1.1 compliant smart cards based
on Infineon chips running JavaCardOS Operating System. They also provide implementations for
the most common cryptographic algorithms, including MD5, SHA-1/SHA-224/SHA-256/SHA-
384/SHA-512, DES, AES, RSA and ECDSA. No more details are available for this model from
their manufacturer. Although not stated, we are confident they use hardware co-processors in
their cryptography implementations, because of their great performance. We also tested them to
verify they supported the algorithms selected in section 3.4.

The original full sized cards were cut to a Micro-SIM (3FF) size to fit the smartphone in both
cases. The development environment chosen for coding, testing and delivering the JC Applets to
the cards consists of Netbeans IDE with JC specific plugins, Oracle JC SDK tools and emulators,
GlobalPlatformPro shell [9] to manage card contents, a PC/SC compatible contact smart card
reader and a Micro-SIM to full size (FF) adapter.

These cards are compatible with electrical specifications and other physical characteristics
defined for the UICC in [36]. We used GP APIs to change the original historical bytes to
announce typical SIM capabilities. We were also required to disable EMV key diversification,
which was active by default in the Sm@rtCafé Expert 6.0 80K, in order to make it more easily
compatible with GP applet installation tools using default keys. We accomplished this using the
‘unlock’ feature of the GlobalPlatformPro tool.

Since neither card support an ISO 7816-4 file system natively (not a common feature in
development cards), we decided to implement file related commands (such as SELECT FILE, READ
BINARY or READ RECORD) as part of the Dummy applet discussed later. As the baseband modem
expects native support and normally starts sessions by reading the card’s MF (the root directory)
right after receiving the ATR (Answer To Reset) and continues to read other files later, our
applet was required to process every command sent to the card during the session. In GP that
is accomplished by setting it as the default applet in the basic communication channel upon
install. To guarantee that file system support is operative during the experiments and simplify
the prototype we decided to merge both, SIM and Cryptography related commands in a single
application for this particular implementation.

Dummy USIM

In order for the card to be accepted by the baseband modem and rendered usable by Android’s
framework, it needed to behave as a SIM card as specified at [36]. Since open USIM applet
implementations were not found, we decided to develop what we call a Dummy USIM applet,
which consists of an application capable of giving valid answers to a minimal set of file system
queries and other standard commands (such as PIN verification). That minimal set can be
initially determined by general mandatory specifications, but it can also be deduced by using
reverse engineering to observe the behavior of the smartphone selected for the prototype. A real
production UICC from a local operator was used in order to help us quickly assemble suitable
values for standard records and binary files. All network operator and client specific identifiers
(such as SPN, MSISDN or IMSI) were replaced by proper random values, as we did not intend
to clone the card or get any form of access to the network. For our purposes it is convenient
that the smartphone determines that the UICC is operative but no compatible network is found,
therefore a connection negotiation is never initiated.

We coded our applet in an incremental fashion. We started by comparing the answers of
its initial version and the production UICC to the commands sent by two desktop SIM card
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management tools called SIM Manager [26] and SIM Card Manager [27]. These tools are meant
to explore and edit user information stored on the card, for example address-book entries or
SMS archive. They usually check if the card is valid and read its standard file system entries and
records. By making use of a PC/SC APDU sniffer called Smartcard Sniffer [29] we were able
to analyze bit by bit the commands sent to the card and the responses produced in each case.
After several iterations and fixes our Dummy USIM application proved to be compliant with
those applications.

The next step was to test the applet on the phone. The Android Debug Bridge tool allows us
to access mobile OS logging information through a USB connection to a PC. Since baseband
modem manufacturers save debug capabilities for themselves, we were not able to obtain details
whenever the modem stopped communicating with the card and just marked it invalid with a
generic error code. Instead, we implemented a set of debug commands in the USIM applet which
helped us record sessions between phone and UICC. After each failure we dumped the session
trace saved on the card to a PC, replayed the commands sent by the modem on the production
card, analyzed both outputs and installed a new version of the applet. Several iterations later,
we were able to confirm that our dummy applet accomplished its purpose by verifying that
Android’s Telephony Manager API reported the card in READY state.

The final version of our applet supports PIN verification, file selection, content retrieval
and general status commands. It serves over fifty GSM and UMTS standard elementary files
including their binary contents, records contents and protection level.

Crypto Applet

This component of the prototype implements a subset of the standard cryptographic service
commands defined in ISO 7816-8. Since one of the goals is to run experiments on the performance
of digest as well as symmetric an asymmetric cipher algorithms, the subset of commands was
chosen accordingly. We implemented the HASH and ENCIPHERMENT variations of the PERFORM
SECURITY OPERATION command to execute the calculations mentioned earlier and the MANAGE
SECURITY ENVIRONMENT to select keys, algorithms and their parameters. The specific algorithms
supported are limited to those chosen for the experiments, namely AES-256, RSA-2048 and
SHA-512, which are discussed in section 3.4.

As explained, we preferred to merge both JC applets into one for their installation on the
card and phone interaction. Nevertheless, the implementations of the commands mentioned in
this section were encapsulated in a separate module. This module’s code makes heavy use of JC’s
Security and Cryptography Framework API which in its turn relies on card specific providers
that are based on the device’s cryptography optimized hardware components and architecture.
This allows us to take advantage of the selected cards’ full potential in terms of performance.

3.3.3 Smartphone

The other half of our prototype can be divided in two main steps. First, finding an Android
smartphone whose base hardware and software fulfilled the two requirements established by our
architecture. Second, developing the Cryptographic Service module under Android’s application
framework and implementing a test application that allowed us to run the experiments explained
in section 3.4. The following sections explain each step in detail.

Base hardware and software

Smartphone selection was another key element to the success of the prototype. The selection
criteria included the following two requirements:
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• The phone’s baseband modem’s hardware and drivers are required to support extended AT
commands.

• OS is required to provide high level APIs to send APDU commands to the UICC embedded
inside AT commands.

In Android’s radio architecture (see Figure 3.3) communication with the baseband modem is
only available for applications and system services through the application framework, which in
turn can only interact with the modem indirectly through the Radio Interface Layer (RIL) daemon
(rild). This daemon is the one that actually can access the hardware using a RIL Hardware
Abstraction Layer(HAL) library provided by the manufacturer, that serves as a wrapper for
the proprietary interface provided by the baseband. To fulfill the first requirement, the phone’s
modem must expose extended AT commands through this HAL library. Of course, it is very
hard to find this type of information in the public specifications of smartphones, which focus
on higher level features. Fortunately, the SEEK for Android project documentation provides a
(today unmaintained) list of devices [16] that were tested successfully with Open Mobile API (see
section 2.5.5) support and thus also expose extended AT commands via the RIL HAL library,
meeting the first requirement. The report found in [80] provides a similar list of more recent
devices with the same properties.

As for the second requirement, according to [49], [16] and [80] some Android builds from
major vendors (including Samsung and Sony) provide an implementation of Open Mobile API
(see section 2.5.5) in their factory images, and as discussed in section 2.5.5, Android can also
be patched to add support for it with an open source implementation. As an alternative, from
API level 21 (Android 5.0) onwards, Android’s framework provides primitives to send custom
APDU commands to the UICC through the TelephonyManager [4]. These primitives require
that the calling application has carrier privileges, which means it must be signed by a key that
matches the carrier certificate in the UICC. A second option is declaring the MODIFY_PHONE_STATE
permission which is only available for System applications. In other words only operators or
phone manufacturers can use this API in their code. As stated in our architecture description,
this type of cross device standard OS API was our preferred option for the Android versions
available at implementation time.

Most of the devices on SEEK’s list, including all the development ones, only supported older
Android versions and could not be upgraded to API level 21. Only two commercial models
remained safe candidates that met our requirements, namely Samsung Galaxy S5 (SM-G900M)
and Samsung Galaxy S6 (SM-G920I). The list provided in [80], however, includes several other
valid commercial candidates from different manufacturers. Table 3.2 shows all the smartphone
models found to be compatible.

The smartphone used for the Android prototype is a Samsung Galaxy S5 (SM-G900M)
with Android 6.0.1 OS (API level 23). It is based on the System on a Chip (SoC) Qual-
comm MSM8974AC Snapdragon 801, which includes 4 Qualcomm R© KraitTM 400 CPU cores, a
Qualcomm R© GobiTM 4G LTE Advanced modem and several other common features (a GPU,
WiFi, Bluetooth, GPS, NFC, Camera,etc.). It is equipped with 2GB of RAM, 16GB of internal
memory, a 5.1 inches display and a removable Li-Ion 2800 mAh battery.

Cryptographic service and Crypto Test application

Once we had a phone that met the requirements to establish a communication channel from
application space to the UICC, the next step was to provide an implementation of the smartphone
module to access the services provided by the crypto applet from an Android application. Since
the phone used for the prototype supported the required Android version, our preferred API
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Figure 3.3: Android radio architecture [49].

Table 3.2: Smartphones with support for Open Mobile API
and Android API level 21+.

Smartphone Model Supported API level

Samsung Galaxy S4 (GT-i9500) 22
Samsung Galaxy S5 (SM-G900M) 23
Samsung Galaxy S6 (SM-G920I) 24
HTC One (M8) 23
Huawei Ascend P7 22
Huawei P8 Lite 22
LG nexus 4 22
LG nexus 5 23
Motorola Nexus 6 22
Sony Xperia M2 Aqua 22
Sony Xperia Z3 compact 23
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choice to send APDU commands to the UICC was the one provided by the TelephonyManager
class. As explained earlier, these primitives require special privileges and one of the alternatives
to obtain them is declaring the MODIFY_PHONE_STATE permission which is only available for
System applications. Applications of this type reside under the system partition, which is
the OS read-only image distributed by the manufacturer, but are otherwise regular Android
applications. The system partition is not placed on actual read-only internal memory, its file
system is just mounted in read-only mode and of course remounting it with write access requires
root permissions. In order to deploy an apk file as a System application, rooting the smartphone
was required. We preferred this alternative because it was easier to configure than an application
signature that could be validated by making further customizations to our test UICC. We chose
a minimally invasive rooting procedure [6] that installed a su command, but preserved the rest
of the factory system partition, as well as the boot and recovery ones.

Since the Cryptographic service was already required to be coded inside a System application,
we implemented it as part of the Crypto test application. This simplified the development phase
avoiding the need to comply with another standard interface and the extra technical challenges
of inter-application communication, while still meeting the proof-of-concept and experimentation
purposes of the prototype. Interaction with the UICC through the TelephonyManager was
encapsulated in a series of primitives of an internal controller. Cryptographic operations in the
main processor were implemented using the framework’s standard APIs with its default provider
(AndroidOpenSSL) and the AndroidKeystore provider, inside an analogous set of primitives. The
Crypto Test application itself, as can be observed in Fig. 3.4, provides the required functionality
for a user to run custom experiments on both the card and the main processor by letting him
choose the target, algorithm, operation count, as well as other parameters. After the tests
conclude the application reports execution time and battery consumption statistics. In order
to obtain the latter the application registers to receive battery level change events from the
framework’s BatteryManager interface.

The development environment chosen for coding, testing and delivering the application
consists of Android Developer Studio, including SDKs and virtual devices compatible with
API level 23 and the Android Debug Bridge (adb) shell to modify file systems in physical and
virtual devices. UICC related features were tested directly in the phone environment since
the vanilla Android emulator only supports primitive UICC simulation which does not include
the customization required. We evaluated patching it with SEEK’s Emulator Extension [25]
to provide full SIM access through the host PC/SC system, but it required downloading and
compiling Android’s source tree which we found is a complex and resource demanding task.

3.4 Performance Evaluation

We have argued at the beginning of this chapter that our work has the potential to help improve
mobile security. However, other important sides of mobile experience, the ones which usually
receive most attention from average users, are performance and battery life. In order to find out
how does our architecture impact some aspects of user experience, we have run a series of tests
to measure performance (in terms of response times) and battery consumption of the execution
of the most common digest and encryption algorithms (including symmetric and asymmetric
cryptography). Our goal is to compare the default alternative of executing cryptographic
operations in the main chip of the phone with our SIM based cryptographic services. We repeated
the same test cases executing cryptographic operations in both scenarios. We use Android’s
standard cryptography APIs without choosing a provider, so that the default cryptography
provider (AndroidOpenSSL for Samsung devices) supplied by the manufacturer is used. We also
test Android’s hardware backed cryptography provider (AndroidKeystore). A discussion of the
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Figure 3.4: Screenshot of Crypto Test application.

results let us draw some conclusions.

3.4.1 Design

In [52] a performance evaluation of cryptographic primitives on smart cards and smartphones is
presented. They evaluate the fundamental cryptographic primitives frequently used in advanced
cryptographic constructions, such as user-centric attribute-based protocols and anonymous
credential systems and conclude that only random number generation, hash functions (namely
SHA-1 and SHA-2) and big-integer modular arithmetic operations (especially exponentiation) are
needed for all studied protocols. Taking this and their wide deployment into account, we selected
SHA-512 as the digest representative and RSA-2048 as modular exponentiation representative
for our evaluation. For similar reasons, we also considered appropriate to add a symmetric
cryptography representative in AES-256. Key length and block sizes were chosen as the longest
supported by the smart cards used in the experiments. Asymmetric cryptography tests were
run using private key encryption which is usually more expensive than using the public key and
benefits the most from a Secure Element’s protections. Input data and key values are randomly
generated by each provider before executing the operation. For RSA-2048, we chose the Chinese
Remainder Theorem (CRT) optimized implementation since it makes modular exponentiation
about four times faster and Android’s default provider is based on this alternative.

For each algorithm we coded in our Android application the required functionality to take
multiple samples of response times and battery consumption of its execution in the scenarios
to be compared. From the different cryptography providers usually available in Android, we
included the default provider since it is probably the option used by most applications and
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also the provider based on Android’s Keymaster (AndroidKeystore) since it is theoretically the
most secure alternative provided in every Android phone and is potentially hardware backed or
protected by a TEE. Samsung does not provide details about Keymaster implementations in its
phones, but existing studies [47] [63] on some of their devices and other models using Qualcomm
processors suggest that, in the architectures that support it, they use a Keymaster based on a
TrustZone TEE. Debugging information from our test Samsung device confirms that it supports
that feature.

Response time measurements only include the actual execution of the algorithm and the
communication channel overhead for the SIM card. Input data lengths for SHA and AES are
specified in terms of 240 bytes chunks. We decided to use this unit because it is the maximum
common block aligned length that fits into an APDU payload. For each algorithm and provider
we run response time tests for input sizes of 1 and 10 chunks(about 2.4KB). RSA input data
is always 245 bytes, the maximum allowed for the key size used. Based on referenced works’
experience and our own, as the standard deviation and variance were small proportionally to the
order of the measurements, we decided not to take more than 30 samples of battery consumption
for each operation.

3.4.2 Measurement methods

As [58] and [71] explain, there are different strategies to measure the remaining battery capacity
of the device. This includes internal measurements based on battery information provided
by the OS (such as Android’s BatteryManager interface). Other strategies estimate hardware
components power consumption using software. Finally, more complex external hardware based
methods claim to provide the highest precision. Android’s BatteryManager interface method was
compared to external hardware techniques in [58] and [71]. Their results show that Android’s
interface provides acceptable and in some cases almost identical accuracy. For that reason we
chose this interface despite its lack of precision, as it only informs changes of exactly 1 battery
unit, which in our device (as in most) is equal to 1% of the full capacity. To determine the
fraction consumed by single operations, we count how many operations can be executed by
consuming 1% and infer from that. Also to avoid imprecision in initial battery measurements
and provide equal conditions for all scenarios, we start all our test runs with full battery charge.

Another important consideration, especially when measuring energy consumption is keeping
the device awake. Measurements of this type require longer tasks and their execution must be as
continuous as possible to minimize distortions that affect the precision of results (for example
idle battery consumption or device internal state changes). To avoid draining the battery, an
Android device that is left idle (no user interaction) quickly falls asleep. However, there are times
when an application (such as ours) needs to keep the screen or the CPU awake to complete some
work. In our case we only require the CPU to keep running and we actually prefer to turn the
screen off as soon as a test execution starts since it is a non-negligible power consumer and our
goal is to achieve maximum isolation for our tasks consumption. To keep the CPU running in
order to complete a task before the device goes to sleep, Android’s PowerManager System service
provides a feature called wake locks. By grabbing a ‘partial wake lock’ the application can control
the power state of the device and keep the CPU running while the screen is off. Once the task is
finished the application should release the lock and its claim to the CPU. We took advantage of
this feature in our test application. However, we observed in Samsung SM-G900M that after
approximately 90 minutes the device entered complete sleep mode despite of our application’s
lock. For this reason any samples recorded after that period were discarded.
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3.4.3 Results

Here we present and analyze the evaluation results for each metric (response times and battery
consumption). Response time penalization while executing operations in the UICC is detected for
every algorithm in both cards in comparison with both Android providers. Battery consumption
results, however, vary according to the combination of providers compared and offloading
operations to the SIM card proves to save energy in some scenarios. Results for RSA 2048
algorithm are in general encouraging and make it the best candidate to gain benefits from our
approach.

Response Times

Table 3.3 presents the average results for response time tests. In tests for 240 bytes data, average
response times for smartphone operations in the AndroidOpenSSL provider take less than 1 ms for
both AES-256 and SHA-512, while they are more than a hundred times slower in the SIM cards.
Android’s secure keystore based provider is slower than AndroidOpenSSL for AES encryption
taking in average about 8 ms for each operation, but is still much faster than operations in the
SIM cards. The voltage class negotiated by the phone which affects transfer rates plus overall
communication channel overhead through the baseband modem are probably negative factors
here. We tried to get feedback from the modem or enforce a higher voltage class without success.
In tests for 2400 bytes all providers show non linear increase in response times, but smartphone
operations take just about 60% longer in the worst case, while SIM penalization can be as high
as 700%. This reinforces the theory of a communication overhead, as 10 operations are required
for these calculations.

Table 3.3: Average response times for Samsung SM-G900M experiments.

OpenSSL TEE Keystore Sm@rtCafé E. 6.0 JC30M48CR
(ms) (ms) (ms) (ms)

SHA-512 (240B) 0.780 n/a 131.638 242.689
SHA-512 (2400B) 0.854 n/a 1060.348 1563.568
AES-256 (240B) 0.830 8.139 182.408 168.104
AES-256 (2400B) 1.408 26.604 1130.442 923.933
RSA-2048 (245B) 54.390 181.754 641.292 315.669

Although penalization due to communication channel overhead was one of the challenges
early identified for the proposed cryptographic service, we did not expect response times of this
order. We had theoretical [79] and empirical [13] data that pointed at much smaller response
times (in most cases under 60 milliseconds) for every operation. Table 3.4 shows our own results
of running tests on the Sm@rtCafé Expert 6.0 and JC30M48CR cards from a Java Standard
Edition Desktop application while connected to a PC through a PC/SC [23] compatible reader.
Response times for cryptographic operations in this scenario are slower than the ones reported
by the JCAlgTest Tool [13], but still much faster than the ones observed in the smartphone. We
also took samples in the PC scenario for ‘NOP’ ( returns without doing anything) and ‘ECHO’
(responds the same payload received) instructions we made available in the Crypto Applet for the
purpose of this test. The response time difference observed for the ECHO and NOP operations
suggests that data transfer from and to the card consumes a considerable part of the time taken.
We repeated the samples of the ECHO instruction in the smartphone scenario and it needs an
average of 107.7 ms to complete execution for a 256 bytes payload in Sm@rtCafé Expert 6.0.
This is more than two times what we observed on a PC.
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RSA-2048 calculations, as expected, take longer than digests and symmetric cryptography in
every provider. In this case, operations also take longer in the SIM cards, as observed for the
other algorithms. However, the difference is proportionally smaller for this type of calculations.
For example response times observed for JC30M48CR card are of a very similar order to results
for AndroidKeystore. For these operations, the fixed overhead is much smaller than the actual
calculation time, so it has a smaller weight in response times.

Table 3.4: Test UICCs average response times in PC environment.

Sm@rtCafé E. 6.0 80K JC30M48CR
(ms) (ms)

SHA-512 (240B) 79.605 191.638
AES-256 (240B) 78.214 63.900
RSA-2048 (245B) 523.599 219.845
NOP (0B) 4.489 4.279
ECHO (255B) 52.894 63.545

Battery Consumption

Table 3.5 presents initial average battery consumption test results. However, since SIM operations
are slower and tests take more time, there is a higher component of idle phone battery consumption.
Each SIM sample takes between 18 and 30 minutes to complete, while phone samples take
approximately between 2 and 7. We took measurements of idle battery consumption, which
point that 0,00466% is used per minute, without executing any calculations. That means in
every battery consumption sample from SIM card operations, up to 0,13932% was due to idle
phone power usage. Table 3.6 shows adjusted values. The reduction observed is as expected
proportionally higher for the UICC cryptographic service.

Phone calculations prove to be more energy efficient in both providers for AES 256 and
SHA-512. The difference in consumption can be as high as 40 times more for these algorithms.
Things are very different for RSA calculations which show consumption of a very similar order
in the four scenarios. While operations are most efficient in AndroidOpenSSL, the difference
with JC30M48CR is quite small. Moreover, both UICCs prove to consume less energy for this
particular algorithm when compared to the TEE based Keystore provider.

Table 3.5: Average battery consumption for
Samsung SM-G900M experiments.

OpenSSL TEE Keystore Sm@rtCafé E. 6.0 JC30M48CR
(%) (%) (%) (%)

SHA-512 5.792E-06 n/a 104.481E-06 242.267E-06
AES-256 6.221E-06 20.849E-06 209.385E-06 230.542E-06
RSA-2048 1.959E-04 7.211E-04 6.224E-04 3.458E-04

3.4.4 Conclusions

We observed a proportionally high penalization in response time and battery consumption for
digest calculations and symmetric encryption in the UICC. This penalization grows proportionally
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Table 3.6: Adjusted average battery consumption
for Samsung SM-G900M experiments.

OpenSSL TEE Keystore Sm@rtCafé E. 6.0 JC30M48CR
(%) (%) (%) (%)

SHA-512 5.648E-06 n/a 89.924E-06 221.551E-06
AES-256 6.083E-06 20.177E-06 189.153E-06 214.033E-06
RSA-2048 1.938E-04 7.089E-04 5.644E-04 3.171E-04

to input data size, making it perceivable, having an impact on battery cycles for large data
streams and thus input size becoming a key variable in any tradeoff evaluation. For example,
a single text piece encrypted using AES-256 by a messaging application (such as WhatsApp)
could fit in the payload of an operation and thus present response times and energy consumption
according to tables 3.3 and 3.6, which would not show a perceivable difference for the end user.
However, a 1MB multimedia file transferred through the same application would take more than
6 minutes (consuming about 1% of battery) to be encrypted in the UICC, about 10 seconds
in the TEE (consuming 0,0881% of battery), and less than 1 second in OpenSSL (consuming
0,0266% of battery). Here, response time and battery penalization are widely perceived by the
user who would probably not be willing to accept it. The same applies to larger files. In contrast,
encrypting a 20KB secure vault for a password manager application would take only about 8
seconds (consuming 0,018 % battery) in the UICC, more than the TEE and OpenSSL which
take a few milliseconds and also perceivable, but a price the user might be willing to pay.

Asymmetric encryption on the other hand can be more energy efficient in the UICC when
security requirements are higher and, although slower in the SIM card, presents response time
results of a similar order in both scenarios. Also, since it is by design applied over smaller data,
penalization is unlikely to be perceivable by users or cause an impact in battery cycles. We
believe that the tradeoff between security and overall performance for this algorithm might be
seen as positive in most scenarios. Some typical use cases are signing documents (encryption
of a hash) and ciphering small arrays of random bytes for challenge-response or key-exchange
protocols in hybrid cryptosystems (SSH, TLS/SSL among others). These tasks require a single
operation and thus present response times and energy consumption according to tables 3.3 and
3.6, which would not be perceivable by the user and even imply small energy savings in some
cases.
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Discussion

We have proposed an architecture to deliver a cryptographic service based on the SIM card in
smartphones, developed an Android prototype to verify it works and estimated its expected
performance and power consumption. This chapter is devoted to discussing the potential and
limitations of our contributions, how they compare with related work sharing the same objectives,
strategies or techniques and how they can be applied to further help enhance security in Android.

4.1 Related Work

In this section we summarize the few related works found during our research and highlight the
main differences with our proposal. We already explained in section 2.1.5 how research works
using computation offloading with the purpose of enhancing security [73] [55] [54] or privacy
[64] are scarce. They typically appear as statically imposed conditions or restrictions, but final
decisions are based on resource usage and response times. Most of the few examples found present
indirect approaches and actually focus on enhancing the performance of security solutions. Our
technique on the other hand, is meant to be applied with security as its main objective and
performance aspects as secondary ones or as restrictions.

There is a considerable amount of research work and specifications concerning smart cards
and their relation to mobile network technologies, as well as cryptographic operations and key
storage in mobile OS. Less common is to come across work that combines both, since network
related functionality in smartphones is usually isolated even at a hardware level and custom
access to the UICC was officially added to Android APIs only three years ago.

Elenkov discusses in a number of blog posts and his book [49] the architecture and some
details of secure key storage on Android, including the possibility to use the UICC, as well as
other optional hardware components, as a SE. He covers the need for extended AT commands
support, but states Android does not provide a standard API to use the SIM card as a SE (which
was true for available Android versions at his book’s publishing date), mentioning SEEK patches
as a possible alternative. The only application explained in detail in his posts is a SIM based
password manager. While his work gave us a starting point, ours goes much further by finding
such standard API, defining an architecture for a SIM cryptographic service, prototyping its
components and measuring its performance.

As of writing this document, we found perhaps the most similar precedent in [74]. The
authors propose an architecture that, just as the one presented here, uses the SIM card to provide
cryptographic services. In their case the scope of the functions provided by the SIM card is not
the entire mobile system, they concentrate on mobile financial service applications. They do
propose an application inside the card to expose cryptographic services and a software module on
the phone to expose them to mobile applications, but they do not explain how communication
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between both components works. Although they mention having implemented their designed
architecture, they provide no details about such implementation (for example, it is unclear which
mobile OS, hardware or emulators might have been used). Unlike our work, they did not perform
any evaluations nor provide any experimental results.

Motivated by the security benefits brought by hardware based encryption of mobile data, [69]
also intended to use the SIM card to offload cryptographic operations. In order to achieve this,
they provide a smart card design where cryptographic processors for AES and RSA are added as
well as secure storage areas for keys, in a way that it is not required for them to leave the device.
Since such hardware components were already available and accessible through standard Java
Card APIs on high end smart cards from multiple vendors long before the paper’s publication, we
find this level of customization unjustified. They also feature an original alternative to OS-card
communication where the interface used is based on the standard commands to manage contact
information. This approach has the advantage of avoiding to send APDU commands to the
UICC that are not usually supported by devices (phones or modems) compliant with mobile
network specifications and thus eliminates the need for extended AT commands. However, since
it missuses a standard interface for an unrelated purpose it may be seen as a hack and its
implementation in a SIM would imply the substitution of the actual contacts application by a
proxy one. The architecture we propose is based on standard hardware and interfaces, providing
only an encapsulated extension to them and making it more likely to be accepted by mobile
network operators or even standardization organizations.

In [82] we found a study focused on energy consumption of cryptographic operations in
mobile devices, that just like ours explores the convenience of offloading them to one of the
possible form factors of a SE. By using specialized hardware to take voltage measurements and
software analysis tools, they compare the performance (response time) and energy consumption
in the execution of digest and encryption algorithms for different clock frequencies on a smart
card connected through the microSD slot. The smart microSD, unlike the universally present
UICC, is an optional hardware add-on for smart phones. They run experiments for AES, RSA,
MD5 and SHA using different key lengths and operation modes. As expected, they conclude
that at lower clock frequencies response times are increased (worse performance) and energy
consumption is reduced. Their main result is they learn that as frequency reduces, performance
penalty grows proportionally faster than energy savings and these tend to zero when execution
time increases. It is worth mentioning that they used for the experiments a Java Card chip with
an ARM SecurCore SC300 processor for which CPU clock reaches 25 MHz. The card includes
cryptographic co-processors for DES, RSA, ECC, etc. This smart card is of a very similar type
to the UICCs targeted by our work. Although their alternative reports similar response times for
RSA 2048, our prototype performs better for hash and symmetric cryptography algorithms. It is
also important to note that while their experimentation setup is composed with measurement
tools connected to a PC, ours is completely based on a real battery-powered smartphone.

Finally, [38] presents a security architecture for a mobile payment solution integrating a TEE
and the UICC in a TEE-enabled Mobile Phone. The goal of their work is not providing general
purpose cryptographic services for the system, but some specific applications. They do provide a
proof of concept prototype under Android 4.2.2 which includes a Java Card application on the
card and a phone application which directly sends APDU commands (no abstraction modules).
They resolve communication using Open Mobile API, the only alternative available in that OS
version. No performance results are presented. The greatest advantage of this work is that they
provide an architecture and implementation of integration between TEE and UICC. Although
TEEs have evolved since, it presents a valid alternative for secure communication between a
trusted application and a JC applet reusing GlobalPlatforms’s secure channel capabilities.
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4.2 Applications

In this section we discuss how Android’s security could benefit the most from the proposed
architecture. We focus on specific services or features where current OS provided alternatives are
optional, vulnerable or present limitations when compared to iOS security.

4.2.1 Keystore Service

The easiest to achieve, yet still an important enhancement, would be a physically tamper resistant
hardware-backed keystore service. Android’s framework already includes a Keystore service
API which provides a basic but adequate set of cryptographic primitives [3]. Its architecture
separates the API from the underlying implementation. If no device specific support is provided,
the OS ships with a default software implementation [47] based on OpenSSL. The architecture
anticipates the availability of different types of backends, including hardware based ones through
the HAL. The Keymaster HAL is an OEM-provided, dynamically-loadable library used by the
Keystore service to provide hardware-backed cryptographic services. To keep things secure,
HAL implementations do not perform any sensitive operations in user space, or even in kernel
space. Sensitive operations are delegated to a secure processor reached through some kernel
interface. The availability of a TEE in a SoC, such as those based on ARM TrustZone, offers an
opportunity for many Android smartphones to provide a hardware-backed implementation. In
this scenario a trusted application inside the TEE would be in charge of key related operations.
As pointed out by [47] and [63], even those options can present some security shortcomings by
design. In [47] they find that the hardware-backed version of the Android Keystore service does
offer device binding (i.e. keys cannot be exported from the device), but that would not prevent
for them to be used by any attacker with root access. They state that this is not surprising, as
it is a fundamental limitation of any secure storage service offered from the TrustZone’s secure
world to the insecure world. Some details are also provided which reveal that actual keystore
files are stored inside encrypted blobs in application internal memory outside the TEE and
provide background on possible attacks detected for specific TrustZone implementations that
could compromise the master encryption key used to protect them. In [63] a cache side-channel
attack technique against AES-256 in Samsung’s TrustZone architecture is presented.

As Fig. 4.1 illustrates, by providing a Keymaster module implementation based on the
communication channel that allows us to access the Crypto Applet, we could make available
a solution with similar characteristics to the one provided by a TEE, but adding resistance
to hardware attacks through physical protections and making it highly difficult to even use
secret keys for an attacker in possession of the device. Our solution would also present higher
execution isolation from the insecure world avoiding most common attack strategies since it uses
a separate chip that does not share processor, cache, memory or storage when executing key
related operations. Keys never actually leave the SE, not even in encrypted forms. Android 9,
the OS most recent version released a few months ago, has introduced StrongBox [2]. Supported
devices running API level 28 or higher installed can optionally have a StrongBox Keymaster,
an implementation of the Keymaster HAL that resides in a hardware security module (such as
an embedded secure element) containing its own CPU, secure storage, a true random-number
generator and additional mechanisms to resist package tampering and unauthorized sideloading of
applications. To support low-power StrongBox implementations, a subset of algorithms and key
sizes are supported, including RSA 2048 and AES 256. While keys inside a TEE, the standard
implementation of a Keymaster, were marked as ‘hardware backed’ in Android’s Framework,
keys inside a StrongBox are distinguished with a separate tag. This new feature not only shows
that Android Project acknowledges the previous lack of Secure Element keystore solutions and
hints at making their presence a standard, but also provides us with the ideal type of Keymaster
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to expose our cryptographic services.
The thesis work of one of [47]’s authors [46] makes a comparison between TEE and SE

keystore solutions, where he points out the advantages already mentioned for the SE and an
important advantage of the TEE in its ability to access peripherals and sensors through a trusted
path (for example to securely obtain user consent). A combination of both would probably lead
to a solution without any of the mentioned disadvantages and, as we will see shortly, has the
potential to provide more advanced security features.

Figure 4.1: Android Keymaster based on UICC cryptographic services.

4.2.2 Secure Enclave

The other possible application for our architecture would be going a step further in the scenario
presented for keystores and aim to a more complex component such as Apple’s Secure Enclave
Processor [56]. The Secure Enclave Processor (SEP) is a co-processor in the Apple A-series
processors, which provides all cryptographic operations for Data Protection key management and
maintains the integrity of Data Protection even if the kernel has been compromised. Communica-
tion between the Secure Enclave and the application processor is isolated to an interrupt-driven
mailbox and shared memory data buffers. The SEP runs a separate microkernel signed by Apple,
verified as part of the iOS secure boot chain, and updated through a personalized software update
process. When the device starts up, an ephemeral key is created, entangled with the device’s
UID, and used to encrypt and authenticate the Secure Enclave’s portion of the device’s memory
space. Additionally, data saved to the file system by the Secure Enclave is encrypted with a key
entangled with the UID and an antireplay counter. The device’s unique ID (UID) and a device
group ID (GID) are AES 256-bit keys fused (UID) or compiled (GID) into the Secure Enclave
during manufacturing. No software or firmware can read them directly; they can see only the
results of encryption or decryption operations performed by a cryptographic engine dedicated to
the Secure Enclave. The SEP includes a true hardware random number generator as well.

The Secure Enclave is also responsible for processing fingerprint and face data from the Touch
ID and Face ID sensors, determining if there is a match, and then enabling access or purchases
on behalf of the user. The fingerprint sensor sends scans to the Secure Enclave through the
application processor, which cannot read it because it is encrypted and authenticated with a
session key that is negotiated using a shared key provisioned for each Touch ID sensor and its
corresponding Secure Enclave at the factory. The shared key is strong, random, and different for
every Touch ID sensor. Communication between the SEP and NFC controller’s SE that holds
payment applications works in the same way, but using a different factory provisioned shared key.

Apple has not revealed many low level details about their SEP implementation but, as
their A-series SoCs are based on ARM architectures, many suggest it is likely based on an
enhanced implementation of TrustZone. SEP is a TEE with shared memory and a trusted path
to peripherals, which can be achieved using TrustZone hardware features. Secure world dedicated
cryptographic units are also compliant with ARM architectures. UID and shared keys can be
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seen as manufacturer specific fuses with exclusive access by the secure world. Finally, secure
boot chain is a basic feature of TrustZone. Secure world OS would be in charge of implementing
and securing the mailbox communication system using hardware controllers isolation features.
Using this strategy an Android full implementation of the Secure Enclave functionality might
be provided for TrustZone enabled smart phones with the proper software modifications to the
Trusty software as well. In that scenario UID and shared keys could be stored by trustlets or
fused depending on each manufacturers choice.

A reverse engineering study presented at 2016 Black Hat Briefings [67] affirms the SEP is a
dedicated hardware core with dedicated: crypto engine, random number generator, fuses, ROM,
internal memory and IO lines to peripherals. It also suggests it has hardware anti-tamper and
isolation features, especially in newer versions. Those kinds of hardware features are beyond the
requirements of TrustZone or similar TEE hardware support.

Aside from dedicated IO lines our SE could provide the OS with the required dedicated
processor, memory, and calculation units inside of a tamper resistant hardware component to
achieve a similar security level. As stated before, a combination with the already mentioned
TrustZone features would be required to fully emulate SEP’s functionality. Figure 4.2 illustrates
the components and interactions proposed to accomplish this. Integration would be achieved
through a trustlet with exclusive access to operations with some of the keys stored in the SE.
Following the approach in [38], communication between trustlet and applet might not be direct
to sort any architecture access restrictions to the UICC form the trusted OS. The software
module at mobile OS level (library or application) forwards traffic between both using the
Trusty APIs. To protect this communication through the non secure world a secure channel is
required. GlobalPlatform secure channel protocols enable an on-card entity such as an applet
and an off-card entity such as a trustlet to mutually authenticate and establish cryptographic
keys to protect integrity and confidentiality of subsequent communications across untrusted
communication channels. With this architecture both secure worlds, TEE and SE, conform a
larger one where Secure Enclave features could be implemented selectively taking advantage of
the protections provided by each execution environment. For example, in this scenario user input
for authentication (such as a PIN or a fingerprint capture) could travel through a secure path
from the screen or sensor to the UICC, making it impossible for malicious software in the REE
(even with root privileges) to intercept the provided proof. Subsequent cryptographic operations
could only be initiated from inside the TEE through the secure channel.

Further elaboration on this possibility is left for future work.

4.3 Limitations

In this section we discuss the main disadvantages and limitations of our work.
Our architecture is highly dependent on mobile network operators and standardization

organizations willingness to include the proposed general purpose cryptographic application in
their card definitions. Since network standards already foresee optional applications to extend
the multi-application environment of the UICC, our application exposes already standardized
smart card commands and the services it provides could be beneficial system wide, we find this
possibility viable. Mobile device manufacturers are also required to take a role in standardizing
the use of extended commands so that our architecture could be more widely deployed.

Our cryptographic service does not provide device binding, because keys are actually only
bound to the UICC. Although this may not be a problem in most use cases, since keys are
securely stored and require user consent (in the form of a PIN), it should be considered in
security assessments for specific applications. Also, every security feature based on our SE
(keystore service, File or system encryption and even security enclave like modules) would create
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Figure 4.2: Secure Enclave in Android combining TEE and SE.

a new attachment between the phone and the current UICC. Changing the card (legitimate
owner change, network technology upgrade and other scenarios) would require a consented
pre-detachment procedure with the appropriate security controls. Definition of such procedure is
left for future work.

Our solution relies on user verification methods (such as PINs) to prevent an attacker in
possession of the device from using the keys stored in the SE. A poor implementation of the
smartphone module presented in section 3.2 (or even authentication code running inside a
TrustZone TEE) that handles PINs or patterns improperly, storing their values in memory or
other hardware components of the main chip of the phone, might make it possible for them to be
retrieved by an attacker with the appropriate hardware analysis equipment. Further specification
of requirements for security testing of this module is left for future work.

Only system applications or regular ones signed by network operators can send commands
to the UICC. If a malicious application from a remote attacker gains root privileges on the
smartphone while it is in possession of its owner, it may replicate itself in the system partition,
send commands to the UICC and use keys for which the user provides consent. Our basic
architecture does not specify protections against unauthorized use of the UICC commands by this
application. This is a hard problem to solve since the UICC has no access to the REE and cannot
perform any checks over calling applications. Client authentication strategies would require
presenting some kind of secret kept inside the smartphone module. Obfuscation techniques
could be applied to make extraction of this secret harder but cannot certainly prevent it. The
Secure Enclave architecture discussed earlier in this chapter averts this type of attack with an
authenticated secure channel from the TEE, where the malicious application has no access.

Results presented in section 3.4 show some drawbacks of our prototype in terms of performance
and power consumption. We believe these issues are likely related to communication through
the baseband modem, but our efforts to further diagnose the cause or find an optimization have
not paid off so far. Bandwidth and transfer rates are usually key variables, often more relevant
than the target environment’s processing power, which present limitations in offloading decisions.
An advantage of our solution is that by not requiring network communication, transfer rates
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(although limited) are not variable and so they can be accurately predicted. Our next steps will
include repeating the experiments with different smart cards and phone models to learn more
about these problems and confirm this is purely a limitation of our architecture. Nevertheless,
we are most likely facing a tradeoff between security and user experience that requires further
assessment. For example, we found a study [75] that identifies cryptographic functionality in
Android applications and concludes that for a set of security related ones only about 6% of the
methods that compose application code are dedicated to cryptographic operations. Since SIM
operations still take less than 200ms in some cases and 641ms at worst, we believe there are
many scenarios where penalty might not be perceivable or would represent a small price users
may be willing to pay in exchange for enhanced security. The same principle applies to battery
consumption in SHA-512 and AES 256. Our future research will continue studying the actual
impact of this penalization and how it can be reduced.





Chapter 5

Conclusions

We propose offloading cryptographic services to the SIM card in smartphones as an alternative
computation offloading strategy that can have security as one of its main objectives and does
not present the usual side effects of cloud computing based strategies. An architecture to apply
this technique in smartphones is presented. Our approach makes available a tamper resistant
hardware based cryptographic provider on every smartphone that allows custom interaction with
the UICC, without further manufacturer hardware requirements. A prototype developed under
Android OS demonstrates the feasibility of our solution. An evaluation of experimental results
comparing our prototype with the default manufacturer provided software and hardware backed
implementations of a real smartphone, shows some execution time limitations and a small battery
consumption impact for most algorithms. For RSA-2048 we found that our approach can at the
same time enhance security and save energy with a minor impact in response time. The type
of performance benchmarking information provided is instrumental when profiling parts of a
program in computation offloading.

5.1 Future Work

The research presented here covers our main objectives, however there is still much work to do at
different levels on this subject. That includes extending our implementation, running further
experiments, providing proposals for the remaining steps to complete our offloading technique
and exploring other security offloading alternatives.

5.1.1 Prototype

An interesting future work line would be extending our prototype’s components to make them a
full reference implementation of our solution that may be adopted by mobile network operators.
While the prototype developed includes implementations of all the components of our architecture,
we stated that it is not a full one. To achieve that, the Android application must expose a standard
high level interface such as PKCS#11. Also, to avoid the requirement of being pre-installed on
the phone as a system application and so that it can be published through standard distribution
channels (such as Google Play), it should be signed with keys stored on the SIM card according
to Android’s mechanism to grant special privileges for UICC owner’s applications. Since Android
now includes Open Mobile API out of the box, extending our code to also support that API to
access the UICC might also be an enhancement. Updating our prototype to take advantage of
features in newer versions of the OS without losing backwards compatibility would be in general
convenient.

45
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Another extension to complete a reference implementation would be to support a wider range
of algorithms in our Java Card Applet.

5.1.2 Experiments

Other future steps will also include repeating the experiments with more smart cards and
phone models to keep learning about our architecture’s performance and further confirm its
limitations. Providing a wider database of benchmarking results for SIM cards and smartphone
hardware-backed keystore implementations would also be an even better input for offloading
decisions.

5.1.3 SIM Offloading

We cover the actual offloading mechanism and provide useful profiling inputs. In order to
completely define how to apply offloading based on this strategy, complementary objectives to
continue this work should include defining an offloading decision algorithm. This algorithm
would take as inputs security assessment and profiling results of each offloadable component of a
program. It would be applied statically since our offloading strategy does not depend on variable
metrics such as bandwidth and dynamic decisions are more resource expensive. The output would
be, as usual, the partition of the program. The algorithm could be tested with a set of case study
applications. Experiments would help us learn about its accuracy and how to iteratively improve
it. Case studies would help us understand the actual impact of the performance limitations
detected and which type of applications, in terms of offloadable functions, benefit the most from
our approach. As an example, secure channel protocol implementations that combine symmetric
and asymmetric cryptography might be interesting candidates.

Another pending task already discussed in Chapter 4 is defining a consented pre-detachment
procedure of the UICC. Since in our current solution keys are bound to the card, another
challenging research thread would be finding a scheme to provide device binding.

5.1.4 Applications

We proposed two possible applications of our architecture that we believe would help enhance
Android security. Studying in more detail the implementation of a StrongBox Keymaster or a
Secure Enclave that combines the UICC with a TEE and developing proof-of-concept prototypes
would help us learn more about these alternatives and is left for future work.

5.1.5 Security Offloading

Finally, we believe that the study of how computation offloading can be applied with security
purposes, especially in the realm of mobile cloud computing based offloading, is still an open
research thread with a wide domain to explore.

5.2 Final words

We learned in Chapter 2 about the risks of losing physical control over mobile devices and the
role of hardware backed cryptography among countermeasures. We are convinced that, despite
the form factor used, Secure Elements are instrumental to enhance mobile security. In an ideal
scenario, following Google’s example with Pixel 3 or the eSIM [11] standard, manufacturers
should standardize the inclusion of an embedded Secure Element in every SoC. Even if they
head in that direction, it might take a long time for new devices to replace most older models.



47 Conclusions

In the current landscape, the traditional UICC remains the only universal Secure Element. We
believe that the opportunity to deliver a solution based on the approach proposed as a service to
their customers, lies in the hands of mobile network operators. Since they control SIM card’s
contents and have the ability to grant the required permissions to an application by means of
a signature. Such solution could be deployed over the air to the card and through application
markets to the phone, so that high rates of deployment for the devices that allow it could be
achieved considerably fast.
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