11,154 research outputs found

    Subject Index

    Get PDF

    Resource management in cable access networks

    Get PDF
    Een kabelnetwerk is tegenwoordig niet meer alleen een medium waarover analoge TV-signalen vanuit een centraal punt, kopstation genaamd, naar de aangesloten huizen worden gestuurd. Sinds enkele jaren is het mogelijk om thuis data digitaal te versturen en te ontvangen. Deze data gaat via een kabelmodem thuis en het kopstation, dat in verbinding staat met andere netwerken. Op deze wijze zijn kabelnetwerken onderdeel geworden van het wereldwijde Internet en kunnen computers thuis hier mee verbonden worden. Door aan zo’n kopstation een digitaal videosysteem met duizenden films te koppelen, ontstaat er de mogelijkheid een video-op-verzoek dienst aan te bieden: Via de computer of zelfs de TV thuis kunnen films worden besteld en direct bekeken, of worden opgeslagen in de computer. Om dit te bewerkstelligen is meer nodig dan alleen een netwerk: Voor de transmissie van video data dient er zorg voor te worden gedragen dat deze zonder hinderende interrupties kan geschieden, omdat dergelijke gebeurtenissen door de gebruiker direct te zien zijn in de vorm van een stilstaand of zwart beeld. Verder is ook de reactiesnelheid van het systeem van belang voor het ondersteunen van operaties door de gebruiker, zoals het bestellen van een film, maar ook het vooruit- of terugspoelen, pauzeren, enzovoorts. Binnen deze context beschrijven en analyseren we in dit proefschrift zes problemen. Vier daarvan houden verband met de transmissie van data over het kabelnetwerk en de overige twee houden verband met het opslaan van video data op een harde schijf. In twee van de vier problemen uit de eerste categorie analyseren we de vertraging die data ondervindt wanneer die vanuit een modem wordt gestuurd naar het kopstation. Deze vertraging bepaalt met name de reactiesnelheid van het systeem. Karakteristiek voor dataverkeer in deze richting is dat pakketten van verschillende modems tegelijkertijd mogen worden verstuurd en daardoor verloren gaan. Met name de vereiste hertransmissies zorgen voor vertraging. Meer concreet beschouwen we een variant op het bekende ALOHA protocol, waarbij we uitgaan van een kanaalmodel dat afwijkt van het conventionele model. Het afwijkende model is van toepassing wanneer een modem een eerste contact probeert te leggen met het kopstation na te zijn opgestart. Met name na een stroomuitval, wanneer een groot aantal modems tegelijkertijd opnieuw opstart, kunnen de vertragingen aanzienlijk zijn. Daarnaast beschouwen we modems tijdens normale operatie en analyseren wij de verbetering in vertraging wanneer pakketten die vanuit ´e´en modem moeten worden verstuurd, worden verpakt in een groter pakket. In beide studies worden wiskundige resultaten vergeleken met simulaties die re¨ele situaties nabootsen. In de andere twee van de vier problemen richten wij ons op de transmissie van video data in de andere richting, namelijk van het kopstation naar de modems. Hierbij spelen stringente tijdsrestricties een voorname rol, zoals hierboven reeds is beschreven. Meer specifiek presenteren we een planningsalgoritme dat pakketten voor een aantal gebruikers op een kanaal zodanig na elkaar verstuurt dat de variatie in de vertraging die de verschillende pakketten ondervinden, minimaal is. Op deze wijze wordt zo goed mogelijk een continue stroom van data gerealiseerd die van belang is voor het probleemloos kunnen bekijken van een film. Daarnaast analyseren we een bestaand algoritme om een film via een aantal kanalen periodiek naar de aangesloten huizen te versturen. In dit geval ligt de nadruk op de wachttijd die een gebruiker ondervindt na het bestellen van een film. In deze analyse onderbouwen we een in het algoritme gebruikte heuristiek en brengen hierin verdere verbeteringen aan. Daarnaast bewijzen we dat het algoritme asymptotisch optimaal is, iets dat reeds langer werd aangenomen, maar nooit rigoreus bewezen was. Bij de laatste twee problemen, die verband houden met het opslaan van video data op een harde schijf, analyseren we hoe deze data zodanig kan worden opgeslagen dat die er nadien efficient van kan worden teruggelezen. In het ene probleem beschouwen we een bestaand planningsalgoritme om pakketten van verschillende videostromen naar een harde schijf te schrijven en passen dit aan om ervoor te zorgen dat het teruglezen van de stroom met bijvoorbeeld een andere pakketgrootte mogelijk wordt zonder daarbij de schijf onnodig te belasten. In het andere probleem analyseren we hoe we effectief gebruik kunnen maken van het gegeven dat data aan de buitenkant van de schijf sneller gelezen kan worden dan aan de binnenkant. We bewijzen dat het probleem van het zo efficient mogelijk opslaan van een gegeven aantal video files NPlastig is en presenteren een eenvoudige heuristiek die, hoewel voor bijzondere instanties een bewijsbaar slechte prestatie levert, in de praktijk in het algemeen goede prestaties levert. Hierbij maken we met name gebruik van het verschil in populariteit van de verschillende films

    Scalable on-demand streaming of stored complex multimedia

    Get PDF
    Previous research has developed a number of efficient protocols for streaming popular multimedia files on-demand to potentially large numbers of concurrent clients. These protocols can achieve server bandwidth usage that grows much slower than linearly with the file request rate, and with the inverse of client start-up delay. This hesis makes the following three main contributions to the design and performance evaluation of such protocols. The first contribution is an investigation of the network bandwidth requirements for scalable on-demand streaming. The results suggest that the minimum required network bandwidth for scalable on-demand streaming typically scales as K/ln(K) as the number of client sites K increases for fixed request rate per client site, and as ln(N/(ND+1)) as the total file request rate N increases or client start-up delay D decreases, for a fixed number of sites. Multicast delivery trees configured to minimize network bandwidth usage rather than latency are found to only modestly reduce the minimum required network bandwidth. Furthermore, it is possible to achieve close to the minimum possible network and server bandwidth usage simultaneously with practical scalable delivery protocols. Second, the thesis addresses the problem of scalable on-demand streaming of a more complex type of media than is typically considered, namely variable bit rate (VBR) media. A lower bound on the minimum required server bandwidth for scalable on-demand streaming of VBR media is derived. The lower bound analysis motivates the design of a new immediate service protocol termed VBR bandwidth skimming (VBRBS) that uses constant bit rate streaming, when sufficient client storage space is available, yet fruitfully exploits the knowledge of a VBR profile. Finally, the thesis proposes non-linear media containing parallel sequences of data frames, among which clients can dynamically select at designated branch points, and investigates the design and performance issues in scalable on-demand streaming of such media. Lower bounds on the minimum required server bandwidth for various non-linear media scalable on-demand streaming approaches are derived, practical non-linear media scalable delivery protocols are developed, and, as a proof-of-concept, a simple scalable delivery protocol is implemented in a non-linear media streaming prototype system

    Channel Allocation for Smooth Video Delivery over Cognitive Radio Networks

    Get PDF
    Video applications normally demand stringent quality-of-service (QoS) for the high quality and smooth video playback at the receiver. Since the network is usually shared by multiple applications with diverse QoS requirements, QoS provisioning is an important and difficult task for the efficient and smooth video delivery. In the context of cognitive radio (CR) networks, as the secondary or unlicensed users share a pool of bandwidth that is temporarily being unused by the primary or licensed users, there is an inevitable interference between the licensed primary users and the unlicensed CR devices. As a result, efficient and smooth video delivery becomes even more challenging as the channel spectrum is not only a precious resource, but also much more dynamic and intermittently available to secondary users. In this thesis, we focus on the provision of guaranteed QoS to video streaming subscribers in CR network. In video streaming applications, a playout buffer is typically deployed at the receiver to deal with the impact of the network dynamics. With different buffer storage, users can have different tolerance to the network dynamics. We exploit this feature for channel allocation in CR network. To this end, we model the channel availability as an on-off process which is stochastically known. Based on the bandwidth capacity and the specific buffer storage of users, we intelligently allocate the channels to maximize the overall network throughput while providing users with the smooth video playback, which is formulated as an optimization framework. Given the channel conditions and the video packet storage in the playout buffer, we propose a centralized scheme for provisioning the superior video service to users. Simulation results demonstrate that by exploiting the playout buffer of users, the proposed channel allocation scheme is robust against intense network dynamics and provides users with the elongated smooth video playback

    Providing VCR Functionality in VOD Servers

    Get PDF
    Resource-sharing techniques are widely used by VOD servers. Stream merging is one of the most efficient resource-sharing techniques. ERMT is able to achieve merge trees with the closest cost of optimal merge tree. Full VCR support has become a “must have” feature for VOD services. This researcher proposed an algorithm to enable VCR support on ERMT. Furthermore, client local buffer and fixed-interval periodical multicasting were also deployed by the algorithm to improve the stream-client ratio. After thorough runs of simulations and numerous comparisons to BEP, the highly efficient resource- sharing technique, the proposed algorithm with client local buffer utilization and fixed- interval multicasting showed better performance in all simulations. The biggest discovery is that the best-performer is modified ERMT with client local buffer support for VCR without fixed-interval multicasting. Another discovery is that bigger client buffer size hurts the performance of ERMT

    Scalable reliable on-demand media streaming protocols

    Get PDF
    This thesis considers the problem of delivering streaming media, on-demand, to potentially large numbers of concurrent clients. The problem has motivated the development in prior work of scalable protocols based on multicast or broadcast. However, previous protocols do not allow clients to efficiently: 1) recover from packet loss; 2) share bandwidth fairly with competing flows; or 3) maximize the playback quality at the client for any given client reception rate characteristics. In this work, new protocols, namely Reliable Periodic Broadcast (RPB) and Reliable Bandwidth Skimming (RBS), are developed that efficiently recover from packet loss and achieve close to the best possible server bandwidth scalability for a given set of client characteristics. To share bandwidth fairly with competing traffic such as TCP, these protocols can employ the Vegas Multicast Rate Control (VMRC) protocol proposed in this work. The VMRC protocol exhibits TCP Vegas-like behavior. In comparison to prior rate control protocols, VMRC provides less oscillatory reception rates to clients, and operates without inducing packet loss when the bottleneck link is lightly loaded. The VMRC protocol incorporates a new technique for dynamically adjusting the TCP Vegas threshold parameters based on measured characteristics of the network. This technique implements fair sharing of network resources with other types of competing flows, including widely deployed versions of TCP such as TCP Reno. This fair sharing is not possible with the previously defined static Vegas threshold parameters. The RPB protocol is extended to efficiently support quality adaptation. The Optimized Heterogeneous Periodic Broadcast (HPB) is designed to support a range of client reception rates and efficiently support static quality adaptation by allowing clients to work-ahead before beginning playback to receive a media file of the desired quality. A dynamic quality adaptation technique is developed and evaluated which allows clients to achieve more uniform playback quality given time-varying client reception rates

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Maximizing Resource Utilization In Video Streaming Systems

    Get PDF
    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to utilize include server bandwidth, network bandwidth, battery life in battery operated devices, and processing time in limited processing power devices. In this work, we propose new techniques to maximize the utilization of video-on-demand (VOD) server resources. In addition to that, we propose new framework to maximize the utilization of the network bandwidth in wireless video streaming systems. Providing video streaming users in a VOD system with expected waiting times enhances their perceived quality-of-service (QoS) and encourages them to wait thereby increasing server utilization by increasing server throughput. In this work, we analyze waiting-time predictability in scalable video streaming. We also propose two prediction schemes and study their effectiveness when applied with various stream merging techniques and scheduling policies. The results demonstrate that the waiting time can be predicted accurately, especially when enhanced cost-based scheduling is applied. The combination of waiting-time prediction and cost-based scheduling leads to outstanding performance benefits. The achieved resource sharing by stream merging depends greatly on how the waiting requests are scheduled for service. Motivated by the development of cost-based scheduling, we investigate its effectiveness in great detail and discuss opportunities for further tunings and enhancements. Additionally, we analyze the effectiveness of incorporating video prediction results into the scheduling decisions. We also study the interaction between scheduling policies and the stream merging techniques and explore new ways for enhancements. The interest in video surveillance systems has grown dramatically during the last decade. Auto-mated video surveillance (AVS) serves as an efficient approach for the realtime detection of threats and for monitoring their progress. Wireless networks in AVS systems have limited available bandwidth that have to be estimated accurately and distributed efficiently. In this research, we develop two cross-layer optimization frameworks that maximize the bandwidth optimization of 802.11 wireless network. We develop a distortion-based cross-layer optimization framework that manages bandwidth in the wire-less network in such a way that minimizes the overall distortion. We also develop an accuracy-based cross-layer optimization framework in which the overall detection accuracy of the computer vision algorithm(s) running in the system is maximized. Both proposed frameworks manage the application rates and transmission opportunities of various video sources based on the dynamic network conditions to achieve their goals. Each framework utilizes a novel online approach for estimating the effective airtime of the network. Moreover, we propose a bandwidth pruning mechanism that can be used with the accuracy-based framework to achieve any desired tradeoff between detection accuracy and power consumption. We demonstrate the effectiveness of the proposed frameworks, including the effective air-time estimation algorithms and the bandwidth pruning mechanism, through extensive experiments using OPNET

    Robust P2P Live Streaming

    Get PDF
    Projecte fet en col.laboració amb la Fundació i2CATThe provisioning of robust real-time communication services (voice, video, etc.) or media contents through the Internet in a distributed manner is an important challenge, which will strongly influence in current and future Internet evolution. Aware of this, we are developing a project named Trilogy leaded by the i2CAT Foundation, which has as main pillar the study, development and evaluation of Peer-to-Peer (P2P) Live streaming architectures for the distribution of high-quality media contents. In this context, this work concretely covers media coding aspects and proposes the use of Multiple Description Coding (MDC) as a flexible solution for providing robust and scalable live streaming over P2P networks. This work describes current state of the art in media coding techniques and P2P streaming architectures, presents the implemented prototype as well as its simulation and validation results
    corecore