

Resource management in cable access networks

Citation for published version (APA):
Pronk, S. P. P. (2008). Resource management in cable access networks. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Frits Philips Inst. Quality Management]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR633755

DOI:
10.6100/IR633755

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR633755
https://doi.org/10.6100/IR633755
https://research.tue.nl/en/publications/193b49b7-df5d-4315-b4c4-9095e3eab04f

Resource Management
in Cable Access Networks

ISBN 978-90-74445-83-2

Cover design by Bertina Senders, B-Design Grafische Vormgeving

The work described in this thesis has been carried out at the Philips Research
Laboratories Eindhoven, The Netherlands, as part of the Philips Research
Programme.

cKoninklijke Philips Electronics N.V. 2008
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

Resource Management
in Cable Access Networks

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr.ir. C.J. van Duijn,

voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

donderdag 13 maart 2008 om 16.00 uur

door

Serverius Petrus Paulus Pronk

geboren te Vught

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. E.H.L. Aarts

Copromotor:
dr.ir. J.H.M. Korst

Contents

Preface vii

1 Introduction 1
1.1 Cable access networks 3
1.2 Video on demand . 4
1.3 Scheduling and resource management 5
1.4 Content of this thesis . 9
1.5 Organization of this thesis 11

2 Medium Access Control for Unregistered Cable Modems 13
2.1 Related work . 15
2.2 Contention access in DVB/DAVIC during start-up. 16
2.3 Modeling the contention channel 17
2.4 Determination of the optimal frame length 18
2.5 Estimating the number of contenders in a past frame 22
2.6 Estimating the number of contenders in a future frame 25
2.7 Simulations . 28
2.8 Concluding Remarks . 36

3 Request Merging in Cable Networks 37
3.1 Introduction . .. 38
3.2 Defining multi-requests 40
3.3 Modeling and analysis . 41
3.4 Comparison of two scenarios. 49
3.5 Simulations . 50
3.6 Concluding remarks . 53

4 Fair Resource Sharing 55
4.1 Introduction . .. 55
4.2 Problem description . 59
4.3 The carry-over round-robin algorithm. 60
4.4 The relaxed earliest-deadline-first algorithm 62

v

vi Contents

4.5 Performance analysis of R-EDF 65
4.6 Admission/activation control 73
4.7 Concluding remarks . 74

5 Storage and Retrieval of Variable-Bit-Rate Video Streams 77
5.1 Introduction . .. 77
5.2 Related work . 80
5.3 Modeling the server . 82
5.4 Triple buffering algorithm 86
5.5 Dealing with record streams 89
5.6 Concluding remarks . 94

6 Resource-Based File Allocation on a Multi-Zone Disk 97
6.1 Track pairing .. 98
6.2 Resource-based file allocation 101
6.3 Analysis of a special case 113
6.4 Simulations . 118
6.5 Related work . 118
6.6 Concluding remarks . 121

7 On the Fixed-Delay Pagoda Broadcast Schedule 123
7.1 The fixed-delay pagoda broadcast schedule 126
7.2 On the square-root heuristic 130
7.3 On the asymptotic optimality of FDPB. 136

8 Conclusion 141

A Related output 147

Bibliography 153

Author Index 165

Subject Index 169

Samenvatting 173

Biography 177

Preface

During the first sixteen years of my career at the Philips Research Labora-
tories, I had never seriously considered doing a Ph.D. It was not until I was
finishing a book on multimedia systems together with Jan Korst, that I realized
that I might as well write a thesis.

The amount of work that I had done over the more recent years would
easily lend itself for packaging part of it into a single volume. At least, that
is what I thought initially. It appeared that my work was scattered over var-
ious fields, which complicated the composition of a nicely integrated thesis.
I think its final title broadly covers the contained subjects, with the emphasis
on broad.

Many people have somehow contributed to my development in my work-
ing environment, either directly or indirectly, and I hereby express my grati-
tude to them all. I do wish to mention some people in particular.

In the first place, I would like to thank Jan Korst, with whom I have
worked together for more than ten years now. His creativity in finding so-
lutions to technical problems is an important source of inspiration for me. I
was glad to have him as my copromotor, and hope that our cooperation will
continue for years to come.

Next, I would like to thank my promotor Emile Aarts. I will remember
the meetings with Emile and Jan, which often surpassed the actual context of
my Ph.D. work, with joy.

I am greatly indebted to Ludo Tolhuizen, Ronald Rietman, and Jan Korst.
Chapter 2 is partly based on joint work with Ludo and Chapters 3 and 4 are
joint work with Ronald and Jan, respectively. I thank Wim Verhaegh for pro-
viding me part of the introduction of Chapter 7.

I am also grateful to the many other people with whom I have worked
together over the years in the context of my thesis, of which I mention in par-
ticular Carel-Jan van Driel, Peter van Grinsven, Dee Denteneer, Ewa Hekstra-
Nowacka, and Wim Verhaegh.

Furthermore, I thank the management of Philips Research, and especially
Fred Snijders, Maurice Groten, Reinder Haakma, Fred Boekhorst, and Willem

vii

viii Preface

Jonker, for providing me the opportunity to do the research and the time to
write my thesis.

Finally, I would like to thank my partner Ingrid and our children Nini and
Jurre, for their support and endurance over the past years, but also because
they helped me shape and live my life outside research.

March 2008 Verus Pronk

1
Introduction

Multimedia pertains to the interactive use of audio/video material, possibly
enriched with text and graphics. In this context, video on demand (VOD) is
one of the most demanding services because of the huge storage and band-
width requirements as well as real-time requirements in an interactive setting.
The prospect of deliveringVOD with instant access, interactivity, and brows-
ing possibilities, comparable to that offered by a conventional video cassette
recorder (VCR), to the homes of millions has attracted extensive interest from
academia as well as industry. In the past decades we have witnessed signifi-
cant improvements in the possibilities and the ease of interaction with multi-
media material. Gradually, the technical and commercial hurdles were over-
come to put the user more in control of what, where, and when to enjoy. This
development is progressing along different routes.

First of all, the availability of digital audio and video compression algo-
rithms, real-time hardware implementations, and associated standards allow
efficient storage and transmission of high-quality audio/video (AV) content.
In addition, the recent upgrade of access networks, such as cable and tele-
phony networks, provides broadband access to interactive services from the
customer premises. As a result, large collections ofAV material are becoming
accessible via the Internet for on-demand viewing.

1

2 Introduction

Another development is that in-home storage ofAV material is greatly im-
proving, both in terms of ease of use and storage capacity.VCRs are being
replaced on a large scale by storage systems, called personal video recorders
(PVRs), based on optical and magnetic or hard disks, and electronic program
guides (EPGs) simplify the selection ofTV programs for recording. Auto-
matic recording based on recommender technology of interesting broadcast
programs has recently been introduced in the market. Modern hard disk tech-
nology allows the recording of a considerable number of programs in parallel
on a single disk, and playing back a program is possible while its recording
is still in progress. The sizes of currently available hard disks allow the stor-
age of hundreds of video files so that they are useful for maintaining a sizable
collection at home, thus providingVOD in-the-small.

Current solutions for providingVOD via the Internet rely on best-effort
services, meaning that there is no guaranteed level of quality, neither in terms
of timely content transmission to allow uninterrupted viewing, nor in terms
of (interactive) response times. The protocols used for the transmission of
data over the Internet, that is, the Internet protocol (IP) and the transmission
control protocol (TCP) provide guaranteed data delivery, but without real-time
guarantees. Also the real-time transport protocol (RTP) does not provide any
real-time guarantees.

The existing hardware overkill and the possibility to adapt compression
and transmission rates to the available bandwidth alleviates this problem, but a
temporarily congested network may cause service disruption, or at least dete-
rioration, which may take the form of, e.g., hickups in the display of the video
or a slow response to user actions. When the take-up of such a bandwidth-
intensive service increases, these situations will become unavoidable and ap-
propriate resource management tools such as admission control and reserva-
tion protocols as well as scheduling algorithms are required to provide a guar-
anteed quality of service.

The successor of the currentIP/TCP protocol suite, calledIP Version 6
(IPV6), does provide the means to provide a guaranteed quality of service.
Furthermore, an access network like a cable access network provides a con-
trollable environment wherein such protocols and algorithms can indeed be
implemented. By placing aVOD server at a central point in the access net-
work, it becomes possible to provide the service with the appropriate quality.

The work reported on in this thesis concerns a number of scheduling and
resource management problems in the context ofVOD over cable access net-
works. Before introducing them in Section 1.4, we first give a concise in-
troduction to cable access networks in Section 1.1 and video on demand in
Section 1.2, and sketch in Section 1.3 the major scheduling and resource man-

1.1 Cable access networks 3

agement issues that play a role. We end this chapter with a short overview of
the organization of this thesis in Section 1.5.

1.1 Cable access networks

During the nineties of the last century, the realization of the information su-
perhighway dictated the need to connect the homes to backbone networks via
broadband links. This problem was known as the last-mile problem. The
already existing telephone and cable access networks provided the required
infrastructure only partly. Hence, possible implementations, applications,
and migration scenarios for these networks were surveyed; see Bisdikian,
Maruyama, Seidman & Serpranos [1996], Van Driel, Van Grinsven, Pronk
& Snijders [1997], and Dutta-Roy [1999].

Cable access networks, better known asCATV (community antenna tele-
vision) networks, were originally designed for broadcasting analogue video
signals. These networks had a tree structure where, at the root, a controller
called the head-end (HE) broadcast incomingTV signals from a variety of
sources over the network on downstream channels to the individual homes,
amplified along the way to retain sufficient signal strength.

Over the past fifteen years,CATV networks have been upgraded to pro-
vide two-way broadband communication. This upgrading includes replacing
parts of the coaxial cable near theHE by fiber-optic cable, organized in rings,
extending the functionality of theHE, and installing return amplifiers in the
upstream path from the homes to theHE. Access to such a hybrid fiber-coax
(HFC) network at the homes requires a cable modem (CM), which separates
this public network from the in-home, private networks and provides the nec-
essary functionality for the support of these services.

To ensure interoperability between theHE and a possibly multi-vendor
set of CMs, several standards have become available, of which theDOCSIS

[MCNS Holdings, 1999] andDVB/DAVIC [Digital video broadcasting, 1999]
standards are the two most prominent ones. A third standardization body,
the IEEE 802.14 working group, was dismantled in 2000. The drafts remain
accessible in their archive [IEEE 802.14 working group, 2000].

These standards describe in great detail the physical (PHY) and medium
access control (MAC) layers, covering the electrical characteristics, modula-
tion and error-correction schemes, the message formats and messaging pro-
tocols, access protocols and, forDOCSISin particular, a multitude of quality-
of-service classes for the support of more advanced services, such as constant
bit-rate and real-time polling services. In these standards, there is ample free-

4 Introduction

dom in the design and operation of a system to optimize performance, subject
to channel impairments and higher-layer protocol requirements.

A HE supports a number of frequency-separated downstream channels
with a bandwidth of up to 60 Mbit/s each, where ‘M’ stands for 220. To each
downstream channel, a number of upstream channels are associated, each with
a bit rate between 256 kbit/s and 20 Mbit/s. Frequency separation as well
as time-division-multiple-access (TDMA) and code-division-multiple-access
(CDMA) are used in the upstream direction. InTDMA, the transmission of
packets must be separated in time to prevent collisions among them, and in
CDMA, multiple packets may be transmitted simultaneously without colliding
as long as they use different codes of encoding their packets. Frequency sep-
aration is also calledFDMA. In this thesis, we assume that there is only one
downstream and one upstream channel. We do not considerCDMA.

Besides transmitting the legacy analogueTV signals and, in some coun-
tries, digitalTV signals, these networks are nowadays predominantly used for
Internet-based services via the world-wide web. The number and variety of
services are steadily increasing, including communication services such asIP-
telephony, e-mailing and chatting, search engines for searching information
on the web, on-line shops, information services, e.g. on-line newspapers or
journals, entertainment such as on-line gaming and video-on-demand (VOD),
e-commerce such as on-line booking or banking services, et cetera.

1.2 Video on demand

Among these services,VOD distinguishes itself by the combination of huge
bandwidth, real-time, and interactivity requirements.

The availability of efficient digital video compression algorithms such as
MPEG [LeGall, 1991; Haskel, Puri, and Netravali, 1997] enable video data to
be compressed at a variable bit rate in the order of a few to tens of Mbit/s
while retaining a high quality. When compared to voice, traditionally en-
coded at 64 Kbit/s and at less than 10 Kbit/s if compressed, or compared to
MP3-encoded music, typically at rates of at most 128 Kbit/s, video is indeed
characterized by huge bit rates.

To provide true video on demand, interactivity requirements must be met
such as instant play, pause-resume, and jumping forward and backward, mak-
ing the current practice of downloading infeasible. Instead, real-time trans-
mission, orstreaming, is required, where a flow of data from a server to the
user’s equipment must be sustained at the proper bit rate to allow uninter-
rupted viewing. In addition, a low response time from the server is required
to support the interactivity requirements.

1.3 Scheduling and resource management 5

In this thesis, we primarily consider the setup as illustrated in Figure 1.1,
where a video server is located near theHE and each user has aPVR (or aPC,
etc.) with a hard disk at home. The server stores thousands of video files in
compressed form on an array of hard disks. Multiple clients can simultane-
ously access video files in an on-demand fashion. Once selected, a video file
is retrieved from the server and streamed downstream through theHFC net-
work to the user’s equipment. There, it may be decompressed and consumed
immediately, or be temporarily stored in compressed form for time-shifted
viewing, possible already during the recording of the file. Browsing through
the offered video collection, selecting a title, and other interactivity with the
server is supported via the upstream channel.

The sizes of currently available hard disks allow the storage of some hun-
dred video files on a single disk, so that they are useful for maintaining a
sizable collection at home and providingVOD in-the-small.

downstream...

video
server

HE

upstream

TVPVR TVPVR...

Figure 1.1. Abstract view of the system we consider.

1.3 Scheduling and resource management

Cable access networks

The basic method to transmit data on the upstream channel is by way of a
request-grant procedure. If aCM has some data to transmit upstream on behalf
of one of the connections it sustains, it first transmits a request to theHE.
This request contains an identifier for the connection and an indication of the
amount of time, say in terms of a number of slots, it requires to transmit the
data. Upon reception by theHE of a request from aCM, it reserves a number
of slots and informs theCM about this by transmitting a grant downstream
to this CM, indicating that theHE grants exclusive access by thisCM to the
reserved slots.

Requests are transmitted in dedicated slots, called contention slots,
wherein multipleCMs may attempt to transmit a request simultaneously. If
this happens, the requests are said to collide and are all lost in the sense that
the HE does not receive any of them. To resolve contention, that is, these

6 Introduction

collisions, a contention resolution protocol is employed that governs the re-
transmission of collided requests. Hence, at the cost of transmitting relatively
short requests in contention, the actual data is transmitted contention-free.

Depending on the standard, an alternative to transmitting a request in con-
tention is to use piggybacking, whereby a new request is appended to the data,
so that this request is also transmitted contention-free. This, of course, is only
possible if theCM has at least one reserved slot at its disposal.

The area of contention-based access to shared media has been an ac-
tive area of research for decades [Bertsekas & Gallager, 1992; Tanenbaum,
2003]. The type of collision resolution protocol used in aCATV network de-
pends on the standard, and in fact, each of the standards offer several alter-
natives. One of the main collision resolution protocols employed is based on
the well-knownALOHA protocol [Abramson, 1970; Roberts, 1975], the other
main protocol is based on contention trees [Capetanakis, 1979; Tsybakov &
Mikhailov, 1978; Janssen & de Jong, 2000].

A central problem for the request-grant procedure is how to divide the
upstream transmission time into contention and reservation slots to optimize
the delay that data incurs. Early work, specifically during standardization,
primarily concentrated on extensive simulations, see, e.g., Golmie, Santillan
& Su [1999], Sala [1998], Kwaaitaal [1999], Pronk & De Jong [1998], and
Pronk, Hekstra-Nowacka, Tolhuizen & Denteneer [1999].

More recently, these simulation experiments have been complemented
with analytical results. Palmowski, Schlegel & Boxma [2003], Denteneer
[2005] and Van Leeuwaarden [2005] develop queuing-theoretic models for
studying the transmission delay in the upstream channel. The latter two are
dissertations and contain many useful links to related work.

For reservation-based access in the upstream direction as well as for mul-
tiplexing data for connections in the downstream direction, fair queuing al-
gorithms, originally designed for use in switches and routers, play an impor-
tant role. A fair queuing algorithm aims to guarantee for each connection
its fair share of the channel, where the definition of fair share is based on a
fluid-flow server that can serve all connections in parallel. These algorithms
have for nearly two decades received considerable attention in the literature;
see Demers, Keshav & Shenker [1989], Parekh & Gallager [1993], Golestani
[1994], Zhang [1995], Bennett & Zhang [1996], Stoica, Abdel-Wahab, Jeffay,
Baruah, Gehrke & Plaxton [1996], Stepping [2001], and Kunz & Stepping
[2003].

Besides the basic request-grant mechanism, alternative access modes exist
in the upstream direction, such as for providing services with a guaranteed

1.3 Scheduling and resource management 7

quality level. Hence, theHE must generally multiplex more than two access
modes on one channel [Pronk, 2000].

A downstream channel is typically coupled to four or eight upstream chan-
nels, andCMs may switch between these upstream channels, as well as switch
between downstream channels and, consequently, upstream channels. These
migrations are under control of theHE, and leads to the problem of load bal-
ancing among the channels. The time-varying behavior of aCM in terms of its
load on the network, both downstream and upstream, require load balancing
algorithms to operate on-line.

Video on demand

From a resource management point of view, combining interactivity withAV

material, which is paramount in multimedia applications and systems, is a de-
manding task. Storage and retrieval ofAV material poses real-time constraints.
Once the playout of a video file has started, real-time constraints have to be
obeyed in the delivery of subsequent parts of the file to allow uninterrupted
viewing by the user while keeping the required buffering of data at the user’s
equipment low.

In addition, interactivity requires that scheduling is carried out on-line,
as we have only partial knowledge of future user requests. Some form of
admission control is necessary to prevent new requests from endangering the
real-time guarantees of requests already granted. In addition, for consumer
applications, solutions need to be cost-effective. Hence, solutions based on
hardware overkill are not very suitable.

The literature on scheduling and resource management is diverse and ex-
tensive. The combination of real-time and interactivity constraints is unique
to the field of multimedia. The traditional scheduling literature in the area of
operations research, such as described by Brucker [2001], Lawler, Lenstra,
Rinnooy Kan & Shmoys [1993], and Pinedo [2001], does not cover this com-
bination. It is also not covered by the real-time scheduling literature in the
area of computer science, such as described by Cheng [2002], Klein, Ralya,
Pollak & Obenza [1993], Liu [2000], and Liu & Layland [1973].

Gemmell, Vin, Kandlur, Rangan & Rowe [1995] provide an introduction
to the field of multimedia storage and retrieval and illustrate the various issues
that play a role in the design of multimedia systems. As we do not extensively
cover system and implementation aspects, we refer for more information on
these aspects to Bolosky, Barrera, Draves, Fitzgerald, Gibson, Jones, Levi,
Myhrvold & Rashid [1996], Cabrera & Long [1991], Freedman & DeWitt
[1995], Shenoy & Vin [1998], and Sincoskie [1991].

8 Introduction

At the heart of aVOD server is a disk subsystem that stores large amounts
of AV material. Allowing access to this data by multiple clients simultane-
ously requires disk scheduling algorithms that make efficient use of the disk
subsystem.

Korst & Pronk [2005] cover multimedia systems from an algorithmic
point of view, including single- as well as multi-disk storage and retrieval
of both constant-bit-rate (CBR) and variable-bit-rate (VBR) video data. They
also cover smoothed transmission ofVBR video data through a network and
near-video-on-demand strategies. In addition, they provide an extensive list
of literature that is relevant in this area.

The single-disk scheduling problems associated withCBR data can be con-
sidered as a stepping stone towards the more complicated as well as practical
case of handlingVBR data. Therefore, additional, simplifying assumptions
like synchronization among clients or assuming equal bit rates are defendable
when consideringCBR data, as they greatly simplify the problems. Dealing
with VBR data is not only more difficult because of the variability at which
data is consumed, but also because interactivity in terms of slow motion and
pause make this consumption behavior inherently unpredictable. This unpre-
dictable behavior also complicates multi-disk scheduling problems, where the
additional problem of load balancing among the disks plays an important role.
Aerts [2003] provides an in-depth treatment of this problem and also considers
the presence of multi-zone disks.

To mitigate the problems of transmittingVBR data across a communica-
tion network, bit-rate smoothing algorithms aim to reduce the variability at
which this data is transmitted, usually at the cost of additional buffering and
start-up latency at the client side. For a survey on bit-rate smoothing algo-
rithms, we refer to Feng & Rexford [1999]. Rexford & Towsley [1999] also
survey several bit-rate smoothing algorithms and include the issue of multiple
links in the transmission path. Al-Marri & Ghandeharizadeh [1998] provide
a taxonomy of disk scheduling algorithms that includes bit-rate smoothing
algorithms.

An interesting alternative to providing trueVOD with full interactivity is
nearVOD (NVOD), which is geared towards linear viewing of a video. The
approach is to broadcast a video, generally on a small number of channels, so
that many clients can access this video at the same time, usually at the cost of
a larger start-up latency and requiring substantial buffering capacity, such as
a hard disk, in the user’s equipment. Over the past decade, several strategies
have been proposed to realizeNVOD. We refer to Korst & Pronk [2005] and
Kameda & Sun [2004] for a survey on the various strategies.

1.4 Content of this thesis 9

In each of the following chapters, we will provide a more detailed intro-
duction into the specific problems addressed and provide additional literature
references.

1.4 Content of this thesis

We consider a number of resource management problems: three network-
related and three video-service-related problems.

Medium access control for unregistered cable modems

As for the network-related problems, we first consider the problem of estab-
lishing initial contact between aCM and theHE. This initial contact is re-
quired to obtain the operational parameters necessary for normal operation. It
is governed by a contention-based access protocol, called frame-basedALOHA

[Schoute, 1993; Van der Vleuten, Van Etten & Van den Boom, 1994] where
multiple CMs may attempt to access the upstream channel at the same time.
This may result in collisions and consequent loss of messages, so that retrans-
missions are required. The delay aCM may incur during this process before
turning to normal operation may be significant, especially after a power out-
age when a large number ofCMs may attempt this simultaneously, thereby
affecting the perceived availability of theVOD service.

The specifics of the contention channel as well as the arrival process of
CMs to establish initial contact calls for a renewed analysis of optimal frame-
length control.

Medium access control using request merging

We next consider the operation of theCM during normal operation. In this
mode, aCM typically issues requests to theHE on behalf of the connections
it sustains in contention with otherCMs, to reserve one or more time intervals
for the contention-free, upstream transmission of actual data. The standards
mentioned in Section 1.1 are not explicit on how to deal with simultaneous
requests from multiple connections perCM. We review several possibilities to
do this, including one where a number of simultaneous requests from a num-
ber of connections at aCM are combined into a single multi-request. Under
some mild conditions, this alternative outperforms the others in terms of up-
stream transmission delay of data and results in a better response time from
the server.

Fair resource sharing

The third network-related problem is concerned with the allocation of down-
stream bandwidth by theHE to a number of connections, each with its own

10 Introduction

bandwidth requirements. The bandwidth in a downstream channel can be as-
sumed constant and is to be shared in such a way that not only the bandwidth
requirements are met for each connection, but also the issue of jitter plays
a role. Jitter is defined as the variation in delay that individual data packets
from a connection incur. This jitter has direct consequences for the required
buffering of video data at the homes.

File allocation on a single disk

As for the video-service-related problems, we first look into the issue of stor-
age on, and retrieval from disk of video data. The way in which data is re-
trieved from disk puts restrictions on the way in which data is stored on disk.

For many disk scheduling algorithms, storage and subsequent retrieval of
data is typically done in blocks of constant size, whereby storing or retrieving
one block is preferably done using only a single disk access. However, when
the blocks retrieved do not align with or do not have the same size as the
blocks stored, this is not generally possible, unless a specific storage strategy
is employed. Contiguous storage of a file on disk solves this issue, but it
suffers from the disadvantage of disk fragmentation in case the set of files,
each with its own size, changes frequently.

We consider a segmented storage strategy whereby data of a file is stored
contiguously in relatively large chunks, called allocation units, of a fixed size,
whereby the successive allocation units of a file need not be contiguous. In
addition, the contents of two successive allocation units of a file partly over-
lap, requiring that some data needs to be written to disk twice. We discuss
the consequences of this for the well-known triple buffering disk scheduling
algorithm [Biersack, Thiesse & Bernhardt, 1996].

File allocation on a multi-zone disk

We next consider the exploitation of the fact that contemporary disks can store
more data on the outermost tracks than on the innermost tracks. As a result of
the constant angular velocity at which these disks rotate, retrieval of data can
be done faster from the outermost tracks than the innermost tracks, effectively
resulting in correspondingly less resource usage. If each video file has an
associated popularity, one might be tempted to store more popular files closer
to the outermost track.

We consider the problem of how to store a given set of video files on
disk such that a cost function, related to resource usage during retrieval, is
minimized and compare it to the well-known method of track pairing by Birk
[1995a]. This storage strategy is especially relevant if the set of video files is
static and their respective popularities are sufficiently skewed.

1.5 Organization of this thesis 11

On the fixed-delay pagoda schedule

The last problem we consider is related to a periodic video broadcast sched-
ule called fixed-delay pagoda broadcast, introduced by Pˆaris [2001]. This is
a schedule to provideNVOD, which, as the name already suggests, offers less
flexibility than trueVOD in terms of interactivity. In particular, it is geared to-
wards linear viewing of a file, that is, from the start to the end in real time. One
of the major benefits is that considerable bandwidth savings can be realized
when many users view a particular video file at more or less the same time.
Instead of requiring separate streams for each of these users, the video file
is broadcast in fixed-size fragments and on a fixed number of video channels,
whereby fragments near the start of the file are broadcast more frequently than
fragments near the end.

Pâris uses a heuristic to optimize the number of fragments that are trans-
mitted inside each video channel. We substantiate this so-called square root
heuristic by analysis and show that the results can be slightly improved.

An important performance parameter in this context is the maximum start-
up latency, which is the maximum time a user may have to wait before view-
ing can start after having selected a title. We prove that Pˆaris’ schedule is
asymptotically optimal in terms of this start-up latency.

1.5 Organization of this thesis

The six problems sketched above are discussed in the next six chapters. That
is, in Chapters 2 to 4, we look into the three network-related problems and in
Chapters 5 to 7 into the three video-service-related problems. After reading
this introductory chapter, the chapters are self-contained, so that each of them
can be read, independently of the other five chapters.

The last chapter, Chapter 8, contains the conclusion of this thesis and
suggestions for subjects for future research.

Appendix A contains a list of the author’s output, related to this thesis,
consisting of internal and external publications as well as patents and patent
applications.

2
Medium Access Control for
Unregistered Cable Modems

This chapter concerns the start-up phase that a cable modem (CM) goes
through after powering up, where it is trying to get itself registered at the
head end (HE). During this phase, it has to search for appropriate channels
to receive and send information and go through a series of administrative
tasks, such as informing theHE of its capabilities, obtaining operational pa-
rameter settings and establishing a first connection. In particular, theCM has
to establish tight synchronization with the head end (HE) and set a proper
transmission-power level. This part goes by the name ofranging, the reason
for which is explained next.

CMs are connected to theHE via a tree network of coaxial and fiber cables
with amplifiers at the appropriate places in the network. EachCM has its own
signal propagation delay to theHE and its own signal attenuation, resulting
from its specific location in the network. For efficient operation it is required
(i) that all CMs are tightly synchronized to allow the transmission of short
bursts of information by differentCMs to be performed without unnecessarily
large, unused time intervals, called guard bands, between successive bursts,
and (ii) that eachCM has a specific power level at which it does its upstream

13

14 Medium Access Control for Unregistered Cable Modems

transmissions to theHE to achieve a near-constant reception power at theHE

from all CMs.
A CM obtains the information required for ranging from theHE, but this

information can only be obtained after a first contact has been established
between theCM and theHE, initiated by theCM.

For a DVB/DAVIC-compliant system, this initial contact is achieved us-
ing a contention-based access protocol, similar to frame-basedALOHA [see
Schoute, 1983; Van der Vleuten, Van Etten & Van den Boom, 1994]. In a
contention-based access protocol, multiple messages may be sent simultane-
ously, resulting in a collision and the loss of all of these messages. A re-
transmission scheme is employed to ensure that the messages will eventually
arrive successfully. In frame-basedALOHA, the slotted time axis is divided
into variable-length, consecutive frames. An unsuccessful transmission, in an
arbitrarily chosen slot in a frame, can only be repeated in the next one.

The central problem in frame-basedALOHA is the computation of the op-
timal frame length, which clearly depends on the number of contendingCMs:
a frame that is too small will result in too many collisions, whereas a frame
that is too large will result in too many empty slots.

The specific context sketched above, in particular the fact that theCMs are
not yet ranged, calls for a renewed analysis for optimal frame-length control,
which is the main subject of this chapter.

The remainder of this chapter is organized as follows. After discussing re-
lated work in Section 2.1, we describe in Section 2.2 the access protocol con-
sidered in this chapter and discuss in more detail the differences with frame-
basedALOHA. We explain the reasons for a renewed analysis for optimal
frame-length control. In Section 2.3, we propose a model for the contention
channel at hand, which generalizes the model commonly used in the analysis
of frame-basedALOHA. The parameters in this channel model influence the
determination of the optimal frame length.

In Section 2.4, we show how to compute the frame length to achieve
maximal throughput, assuming that the number of contenders in this frame is
known. In Section 2.5, we propose an estimate for the number of contenders
in an already observed set of slots. This estimate is then used in Section 2.6
to obtain an estimate for the number of contenders in the frame that is about
to start. It is noteworthy that this estimate does not make any assumptions on
the arrival process of newCMs. We collect the results obtained and describe
the algorithm for determining the lengths of the successive frames, thereby
taking the specific context into account, in particular the non-negligible delay
involved in providing feedback on transmissions.

2.1 Related work 15

In Section 2.7, we provide simulation results to assess the effectiveness of
the estimators and their sensitivity to inaccurate channel parameters, and we
make some concluding remarks in Section 2.8.

Finally, we mention that this work is partly based on work by Pronk &
Tolhuizen [2000, 2001]

2.1 Related work

Since the development of theDOCSIS and DVB/DAVIC standards, ample re-
search has been conducted on optimizing performance in these networks; see
Denteneer [2005], Lin, Yin & Huang [2000], Kuo, Kumar & Kuo [2003],
Liao & Ju [2004], and references therein. These investigations primarily con-
cern ‘normal’ operation of cable modems (CMs), where they can send and
receive data on behalf of applications running in the homes. Less emphasis
has been put on performance issues during the start-up phase of aCM.

The problem we consider is also similar to the problem of controlled or
stabilizedALOHA, see Bertsekas & Gallager [1992] for an introduction. In
stabilizedALOHA, instead of defining a frame length, an adaptive retransmis-
sion probability for each slot is defined, based on the expected number of
contenders for that slot.

Capetanakis [1979], Wolters, Van Hoof, Botte & Sierens [1997] consider
a contention resolution protocol based on address splitting. By successively
splitting the address range in smaller ranges and only allowing thoseCMs
that have their address in the current range, all collisions will be resolved
eventually. The large address space and a possible imbalance in the addresses
of the participatingCMs make the procedure sub-optimal.

Sdralia, Tzerefos & Smythe [2001] consider the ranging problem for the
DOCSISstandard. This standard uses a binary exponential back-off algorithm
wherein aCM repeatedly picks a random slot in a frame, initially of a prede-
termined length, that is doubled in length after each unsuccessful transmission
until a predetermined, maximal frame length is reached. EachCM defines its
own sequence of frames.

Sala, Hartman & Limb [1996] compare three different contention resolu-
tion algorithms for the ranging problem: stabilizedALOHA, which is called
p-persistence in their article, binary exponential back-off, and a contention-
tree algorithm. In the latter, all contenders in a slot containing a collision
are allocated a number of slots, typically three, to retransmit, each contender
in a randomly chosen slot, so that the group is effectively split in smaller
groups. This generates a tree structure. After completion of one tree, another
is started. Denteneer, Pronk, Hekstra-Nowacka & Tolhuizen [2003] describe a

16 Medium Access Control for Unregistered Cable Modems

more advanced method to start up new trees, effectively resulting in multiple,
simultaneously active trees, which are resolved one after the other. For more
information on contention trees, we refer to Tsybakov & Mikhailov [1978],
and Janssen & de Jong [2000].

Hajek, Likhanov & Tsybakov [1994] consider the problem of large prop-
agation delays in high-speed networks, where the propagation delay, and thus
the feedback delay, may be in the order of hundreds of times the length of
individual packets. They investigate the delay that packets may incur when
using contention-based access.

2.2 Contention access in DVB/DAVIC during start-up

The contention procedure during start-up in aDVB/DAVIC-compliantHFC sys-
tem can be described as follows. The time axis is divided into fixed-length
slots. TheHE dynamically partitions this slotted time axis into variable-length,
nonoverlapping frames. A frame counts an integer number of slots and is
aligned with slot boundaries. A frame starts immediately upon reception of
a sign-on request message, sent by theHE, which contains the length of this
frame. During a frame, each contendingCM transmits a sign-on response mes-
sage to theHE in a randomly chosen slot, uniformly distributed in the frame.
This transmission is performed at a particular power level, that is under con-
trol of a separate procedure. In short, aCM cycles around a number of power
levels.

A transmittingCM is either a newly arrivingCM that entered its contention
procedure during the previous frame and will transmit for the first time in the
present frame, or aCM that transmitted in some earlier frame and discovered
that its transmission was unsuccessful. A transmission may be unsuccessful
because it was done at an improper power level and/or because it collided
with a transmission by anotherCM. A CM discovers that its transmission
was unsuccessful by using a time-out mechanism: if aCM does not receive a
response from theHE of successful transmission within a maximum feedback
delayTfb after transmission, it considers this transmission unsuccessful. The
CM then retransmits in the next available frame, designated by the reception of
the first sign-on request message from theHE after this time-out. In practice,
this maximum feedback delay is considerable. It is noted that aCM may have
skipped various frames before transmitting again in case the frame length is
short in comparison with the maximum feedback delay.

The main problem is how to determine the frame lengths online so as to
make optimal use of the contention channel.

The access protocol described above is similar to frame-basedALOHA,
see the papers by Schoute [1983] and Van der Vleuten, Van Etten & Van den

2.3 Modeling the contention channel 17

Boom [1994]. The major differences between the access protocol considered
in this chapter and frame-basedALOHA are the following. Firstly, due to
the lack of synchronization and power calibration amongCMs, the contention
channel, though still slotted, behaves differently in terms of successes and col-
lisions. We will elaborate on this in Section 2.3, where we formally model the
contention channel. Secondly, there is a non-negligible contention feedback
delay, which complicates the retransmission process.

An important difference with the papers cited above is that the authors
assume that new contenders arrive at the contention process according to a
Poisson process. This assumption is not true in the current context, where the
number ofCMs in the network is finite and eachCM goes to the contention
process only once. Furthermore, a special case of interest here is to consider
the situation where a large number of modems may attempt to power up nearly
simultaneously, such as after a local power outage.

2.3 Modeling the contention channel

Because unregisteredCMs still have to synchronize to the time axis, the slots
used by unregisteredCMs are made large enough, that is, three times the length
of a normal slot. A transmission by aCM close to theHE will arrive (correctly
received or not) at theHE at the start of a slot, whereas a transmission by aCM

at a larger distance, with a maximum of 80 km according to theDVB/DAVIC

standard, will arrive later during the slot. As a result, two transmissions in
a single slot need not even collide, and more than one success per slot is
possible. In addition, aCM does its successive transmissions at varying power
levels, subject to a separate procedure. This generally influences the reception
behavior by theHE as well: A transmission may go unnoticed by theHE. We
model the channel as follows.

Definition 2.1. (Channel model) The reception behavior by theHE of the
contents of a single slot, is described by the following parameters. Fori � 0
we define

ei = Pr(the slot is perceived emptyj i transmissions)

si = E[number of successesj i transmissions]

Here, theE stands for the expectation operator. It is assumed that the underly-
ing process is stationary, that is, that these parameters are constant over time.
In particular, we do not further elaborate on the procedure thatCMs use for
obtaining their correct power levels. It is instead assumed that this procedure

18 Medium Access Control for Unregistered Cable Modems

is captured in the channel model. Schoute uses a similar, but simpler model to
express the presence of noise and the capturing effect in mobile packet radio
networks. Note that we may assume thats0 = 0 ande0 = 1. Note furthermore
that the casee0 = 1;ei = 0 for i 6= 0 ands1 = 1;si = 0 for i 6= 1 corresponds to
the conventional channel model.

The ei and si parameters are used to determine the frame length in the fol-
lowing manner. The parameterssi are used to determine the optimal frame
length, given the number of contendingCMs in the frame. This is covered in
Section 2.4. As the number of contenders at the start of a frame isnot known,
we next give in Section 2.5 an estimate for the number of contenders in an
observed set of slots, in which theei’s are employed. Using this result, we
give in Section 2.6 a new estimator for the number of contenders at the start
of a frame, whereby we also take the feedback delay into account.

2.4 Determination of the optimal frame length

We considerS slots over whichN contenders are independently and uniformly
distributed. The expected number of successes in a given slot, denoted by
EN(S), satisfies the following equation.

EN(S) =
N

∑
i=1

si

�
N
i

��
1
S

�i�
1� 1

S

�N�i

: (2.1)

This is easily seen by observing that, for a given slot, the number of contenders
that transmit in this slot is Binomially distributed with parametersN and 1

S .
Given i contenders that transmitted in the given slot, the expected number of
successes is given bysi. As s0 = 0, the summation starts ati = 1.

Note that, although the numbers of contenders among the different slots
are clearly dependent, this is of no concern here, as we are only looking at a
single slot.

Given the numberN of contenders, we wish to determine the number
of slots S such thatEN(S) is maximal. We first considerS as a continuous
variable in Equation 2.1.1 By straightforward differentiation, we obtain, for
S > 1,

1In this thesis, we use the colloquial meaning of the term ‘equation’ rather than its mathe-
matical meaning of ’equality’. Hence, inequalities will also be referred to as equations.

2.4 Determination of the optimal frame length 19

E 0

N(S) =
N

∑
i=1

si

�
N
i

�"
�

i
S2

�
1
S

�i�1�
1�

1
S

�N�i

+
N� i

S2

�
1
S

�i�
1�

1
S

�N�i�1
#

=
N

∑
i=1

si

�
N
i

��
1
S

�i+2�
1�

1
S

�N�i�1�
�iS

�
1�

1
S

�
+N� i

�

=
N

∑
i=1

si

�
N
i

��
1
S

�i+2�
1�

1
S

�N�i�1

(N� iS): (2.2)

Lemma 2.1. Let m be the maximal index i < N for which si 6= 0. Then EN

attains its maximum on (1;∞) in the interval [N=m;N].

Proof. Note that the summation in Equation 2.2 only extends toi = m� 1 and
that the sign of theith term, if not zero, equals the sign ofN� iS. For i � m,
we have thatN� iS � N�mS > 0 if S < N=m. Hence, forS < N=m, it holds
thatE 0

N(S)> 0, as themth term is not zero. Conversely, fori� 1, we have that
N� iS � N� S < 0 if S > N. Hence, forS > N, it holds thatE 0N(S) < 0, as
themth term is not zero. From this, we can conclude thatE 0

N(S) = 0 implies
thatS 2 [N=m;N].

In the special case thatm = 1, the maximum is thus attained atS = N, that
is, where there is one slot for each contender. Furthermore, notice that, if
only sm > 0, then the maximum is attained atS = N=m. In the latter case, a
slot ideally contains exactlym contenders, requiring onlyN=m slots for allN
contenders.

EN can have several local maxima. As an example, supposeN =12,s1 = 1
ands5 = 1; the othersi’s are zero. AsN = 12 andm = 5, we know by the
lemma above thatEN attains its global maximum on(1;∞) in the interval
[12=5;12] = [2:4;12]. Figure 2.1 shows the presence of an additional, local
maximum, at approx. 2.58. RestrictingS to integer values yields two maxima,
namely atS = 3 and atS = 12. The latter value attains the global maximum
over the positive integersS.

We next give a general result on the optimal valueSopt for E 0
N(S), assuming

that there is a maximal index for whichsi > 0.

Lemma 2.2. Let m be such that sm > 0 and si = 0 for i > m. Then for large
values of N, the optimal frame length Sopt for Equation 2.1 can be written as

Sopt� βoptN; (2.3)

where βopt depends only on the si values.

20 Medium Access Control for Unregistered Cable Modems

E12(S)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S

Figure 2.1. E12(S) with s1 = s5 = 1, the othersi’s equal to 0.

Proof. Chooseβ > 0 and letS = βN. It follows from Equation 2.1 that

lim
N!∞

EN(βN) = lim
N!∞

m

∑
i=1

si
1
i!

β�i N!
Ni (N� i)!

�
1� 1

βN

�N�i

=

m

∑
i=1

si
1
i!

β�i e�
1
β ;

which corresponds to the well-known approximation of the Binomial distri-
bution by a Poisson distribution. Notice that this expression is independent
of N, so that, by numerical optimization of the expression above, an optimal
valueβopt can be obtained, and an optimal valueSopt for S then satisfies Equa-
tion 2.3.

The optimal frame length for large values ofN is thus linear in the number of
contenders, the constantβopt being determined solely by the channel parame-
ters, although its value is not easily obtained in the general case.

Lemma 2.3. For the special case that s0 = 0, s1 > 0, and si = 0 for i� 3, we
have that, for large N, the optimal frame length Sopt for Equation 2.1 can be
written as

Sopt� βq N; (2.4)

where βq =
1
2(1�q+

p
1+q2) and q = s2

s1
.

2.4 Determination of the optimal frame length 21

Proof. For this special case, we have that

EN(S) = s1 N
1
S

�
1� 1

S

�N�1

+ s2
N (N�1)

2

�
1
S

�2�
1� 1

S

�N�2

: (2.5)

After some elementary calculus, it is found thatE 0
N(S) = 0 if and only if

S =
[(N +1)�q(N�1)]�

p
(N�1)2+q2(N�1)2�2q(N�1)

2
: (2.6)

It readily follows from Equation 2.6 thatE 0
N has two positive roots if and only

if q(N � 1) � 2. Hence, for largeN, E 0
N has only one positive root, where

EN(S) attains its global maximum. For largeN, we replaceN +1 andN�1
by N, so that the optimal valueSopt for S is easily seen to satisfy Equation 2.4.

It can be seen thatβq is a decreasing function inq; β0 = 1 andβq ! 1
2 if

q ! ∞. This agrees with our earlier observation thatE 0N has a zero in the
interval [N=m;N] = [N=2;N].

Lemma 2.4. If s0 = 0, s1 > 0, and si = 0 for i � 3, then, for large N, the
maximum capacity EN(Sopt) satisfies

EN(Sopt) �

s1

βq
+

s2

2β2
q

!
e
� 1

βq : (2.7)

where βq =
1
2(1�q+

p
1+q2) and q = s2

s1
.

Proof. By substituting in Equation 2.5 forS the approximation ofSopt, given
in Equation 2.4, we obtain an approximation ofEN(Sopt) as follows.

EN(Sopt) � s1 N
1

βq N

�
1�

1
βq N

�N�1

+ s2
N (N�1)

2

�
1

βq N

�2�
1�

1
βq N

�N�2

�

s1

βq
+

s2

2β2
q

!
e
�

1
βq ; (2.8)

where in the latter approximation,N�1 andN�2 have been replaced byN
and the approximation(1�1=x)x � e�1 for largex has been used.

For largeN, the maximum capacity is thus nearly independent ofN.
We next prove that for largeN the success probability for a single con-

tender is also nearly independent ofN.

22 Medium Access Control for Unregistered Cable Modems

Lemma 2.5. If s0 = 0, s1 > 0, and si = 0 for i� 3 and S = Sopt, then for large
N, the probability p of success for a single contender satisfies

p�
�

s1+
s2

2βq

�
e
� 1

βq ; (2.9)

where βq =
1
2(1�q+

p
1+q2) and q = s2

s1
.

Proof. Clearly, the capacity of theSopt slots in a frame is given by
SoptEN(Sopt) � βq N EN(Sopt). The expected number of successes in this
frame is also given bypN, as can be seen as follows. Let, for each con-
tenderi, the random variableXi equal 1 if this contender is successful and
0 otherwise. ThenE[Xi] = p and the expected number of successes is
E[∑i Xi] = ∑i E[Xi] = pN, by linearity of the expectation operator. Hence,
pN � βqNEN(Sopt), from which the factorsN can be eliminated. The result
follows by using Lemma 2.4.

Recapitulating, if we assume thatN is large and that the frame lengths are
chosen optimally, each contender is independently involved in a Bernoulli trial
with success probabilityp, given by Equation 2.9, independent of the number
of contenders. The expected number of attempts until success is 1=p, although
the expectedtime until success of course depends on the successive frame
lengths, which are determined by and approximately linear in the number of
participating contenders.

2.5 Estimating the number of contenders in a past frame

In this section we considerS slots over which an unknown numberN of con-
tenders are independently and uniformly distributed. The problem is to es-
timateN from S and the observed pattern of contention results, that is, slots
perceived empty, collisions, and slots with a given number of successes.

As argued by Pronk & Tolhuizen [2000], it is a good idea to use only the
numberNe of slots perceived empty. Reason is that by using the number of
successes only, it is not possible to estimateN, and that by only using the
number of collisions there doesn’t seem to be a simple closed formula for ex-
pressingN in E[Nc], even in the case of a conventional channel. Furthermore,
combining, for instance, bothNs andNe to estimateN, generally leads to less
accurate results. This is due to the fact that we are using two random variables
instead of one.

One way to obtain an estimate forN is to do simulations. In particular, for
many values ofS and known numbers of contendersN, we count the number
Ne of slots perceived empty, using a probabilistic approach based on theei’s,

2.5 Estimating the number of contenders in a past frame 23

after theseN contenders have each chosen a slot randomly among theS slots.
This provides triples(S;N;Ne), from which, for each pair(S;Ne), a most
likely value of N can be deduced. A similar approach is used by Yin & Lin
[2000], who use success and collision counts to obtain an estimate for the
number of contenders.

We opt for the analytical approach, partly because it saves large tables
to be stored, partly because it provides more insight into the dependencies
amongst the parameters, estimators, and variables.

In the same vein as Equation 2.1, the probabilityPe that a given slot is
perceived empty is readily seen to satisfy the following Binomial expression

Pe =

N

∑
i=0

ei

�
N
i

��
1
S

�i�
1� 1

S

�N�i

: (2.10)

Lemma 2.6.

Pe =
E[Ne]

S
: (2.11)

Proof. Let the random variableXi be 1 if slot i is perceived empty, and 0
otherwise. ThenE[Xi] = Pe andNe = ∑S

i=1 Xi. By linearity of the expectation
operator, we have thatE[Ne] = E[∑S

i=1 Xi] = ∑S
i=1E[Xi] =∑S

i=1Pe= SPe, from
which Equation 2.11 follows.

The idea of estimatingN is to act as ifNe equals the expected number of slots
perceived empty and calculatingN by using Equations 2.10 and 2.11.

The following lemma states a general result on the possibility to estimate
N from S, E[Ne], and the channel parameters. We make the natural assumption
thatei is a non-increasing function ofi, that is, that more contenders in a single
slot do not increase the probability that it is perceived empty.

Lemma 2.7. Let ei be a non-increasing function of i and let m be such that
em > 0 and ei = 0 for i > m. Then, if both S and N are large, N can be
estimated as

N � S f�1
e

�
E[Ne]

S

�
; (2.12)

where fe, defined in Equation 2.13, is an invertible function on (0;∞) that only
depends on the channel parameters ei.

24 Medium Access Control for Unregistered Cable Modems

Proof. Let bothN andS be large andα be such thatN = αS. Then

E[Ne]� S
m

∑
i=0

ei
Ni

i!

�α
N

�i
(1� α

N
)N�i � S

m

∑
i=0

ei

i!
αi e�α

;

which again corresponds to the well-known approximation of the Binomial
distribution by a Poisson distribution. By defining

fe(α) =
m

∑
i=0

ei

i!
αi e�α

; (2.13)

we have thatE[Ne] � S fe(α). If fe(α) is invertible on(0;∞), Equation 2.12
follows by substitutingN=S for α.

What thus remains to be proved is thatfe(α) is invertible on(0;∞). Dif-
ferentiating fe(α) with respect toα, we obtain that

f 0e(α) = e�α

�

m

∑
i=0

ei

i!
αi +

m

∑
i=1

ei

(i�1)!
αi�1

!
:

= �e�α

m�1

∑
i=0

(ei� ei+1)

i!
αi +

em

m!
αm

!
:

As the ei’s are non-increasing andem > 0, f 0e(α) is negative for positiveα.
Hence,fe(α) is invertible on(0;∞), which completes the proof.

We next consider the special case of a channel wherebye0 = 1, 0< e1 < 1,
andei = 0 for i� 2. The assumptione1 > 0 reflects the possibility that a single
transmission is not necessarily detected by theHE.

Lemma 2.8. For the special case that e0 = 1, 0< e1 < 1, and ei = 0 for i� 2,
it holds that

N � S
ln
�

S
E[Ne]

�
1� e1

: (2.14)

provided that S is large and e1 N=S is small.

Proof. For this special case we have that

E[Ne] = S(1� 1
S
)N + e1N(1� 1

S
)N�1

: (2.15)

We next give an approximate solution to Equation 2.15. Using the fact that
ln(1+ x) = x+O(x2); x ! 0, the equality is reduced to

2.6 Estimating the number of contenders in a future frame 25

ln(
E[Ne]

S
) = N ln(1� 1

S
)+

e1N
S�1

+O

 �
e1N
S�1

�2
!
;

This approximation is valid ase1 N=S is small. For largeS, we approximate
S�1 by S and ln(1�1=S) by�1=S. From this, the result follows.

The results in this section primarily concern large values ofS and N. For
small values, the method of simulation mentioned at the beginning of this
section could be used as a complementary approach.

2.6 Estimating the number of contenders in a future frame

For determining the length of a new contention frame, say contention framei,
we wish to estimate the numberNi of CMs that contend in this frame, so that
the results of Section 2.4 can be applied. We propose an estimate forNi, in
which the feedback delay is taken into account as well.

Consider Figure 2.2, where the time axis is divided into successive frames
by the vertical, solid lines. The maximum feedback delayTfb, see Section 2.2
for an explanation, is assumed to correspond to an integer number of slots and
is, in this example, considerably larger than the individual frame lengths. The
length of contention framei is denoted bySi and is also an integer number of
slots.

time
Tfb

Tfb

contention
frame i

contention
frame i − 1

Figure 2.2. Influence of the feedback delay.

The CMs that do a retransmission in contention framei did their previous at-
tempt in the window delineated by the leftmost two dashed lines. This can
be seen as follows.CMs that transmitted before the start of the time window
and were unsuccessful already did a retransmission before contention framei,
as their feedback time-out occurred before the start of contention framei�1.
Conversely, those that transmitted after the end of the time window and were
unsuccessful are still waiting for their time-out at the start of contention frame
i, which they will consequently miss. Hence, they transmit after contention
framei. Those that transmitted in the indicated time window and were unsuc-

26 Medium Access Control for Unregistered Cable Modems

cessful experienced their timeout during contention framei�1, so that they
retransmit in contention framei.

We call this time window related to contention framei its originating
framei. Its length equalsSi�1, that is, the length of contention framei�1. We
call the time window of lengthTfb that ends at the start of contention framei
its correspondingfeedback framei.

We next derive an approximation ofNi. We denote withMi the total num-
ber of participatingCMs at the start of contention framei. This set ofMi CMs
consists of three subsets, as shown in Figure 2.3. Firstly, there are newly ar-
riving CMs. TheseCMs did not transmit before the start of contention framei.
Their number is denoted byni. Secondly, there areCMs that transmitted ear-
lier and do a retransmission in contention framei. TheseCMs last transmitted
in originating framei. Their number equalsNi � ni, as theseCMs together
with the ni new CMs constitute the set ofNi CMs contending in contention
framei. Finally, there areCMs that transmitted earlier and are still waiting for
feedback. TheseCMs last transmitted in feedback framei and their number
equalsMi�Ni, as the total number of participatingCMs equalsMi. Note that
we are only counting newly or still participatingCMs here, and not those that
were successful in originating or feedback framei.

time
Tfb

Tfb

Ni − ni Mi − Ni

retransmitting CMs Ni

ni newly arriving CMs

Si −1 Si

Si −1

Figure 2.3. Subdivision of the numberMi of CMs over the frames.

If the transmissions of allNi�ni +Mi�Ni = Mi�ni retransmittingCMs are
homogeneously distributed over the slots in originating and feedback frames
i, thenNi can be estimated bŷNi, defined as

N̂i = (Mi�ni)
Si�1

Si�1+Tfb
+ni: (2.16)

As ni is unknown, we propose to ignoreni, the number of newly arrivingCMs
at the start of contention framei and to set it to 0 in Equation 2.16. To obtain
an estimate forMi, we use ana posteriori estimationM̂i�1 of Mi�1, calculated
at the end of contention framei�1, that is, at the start of contention framei.

2.6 Estimating the number of contenders in a future frame 27

As M̂i�1 takes theni�1 CMs into account that newly arrived at the start of
contention framei�1, theni CMs that newly arrive at the start of contention
framei are taken into account at the start of contention framei+1. Similarly,
the successful transmissions in originating framei are taken into account at the
start of contention framei+1, as they did not retransmit in contention framei
and are thus not counted, and the successful transmissions in feedback frame
i are taken into account in frames beyond contention framei. Effectively, we
introduce a delay of one frame to incorporate newly arriving and successful
CMs.

Instead of Equation 2.16, we thus use

N̂ 0
i = M̂i�1

Si�1

Si�1+Tfb
:

We next turn our attention tôMi�1. At the start of contention framei�1, each
of theMi�1 participatingCMs either transmitted during feedback framei�1,
or will transmit during contention framei�1. Assuming again a homoge-
neous distribution of transmissions over the union of these two intervals, the
numberNe

i�1 of slots perceived empty in these intervals, which is known at
the start of framei, can be used to calculate a value forM̂i�1 as follows.

If Ne
i�1 > 0, we use Equation 2.14, wherebyE[Ne] is estimated byNe

i�1
and S is replaced by the total number of slots in feedback and contention
framesi�1.

If, on the other hand,Ne
i�1 = 0, then no good estimate can be given. How-

ever, since this situation may indicate a large value ofMi�1 relative to the
frame length, it seems safe to letM̂i�2 be at least 1 and to double the previous
estimate, that is, to let̂Mi�1 = 2M̂i�2. The resulting exponential growth in
M̂i�1, and thus inSi, if Ne

i�1 remains 0 for successive values ofi, will eventu-
ally lead to a situation withNe

j�1 > 0 for somej > i, at which time a proper
estimation can again be established.

When an estimate for the number ofCMs in contention framei has been
obtained, the length for this frame can be set using Equation 2.4 and by round-
ing the result to the appropriate integer.

For practical purposes, however, a minimal frame lengthSmin should be
imposed uponSi to limit the required downstream messaging to indicate the
start of the successive frames. This also takes care of the possibility that an
estimate ofSi could be zero.

The assumption made above of homogeneously distributed transmissions
is relevant especially if the frame length is in the order of the maximum feed-
back delay. In particular, if the minimal frame length divides the maximum
feedback delay, then a sudden burst in one frame of newly arrivingCMs may

28 Medium Access Control for Unregistered Cable Modems

’stick together’ and retransmit a number of frames later, all in the same frame,
and this may repeat itself. If, on the other hand, the minimal frame length
doesnot divide the maximum feedback delay,CMs in one frame will eventu-
ally spread their retransmissions over various frames. We will come back to
this in the next section. This divisibility may also happen for frame lengths
unequal to the minimal frame length, but this is easily solved by increasing
the frame length somewhat.

Collecting the results from this and the previous sections, we arrive at the
algorithm shown in Figure 2.4 to determine the length of contention framei.
We assume thats0 = 0, s1 > 0, si = 0 for i� 3, e0 = 1, 0< e1 < 1, andei = 0
for i � 2, so that we can use Lemmas 2.3 and 2.8. We useβq as defined in
Lemma 2.3 and ignore initialization.

while truedo
begin

wait until the end of contention framei�1;
Ne

i�1 := the number of empty slots in originating and
feedback framesi�1;

if Ne
i�1 = 0 then M̂i�1 := 2M̂i�2

elseM̂i�1 := max
�
1; ln

�
(Si�1+Tfb)=Ne

i�1

�
=(1� e1)

�
;

N̂0

i := M̂i�1 Si�1=(Si�1+Tfb);
Si := max

�
Smin; round(βq N̂0

i)
�
;

while Si j Tfb do Si := Si+1;
communicate the contention frame lengthSi to all CMs;
i := i+1

end

Figure 2.4. Pseudo-code for the determination of the frame length.

2.7 Simulations

For an assessment of the effectiveness of the estimators presented in this chap-
ter, it is illustrative to show that near-optimal usage of the channel in terms of
throughput is indeed achieved. To this end, we consider the following sce-
nario, as illustrated in Table 2.1.

The unit of time is one slot. Slots are numbered from zero onwards. The
values forTfb, e1, and s1 are realistic in practice, whereas the value fors2

depends on the topology of the access network. If we assume that theCMs are
distributed homogeneously on a disk with theHE at its center and a radius of
80 km, the maximal distance according to theDVB/DAVIC standard, thens2

can be calculated to be approximately 0.1. This results in a value of 0.5 for

2.7 Simulations 29

parameter value

Tfb 90 slots
Smin varied
e1 0.2
s1 0.2
s2 0.1

burst size 1000
arrival rate variable

Table 2.1. Parameter settings for the first experiment.

q and a value of 0.81 forβq in Lemma 2.3. The capacity per slot, given by
Equation 2.8, is approximately 0.094. In the experiments, the minimal frame
lengthSmin is varied to investigate its influence on the results.

We perform three experiments: in the first two experiments, we only con-
sider a single burst ofCMs that arrive simultaneously and we investigate the
decay of the remaining, participatingCMs over time. In the second experi-
ment, however, we deliberately disturb the calculated frame length by a fixed
factor to evaluate the sensitivity of the algorithm to inaccurate estimations
of the channel model parameters. Note that, when considering Lemmas 2.3
and 2.8, but also 2.2, it makes sense to consider a fixed factor. In the third ex-
periment, we consider the situation in whichCMs arrive according to a Poisson
process and consider the delay that aCM incurs from the moment of arrival
until the moment its sign-on response message is received successfully at the
HE, as a function of the arrival rate and the minimal frame length.

2.7.1 Dealing with a burst of CMs

In the first experiment, a burst of 1,000CMs arrive instantaneously at the start
of the simulation, and there are no otherCMs arriving after this event. We vary
the minimal frame length over 4, 8, 24, and 60 slots. The results are depicted
in Figure 2.5, which plots the decay in the number of participatingCMs as a
function of time. The solid line depicts a line with slope -0.094, corresponding
to the capacity of the channel, starting at 1,000CMs at time 0.

The first observation we make is that the slopes of all four dotted lines
during steady decay correspond closely to the capacity of the channel. The use
of the actual number of slots perceived empty as an estimate for the expected
number of slots perceived empty apparently does not significantly influence
the capacity of the channel.

The second observation is that the final phase, when only a sufficiently
small number ofCMs are left, shows a ‘slow finish’, that is, the decay pro-

30 Medium Access Control for Unregistered Cable Modems

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18

nu
m

be
r

of
 p

ar
tic

ip
at

in
g

C
M

s

slot number (in thousands)

 4
 8
24
60

Figure 2.5. The number of participatingCMs as a function of time for various
values ofSmin.

gresses more slowly. This can be explained by considering that, when the
minimal frame length has been reached, the channel is used less efficiently.
This may have a detrimental effect on the performance of the system in terms
of the delay that aCM incurs. This is further investigated in the third experi-
ment.

The third observation is that the initial phase just after the start shows a
slow start, in particular for small values ofSmin. Let us take a closer look at
the process. Figure 2.6 illustrates, for the case that the minimal frame length is
8 slots, (i) the number of participatingCMs (dashed line), (ii) the frame length
(solid line) and (iii) the cardinality of each slot (dots), where the cardinality
of a slot is defined as the number ofCMs that transmit in this slot.

While there are slots with a high cardinality, the frame length remains
minimal. When the cardinalities have become sufficiently small, the frame
length increases rapidly and the steady decay phase starts.

This initial phase has to do with the simultaneous arrival of allCMs at the
start of one frame and the time it takes to have them sufficiently distributed
over the originating and feedback frames. If the number of empty slots is too
large, resulting from a concentration of allCMs in just a few slots, relative
to the total number of slots available, then the estimation of the number of
participatingCMs is too low. AlthoughCMs generally do not arrive simulta-
neously, if theHE has not sent a sign-on request message for a while, such as
after a power outage, a burst ofCMs could be waiting for the next one. It is

2.7 Simulations 31

0

200

400

600

800

1000

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

fr
am

e
si

ze
 (

sl
ot

)
nu

m
be

r
of

 p
ar

tic
ip

at
in

g
C

M
s

ca
rd

in
al

ity

slot number (in thousands)

Figure 2.6. The number of participatingCMs (dashed line), the frame length
(solid line), and the cardinality of each slot, each as a function of time for
the case thatSmin = 8.

interesting to analyze what happens. The process resembles a Galton board
experiment, but with a ‘wrap around’. This is explained next.

We assume that the frame length is minimal and that the minimal frame
length does not divide the maximum feedback delayTfb. Both assumptions
are satisfied in the slow-start phase of the simulations. ACM that makes an
unsuccessful transmission in framei will transmit again, either in framei+ k
or in framei+k+1, depending on the slot in which the transmission in framei
was done, wherek = dTfb=Smine. See Figure 2.7, wherek = 3 and a transmis-
sion in framei may occur before the start of the drawn feedback frame, in
which case theCM will retransmit in framei+3, or occur after this feedback
frame has started, in which case theCM will retransmit in framei+4. Note
that the dashed line need not be positioned in the middle of a frame, so that
the splitting need not be symmetric.

Tfb

frame i frame i + 1 frame i + 2 frame i + 3 frame i + 4

Figure 2.7. Retransmission alternatives after an unsuccessful transmission
in framei.

32 Medium Access Control for Unregistered Cable Modems

The same holds for framesi+k, i+k+1, i+2k, . . . , and this can be drawn
as shown in Figure 2.8. Assuming that allCMs arrive at the start of framei,
they first split into two groups, not considering the successful transmissions
yet, and they retransmit in slotsi+ k and i+ k + 1, respectively. Then the
groups split again, but two groups join and retransmit in framei+2k+1. The
other two groups retransmit in framesi+2k andi+2k+2, respectively. This
process repeats itself and is called a Galton board experiment, until the group
in framei+ k2 is split. One subgroup retransmits in framei+ k2+ k+1, but
the other subgroup retransmits in framei+ k2+ k, which is also occupied by
another subgroup, at the other end of the board. Proceeding in this way, the
board can be seen as if it is wrapped around a cylinder and the lower left part
of the board is mapped onto the lower right part.

i

i + k i + k + 1

i + 2k i + 2k + 2i + 2k + 1

...

.

.

.

.

.

.

...

.

.

.

.

.

.

i + k2 i + k2 + 1 i + k2 + k

i + k2 + k + 1 i + k2 + 2k + 1

i + k2 + 2k + 2

Figure 2.8. A Galton board with a wrap around

When this wrap around occurs, the process can be modeled as a circular
Markov chain withk+1 indistinguishable states, initialized with a realization
of a Binomial distribution. From the viewpoint of symmetry, the stationary
distribution of this Markov chain is the homogeneous distribution.

However, two phenomena finally disturb this process. Firstly, ifk is suf-
ficiently large and the burst ofCMs is not too large, the number ofCMs near
the edges of the board before it wraps around will be low, so that some will
drop out of the process as a result of successful transmissions. Hence, the
distribution of theCMs across the board will tend to remain narrower than a
Binomial distribution. Secondly, at a certain moment, the number of slots per-
ceived empty will become sufficiently small to have the frame length increase

2.7 Simulations 33

beyond the minimal value, upon which the whole process is disturbed and the
slow start is succeeded by the steady decay phase.

This is further illustrated in Figure 2.9, illustrating the slot cardinality dur-
ing the initial phase in greater detail. For better visibility of the distributions,
the dots are connected by lines.

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5

ca
rd

in
al

ity

slot number (in thousands)

Figure 2.9. The cardinality of each slot as a function of time for the case
thatSmin = 8.

It is clearly visible that the distributions become broader as time progresses.
The number of empty slots between the distributions decreases, leading to the
final disturbance of this process.

The analysis above explains the slow start effect, especially if the min-
imal period length is relatively small. In particular, ifSmin = 8, and conse-
quentlyk = 12, only after at leastk (k+1) = 156 frames, the above-mentioned
Markov chain will start to homogenize the distribution. Before that, the num-
ber of empty slots remains relatively large and results in a minimal frame
length. In the simulations, the frame length remains minimal until shortly af-
ter frame 210. By that time, already some 30CMs have been successful in
their transmission.

We make a number of final remarks. The slow-start problem also occurs
if the feedback delay is negligible, but it is different. In this case, each unsuc-
cessfulCM retransmits in the next frame. The arrival of a burst ofCMs in a
single frame will cause zero empty slots, upon which the exponential growth
in the length of the successive frames will start. This type of slow-start is also
found in contention trees that are expanded in a breadth-first order: Initially,

34 Medium Access Control for Unregistered Cable Modems

manyCMs contend in only a few slots, until the tree has become broad enough
to allow successful transmissions (Denteneer & Pronk, 2001). Refining the
estimation of the number of participatingCMs by separately looking at the
number of empty slots in contention frames, a sudden burst can be identified
faster, although it does not completely solve the slow-start problem.

2.7.2 On inaccurately estimated channel model parameters

In the second experiment we investigate the sensitivity of the results to the
channel model. It is conceivable that the channel parametersei andsi are only
available with limited accuracy, and that the channel model is not completely
static, as was assumed earlier on. To this end, we consider the case that we
consistently multiply the calculated frame sizes by a factor of 0.8 and 1.2,
respectively, and compare the results with the original ones. We only consider
the case where the minimal frame length equals 60 slots. The other cases give
similar results. The burst size is again 1,000CMs.

0
100
200
300
400
500
600
700
800
900

1000
1100

0 2 4 6 8 10 12 14 16 18

nu
m

be
r

of
 p

ar
tic

ip
at

in
g

C
M

s

slot number (in thousands)

0.8
1.0
1.2

Figure 2.10. The effect of changing the frame length on the capacity of the
contention channel

Figure 2.10 illustrates that the effect on the throughput of using an inaccurate
channel characterization is marginal. The steady decay rates for the 0.8 and
1.2 cases are 0.089 and 0.088, respectively, approximately 6% less than the
capacity of the channel. It appears that the performance of the system is not
critically dependent on an accurate estimation of the channel parameters.

2.7 Simulations 35

2.7.3 Dealing with a steady rate of arrivals

In the last experiment, we consider the situation thatCMs arrive at a steady
rate to investigate the delay that aCM incurs from the moment it arrives until
the moment that its sign-on response message has been successfully received
by theHE, as a function of the minimal frame length. We hereby neglect the
propagation delay of a message to theHE, which is negligible when compared
to the delay in the contention process.

We assume thatCMs arrive according to a Poisson process with a given
arrival rate and investigate the mean and standard deviation of the delay aCM

incurs as a function of the arrival rate and for the same values ofSmin as in
the first experiment. Figure 2.11 illustrates the mean delays. The standard
deviations are in the same order as the mean values.

As expected, the mean delay increases as the load increases, for each value
of the minimal frame length. As, at a fixed load, the value of the minimal
frame length increases, so does the mean delay for each fixed load. This was
already anticipated in the analysis of the first experiment.

0

200

400

600

800

1000

1200

1400

1600

0 0.020.02 0.04 0.06 0.08 0.1

de
la

y
(s

lo
ts

)

Arrival rate (per slot)

60
24
 8
 4

Figure 2.11. Mean delay ofCMs as a function of the load for various values
of the minimal frame length.

Especially at low loads, the difference between the results for a minimal frame
length of four slots and 60 slots amounts to a factor of approximately 1.75,
whereas at higher loads this tends to decrease and, in fact, actually vanishes.

36 Medium Access Control for Unregistered Cable Modems

This can be explained by observing that at higher loads, the frame lengths
will more often be larger than the minimal frame lengths, so that the role
of the minimal frame length vanishes. The lack of a clear convergence in the
simulations is due to the fact that simulating under conditions close to capacity
are difficult to perform accurately.

The choice for an appropriate minimal frame length is thus a compro-
mise between low delays during steady-state operation and the time it takes
to resolve a sudden burst. As a sudden burst would typically occur in un-
usual circumstances such as after a power outage, a more advanced strategy
to choose an appropriate minimal frame length is conceivable.

2.8 Concluding Remarks

In this chapter, we have investigated the process aCM must go through before
it can register at theHE and become operational. During this process, it must
follow a contention-based access protocol, similar to frame-basedALOHA.
The context gives rise to an alternative channel model and alternative traffic
characteristics than are usually assumed in the literature. The main issue in
this chapter was the determination of the optimal length of each frame.

To this end, an estimation procedure has been proposed, whereby the
channel is monitored and the number of slots perceived as empty is used to
obtain an estimation of the number ofCMs currently involved in the access
protocol. Based on this estimation, a frame length is calculated. Complicat-
ing factor is the existence of a non-negligible feedback delay.

Simulation results illustrate the near-optimality of the procedure and its
robustness against inaccurate channel model parameters. Of particular interest
is that the minimal frame length, imposed upon the frame length to limit the
downstream signaling overhead, should not divide the maximum feedback
delay. This minimal frame length has a significant impact on the performance
of the system.

Further simulations with a more general channel model than assumed in
the simulations may show the effectiveness of the estimation procedures under
more general conditions. Another topic for further research is to investigate
strategies to adapt the minimal frame length to the current circumstances.

3
Request Merging in Cable Networks

In this chapter, we consider cable modems (CMs) in normal operation. In this
mode, aCM sustains a number of connections on behalf of the applications
running in the home and transmits data to and receives data from the head
end (HE) for these applications. The primary access mode for the upstream
transmission of data provides best-effort service, guaranteeing data delivery,
but without guarantees on timeliness. It remains nevertheless important to
provide fast data transmission to, for instance, support the soft real-time re-
quirements on response times.

In both theDVB/DAVIC andDOCSISstandards, this primary access mode
is governed by arequest-grant procedure, wherein first a request is transmitted
to the HE for the transmission of the actual data. After reception of such a
request, theHE issues a grant stating when the requestingCM can transmit the
actual data.

The transmission of a request is done using a contention-based access pro-
tocol, where multipleCMs may send a request simultaneously, in which case
these requests collide, resulting in the loss of all of them. A retransmission
scheme is employed to ensure that the requests will eventually arrive success-
fully at theHE. As the transmission of the actual data is controlled by theHE,
this can be done contention-free.

37

38 Request Merging in Cable Networks

The way in which aCM deals with multiple, simultaneously active request-
grant procedures on behalf of the connections it sustains is not specified in the
standards mentioned. Although this leaves some freedom in implementation,
the standards are currently not flexible enough to integrate the request parts of
these procedures in an orderly fashion.

In this chapter we investigate the merits of merging single requests from
a number of connections sustained by oneCM into onemulti-request, so that
the request parts of several request-grant procedures can be integrated. This
merging is such that the original requests can be retrieved from the multi-
request. The rationale behind this approach is that the length of such a multi-
request is significantly smaller than the sum of the lengths of the individual
requests, where the length pertains to the number of bytes required to encode
a request in a frame that is transmitted.

Finally, we mention that this work is based an earlier publication by Pronk
& Rietman [2002].

3.1 Introduction

As each upstream channel in anHFC network is effectively a shared bus, some
medium access control is necessary to efficiently utilize the channel band-
width. One of the access modes defined in the standards is the request-grant
procedure wherein requests from connections for the contention-free trans-
mission of data are transmitted first, in contention with requests from other
connections. After reception of a request, theHE issues a grant and trans-
mits it to the requesting connection for the transmission of the actual data.
The HE never issues a larger or smaller grant than requested, but in a prac-
tical situation, a grant may consist of multiple smaller grants to achieve a
more fine-grained interleaving of data from several connections. For resolving
the possible collisions during the contention phase among requests of differ-
ent connections, a contention resolution protocol is employed, which governs
when the necessary retransmissions should be done.

Hence, at the expense of transmitting the relatively short requests in con-
tention with others, the actual data can be transmitted contention-free, gen-
erally leading to a significantly more efficient use of the shared channel than
when the actual data would be sent in contention.

To allow both access modes in the same channel, theHE performs band-
width allocation to each of the access modes. Typically, a small percentage
of the bandwidth is allocated to contention-based access and the remaining
bandwidth to contention-free access. Van Leeuwaarden, Denteneer & Resing
[2006] analyze the problem of how to divide the bandwidth among these ac-

3.1 Introduction 39

cess modes. Pronk [2000] describes in detail the problem of bandwidth allo-
cation in aDVB/DAVIC-compliant system, where more than two access modes
are present.

It is important to note that, during the time that a connection is trying
to have its request transmitted to theHE, the size of this request yet to be
transmitted or retransmitted can be updated, that is, increased to incorporate
any newly arriving data for this connection that has to be transmitted upstream
as well. This type of merging establishes that, for each connection, there is at
most one request in the process.

The time elapsed between the generation of a request and its successful
reception by theHE is called themedium access delay of this request. It goes
without saying that the medium access delay has a direct influence on the
transmission delay that the actual data incurs before it is received by theHE

and, consequently, directly influences the response times for the applications
that run in the homes.

A CM, however, can sustain multiple connections simultaneously, and it is
the CM that does the actual transmissions on behalf of its connections. As a
result, aCM must somehow deal with the problem of multiple, simultaneous
request-grant procedures. How this should or may be done is not specified in
the standards.

One seemingly obvious, but impractical way to do this is to add the re-
quest sizes from the different connections together and send it as one request.
The problem with this approach is that, in that case, theHE only receives ag-
gregated requests and can not distinguish anymore between the requests from
the individual connections, which may lead to unfairness in the division of
bandwidth to the connections among theCMs.

One possibility is to handle requests in a first-come-first-serve (FCFS) or-
der, so that for eachCM, there is at most one request being handled, while
others are waiting in a queue until the request currently being handled has ar-
rived successfully at theHE. However, as we shall see, this does not lead to a
better medium access delay than when all requests are handled truly indepen-
dently, as if for each connection there would be a separateCM.

In this chapter, we propose an alternative solution, calledrequest merg-
ing. Request merging pertains to combining multiple requests from several
connections associated to a singleCM into amulti-request, which is then trans-
mitted to theHE. The integration of multiple requests into one multi-request
is such that the original requests can be retrieved again by theHE, so that this
merging is transparent to the overall request-grant procedure. The length of
a multi-request is typically significantly smaller than the sum of the lengths

40 Request Merging in Cable Networks

of the individual requests, where the length pertains to the number of bytes
required to encode a request in a frame that is transmitted.

We concentrate on the contention resolution part of the request-grant pro-
cedure described to investigate the medium access delay and abstract from
details such as which scheduling algorithm is used by theHE and how this
scheduler is implemented. Furthermore, the use of multi-requests neither dic-
tates nor precludes the use of any particular contention resolution protocol.
We exploit this freedom by considering contention resolution based on con-
tention trees, which is supported byDVB/DAVIC . DOCSIS uses a binary ex-
ponential back-off algorithm. Contention trees have been widely investigated
in the literature [Capetanakis, 1979; Tsybakov & Mikhailov, 1978; Janssen
& De Jong, 2000; Denteneer, 2005], which eases analysis. They will be ex-
plained shortly.

The remainder of this chapter is organized as follows. In Section 3.2, the
multi-request is defined in more detail, and its use is explained. Section 3.3
contains an analytical treatment of the medium access delay when using re-
quests and when using multi-requests. Then, two scenarios are compared in
Section 3.4 and simulation results are given in Section 3.5. We end with some
concluding remarks in Section 3.6.

3.2 Defining multi-requests

A request frame carrying a single request is typically composed of a header,
and a connectionID and request size field. This header includes (i) physical-
layer overhead such as a guard band for safely separating subsequent bursts
from different CMs and a preamble that is required for demodulation of the
received burst, and (ii) some medium-access-control-layer overhead, such as
a control field for identifying the request as such and a check sequence for
error detection. As a result, only a relatively small part, typically one third,
of the entire request is dedicated to the connectionID and the request size.
Figure 3.1a illustrates the structure of a single request frame.

Defining a multi-request frame can be done by extending the request frame
with more (connectionID, request size)-pairs, resulting in a relatively modest
increase in total size per added pair, see Figure 3.1b. In a practical situation,
it is reasonable to assume that a multi-request can contain up to a maximum
number of requests. Suppose that the length of a request frame is 1, and that
a multi-request can consist of a maximum ofR requests, then the length of a
multi-request frame can be expressed as 1+α(R�1), with 0� α < 1. This
maximumR can be made dependent on the current load, which can be esti-
mated from the number of requests received per multi-request. The successful

3.3 Modeling and analysis 41

CID RS

(a) single request frame

(b) multi-request frame

CID RS CID RS CID RS

Figure 3.1. Structure of a single-request and a multi-request frame. The grey
areas are physical- and medium-access-control-layer overhead,CID stands
for connectionID, andRS for request size.

reception by theHE of a multi-request is equivalent to the successful reception
of all of the requests it accommodates.

Identically to single requests, the size of a request in a multi-request can
be updated to incorporate new data. In addition, if for aCM, its current multi-
request is not yet full, that is, it carries less requests than it can maximally
contain, a request from a newly active connection can be added on the fly
to the multi-request by including it in its next transmission. After all, also a
multi-request may have to be transmitted repeatedly before it is successfully
received by theHE.

3.3 Modeling and analysis

We start by introducing some nomenclature pertaining to the states in which
a CM and a connection can be. A connection is called idle if its pending grant
size, that is, the remainder of the grant it still expects to receive, corresponds
to the amount of data enqueued for transmission. When idle, a connection
thus does not need to transmit a request, and any data enqueued can be trans-
mitted using the pending grant. If a connection is not idle, it is called active,
in which state the amount of enqueued data exceeds the pending grant size.
Upon becoming active, a connection instructs itsCM to transmit a request.
Upon successful reception of the request by theHE, it increases for this con-
nection its pending grant size and the connection becomes idle again. For
simplicity, we assume that the upstream signal propagation delay of a request
is negligible. ACM is called idle if all of its connections are idle, and called
active otherwise.CMs as well as connections thus toggle between active and
idle, and we can speak ofCM and connection idle and active times , both
denoting the intervals during which they are continuously idle and active, re-
spectively.

42 Request Merging in Cable Networks

Besides theCM and connection active time, we can speak of a request-
update active time. It is defined as the time that elapses between the gener-
ation of a request or update of a request and its successful reception at the
HE. Although not strictly necessary in the analysis below, we include this
definition out of theoretical interest.

In this section we primarily consider the connection active time, which
equals the medium access delay defined earlier. The analysis uses results on
the CM active time, which are presented first. After analyzing the connection
active time, we elaborate a little further on the request-update active time.

3.3.1 On the CM active time

We considerN independentCMs with C independent connections perCM.
Each connection generates requests according to a Poisson process with rate
λ=C, so that the (remaining) idle time of aCM is exponentially distributed
with meanλ�1. When an idleCM becomes active, it starts to contend with
other activeCMs in a blocked contention-tree process [Capetanakis, 1979]. In
this process, aCM does a first transmission in a randomly chosen slot among
a number of dedicated slots, collectively called the root of a tree. Then, for
each slot containing a collision, a new set of slots is allocated in which only
the collidingCMs in that slot do a retransmission, again in a randomly chosen
slot from this set. This creates a tree structure, as shown in Figure 3.2, where
each node consists of three slots.

5 2 4

1 1 0 3 0 12 1 2

2 1 00 1 11 1 0

1 0 1

Figure 3.2. A blocked contention tree, with three slots per node. The number
in each slot denotes the number ofCMs that transmitted in this slot. The top
node is the root. In each slots with more than one transmission, a new node,
consisting of three slots, is allocated. Each of theCMs that transmitted in
slot s do a retransmission in a randomly chosen slot of this node.

The number of slots in each node of the tree is typically three, in which case
the term ternary tree is used. The term blocked relates to the requirement that
a CM may only enter the tree process via the root. In contrast, a non-blocked
or free-access tree allows aCM to enter the process in any node of the tree.

3.3 Modeling and analysis 43

The nodes in the tree are ordered in time, by theHE, to be multiplexed on
the upstream channel, typically in breadth-first order. We assume that, upon
completion of one tree, another is started, and that at any time there exists
exactly one tree. Hence, when an idleCM becomes active, it first has to wait
for the root of a tree.

...

1

2

3

N

waiting
room

FCFS
queue

repair
facility

Figure 3.3. Gated machine-repair model withN machines.

This blocked contention-tree protocol can be modeled as a gated machine-
repair model, as described by Boxma, Denteneer & Resing [2002]. See Fig-
ure 3.3. In this model, each of theN machines can break down, independently
of one another, after an exponentially distributed working time with parameter
λ. Upon a machine breaking down, it first enters a waiting room. This room is
emptied into theFCFSqueue as soon as the repair facility becomes idle. The
order in which waiting machines enter theFCFSqueue is random. If the repair
facility is already idle and a machine breaks down, then this machine need not
go through the waiting room and can enter theFCFSqueue immediately.

The machines modelCMs, and the breaking down of a machine mod-
els the correspondingCM becoming active. A machine finishing service at
the repair facility corresponds to the successful reception by theHE of the
(multi-)request of theCM and theCM becoming inactive again. The repair
facility becoming idle corresponds to the completion of a contention tree and
the emptying of the waiting room corresponds to starting up a new contention
tree.

In case a blocked, ternary contention tree protocol is used for contention
resolution, a reasonable model for the repair facility in this machine-repair
model is a server with exponential service time with rateµ = ln(3)=3, see
Mathys & Flajolet [1985], but also Janssen & De Jong [2000]. It is noted that
Denteneer & Pronk [2001] analyzed contention trees and found that the server
could alternatively be described as having a more or less constant service time,
with a small positive offset for the first machine after the waiting room has
been emptied. Using this would, however, complicate the analysis.

44 Request Merging in Cable Networks

It is assumed that the maximum numberR of single requests in a multi-
request is equal to the numberC of connections perCM. Clearly,R >C is not
very useful. The case thatR <C would result in a more complicated model: a
CM may become active again immediately after finishing service, since, while
the CM is active, more thanR�1 additional connections may become active,
which cannot all be accommodated immediately. In this case, the service at
the repair facility is said to beR-limited. If R �C, it is said to be exhaustive,
so that after finishing service, aCM becomes idle again. The former is much
more complicated to analyze than the latter [Borst, 1996]. In Section 3.5, we
do consider in the simulations the more general case thatR�C.

Let theCM active time be denoted byTm. The first two moments ofTm

are (approximately) known in the regimesNλ� µ andNλ� µ. In the second
regime, very few connections are active, so there is little to be gained from
merging. The first regime is therefore more interesting.

Lemma 3.1. (Boxma, Denteneer & Resing [2002])if N λ � µ, then the av-
erage τm and variance σ2

m of Tm can be approximated by

τm � N
µ
� 1

λ
(3.1)

and

σ2
m �

1
6

�
N
µ
� 1

λ

�2

: (3.2)

3.3.2 On the connection active time

Recall that aCM becomes active if one of the connections it sustains becomes
active and that, while theCM is active, additional connections it sustains can
become active, until it becomes idle again, upon which all its active connec-
tions becomes idle again as well. This is illustrated in Figure 3.4.

A convenient way to derive moments of unknown distributions is to use
the Laplace-Stieltjes transform, as it provides a simple way to express the
moments in terms of the derivatives of the transform.

We next derive an expression for the Laplace-Stieltjes transform of the
connection active time in terms of that of theCM active time. The Laplace-
Stieltjes transform [Grimmett & Stirzaker, 2001] is defined as follows.

Definition 3.1. (Laplace-Stieltjes transform) LetX be a non-negative ran-
dom variable with cumulative probability density functionP(x). The Laplace-

3.3 Modeling and analysis 45

CM active time

connection active times

Figure 3.4. Relation betweenCM and the connection active times.

Stieltjes TransformϕX(u) of X is defined as

ϕX(u) = E[e�uX] =

Z ∞

x=0
e�ux dP(x): (3.3)

Lemma 3.2. The average µ and variance σ2 of a non-negative random vari-
able X with Laplace-Stieltjes Transform ϕX(u) is given by

µ =

�
� d

du
ϕX(u)

�
u=0

and (3.4)

σ2 =

"
d2

du2 ϕX(u)�
�

d
du

ϕX(u)

�2
#

u=0

: (3.5)

Proof. This follows easily from Definition 3.1.

Theorem 3.1. Let the Laplace-Stieltjes transform of the CM active time Tm be
denoted by ϕm(u). Then the Laplace-Stieltjes transform ϕc(u) of the connec-
tion active time Tc is given by

ϕc(u) =
ϕm(u)+(C�1)(ϕm(u)�ϕm(λ=C))=(1�uC=λ)

1+(C�1)(1�ϕm(λ=C))
: (3.6)

Proof. The approach is that we make a summation ofe�ut , wheret is the
time that a connection is active, over all active connections during a long time
period and divide this sum by the total number of active connections during
this time period. In particular, we considerk consecutiveCM active times.

46 Request Merging in Cable Networks

During theith CM active time, withi = 1;2; : : : ;k, we denote the sum ofe�ut

over all active connections during thisCM active time byXi and the number
of active connections involved byYi. We have that

ϕc(u) = lim
k!∞

∑k
i=1Xi

∑k
i=1Yi

: (3.7)

For large values ofk, we can approximate the numerator and the denomina-
tor in Equation 3.7 byk X̄ and kȲ , respectively, wherēX andȲ denote the
expected value of theXi’s andYi’s, respectively. Now,k can be eliminated.
Let Pm(t) denote the probability that theCM active time is at mostt. We next
prove that

X̄ =

Z ∞

tm=0

�
e�utm +(C�1)

Z tm

t=0
(λ=C)e�λt=Ce�u(tm�t)dt

�
dPm(tm): (3.8)

Consider aCM active time of lengthtm. The connection that makes aCM active
contributes an amounte�utm as this connection becomes idle again when the
CM becomes idle again. TheC�1 other connections independently contribute
the other terms, as a connection that becomes active a timet after theCM

becomes active, witht 2 (0; tm), becomes idle again when theCM becomes
idle again. Note that each of the other connections only contributes with a
probability that is smaller than 1. This establishes Equation 3.8. In the same
vein, it can be proved that

Ȳ =

Z ∞

tm=0

�
1+(C�1)

Z tm

t=0
(λ=C)e�λt=C dt

�
dPm(tm);

by counting a contribution of 1 for each connection that becomes active. The
integrals overt can readily be computed and the subsequent integrations over
tm yield for X̄ andȲ the numerator and denominator, respectively, of Equa-
tion 3.6.

Corollary 3.1. The average active time τc for a connection is given by

τc =
C τm� C (C�1)

λ (1�ϕm(λ=C))

1+(C�1)(1�ϕm(λ=C))
; (3.9)

where τm is the average CM active time.

Proof. Using Lemma 3.2, we have that

τc =

�
� d

du
ϕc(u)

�
u=0

: (3.10)

3.3 Modeling and analysis 47

Using Theorem 3.1 and the fact that

τm =

�
� d

du
ϕm(u)

�
u=0

;

Equation 3.9 follows by straightforward differentiation of�ϕc(u), given in
Equation 3.6, with respect tou and substitutingu = 0.

For calculatingτc, we thus need an expression forϕm(λ=C). Returning to
the machine-repair model, Lemma 3.1 is the only information available. As
an approximation, we could use the so-calledcumulant expansion of ϕm(u),
which is the Taylor series expansion of the logarithm ofϕm(u) aboutu = 0.
Reason for choosing this expansion rather than the Taylor expansion ofϕm(u)
aboutu = 0 is that the former generally requires fewer terms. The cumulant
expansion ofϕm(u) is given by

ϕm(u) = e�τm u+ σ2
m
2 u2+O(u3)

:

However, the positive second term and the lack of knowledge of any higher-
order terms in this expansion make the use of this second term doubtful: for
large values ofu, ϕm(u) should vanish. Hence, we propose to use the follow-
ing approximation forϕm(u).

ϕm(u)� e�τm u

Reason for choosing this approximation is also that it results in a good fit with
the simulations described in the next section.

3.3.3 On the request-update active time

Using Equation 3.6, it is also possible to obtain an expression for the average
request-update active timeτr, although this is more of theoretical interest. It
is not used in the remainder of the chapter. Once a connection becomes active
because it generates a first request, updates may arrive, with rateλ=C, during
its active time, similar to additional connections becoming active during their
CM active time as described above. The only difference is that the process
of additional connections becoming active slows down as more connections
become active, whereas the process of generating request updates does not.
For ease of exposition, we also consider the first request generated by a newly
active connection a request update.

48 Request Merging in Cable Networks

Theorem 3.2. The Laplace-Stieltjes transform ϕr(u) of the request-update
active time Tr is given by

ϕr(u) =
ϕc(u)+λ(1�ϕc(u))=(uC)

1+λτc=C

Proof. The process of generating request updates can be mimicked by a large
set ofk ’potential’ updates, each becoming ’active’ at rateλ=(Ck), and taking
the limit k ! ∞. Hence,

ϕr(u) = lim
k!∞

ϕc(u)+(k�1)(ϕc(u)�ϕc(λ=(C k)))=(1�uC k=λ)
1+(k�1)(1�ϕc(λ=(C k)))

:

The result follows by observing thatϕc(λ=(C k)) ! 1 as k ! ∞ and that,
by using the Taylor expansion abouttc = 0 of e�λtc=(C k), it follows that
(k�1)(1�ϕc(λ=(C k)))! λτc=C ask ! ∞.

By combining the above result with Equations 3.6 and 3.9 we obtain an ex-
pression forϕr(u) directly in terms of the average and the Laplace-Stieltjes
transform of theCM active time.

Corollary 3.2.

ϕr(u) =
ϕm(u)+λ(1�ϕm(u))=u

1+λτm
: (3.11)

An alternative way to derive this result is to consider all requests during the
active time of aCM, sume�ut for all these requests, wheret is the time that a
request is ”active”, and divide this sum by the expected number of requests,
similar to the proof of Theorem 3.1. As the requests are generated by a Poisson
process with rateλ, each request, except the first one that activates theCM, is
uniformly distributed over the active time. Therefore,

ϕr(u) =
1

1+λτm

Z ∞

tm=0

"
e�utm +

∞

∑
n=0

(λ tm)n

n!
e�λ tm n

Z tm

t=0
e�u(tm�t) 1

tm
dt

#
dPm(tm);

(3.12)
which is equivalent to Equation 3.11, as can be shown by straightforward
calculus.

Corollary 3.3. The average request update active time τr is given by

τr =
τm+ λ

2(τ
2
m+σ2

m)

1+λτm
:

3.4 Comparison of two scenarios 49

Proof. Using Corollary 3.2, we have that

d
du

ϕr(u) =

d
du ϕm(u)�

h� d
du ϕm(u)

� λ
u +(1�ϕm(u))

λ
u2

i
1+λτm

(3.13)

We next use the Taylor series expansion aboutu = 0 of ϕm(u) to rewrite the
term in the square brackets. In particular, we have that

ϕm(u) = 1� τm u+
σ2

m+ τ2
m

2
u2+O(u3) (3.14)

and, consequently,

d
du

ϕm(u) =�τm+(σ2
m+ τ2

m)u+O(u2): (3.15)

If we substitute these results in Equation 3.13, we can substituteu = 0. The
result now follows by using Lemma 3.2.

The average request-update active time can be thus be expressed in terms of
the average and the variance of theCM active time and does not containϕm(u).

3.4 Comparison of two scenarios

It is interesting to compare the following two scenarios.

1. C = 1, N = N1, µ = µ1 = ln(3)=3, λ = λ1. In this scenario there is
no merging, there areN1 connections, one perCM, each generating re-
quests at rateλ1.

2. C > 1, N = N1=C, µ = µ1=ρ, λ = Cλ1. Here, the factorρ equals
1+α(C�1), and models the slowing down of the contention process
due to the increase in length of a multi-request frame. Also in this sce-
nario there areN1 connections, each generating requests at rateλ1.

The parameters were chosen such that by substitutingC = 1 in the formulas
for the second scenario, the first scenario is recovered. Note that in Scenario 1
we useN1 CMs only to establish that all connections operate independently
in terms of their request processes. This corresponds exactly with the situa-
tion where there are onlyN1=C CMs, such as in Scenario 2, but where each
CM sustainsC independently operating connections. In Scenario 2, eachCM

handles the request processes of its connections by using request merging.
Using a superscript to indicate either Scenario 1 or 2, it holds that

τ(1)c = τ(1)m � N1

µ1
� 1

λ1
(3.16)

50 Request Merging in Cable Networks

by using Lemma 3.1, and

τ(2)c =
C τ(2)m � (C�1)

λ1
(1�ϕm(λ1))

1+(C�1)(1�ϕm(λ1))

by using Corollary 3.1. In the latter equation, again using Lemma 3.1, we
have that

τ(2)m � ρN1

C µ1
� 1

C λ1
; (3.17)

whereρ = 1+α(C�1). For small and intermediate values ofλ1, we propose
to approximateϕm(λ1) by

ϕm(λ1)� e�τ(2)
m λ1:

For large values ofλ1, ϕm(λ1) vanishes, so that under this condition, it holds
that

τ(2)c � ρN1

C µ1
� 1

λ1
:

Comparison withτ(1)c in Equation 3.16 shows that under this condition, the
connection active time is improved if the increase in length of a multi-request
frame is offset by the corresponding increase in the number of requests that fit
in one multi-request, that is, ifα < 1.

3.5 Simulations

We have performed simulations to compare the average connection active time
τc for the cases of single requests and multi-requests, using a blocked, ternary
contention-tree protocol. A constant-bandwidth share of the overall channel
bandwidth is used for (multi-)request frames. A round-trip delay of 0 is as-
sumed.

parameter Scenario 1 Scenario 2
number ofCMs 500 100

number of connectionsC perCM 1 5
use of multi-requests No Yes

R � 1;2;3;4;5
α � 1

3
λ1 varied

Table 3.1. The two simulation scenarios.

3.5 Simulations 51

We consider two Scenarios 1 and 2, see Table 3.1, withN1 = 500 connec-
tions andC = 1 and 5 connections perCM, respectively, each connection gen-
erating packets according to a Poisson process with rateλ1 = 0:001; : : : ;0:02
in each scenario, corresponding to a total of 0.5 packets per unit time to
10 packets per unit time, respectively. Here, unit time denotes the length of a
slot that can contain a single request frame. In Scenario 1, with 500CMs,
multi-requests are not used, as they are not useful with only one connec-
tion per CM, and in Scenario 2, with 100CMs, multi-requests with up to
R = 1;2; : : : ;5 requests are used. For the simulations, we thus do not re-
strict ourselves to the case thatR = C as we did in the analysis, but to the
general case thatR � C. The length of a multi-request frame with up toR
requests is given by 1+α(R�1), with α = 1=3. So, for a fixed value ofR,
the multi-request frame length is fixed, irrespective of how many requests it
actually contains. In Scenario 2, the individual connections of aCM are served
in FCFSorder, in case their requests cannot be accommodated immediately in
a (multi-)request frame. This, of course, only occurs in the cases thatR <C.

The valueR = 1 in Scenario 2 corresponds to serving connections of a
singleCM one by one, which differs from Scenario 1 in that in the latter, all
connections operate independently of each other.

0

250

500

750

1000

1250

1500

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

av
er

ag
e

tr
ee

 le
ng

th
 (

un
it

tim
e)

λ1

scen. 1
scen. 2, R = 5
scen. 2, R = 4
scen. 2, R = 3
scen. 2, R = 2
scen. 2, R = 1

Figure 3.5. Average tree lengths for the two scenarios and the various values
of R.

52 Request Merging in Cable Networks

Figure 3.5 illustrates the average tree length, that is, the average time re-
quired to complete a single tree, as a function of the load (λ1) for Scenario 1
and for the various values ofR in Scenario 2. In Scenario 2, the average
tree lengths are considerably smaller than those in Scenario 1. Despite the
increase in length of multi-request frames, the number of contenders per tree
in Scenario 2 is bounded by 100, whereas in Scenario 1, this bound is 500,
which grossly explains the difference towards the higher loads. In Scenario 2,
towards the higher loads, the larger tree lengths for increasing values ofR
correspond to the increase in length of multi-request frames.

0

250

500

750

1000

1250

1500

0 0.005 0.01 0.015 0.02

av
er

ag
e

co
nn

ec
tio

n
ac

tiv
e

tim
e

(u
ni

t t
im

e)

λ1

scen. 1
scen. 2, R = 1
scen. 2, R = 2
scen. 2, R = 3
scen. 2, R = 4
scen. 2, R = 5

Figure 3.6. Average connection active times, based on the simulations.

More important to compare are the average connection active times. Fig-
ure 3.6 illustrates the corresponding average connection active times. For not
too low loads, the average connection active times for multi-requests with
R > 1 are significantly smaller than those withR = 1 and those in Scenario 1.
The figure also illustrates that, for the higher loads, the average connection ac-
tive time in Scenario 2 withR= 1, which corresponds to serving the 5 connec-
tions of an individualCM in FCFSorder, approach those of Scenario 1, which
corresponds to the situation wherein all 5 connections of an individualCM

would operate independently and could cause collisions among themselves.
The figure also illustrates that, as the load decreases, the lower values of

R lead to better results. Clearly, in the case thatR > 1, under low loads, the
multi-requests are generally not full, that is, they contain less thanR single

3.6 Concluding remarks 53

requests, leading to an inefficient use of the channel for multi-requests. This
suggests that makingR dependent on the current load, starting at 1 for low
loads and increasing it to 4 or 5 in this scenario towards higher loads, pays
off in terms of the average connection active time, and thus in terms of the
medium access delays.

0

250

500

750

1000

1250

1500

0 0.005 0.01 0.015 0.02

av
er

ag
e

co
nn

ec
tio

n
ac

tiv
e

tim
e

(u
ni

t t
im

e)

λ1

scen. 1
scen. 2, R = 5

Figure 3.7. Comparison of the simulation and analytical results on the aver-
age connection active times.

In Figure 3.7, we compare some of the simulation results with the analytical
results derived earlier. In Scenario 2, we only consider the caseR = 5. The
solid lines give the results from the simulations and the dashed lines give
the corresponding analytical results from the two scenarios considered in the
previous section.

The figure shows that, towards the higher loads, the analytical results show
a good match with the simulations. Towards the lower loads, the analytical
results in Scenario 2 deviate. This is presumably caused by the inaccuracy in
the approximation ofτm, given in Equation 3.1, for low values ofλ1.

3.6 Concluding remarks

In this chapter, we have introduced the notion of multi-requests in the request-
grant procedure for data transmission byCMs to theHE to improve the delay
in access networks. A multi-request can accommodate requests for a number

54 Request Merging in Cable Networks

of connections sustained by aCM, in contrast to a conventional request, which
can only carry a request for a single connection.

Analysis and simulation results give supporting evidence by comparing
the use of multi-requests with the use of conventional requests.

The use of multi-requests is largely independent of other system oper-
ations, notably which contention resolution protocol is used.DOCSIS sup-
ports a variety of such protocols. In addition,DOCSISalso supports a polling
method, whereby connections are asked explicitly whether they have any data
to transmit. Their responses are transmitted collision-free. Multi-requests can
also be used in this case, although actual merging may be relatively less fre-
quent because of the absence of retransmissions.

Implementing multi-requests as described in this chapter requires the
DOCSIS standard to be extended. However, by properly managing connec-
tion IDs, multi-requests could be implemented in the current draft, although
strict compliance is not reached.

In a practical context, the number of connections perCM may differ among
CMs, and even vary in time for individualCMs. Using multi-requests of dif-
ferent sizes may be an option to deal with this additional variability. This is a
topic for future research.

4
Fair Resource Sharing

For providing a video-on-demand (VOD) service via anHFC network, this net-
work should support real-time delivery of video data from the head end (HE)
to the cable modems (CMs) to allow uninterrupted viewing by the clients. Si-
multaneously sustaining multiple, heterogeneous video streams, that is, each
with its own bit-rate requirement, requires that the downstream transmission
paths are carefully managed and that a scheduling algorithm ensures on-time
delivery of this video data.

In this chapter, we present and analyze a scheduling algorithm that sus-
tains a number of heterogeneous streams in a dynamic environment where
streams may depart and new streams be admitted. This work is based on
Pronk & Korst [2001 & 2007].

4.1 Introduction

For efficient storage and transmission of digital video data, this data is typi-
cally compressed using theMPEG (Motion Pictures Expert Group) compres-
sion standard [LeGall, 1991; Haskel, Puri, and Netravali, 1997]. Consumption
by anMPEG decoder of a stream of compressed video data is characterized by
a variable bit rate (VBR), resulting from the variable sizes of the successive
frames. These rates may range from less than 1 Mbit/s to a peak rate that is
well over 10 Mbit/s.

55

56 Fair Resource Sharing

As sustaining this variability during the retrieval from disk and the trans-
mission of compressed video data leads to inefficient use of bandwidth, tech-
niques have been developed, for video servers as well as for communication
networks [Korst & Pronk, 2005], to reduce this variability to such an extent
that transmission of this data can be performed at a rate that does not exceed a
maximum rate, which is considerably lower than the peak rate required other-
wise. This is done at the expense of a relatively modest amount of additional
buffering at both the server and client side and a corresponding increase in
response times.

Reserving this much lower maximum rate for a stream allows significantly
more streams to be sustained simultaneously than when reserving the peak
rate and is much simpler to implement than reservation strategies that follow
the bit-rate variability. The latter in particular suffer from the problem of
multiplexing streams.

In a packet-based communication network, such as anHFC network,
scheduling the non-preemptive transmission of packets for a number of
streams over a transmission link is one of the main activities in such a net-
work. Referring to the schematic in Figure 4.1, packets arriving for transmis-
sion are first put in aFIFO (first-in-first-out) queue associated to the stream to
which they belong. A scheduler repeatedly chooses a single packet among all
packets at the head of the queues for transmission. Although packets may be
of variable length, we consider the case that all packets have unit length, such
asMPEG packets.

.

.

.

scheduler

FIFO queues

transmission link

Figure 4.1. Operation of a scheduler

Besides the problem of guaranteeing the reserved bandwidth for each stream,
the issue of jitter also plays a role. Jitter can loosely be defined as the differ-
ence between the ideal and the actual amount of service received thus far.

4.1 Introduction 57

Fair queuing

In this context, fair queuing algorithms have for nearly two decades re-
ceived considerable attention in the literature; see Demers, Keshav & Shenker
[1989], Parekh & Gallager [1993], Golestani [1994], Zhang [1995], Ben-
nett & Zhang [1996], Stoica, Abdel-Wahab, Jeffay, Baruah, Gehrke & Plax-
ton [1996], Suri, Vargehese & Chandranmenon [1997], Stephens, Bennett &
Zhang [1999], Stepping [2001], Kunz & Stepping [2003], Zhao & Xu [2004],
Valente [2004], and Karsten [2006].

A fair queuing algorithm guarantees for each backlogged streami, that
is, with packets in its queue, its so-calledfair share of at leastRi=∑ j2B R j of
the link capacity, whereRi is the share allocated to streami andB is the set
of backlogged streams, thereby also aiming to minimize for each stream its
worst-case absolute jitter with respect to a so-calledvirtual fluid-flow server.

Emulating this fluid-flow server has long been considered a bottleneck for
implementation of these algorithms in high-speed networks. Valente estab-
lishes a computational complexity ofO(logN) per packet arrival, whereN
is the number of streams, to emulate the server. Alternative implementations
exist that only approximate the operation of the server, or make additional as-
sumptions, leading to a lower computational complexity, but at the cost of the
jitter bounds. Stephens, Bennett & Zhang, for instance, consider the special
case of allowing only a limited number of different shares to obtain a com-
plexity that is independent of the number of streams. Karsten achieves an
(amortized) computational complexity ofO(1) by rounding timestamps.

In the fair-queuing literature, the computational complexity is usually ex-
pressed per packet arrival. Although algorithms can be compared on the ba-
sis of this performance measure, considering the computational complexity
in terms of the number of operations required per unit time, e.g. per slot or
scheduling operation, provides a different view. In caseN packets may arrive
during a single slot, i.e., one for each stream, a computational complexity of
O(1) per packet arrival, for, e.g., timestamp calculations, translates toO(N)

operations per slot, effectively making the computational complexity per slot
of such fair queuing algorithms still linear in the number of streams.

Credit-based scheduling

Credit-based algorithms form a particular class of fair queuing algorithms that
use an alternative definition of jitter. This jitter is not directly related to the
fluid-flow server above, but it is defined as the difference between the ideal
and actual amount of service received thus far. This is explained in more
detail shortly.

58 Fair Resource Sharing

These credit-based algorithms explicitly maintain for each stream the jitter
as a credit and use these credits for making scheduling decisions. If the ab-
solute value of the credits remains bounded, backlogged streams are assigned
the link in proportion to their allocated shares. Minimizing the worst-case ab-
solute jitter corresponds to bounding the absolute value of the credits by an as
small as possible value.

Based primarily on the use of credits rather than on the fluid-flow server,
these algorithms are conceptually simpler than the above-mentioned fair-
queuing algorithms.

The scheduling algorithmsweighted round robin (WRR), by Katevenis,
Sidiropoulos & Courcoubetis [1991],deficit round robin (DRR) by Shree-
dhar & Varghese [1995], andweighted round-robin with save and borrow
(WRR-SB) by Shimonishi, Yoshida & Suzuki [1997] can be considered as fore-
runners of these algorithms. They operate on variable-length packets and are
based on maintaining a counter for each stream to indicate the amount of ser-
vice still to receive. These algorithms do not aim to minimize the worst-case
absolute jitter, and it can be shown that they indeed do not attain this. Each of
the algorithms has a worst-case computational complexity ofO(N) operations
per transmission, whereN is the number of simultaneous streams.

Carry-over round-robin (CORR) by Saha, Mukherjee & Tripathi [1998] is
a credit-based algorithm that schedules the transmission of fixed-length pack-
ets in fixed-length slots.CORRhas a worst-case computational complexity of
O(N) operations per slot. Unfortunately, one of the basic lemmas in their pa-
per concerning the worst-case absolute jitter does not hold, as we will prove
in this chapter. We will also show that, as a result of this,CORR does not
minimize the worst-case absolute jitter either.

In this chapter we present a credit-based algorithm calledrelaxed earliest-
deadline-first (R-EDF) for scheduling the transmission of fixed-length packets
in fixed-length slots. We show that it minimizes the worst-case absolute jitter
and also has a worst-case computational complexity ofO(N) operations per
slot.

R-EDF is based on anEDF algorithm that was originally introduced by
Liu & Layland [1973] for preemptively scheduling a set of periodic tasks.
Another important contribution of this chapter is to consider fair queuing in
the context of scheduling periodic tasks.

We will also show that in a dynamic environment, where streams depart
and new streams are admitted, an admission control procedure is required
that, besides guaranteeing that the link is not overloaded, also ensures that the
jitter bound we derive for the static case is not violated when a new stream is
admitted.

4.2 Problem description 59

The remainder of this chapter is organized as follows. We formally intro-
duce the scheduling problem in a somewhat broader context in Section 4.2.
We provide a counterexample to the above-mentioned lemma from Saha et al.
in Section 4.3. In Section 4.4, we present theR-EDF algorithm and analyze its
computational complexity. In Section 4.5, we prove that it indeed minimizes
the worst-case absolute jitter. We discuss admission control in more detail in
Section 4.6. Finally, we give some concluding remarks in Section 4.7.

4.2 Problem description

We consider the problem of fairly sharing a resource amongN heteroge-
neous streams. Access to the resource is slotted, time-multiplexed and non-
preemptive. The length of a slot is fixed and corresponds to the transmission
of one fixed-length packet. We assume that a slot has unit length. Stream
i = 1;2; : : : ;N is allocated a shareRi 2 R+ of the resource capacity upon ad-
mission. It is assumed that the resource has unit capacity and that∑i Ri � 1.
Note that this restriction necessitates the use of admission control for newly
arriving streams. At any time, an admitted and not yet departed stream is ei-
ther idle or busy. Upon admission, a stream is idle. A stream can become
busy only at slot boundaries, and can only become idle again directly after
having used a slot. This corresponds to the stream having at least one packet
in its queue awaiting transmission versus having an empty queue, both at slot
boundaries.

The aim is to share the resourceamong busy streams in a fair way, that is,
to assign slots to busy streams in proportion to their allocated shares.

Since the resource is assigned to streams on a slot-by-slot basis, streams
will generally experience some jitter. Suppose that streami is busy during a
slot. Then its ideal amount of service in this slot isRi, whereas the amount of
service it receives in this slot is either 0 or 1. If, on the other hand, streami is
idle, then its ideal amount of service is 0, and the amount of servicei receives
is also 0. In this way, streami accumulates jitter over time; Starting at 0 upon
admission, it either increases by an amountRi, remains the same, or decreases
by 1�Ri for every slot considered. A slot may be considered more than once,
for reasons explained below.

In addition to ensuring fairness, we also aim at minimizing the worst-case
absolute jitter. This is achieved by maintaining a credit for each stream, which
reflects the jitter accumulated thus far. A positive credit value indicates that
the corresponding stream has received less than its ideal amount of service,
whereas a negative credit, a debit so to speak, indicates it has received more
than its ideal amount of service. For each slot considered, each busy streami

60 Fair Resource Sharing

is assigned its share of the slota priori by addingRi to its credit. Then, one
of the busy streams with positive credit, if there is such a stream, is actually
assigned the slot and its credit is decreased by 1. If there is no such stream,
the slot is considered again in the same fashion, unless, of course, there is no
busy stream. In the latter case, the slot remains unused.

Assume that consecutive slots are numbered consecutively and that stream
i is continuously busy during slotsj; j +1; : : : j + k�1. If these slots have
jointly been consideredm � k times, then its ideal amount of service thus
equalsmRi.

If the absolute value of the credits remains bounded, busy streams are
assigned the resource in proportion to their allocated shares. Note that this
is achieved by the fact that, as long as there are busy streams, each slot is
assigned to a busy stream. Minimizing the worst-case absolute jitter corre-
sponds to bounding the absolute value of the credits by an as small as possible
value.

As already mentioned, our definition of jitter differs from that based on the
fluid-flow server. The major difference is in the definition of ideal amount of
service. Our definition is on a slot by slot basis, whereas the definition based
on the fluid-flow server is on a continuous basis, using a so-called virtual
clock that mimics overall progress in this server. As a result, according to our
definition, a stream may ’see’ its ideal amount of service being incremented
several times during a single slot, whereas in the fluid-flow server, its ideal
amount of service increases continuously, proportional to the rate of the virtual
clock. This rate is always at least one, relative to the actual time.

The problem can thus be stated as finding a credit-based scheduling algorithm
that (i) guarantees for each admitted stream its fair share and (ii) minimizes
the worst-case absolute jitter.

4.3 The carry-over round-robin algorithm

Saha, Mukherjee & Tripathi [1998] propose a solution called carry-over
round-robin (CORR) to the problem described above. The link capacity is
T and it is assumed that∑i Ri � T .

The algorithm works as follows. It operates on a cycle-by-cycle basis,
that is, it repeatedly schedules a number of successive slots called a cycle.
The length of each cycle is determined on-line and is bounded from above by
T slots. Correspondingly, the shareRi of a streami is expressed as slots per
T slots.

Once admitted, a new streami starts with zero credit, that is, its creditri is
initialized to 0. At the start of each cycle, the creditri of each streami is first

4.3 The carry-over round-robin algorithm 61

adjusted to min(ni;ri +Ri), whereni denotes the number of packets currently
in the queue associated with streami. Then, at mostT slots are assigned to a
number of selected streams, with multiple slots possibly being assigned to the
same stream. The number of slots actually assigned defines the length of the
cycle. The streams are selected as follows. Firstly, the streams are considered
in the order of non-increasing fractional partRi �bRic of Ri. As long as a
streami hasri � 1 and fewer thanT slots have been assigned, it is assigned
a slot and its creditri is correspondingly lowered by 1. If all streamsi with
ri � 1 have been considered in this way and still fewer thanT slots have been
assigned, then the set of streams is again considered, in the same order. In this
second round, as long as fewer thanT slots have been assigned, if a streami
hasri > 0, it is assigned a slot and its credit is correspondingly lowered by 1.

In the paper considered, Lemma 2.2 states that at the start of each cy-
cle, that is, before the credits are adjusted, it holds for each streami that
�1< ri < 1. However, this lemma is incorrect. In the next section, we give a
counterexample showing that, at the start of a cycle, the credit of a stream can
exceed 1. It is noted that the credit of any stream will remain less thanN�1,
since, as shown by Saha et al.,ri > �1 for all i and∑i ri � 0. Therefore, all
streams get their share in the long run.

4.3.1 Counterexample

We consider the case thatT = 1 and an instance with 5 streamsi = 1;2; : : : ;5;
with sharesRi = 0:28;0:22;0:18;0:16;0:16; respectively. Note that the shares
add up to 1, so the link capacity is fully allocated. We assume that all streams
are admitted at time 0, at which cycle 1 starts, and that all streams are always
and sufficiently backlogged so that their queue lengths do not influence their
credits. As a result, we do not have any zero-length cycles, and each cycle
contains 1 slot.

Table 4.1 illustrates the operation ofCORR in terms of the credit values
for each stream during the first 8 cycles, in whichCORR assigns the 8 slots
successively to streams 1;2;3;1;2;3;4;5. For each cycle entry in the table,
the left arrows correspond to the credit adjustment step for each stream and
the right arrow corresponds to the decrease by 1 of the credit of the stream
that is assigned the slot.

At the start of cycle 8, the credit of stream 5 equals 1.12, which shows
that the credit of a stream can indeed exceed 1 at the start of a cycle, which
provides the counterexample.

ForT = 1, alternative, more complex counterexamples can be constructed
that show that credits can grow beyond 2. In addition, we note that the lemma
is not only incorrect for the special case thatT = 1. Examples with large
values ofT can be constructed that show credit values exceeding 21.

62 Fair Resource Sharing

cycle 1 cycle 2
r1 0.00 ! 0.28 ! �0.72 �0.72 ! �0.44
r2 0.00 ! 0.22 0.22 ! 0.44 ! �0.56
r3 0.00 ! 0.18 0.18 ! 0.36
r4 0.00 ! 0.16 0.16 ! 0.32
r5 0.00 ! 0.16 0.16 ! 0.32

cycle 3 cycle 4
r1 �0.44 ! �0.16 �0.16 ! 0.12 ! �0.88
r2 �0.56 ! �0.34 �0.34 ! �0.12
r3 0.36 ! 0.54 ! �0.46 �0.46 ! �0.28
r4 0.32 ! 0.48 0.48 ! 0.64
r5 0.32 ! 0.48 0.48 ! 0.64

cycle 5 cycle 6
r1 �0.88 ! �0.60 �0.60 ! �0.32
r2 �0.12 ! 0.10 ! �0.90 �0.90 ! �0.68
r3 �0.28 ! �0.10 �0.10 ! 0.08 ! �0.92
r4 0.64 ! 0.80 0.80 ! 0.96
r5 0.64 ! 0.80 0.80 ! 0.96

cycle 7 cycle 8
r1 �0.32 ! �0.04 �0.04 ! 0.24
r2 �0.68 ! �0.46 �0.46 ! �0.24
r3 �0.92 ! �0.74 �0.74 ! �0.56
r4 0.96 ! 1.12 ! 0.12 0.12 ! 0.28
r5 0.96 ! 1.12 1.12 ! 1.28 ! 0.28

Table 4.1. Operation ofCORR for the first 8 cycles. For an explanation of
the table, see the running text.

Two important questions are whether there is an alternative credit-based
scheduling algorithm that does satisfy the lemma and whether the lower and
upper bounds on the credits are the best possible. We will show that the an-
swer to both questions is yes.

4.4 The relaxed earliest-deadline-first algorithm

R-EDF operates on a cycle-by-cycle basis, that is, it repeatedly schedules zero
or one slot, called a cycle. The length of each cycle is determined on-line.

After being admitted, a new streami is activated and starts with zero
credit. The issue of activation is related to the admission procedure and is
further explained in Section 4.6. For the moment, it suffices to assume that
some time may elapse between admission and activation. At the start of each
slot, the creditri of each busy streami is incremented withRi, while the credits
of idle streams retain their value. For each busy streami, we next determine

4.4 The relaxed earliest-deadline-first algorithm 63

xi = (1� ri)=Ri. Note that a non-negativexi denotes the time remaining after
the current slot untilri becomes 1, ifri would increase continuously at a rate
of Ri. So, if the current slot starts at timet, thent +1+ xi can be interpreted
as a, possibly passed, deadline. A streami is eligible if and only if it is busy
andri > 0 after the increment step. From all eligible streams, if there are any,
we choose a streami for which itsxi is minimal, assign the slot to it, decrease
its creditri by 1, and set the cycle length to 1.

If there is no eligible stream, then there are two possibilities: either there
are no busy streams at all or there are busy streams, but none of them is eligi-
ble. In the former case, the cycle length is set to 1 and the slot is left unused.
In the latter case, the cycle length is set to 0 and the next cycle is started im-
mediately. This implies that, as long as there are busy streams, each slot is
assigned to a busy stream.

Lemma 4.1. Let for each stream i 2 B, where B is the current set of busy
streams, ri reflect its credit at the start of a cycle, that is, before the credit
increment step. Then the number z of successive zero-length cycles, including
the current one, is given by

z = max(0;min
i2B

b�ri=Ric) (4.1)

Proof. Let for busy streami its creditri be non-positive at the start of a cycle
before the increment byRi. The numberki of increments byRi until it becomes
positive is given byki = b�ri=Ric+1� 1, so that it is not eligible for the next
ki�1 cycles, including the current one. Provided thatk = mini2B ki � 1, the
next k�1 cycles, including the current one, have length zero, as none of the
busy streams becomes eligible during these cycles. Ifk � 0, then the number
of successive zero-length cycles, including the current one, equals zero, as at
least one stream becomes or is eligible during the current cycle, that is, after
the credit increment step. Hence, the numberz of zero-length cycles satisfies
Equation 4.1.

This lemma implies that, at the start of a cycle with busy streams, the credit
increment step can increment for each stream its credit byz+1 times its share,
thereby assuring that only zero-length cycles have been skipped and that the
current cycle will have length 1.

Figure 4.2 illustrates the algorithm, assuming that the setS of streams
is static and that all streams have been activated. In the code,qi denotes
the current number of packets in the queue of streami. The qi values are
assumed to be available to the algorithm and updated automatically. Slots are
numbered consecutively ands denotes the current slot number. The argmin

64 Fair Resource Sharing

operator returns one indexi from its domain,E in this case, for which the
given expression,(1� ri)=Ri in this case, is minimal.

while truedo
begin

B := fi 2 S j qi > 0g;
if B 6= /0 then
begin

z := max(0;mini2Bb�ri=Ric);
for i 2 B do ri := ri+(z+1)�Ri;
E := fi 2 B j ri > 0g;
i0 := argmini2E(1� ri)=Ri;
”assign slots to streami0”;
ri0 := ri0 �1

end;
”wait until the start of the next slot”;
s := s+1

end

Figure 4.2. Pseudo-code forR-EDF.

Lemma 4.2. If the set S of N streams is static and all streams have been ac-
tivated, the R-EDF algorithm has a worst-case computational complexity of
O(N) per slot.

Proof. The code inside the loop in Figure 4.2 assigns a single slot, possibly
to no stream at all. It requiresO(N) operations to computeB,O(jBj) =O(N)

operations to computez, do the increment step and to computeE, and also
O(jEj) =O(jBj) =O(N) to computei0. The remaining operations have a
joint complexity ofO(1). Hence,R-EDF has a worst-case computational com-
plexity ofO(N) per slot.

The administrative task to handle newly admitted streams and stream acti-
vation and departures, which can be done at the end inside the loop, can be
handled with less stringent real-time requirements, so that this can be imple-
mented without affecting the computational complexity ofR-EDF.

R-EDF is similar to theuniform round-robin (URR) algorithm proposed
by Matsufuru and Aibara [1999]. Instead of using credits,URR is based on
the operation of the virtual fluid-flow server, assuming that all streams are
continuously busy. However, it operates in a more restricted context: the
share for streami is of the formwi=R, where bothwi andR are integers, and
∑i wi = R. In URR, a schedule of lengthR slots is precomputed off-line and

4.5 Performance analysis of R-EDF 65

applied repeatedly, whereby idle streams are skipped. This skipping causes
URR to have a worst-case computational complexity ofO(N) operations per
slot. For a fine-grained allocation of shares, a correspondingly large value ofR
is required, leading to a correspondingly complex off-line computation of the
schedule. Another shortcoming ofURR is its inability to operate efficiently in
a dynamic environment. In particular, replacing the current schedule with a
new one requires the current schedule to be completed, possibly leading to a
large delay before a new stream can be activated, that is, incorporated into the
schedule.

Our algorithm also resembles the leap forward virtual clock (LFVC) al-
gorithm by Suri, Varghese & Chandranmenon [1997], but with fixed-length
packets. This not only establishes a strong link between fair queuing, credit-
based schedulers, and scheduling periodic tasks, but also putsLFVC in this
perspective.

4.5 Performance analysis of R-EDF

The remainder of this chapter primarily concerns the proof that forR-EDF, it
holds for each active streami that�1< ri � 1�Ri at the start of each cycle.
This implies thatjrij < 1, which means that the worst-case absolute jitter is
smaller than 1 for arbitrary instances and that busy streams are assigned slots
in proportion to their allocated shares.

The above, together with the following lemma implies thatR-EDF is op-
timal among all schedulers, not only credit-based schedulers, in terms of the
worst-case absolute jitter.

Lemma 4.3. There is no scheduler that achieves a worst-case absolute jitter
bound smaller than 1� ε for any ε > 0 and arbitrary instances.

Proof. Consider an arbitrary scheduler. LetN 2 N and considerN streams,
each with a share 1=N, that all become busy simultaneously for the first time
after their activation and that remain continuously busy afterwards. Clearly, if
they all become busy at slotk, then at the start of slotk+N�1 there will be at
least one stream that has not yet been assigned a single slot by the scheduler,
so that its amount of actually received service so far is 0. However, its ideal
amount of received service so far is(N�1)=N, so that its jitter equals 1�1=N
at that moment. For increasingN, this jitter approaches 1 arbitrarily close.

The approach is that we generalize the results from the seminal paper by Liu
& Layland [1973] who discuss the preemptive scheduling of periodic tasks on
a single processor.

66 Fair Resource Sharing

In their model, a periodic taski is characterized by a triple(qi; pi;ei). Task
i is to be executed exactly once everypi time units. The release times for the
successive executions of taski are given byqi+k pi, wherek 2 N andqi � 0 is
called the phase offset of taski. The release time of an execution indicates the
earliest moment at which that execution may start. Once released, an execu-
tion takesei time units to complete. The execution must be completed before
the next execution of that same periodic task is released, so that the release
time of the next execution serves as the deadline of the current execution.

Liu & Layland introduced a scheduling algorithm, originally called
the deadline-driven scheduling algorithm, but here referred to asearliest-
deadline-first (EDF) algorithm. It works as follows. At each point in time
at which an execution completes and/or a new execution is released, an ex-
ecution that has the earliest deadline is scheduled immediately. In general,
this will cause preemptions: if a new execution is released that has an earlier
deadline than the one that is being executed at this point in time, the new ex-
ecution will preempt the current one. After completion of the new execution,
the current execution will be resumed immediately. It is assumed that there is
no cost associated with scheduling, preemption or resumption.

0 1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 4.3. Scheduling periodic tasks. For further explanation, see the run-
ning text.

Figure 4.3 illustrates howEDF schedules periodic tasks. The figure shows
three tasks called 1, 2, and 3, and three corresponding time lines on which the
release times and deadlines are given for successive executions. The phase
offsets of all tasks are chosen to be 0 and the execution times 1. The periods
are pi = 21

4, 33
4, and 51

4, respectively. Successive release times are indicated
by alternately grey and black arrows above each time line, and corresponding
deadlines are indicated by correspondingly colored arrows below each time
line. Executions are indicated by grey boxes. Multiple boxes on a time line
between a release time and its deadline correspond to an execution that is
preempted and resumed at least once.

At time t = 0, each task is immediately released (for brevity, we skip the
word execution here and speak of tasks only). As task 1 has the earliest dead-

4.5 Performance analysis of R-EDF 67

line, it is scheduled first. It is followed by task 2, after which task 3 is started.
However, after execution of 25% of the latter task, it is preempted by task 1:
Its deadline is before the deadline of task 3. One time unit later, task 3 is
resumed again. At 75%, there is another release time, but the corresponding
deadline is later, so there is no preemption. After completion of task 3, task 2
is executed for 50%, when it is preempted by task 1, et cetera.

Liu & Layland proved the following lemma.

Lemma 4.4. Using the EDF algorithm, an arbitrary set of N periodic tasks
(qi; pi;ei); for i = 1;2; : : : ;N; can be scheduled preemptively, irrespective of
their phase offsets qi, such that all deadlines are met if and only if∑i ei=pi � 1.

The fact that the phase offsets do not play a role in this lemma directly leads
to the following result. Suppose that the processor becomes idle at timet.
This means that the next release time of each task is aftert. By considering
these release times as phase offsets of the corresponding tasks, timet can be
considered as a new start-up time of the system, where the new phase offsets
again do not play a role. Therefore, the processor time can be advanced to
the earliest, new phase offset. As a result, we do not need to consider any
idle time and we can concentrate on the first, so-called busy period of the
processor, which starts, without loss of generality, at time 0. For convenience,
we assume that the processor is idle prior to time 0.

To translate the assignment of slots to scheduling periodic tasks, we asso-
ciate with streami a periodic task with phase offsetqi 2 N being the activation
time of the stream, periodpi = 1=Ri, and execution timeei = 1, corresponding
to repeatedly assigning a single slot to streami at a rate of 1=pi = Ri. Observe
that∑i ei=pi = ∑i Ri � 1.

It is noted that, if (i) the credit of each stream would change as a contin-
uous function of time, (ii) preemptions were allowed and (iii) streams would
never be idle or depart,R-EDF would behave exactly the same asEDF, not
considering any non-determinism in breaking ties. The moment at which the
credit of a task becomes 0 indicates the release time of this task, and the mo-
ment it becomes 1 indicates the corresponding deadline. See Figure 4.4 for an
illustration of a credit function. For the sake of simplicity, the example does
not contain any preemptions.

However, the three conditions above do not hold: streams can be idle,
preemptions are not allowed, streams tend to depart after a finite time, and new
streams can be admitted after a departure. Therefore, we generalize the model
of periodic tasks in such a way thatEDF behaves exactly the same asR-EDF,

68 Fair Resource Sharing

−1

0

1

Figure 4.4. Credit functionci(t) for a taski with period pi. The intervals
where the credit function is decreasing correspond to successive executions
of the task, assuming no preemptions.

again not considering non-determinism in breaking ties. We initially ignore
that streams may depart after a finite time. We will consider this separately in
the next section.

To model idle streams, we introduce the notion ofidling tasks. We do this
by splitting the release times and deadlines: the release time of the execution
of a task is at or after the deadline of the previous execution of this task.
For the first execution, the release time is at or after the phase offset. The
deadline of an execution of a task with periodp remainsp time units after
the corresponding release time. Thus, when a release time is increased, so is
its corresponding deadline. This introduces so-called idle intervals for a task.
The first idle interval, which may have length 0, starts right after the phase
offset and all other idle intervals are between a deadline and the next release
time.

Note that the lengths of idle intervals are not predetermined for any idling
task, as they are based on when the corresponding stream becomes busy
(again). How exactly the next release time is determined when an idle stream
becomes busy is of no concern at this moment: for the idling tasks, the release
times are assumed to be determined on-line. It suffices that the release timet
of the execution of a task is known toEDF at timet.

An idling task can thus also be characterized as a tuple(qi; pi;ei); with
qi, pi, andei as before. Note that, although the phase offsets are redundant
for idling tasks, they do play a role for streams: they serve to indicate the
moments of activation.

Figure 4.5 illustrates howEDF schedules idling tasks. The same parameter
values as in Figure 4.3 have been used for the tasks, but idle intervals have
been inserted. For the sake of simplicity, the lengths of idle intervals were
chosen as multiples of14.

At time 0, tasks 1, 2, and 3 start with an idle interval of length 0,1
2,

and 3
4, respectively. Until time 4, the schedule is identical to the one with

4.5 Performance analysis of R-EDF 69

0 1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 4.5. Scheduling idling tasks. For further explanation, see the running
text.

periodic tasks. Then, the processor becomes idle, since the next release time
of task 2 is at a future time, that is, at time 43

4. At this time, task 2 is scheduled
immediately, but it is preempted by task 1 at time 5, since task 1 has an earlier
deadline than the current deadline for task 2 at time 81

2. At time 6, task 2 is
resumed again and it runs to completion since the deadline corresponding to
the next release time at time 61

2 of task 3 is after time 812, et cetera.

Lemma 4.5. Using the EDF algorithm, an arbitrary set of N idling tasks
(qi; pi;ei); for i = 1;2; : : : ;N; can be scheduled preemptively, irrespective of
the phase offset and lengths of the idle intervals of each task, such that all
deadlines are met if and only if ∑i ei=pi � 1.

Proof. The necessity of the condition is obvious, since all idle intervals
may have length 0, in which case the tasks are periodic and we can refer to
Lemma 4.4 above. Its sufficiency is proved by contradiction. Assume that
∑i ei=pi � 1 and that nevertheless the idling tasks cannot be scheduled. Sup-
pose that a first deadline violation occurs at timet2.

Note that, just beforet2, the processor started working on tasks with dead-
lines att2. Let t1 denote the time of the last switch beforet2 from idle or
working on a task with deadline aftert2, to working on a task with deadline at
or beforet2.

During the interval[t1; t2]; the processor is thus continuously busy and
only works on tasks that have their deadline at or beforet2. We call these
taskscritical tasks. All these critical tasks have their release times at or after
t1, because otherwise the processor had not been idle untilt1 or it had not been
working on a task with a deadline aftert2.

We next concentrate on these critical tasks only, since the other tasks do
not play a role in the interval. As the processor is continuously busy during
the interval[t1; t2]; the work that has to be done in this interval is apparently
too much to be completed in that interval, and causes a deadline violation.
Now, by moving, for all critical tasks, the first release times at or aftert1 back

70 Fair Resource Sharing

in time to t1 and subsequently deleting all later idle intervals for these tasks,
the amount of work that has to be done in the interval[t1; t2] does not decrease.
Consequently, the deadline violation will still be att2, or possibly earlier. This
contradicts the fact that, starting att1, the now periodic, critical tasks can be
scheduled without missing deadlines, again by Lemma 4.4. Hence, the idling
tasks can be scheduled.

We mention that Liu [2000] also considers idling tasks, but states that
Lemma 4.5 follows straightforwardly from Lemma 4.4. The added flexibility
in release times, however, justifies a separate proof.

We next consider how to relax the model with idling tasks in such a way
that preemptions are avoided. Clearly, if the execution times are 1 and all
release times are at integer points in time, then preemptions do not occur:
release times of new executions always coincide with the completion of an
execution or occur at integer points in time when the processor was already
idle. Note that it now makes sense to talk of slots in the context of tasks as
well.

We relax the idling-task model by rounding each release time downwards
to the nearest integer, whereas the corresponding deadlines remain unchanged.
In other words, if an execution is released at timet in the model with idling
tasks, it is now released at timebtc, called relaxed release time, whereas the
corresponding deadline for this execution remains att + p, where p is the
period of the task. Note that the relaxed release time of the execution of a
task may precede the deadline of the previous execution of the same task, but
always by an amount less than one slot.

We define arelaxed idling task as an idling task, but with relaxed release
times. We use the termoriginal release time of an execution of a relaxed
idling task to denote the release time of the corresponding execution of the
corresponding idling task. As before,EDF must know each relaxed release
time at or before the moment that it occurs. How exactly the next relaxed
release time is determined when an idle stream becomes busy is again of no
concern at this moment, but we will return to this issue shortly.

Figure 4.6 illustrates howEDF schedules relaxed idling tasks. The same
parameters as in Figures 4.3 and 4.5 are used, and we use idle intervals corre-
sponding to those in Figure 4.5. The schedule is non-preemptive, as expected.

Lemma 4.6. Using the EDF algorithm, an arbitrary set of N relaxed idling
tasks (qi; pi;ei); with ei = 1, for i = 1;2; : : : ;N; can be scheduled non-
preemptively, irrespective of the phase offset and the lengths of the idle in-
tervals of each task, such that all deadlines are met if and only if∑i ei=pi � 1.

4.5 Performance analysis of R-EDF 71

0 1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 4.6. Scheduling relaxed idling tasks. For further explanation, see the
running text.

Proof. The necessity of the condition is obvious, since the inequality states
that the fraction of time the processor may necessarily be busy should not
exceed 1.

Its sufficiency is shown as follows. First notice thatEDF produces a non-
preemptive schedule, as explained above. Similar to the proof of Lemma 4.5,
we can construct an interval[t1; t2] during which the processor is continuously
busy and only works on tasks with relaxed release times at or aftert1 and
deadlines at or beforet2, whereas a first deadline violation occurs att2. Note
that at timebt2c, a task was scheduled that subsequently suffered a deadline
violation att2.

Now, we move all relaxed release times, starting att1, back to their original
values and, if necessary, increaset1 to align with the earliest, original release
time. This generally makes the schedule preemptive. Again, the amount of
work that has to be done in the possibly shorter interval[t1; t2] does not de-
crease. Note that moving relaxed release times that correspond to deadlines
aftert2 does not decrease the amount of work either, since no work was carried
out for those tasks in the original interval[t1; t2] anyway. Thus, the deadline
violation remains. Since, starting att1, the tasks are no longer relaxed, but just
idling tasks, they can be scheduled by Lemma 4.5. This is a contradiction.
Hence, the relaxed idling tasks can be scheduled.

It is easy to see that increasing the credits at integer points in time, rather than
as a continuous function, has exactly the same effect as rounding the release
times down to integer points in time, so that for an original release timet,
the expressionbtc � t < btc+1 corresponds tori � 0^ ri +Ri > 0. In other
words, the moment at which a busy stream becomes eligible coincides with
the release time of the associated relaxed idling task. The term ‘relaxed’ in
R-EDF derives from this correspondence. See Figure 4.7 for an illustration of
a relaxed idling task with an original release time att. The credit values of
the associated stream are given by the step function. Each time the stream is

72 Fair Resource Sharing

assigned a slot is illustrated by a dashed step up with the size of its share and
a step down of size 1. The relaxed release timebtc coincides with the moment
that the credit becomes positive.

−1

0

1

tt

Figure 4.7. A relaxed idling task with original release time att and relaxed
release time atbtc, where the credit of the associated stream becomes posi-
tive.

Now recall that forEDF we assume that release times are known in time. For
R-EDF to operate asEDF, a corresponding condition should hold. In particular,
the credit of an idle stream should be at most 0, so that, when this stream
becomes busy, say at timet, it sets a relaxed release time at or aftert. This
settles the issue of how the next relaxed release time is determined when an
idle stream becomes busy. We can now prove the following theorem.

Theorem 4.1. For R-EDF, it holds for each stream i that �1< ri � 1�Ri at
the start of each cycle, provided that ∑i ri � 1.

Proof. Since only eligible streams, that is, streams with positive credit after
the credit increment step, are assigned slots, the credit of all streams will
remain larger than�1. For the remainder of the proof, we associate a relaxed
idling task to each stream as described above. For eachj � 0, we defineB(j)
andI(j) as the set of busy and idle streams, respectively, at the start of slotj.
These sets incorporate the newly busy and idle streams, respectively.

Let ri(j) denote the credit of streami at the start of slotj, that is, before the
increment step, and ifi2 B(j), let xi(j) denote the correspondingx-value, that
is, xi(j) = (1� ri(j)�Ri)=Ri. DefineP(j) as8i [i 2 B(j)) ri(j)� 1�Ri]

andQ(j) as8i [i 2 I(j)) ri(j)� 0]. We prove that

8 j�0 [P(j)^Q(j)] ;

which implies thatri �1�Ri for each streami. We prove the above expression
by induction. Assume thatP(j)^Q(j) holds for 0� j < j0. This holds
trivially for j0 = 0. Let j0 � 0. We prove thatP(j0)^Q(j0) holds, starting
with Q(j0).

4.6 Admission/activation control 73

Let i 2 I(j0). There are two cases to consider. If, on the one hand,i has
been idle since its activation, its credit is still at its initialization value 0, so
thatri(j0) = 0� 0. If, on the other hand,i has already been busy, then it has
been assigned a last slot, say slotk < j0 after whichi immediately became and
remained idle until the start of slotj0. Sincek < j0 andi 2 B(k), it holds by
hypothesis thatri(k) � 1�Ri. But thenri(k+1) = ri(k)+Ri�1� 0. Since
idle streams retain their credit, it holds thatri(j0) = ri(k+1) � 0. So, in any
caseri(j0)� 0.

We have now established thatQ(j) holds for 0� j � j0. Therefore, by
analogy with the associated relaxed idling tasks, there are no deadline vi-
olations during slotj0. Therefore, for each streami 2 B(j0), it holds that
xi(j0)� 0, which is equivalent tori(j0)� 1�Ri. This proves thatP(j0) also
holds.

Corollary 4.1. R-EDF is optimal in terms of minimizing the worst-case abso-
lute jitter.
Proof. This follows directly from Lemma 4.3 and Theorem 4.1.

4.6 Admission/activation control

In a dynamic environment, streams are admitted and depart again after some
time. However, the departure of a stream is not covered in the model with
relaxed idling task. If streams would only be admitted and would never depart,
the phase offset of a relaxed idling task would serve as the activation time of
the associated stream. In the presence of stream departures in addition to
admissions, the question arises of when new streams can be activated after
another stream has departed.

In the extreme case that, on a fully loaded resource, a stream departs right
after it has been assigned a slot and is replaced immediately by another stream
with the same share, the generally negative credit of the departed stream is re-
placed by a zero credit for the new stream, resulting in a so-calledcredit jump.
It stands to reason that credit jumps may result in deadline violations. As an
example, consider three streams with shares 0.25, 0.25, and 0.5, respectively,
all starting at time 0. The stream with share 0.5 is serviced in and departs
after the first slot and is replaced immediately by a new stream with the same
share. This new stream is serviced in and departs after the second slot and is
similarly replaced. The sum of the two credit jumps equals 1 and, at the start
of the fourth slot, there are two streams whose deadlines are at the end of this
slot. This causes a deadline violation if neither of these streams departs. It
can be shown that, even if the time between a stream departure and the activa-
tion of another stream takes one slot, deadline violations cannot generally be
prevented.

74 Fair Resource Sharing

Suppose that a stream departs. After this departure, the remaining shares
add up to strictly less than 1. As a result, there will be zero-length cycles.
Now, note that the start of the first zero-length cycle or empty slot after the
departure of the stream can be considered as a new start-up of all remaining
and all new streams, each with their own phase offset. The already existing
streams have a non-negative phase offset corresponding to their non-positive
credit at that moment. For the newly admitted streams the phase offset is
determined by their activation time, which can be chosen as the current time.
As from that moment, it is again guaranteed that deadline violations will not
occur, provided, of course, that the shares add up to at most 1 at all times.

In other words, after a stream departure, there is a so-calleddead time,
during which no new streams can be activated without compromising isola-
tion between the streams, that is, risking deadline violations. After this dead
time, newly admitted streams can again be activated safely. TheURR algo-
rithm discussed in Section 4.4 suffers from this problem if the precomputed
schedule would be interrupted. The actual credit values or similar data should
be available to ensure a smooth transition to a new schedule.

4.7 Concluding remarks

In this chapter, we have presented a linear, optimal algorithm for fairly sharing
a resource among streams in a dynamic environment. The optimality is stated
in terms of jitter.

In a similar approach to that of Saha, Mukherjee, and Tripathi [1998],
it is possible to consider scheduling cycles with a length of at mostT slots.
This will generally lead to worse jitter, since the exact position of thewi slots
assigned to each streami is no longer determined. It is noted, however, that
this can be partly repaired by stating this much smaller problem as follows.
T 0 = ∑i wi � T slots have to be divided over a numberM � T of streams,
whereby each of these streamsi should obtainwi > 0 slots. This can be done
using URR. Although the worst-case computational complexity will still be
O(N) operations per slot, the average case computational complexity may
become much better.

To support isolation among streams, a dead time after a departure is nec-
essary, during which no other streams are allowed to be activated after being
admitted. It stands to reason that this dead time plays a similar role in other fair
queuing algorithms. This is considered a topic for further research. Whether
a dead time until the next zero-length cycle or empty slot is also necessary, or
a shorter dead time suffices, is a subject for further research. To this end, the
paper by Stoica, Abdel-Wahab, Jeffay, Baruah, Gehrke & Plaxton [1996] may
provide a useful starting point.

4.7 Concluding remarks 75

An interesting question that warrants further research is how credit-based
scheduling algorithms relate to fair queuing algorithms as mentioned in the
introduction that involve this virtual fluid-flow server. The analyses by Suri,
Vargehese & Chandranmenon [1997], Saha, Mukherjee & Tripathi [1998],
and Pronk & Korst [2002] provide promising results.

The commonalities betweenR-EDF and LFVC suggest that the given,
straightforward implementation ofR-EDF can be optimized, and even sig-
nificantly improved by additional rounding, the latter at the cost of a small
deterioration of the jitter bounds. It also stands to reason thatR-EDF can be
generalized to deal with variable-length packets, in the same vein asLFVC,
but in the context of scheduling periodic tasks. We consider these as subjects
for further research.

5
Storage and Retrieval of

Variable-Bit-Rate Video Streams

Providing real-time guarantees for video streams not only requires proper
bandwidth management and scheduling algorithms for the transmission of
video data, of which we saw an example in the previous section, it also re-
quires that the bandwidth of the disk or disks in a video server is treated
likewise. In this and the next section, we focus on the two alternative file
allocation techniques to store video data on a single disk such that subsequent
retrieval of this data results in efficient use of this disk. We in particular con-
sider the problem that a block should be readable from disk using a single disk
access.

Emphasis in this section is on segmented allocation, where the disk space
is partitioned into relatively large, constant-size, contiguous chunks, called
allocation units. A video file uses an integer number of allocation units to
store its data. Emphasis in the next section is on contiguous allocation of
video files on a multi-zone disk.

5.1 Introduction

The playout of a video file from disk requires that a continuous stream of data
is fed into a decoder for subsequent display on a monitor orTV. This stream is

77

78 Storage and Retrieval of Variable-Bit-Rate Video Streams

generally consumed at a variable bit rate (VBR), depending on the sizes of the
individual frames. In contrast, a video file stored on disk is typically fetched
in blocks of constant size. To bridge this gap between the way in which data
is retrieved from disk and the way in which it has to be fed into a decoder, or,
more generally, leaves the server, a buffer is employed where the blocks from
disk are temporarily stored and from where a separate process consumes the
data at the appropriate rate. This process is sometimes also referred to as a
stream. The same holds for writing data to disk, be it that the buffer is filled
by a stream of data, for instance from a network, and emptied in a block-wise
fashion.

To ensure a hiccup-free display of the video file it is required that buffer
under- and overflow should be prevented at all times. This requires a disk
scheduling algorithm that monitors and controls the fill level of the buffer.

The rate at which data can be retrieved from disk is generally significantly
larger than the rate required for the playout of a single video file, so that disk
scheduling algorithms are typically designed to sustain multiple streams si-
multaneously. The major performance characteristics of a scheduling algo-
rithm are the maximum number of streams it can sustain simultaneously, the
required buffer sizes, and the start-up latency. The latter is defined as the time
that elapses between the arrival of a request to start up a new stream and the
moment consumption from the corresponding buffer for this stream can start.

An important observation is that the block size used for a stream depends
on the scheduler employed, the server-specific settings, as well as on the bit-
rate characteristics of the specific video file at hand. We return to this issue
shortly.

For efficient use of the disk, it is required that a block can be fetched from
disk with a single disk access, which consists of a seek operation of the disk
arm to the appropriate track, a rotational latency of at most one rotation to
let the data to be read move under the disk head, and a read operation. This
read operation may be interrupted several times to perform a track of cylinder
switch in case the block is stored on several successive tracks or cylinders,
respectively. The time required for a switch is typically shorter than that of
a seek operation and the maximal rotational latency. For this reason, we say
that a block is stored contiguously on disk if, while reading it, only track or
cylinder switches are necessary.

Establishing that individual blocks of a video file are stored contiguously
on disk, to allow retrieval of any of these blocks to be performed with a sin-
gle disk access, poses additional constraints on the way in which the video
file is written to disk. Two extreme approaches are that (i) individual blocks
are stored contiguously, while successive blocks of a file may be positioned

5.1 Introduction 79

arbitrarily on the disk and (ii) entire files are stored contiguously on disk. The
latter approach is suitable if the set of files on disk does not change often. If
files of different sizes are repeatedly added and removed over time, then the
total amount of free space available for additional files gets fragmented into
many relatively small parts. These parts remain unused if they are too small
to incorporate a complete file. Furthermore, recording of a video file of un-
known size, for instance a live recording, may lead to problems as well. In the
next chapter, we consider contiguous storage of video files on disk.

The former approach of only storing blocks contiguously on disk not only
assumes that the block size used for retrieval is known beforehand, but also
that the individual blocks are known. The latter is problematic if reading a
file may start at an arbitrary position in the file, which we shall refer to a non-
aligned access. In addition, as already observed, writing a single block of a
specified size to disk with a single disk access poses constraints on the bit-rate
characteristics of the stream that delivers the data, which may be impractical.

An often used alternative is to usesegmented allocation, where the com-
plete disk space that is used for video data is partitioned into equal-sized allo-
cation units. A video file uses an integer number of allocation units to store its
data contiguously within an allocation unit, but the successive allocation units
need not be contiguous. There exist various segmented allocation strategies
[Korst & Pronk, 2005] that mitigate some or all of the problems encountered
above.

We concentrate on the strategy calledsegmented allocation with redun-
dancy by Lawerman [1995]. Assume that a playback stream requires blocks
of size at mostb from this file and that the sizeu of an allocation unit, or
allocation size for short, satisfiesu � 2b. Starting at the beginning of the file,
the first allocation unit is completely filled with data from this file. In each
subsequent allocation unit, the firstb bits are obtained by duplicating the last
b bits of the previous allocation unit. The remainder of this allocation unit is
filled with subsequent data from the file. This proceeds until the file has been
completely stored and part of the last allocation unit may be left unused.

This allocation strategy leads to adding redundancy in the storage of the
file on disk, which we calloverlap. Figure 5.1 gives an example, where the
block of sizeb at the end of each allocation unit is also written at the beginning
of the subsequent allocation unit.

It is easily seen that any block of size at mostb from this file can be
retrieved from disk with only one access: if the starting position of the block
is at a distance less thanb from the end of an allocation unit, then it can
be retrieved in a single access from the next allocation unit. The latter is
guaranteed becauseu � 2b.

80 Storage and Retrieval of Variable-Bit-Rate Video Streams

b

b b

b b

b b

Figure 5.1. The first four allocation units of a file. The lastb bits at the end
of each allocation unit are duplicated at the beginning of the subsequent one.

When the size of allocation units are chosen small with respect to the sizes
of the video files stored on disk and large, relative to the overlap sizeb, the
amount of disk waste, as a result of this duplication as well as of unused space
at the end of the last allocation unit, is only marginal.

The problem we consider in this chapter is how to implement this file
allocation strategy. In particular, we discuss how to adapt the well-known
triple buffering disk scheduling algorithm [Biersack, Thiesse & Bernhardt,
1996; Korst & Pronk, 2005] such that it can handle both record and playback
streams.

The remainder of this chapter is organized as follows. We discuss related
work in Section 5.2. In Section 5.3 we present a model for both video servers
and streams. Then, in Section 5.4 we discuss the triple buffering algorithm for
playback streams, and serves as a stepping stone towards Section 5.5, where
we deal with the inclusion of record streams into the algorithm. We end with
some concluding remarks in Section 5.6.

5.2 Related work

In this chapter, we mainly concentrate on the allocation of a single file on
a single disk, and we ignore any relation between the positions on disk of
the allocation units belonging to one file or belonging to different files. This
leaves ample freedom for additional optimizations besides accessing a block
with a single disk access. One of them is discussed in the next chapter, where
the multi-zone character of a disk is exploited.

Where additional constraints apply, the allocation of files on disk may be
further tuned towards the application. Vin & Rangan [1993] consider con-

5.2 Related work 81

strained storage of high-bit-rate video files. To realize efficient retrieval of
data from one file, successive blocks are stored sufficiently close together, us-
ing the notion of scattering. By making use of interleaving, the gaps between
these blocks are filled by other files. For retrieval, they consider a round-
robin-like algorithm and discuss several variations to provide deterministic or
statistical guarantees.

Using sweeps instead of individual disk accesses to lower the access time
can be taken a step further by constraining the allocation of files such that
a sweep is constrained to a particular region of the disk space. See, for in-
stance, Chang & Garcia-Molina [1996] and Ghandeharizadeh, Kim & Sha-
habi [1995]. This can be exploited in the case that streams remain properly
synchronized in their consumption behavior.

BothÖzden, Rastogi & Silberschatz [1996] and Srivastava, Kumar & Sin-
gru [1997] consider interleaving constant-size blocks of a single file, assum-
ing that the disk only has to serve streams accessing the same file. Multi-
ple streams are realized in this way, where the consumption by each pair of
streams is separated by a constant time offset. In addition, multiple blocks can
be read using one disk access. Tsao, Huang, Lin, Liou & Huang [1997] apply
the same principle, but using optical disks.

For the storage of audio onCD-ROM, we refer to Yu, Sun, Bitton, Yang,
Bruno & Tullis [1989], Wells, Yang & Yu [1991], Korst & Pronk [1996], and
Subrahmanian [1998]. In these papers, the issue is how to interleave a number
of audio files.

For storage of files on multiple disks, additional criteria play a role, most
notably the problem of how to distribute the files over the disks such that the
load balance among the disks is optimized. We refer to Korst & Pronk [2005]
and references therein for an in-depth treatment of this and related problems.

A good choice for the allocation size obviously also depends on the av-
erage size of the files that are expected to be present on the disk. If the disk
only stores relatively large video files, then the allocation size can be chosen
quite large. If it only contains small files, then the allocation size will have
to be chosen correspondingly. When the disk contains both large and small
files, it may be a good idea to partition the disk, where for each part a dif-
ferent allocation size is chosen. A disadvantage is that, in that case, a fixed
fraction of the disk is reserved for each type of file. Alternatively, one can use
a hierarchical organization of allocation units. A large allocation unit can be
partitioned into smaller allocation units whenever required for the storage of
small files. This is done in the Buddy system, as discussed by Burton [1976],
Koch [1987], and Knuth [1969].

82 Storage and Retrieval of Variable-Bit-Rate Video Streams

5.3 Modeling the server

Figure 5.2 illustrates the basic architecture of a video server and displays its
main components. These are a magnetic disk or disk drive, an internal bus,
FIFO (first-in-first-out) buffers, which are typically implemented using solid-
state memory, a disk scheduling algorithm, and an interface to the outside
world, consisting of streams and requests.

stream 1

stream 2

stream n

disk

buffer
status

disk
scheduling
algorithm

client
requests

internal
bus

disk access
requests

Figure 5.2. Basic architecture of a video server.

In the figure, the data paths are drawn by solid lines. They are used to transfer
data between the disk and the buffers via the internal bus and between the
buffers and the outside world. The dashed lines indicate the control paths and
are used for control functions such as handling client requests and controlling
the disk.

As the disk in a video server is shared by multiple streams simultaneously,
blocks of data, or blocks for short, are repeatedly fetched from disk and trans-
ferred to the appropriate buffers. These data transfers should be scheduled
in such a way that the buffers do not underflow or overflow. In this way, it
is guaranteed that each stream can consume the data from its buffer without
undue interruptions.

Providing real-time guarantees for the delivery of video data presupposes
requirements for the various components of the video server. We concentrate
on providing deterministic guarantees as opposed to only statistical guaran-
tees. To provide deterministic guarantees, it is necessary to make worst-case

5.3 Modeling the server 83

assumptions. We next discuss each of the components in more detail and state
the corresponding assumptions.

The disk scheduling algorithm

The disk scheduling algorithm operates on a cycle-by-cycle basis. In each cy-
cle, the algorithm serves a number of streams by fetching one or more blocks
for these streams. The length of each cycle is bounded from above by a con-
stant, called the period length. This period length may be as short as a worst-
case time to perform a single disk access, but may also be an upper bound
on the time required by the disk to perform multiple disk accesses in a single
batch, where the number of accesses is bounded from above.

Definition 5.1. (Safeness) A disk scheduling algorithm is calledsafe if it
prevents buffer underflow and buffer overflow at all times.

Streams

A stream, once admitted service, can be in one of two states: waiting or con-
suming. Initially, a stream is waiting. When sufficient data has been fetched
from disk and stored in its buffer, the stream becomes consuming and can
start to consume data from its buffer for an indefinite period of time. The time
an admitted stream spends in the waiting state is called the start-up latency
and the moment it becomes consuming is denoted bytstart. Although in prac-
tice the consumption of data from a buffer is in discrete units, we assume a
fluid-flow model for this consumption, mainly for ease of presentation. The
difference from a discrete model is small when it comes down to bit-rate and
buffer requirements.

We assume that streams consume data at a variable bit rate (VBR). To keep
the model relatively simple, we define the bit rate characterizing a stream as
follows.

Definition 5.2. (Stream) A streami is characterized by a (maximum) bit
rateri. This bit rate is an upper bound on the average rate at which streami
is allowed to consume data from its buffer during any time interval of length
equal to the period length of the scheduling algorithm. So, if the period length
is p, streami consumes at most an amountpri of data from its buffer during
any interval of lengthp.

Note that the momentary consumption rate of a stream may be considerably
higher thanri, provided that this is sufficiently compensated for in the short
term. It also follows from the definition that during any time interval at mostp,
an amount of data at mostpri is consumed. Although, formally,ri is generally
a function ofp, we will omit the argumentp.

84 Storage and Retrieval of Variable-Bit-Rate Video Streams

For a prerecorded video filef , the sizes of all individual video frames are
known in advance. Suppose that this file is played out at a constant frame
rateϕ, taking a timet f to complete. Letci(t) denote the instantaneous rate
at time t at which an associated streami consumes data from its buffer, for
instance at a piecewise constant rate corresponding to one frame per frame
time. If the period length isp, then the bit rate for this stream can be chosen
equal to

ri(p) = max
t2[0; t f�p]

1
p

Z t+p

t
ci(t)dt:

This expression is called the empirical envelope; see Knightly, Wrege, Liebe-
herr & Zhang [1995]. Hence, instead of choosing the bit rate equal to the
peak rate, which is given byri(1=ϕ), a usually much smaller rate can be cho-
sen. See also Dengler, Bernhardt & Biersack [1996] for a more extensive
treatment.

For a givenMPEG video file, Figure 5.3 givesri(p) as a function of the
period lengthp expressed in number of frames. As we can see, the bit rate
reduces rapidly asp increases from 1 to, say, 10 frames. The small peaks,
for instance atp = 4 and 7, are caused by the regular structure by which the
three types of frames are interleaved. The structure used is the repetition of
the patternIBBPBBPBBPBB, which explains the peaks at 4 and 7.

Beyond these 10 frames, the bit rate reduces only slowly, and a relatively
large gap remains, even for a period length of 100 frames, betweenri(p) and
the mean bit rate, given byri(t f) and indicated in the figure by the horizontal
line at approximately 4 Mbit/s. This gap is caused by the presence of long,
complex scenes that require a high bit rate.

The disk

For an extensive treatment of disk-drive modeling, we refer to Ruemmler &
Wilkes [1994] and Korst & Pronk [2005].

A disk can be used efficiently by releasing disk access requests in batches
consisting of multiple requests. By appropriately reordering these individ-
ual requests, a significant reduction in the worst-case seek time for the entire
batch can be obtained as compared to handling the requests one by one. This
reordering is such that, as the heads move in one direction across the surface,
it handles the requests in the order in which it encounters them. This operation
is called asweep.

The time required for a sweep depends on the number of accesses, the
sizes of the individual blocks, and the time required for seeks and rotational
latencies. We call the latter theaccess time and the time required for reading
the blocks theread time.

5.3 Modeling the server 85

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

bi
t r

at
e

(M
bi

t/s
)

period length (frames)

Figure 5.3. Example ofri(p) as a function ofp, expressed in number of
frames, for a specificMPEG movie.

Definition 5.3. (Disk) The worst-case behavior of a disk is defined by the
transfer rater and access time functiona, wherer is the guaranteed rate at
which an arbitrary, contiguous block can be read from disk anda is a function
of the numbern of accesses and provides an upper bound on the total access
time required to fetchn blocks from disk. We assume that these bounds are
tight and can be attained simultaneously.

Based on this definition, executing a batch ofn access requests for blocks of
sizeb1;b2; : : : ;bn; respectively, is guaranteed to complete in a timet that is
tightly bounded from above as

t � a(n)+
∑n

i=1 bi

r
(5.1)

In practice, the completion time is generally smaller, asr is only a lower bound
anda is only an upper bound.

We additionally make the following three assumptions. We assume that
sweeps are non-preemptive, that is, once a sweep has started it is not inter-
rupted and runs to completion. Although preemption is in principle possible,
it complicates the model and the analyses. Also single disk accesses are not
preempted.

86 Storage and Retrieval of Variable-Bit-Rate Video Streams

We assume that the requests in a batch can be handled in arbitrary order,
which is necessary to implement sweeps. In other words, if two requests have
to be handled in a specific order, then we assume that it is the responsibility of
the file system or the application at hand not to have these requests released
in the same batch. As an example, if two disk requests concern overlapping
physical locations of the disk and at least one of them is a write request, then
they cannot be made available to the disk scheduling algorithm to be sched-
uled in the same sweep. We assume that these situations are avoided.

A block that is read from disk during a given sweep may arrive in the
buffer at any point in time during the sweep. It may arrive immediately at
the beginning or only when the sweep has completed. To determine whether
buffer underflow can occur for a stream, we assume conservatively that a block
that is read during a sweep is only available for consumption when the sweep
has completed. Analogously, to determine whether buffer overflow can occur
for a stream, we assume conservatively that a block that is read from disk
during a sweep is already available for consumption at the beginning of this
sweep.

Internal bus and buffers

The internal bus allows the blocks retrieved from disk to be transferred to the
appropriate buffers. We abstract from any actual implementations of this bus
and assume that the bus bandwidth is sufficient under all conditions and that
the transfer delay is negligible.

For each stream, a buffer is used to decouple the transfer of data from disk
and its subsequent consumption. The size of a buffer is generally expressed
in the number of maximum-size blocks it can contain and depends on the disk
scheduling algorithm used in the video server. The maximum block size, in
turn, is determined by the requirements of the stream, such as the bit rate, as
well as by server-specific settings. We assume that blocks can be of any size,
rather than being restricted to discrete units such as bits or sectors. This is
done mainly for ease of presentation.

5.4 Triple buffering algorithm

We assume that we are givenn VBR streams, numbered 1;2; : : : ;n;, whereby
for each streami its bit rate is denoted byri. We furthermore have a disk
that is characterized by a transfer rater and access time functiona. A period
length p is given, which dimensions the server, in particular the buffers. To
each streami, a buffer is associated that can hold three blocks of sizebi = pri,
which is an upper bound on the amount of data streami consumes during any
interval of length at mostp.

5.4 Triple buffering algorithm 87

The triple buffering algorithm (TB) operates on a cycle-by-cycle basis.
In each cycle, it serves a number of streams by fetching one block for these
streams. Streami is served during a cycle if and only if it has sufficient room
in its buffer at the start of this cycle to store a block of sizebi, and, if served,
one block of this size is fetched for this stream during this cycle. Upon com-
pletion of a cycle, the next cycle is started immediately. It is assumed that the
processing time required to determine which streams should be served during
a cycle is negligible. In case there are no streams to be served during a cycle,
there is an idle cycle of positive length at mostp. Idle cycles serve to wait un-
til there are streams with sufficient room in their buffer. A streami becomes
consuming, that is, can start consuming data from its buffer, at the end of the
cycle in which the first block for this stream has been fetched and placed in its
buffer. This time is denoted bytstart

i .

Theorem 5.1. Given a disk with transfer rate r and access time function a,
TB safely sustains a set of n VBR streams with bit rates r1;r2; : : : ;rn, where
∑n

i=1 ri < r, if and only if the period length p satisfies

p� a(n)
r

r�∑n
i=1 ri

: (5.2)

Proof. The necessity of Equation 5.2 is proved by contradiction as follows.
Assume that the equation does not hold. We next prove that buffer underflow
may occur for some stream. The invalidity of Equation 5.2 implies that

p < a(n)+
∑n

i=1 pri

r
= a(n)+

∑n
i=1bi

r
: (5.3)

Note that the right-hand side of Equation 5.3 gives the length of a worst-case
cycle. As this length is larger thanp, a streami may consume more than one
block during such a worst-case cycle. Now, if the cycle starting attstart

i is
of worst-case duration, which may indeed happen, then buffer underflow for
streami may occur during this cycle: at the start of the cycle, streami has one
block in its buffer. Since the next block may arrive in its buffer at the end of
the cycle, streami may already have suffered from buffer underflow before
this block arrives.

We next demonstrate the sufficiency of Equation 5.2. Buffer overflow will
never occur, because a block for streami will be fetched during a cycle only
if there is already room for it in its buffer at the start of this cycle. What thus
remains is to prove that buffer underflow never occurs either. First note that
Equation 5.2 implies that the length of a cycle is bounded from above byp,
which also holds for idle cycles. As a result, each streami will consume at
most one block during any cycle.

88 Storage and Retrieval of Variable-Bit-Rate Video Streams

Let i be an arbitrary stream. Assume that cycles are successively num-
bered and thattstart

i coincides with the start of cyclej. Let fi(k) be defined
as the buffer filling of streami at the start of cyclek, for k � j. We next
prove by induction onk that fi(k) � bi for all k � j. For k = j, this clearly
holds, because during cyclej�1 the first block (of sizebi) for streami has
been fetched, and streami has not yet consumed any data from its buffer un-
til the start of cyclej. Now assume thatk > j and that fi(l) � bi for all l
with j � l < k. We must prove thatfi(k) � bi. We consider two cases: ei-
ther fi(k� 1) > 2bi or fi(k� 1) � 2bi. In case fi(k� 1) > 2bi, no block
for streami has been fetched during cyclek�1. However, since during cy-
cle k�1, streami consumes at most one block from its buffer, it holds that
fi(k)� fi(k�1)�bi > 2bi�bi = bi. In casefi(k�1)� 2bi, a block has been
fetched for streami during cyclek�1. As the induction hypothesis implies
that fi(k�1) � bi and streami consumes at most one block from its buffer,
it holds that fi(k) � fi(k�1)� bi + bi = fi(k�1) � bi. So, in either case, it
holds thatfi(k)� bi.

Since at the start of each cyclek � j, the buffer for streami contains
sufficient data to survive this cycle, buffer underflow will never occur. This
completes the proof.

The worst-case start-up latency for a new stream is 2p. This occurs when
a request for a new video stream arrives at the server just after the start of
a cycle, so that the first block for this stream is fetched in the next cycle, at
the end of which it becomes consuming. This may take an amount 2p of
time. The average-case start-up latency of one and a half cycle depends on the
lengths of the successive cycles, which is determined dynamically.

To provide some insight into the dynamic operation ofTB, we assume that
the disk generally performs better than is worst-case accounted for and that
the streams occasionally require less data than is accounted for. The latter is
typical for VBR video data, but a stream may also consume less data because
the video application is in slow-motion or pause mode.

As a cycle is generally shorter than is worst-case accounted for, the next
cycle will start early. As a result of this, generally less data needs to be fetched
for each of the streams, leading to yet a shorter next cycle, et cetera. This may
cause a significant reduction in the average cycle length and can be so extreme
that the termcycle-length implosion is appropriate to describe the effect. Ko-
rst & Pronk [2005] analyze this effect and show in a practical setting, that a
significant amount of time is spent on idle cycles, and that only very few, that
is, mostly only one or two, streams are served per cycle for the remaining cy-
cles. As a result, the average start-up latency is generally significantly smaller
than 2p.

5.5 Dealing with record streams 89

Having a buffer size of three blocks is clearly sufficient, as shown above.
Korst & Pronk [2005] discuss under what circumstances this size is also nec-
essary and when a smaller buffer may suffice.

5.5 Dealing with record streams

The server depicted in Figure 5.2 can easily be generalized to incorporate
record streams. Instead of consuming data from its buffer, a record stream
writes data into its buffer. We assume that a record streami is also character-
ized by its bit rateri, so that, during any interval of lengthp, an amount of
data at mostbi = pri is written into its buffer. And instead of fetching blocks
from disk, blocks are written to disk. In the figure, changing the direction of
the two solid arrows associated to a buffer illustrates this generalization.

We next analyze in detail how writing a file to disk with overlap should
be implemented, using a generalization of the triple buffering algorithm. For
reference, we call this generalizationTBR, which stands forTB with record
streams.

We assume an allocation unit of sizeu and an overlap of sizeb > 0, with
u� 2b. With a period lengthp, this overlap then allows the file to be retrieved
from disk non-aligned at any rate at mostb=p.

Although a record streami can be thought of as requesting the bit rateri

that characterizes itself, the server should take into account that per unit of
time it should write more data to disk than the stream will supply. This natu-
rally leads to allocating to this record stream a larger bit rate thanri to ensure
safeness. We make this explicit by distinguishingrequested bit rates andal-
located bit rates, based on the parametersu, b, andp.

Definition 5.4. (Allocated bit rate) Given a requested bit rateri for a record
streami, we define the corresponding allocated bit rater0i as

r0i =
uj

u�b
pri

k
p

(5.4)

It is easily shown thatr0i > ri, so that, if a streami is characterized by its
requested bit rateri, it is also characterized by its allocated bit rater0i. We next
give the rationale behind Equation 5.4. The rater0i that has to be allocated to
streami should satisfy

r0i �
u

u�b
ri (5.5)

90 Storage and Retrieval of Variable-Bit-Rate Video Streams

in order to prevent buffer overflow in the long run. The reason for this is that
for each amountu� b of data written to the buffer, an amountu should be
written to disk; see Figure 5.1.

The associated block sizeb0i = pr0i should divideu to ensure that an allo-
cation unit is completely filled with an integer number of blocks. Hence, there
should be an integerl0i such thatu = l0i pr0i. Combining this with Equation 5.5
yields that

l0i �
u�b
pri

:

Choosingl0i as large as possible results in a minimal block size and thus a
minimal value ofr0i. We choose

l0i =

�
u�b
pri

�
; (5.6)

which, combined withu = l0i pr0i, yields Equation 5.4.
TBR thus allocates to each record stream a bit rate that is larger than re-

quested, resulting in correspondingly larger blocks. Analogous toTB, TBR

only writes a block of sizeb0i for a record streami to disk during a cycle if it
is already available in the corresponding buffer at the start of this cycle.

We next describe how provisions for writing parts of the data twice to
disk are incorporated. We assume that the buffer for record streami has size
3b0i + b, that is, corresponding to the original buffer size of 3b0i used for a
stream that is allocated a bit rater0i, augmented with the overlap sizeb.

Assume that the buffer of streami is circular, as illustrated in Figure 5.4.
The inward-pointing arrow indicates the position of the write pointer, which is
the position where the stream writes its next data to the buffer. The outward-
pointing arrow indicates the position of the read pointer, which is the posi-
tion where the next data is read from the buffer to be written to disk. The
write pointer only proceeds in a clockwise direction. The read pointer also
proceeds in a clockwise direction, but is occasionally placed back in counter-
clockwise direction. The dark-shaded area indicates the data already written
to the buffer, but not yet read from the buffer. The light-shaded area indicates
either void data or data that has already been read from the buffer, but not yet
been overwritten by the stream. For clarity, if we talk about the amount of
data in a buffer, we mean the amount between the read and the write pointer,
indicated by the dark-shaded area. In the case that the write pointer would
pass the read pointer, we assume that it does not pass the read pointer, but that
data is not written to the buffer and is lost instead.

The idea is that, when the lastb bit positions of an allocation unit have
been filled with data, the read pointer is placed back in counter-clockwise

5.5 Dealing with record streams 91

b

bi′

bi′

bi′

read
pointer

write
pointer

Figure 5.4. Circular buffer arrangement for a record streami.

direction by an amount ofb bits, so that writing in the next allocation unit
starts by rewriting these lastb bits to disk, as intended. More specifically,
at the end of each cycle during which the last block of an allocation unit is
written to disk, the read pointer is placed backb bits, before the next cycle is
scheduled. The main concern is that the write pointer should not interfere with
the read pointer, that is, the write pointer should not already have passed the
point where the read pointer is repositioned. Note that the data to be written
to disk again has already been written to disk earlier, so that repositioning the
read pointer does not cause void data to be written to disk.

As the buffer of a record stream is initially empty, it can start writing data
to its buffer at the beginning of the cycle following the one during which it
has been admitted.

This completes the description ofTBR and we can now state the following
theorem.

Theorem 5.2. Given is a disk with transfer rate r and access time function
a, an allocation size u, overlap b and period length p. Given also are n VBR

streams with requested bit rates r1;r2; : : : ;rn; of which the first k are record
streams and the remaining n� k are playback streams. Let r0i denote the bit
rate that is allocated to record stream i, given by Equation 5.4, and assume
that ∑k

i=1r0i +∑n
i=k+1ri < r. Then TBR safely sustains these streams if and only

if the period length p satisfies

p� a(n)
r

r�∑k
i=1r0i �∑n

i=k+1ri
: (5.7)

92 Storage and Retrieval of Variable-Bit-Rate Video Streams

Note the correspondence of Equation 5.7 with Equation 5.2 in Theo-
rem 5.1. As before, Equation 5.7 is equivalent to saying that the length of
any cycle is bounded from above byp, so that for playback streams it can be
proved, virtually identically to the proof of Theorem 5.1, that buffer under- or
overflow will never occur. We can thus concentrate on the record streams and
only consider the possibility of buffer overflow, as buffer underflow is trivially
avoided.

The theorem will be proved in a number of steps by stating two lemmas.
We first introduce some notation. Assume that the allocation units that are
successively filled with data from record streami are numbered from 1 on-
wards and that cycles are also successively numbered. Let the amount of data
in the buffer of record streami at the start of cyclej be denoted byb0i(j) and let
the cycle during which the last block of allocation unitl is written to disk be
denoted byjl. For notational convenience, letj0+1 denote the cycle during
which record streami can start writing data to its buffer.

Lemma 5.1. For record stream i the following results hold.

(a) For each l � 1, it holds that b0i(jl)� 2b0i.

(b) The write pointer never interferes with the read pointer.

(c) For each j = j0+1; j0+2; : : : ; j1, we have b0i(j)� 2b0i.

(d) For each l � 1 it holds that b0i(jl +1)� 2b0i +b.

Proof. The proof mainly concerns part (a), while (b)–(d) are proved on the
fly. For l = 1, the inequality holds, as can be seen as follows. During cycles
j0 + 1; j0 + 2; : : : ; j1, allocation unit 1 is being filled with data. Note that
these may include cycles during which no data is being written to disk for
record streami. During these firstj1� j0 cycles, record streami behaves as
an ‘ordinary’ stream, similar to a playback stream, characterized byr0i, except
for the repositioning of the read pointer at the end of the last cycle. Following
a reasoning similar to that given in the proof of Theorem 5.1 for playback
streams, we establish thatb0i(j)� 2b0i for eachj = j0+1; j0+2; : : : ; j1, which
proves (c). In particular, we have thatb0i(j1)� 2b0i.

We now proceed by induction. Suppose thatb0i(jl�1)� 2b0i for somel > 1.
We next prove thatb0i(jl) � 2b0i. Firstly, during cyclejl�1, an amount of at
mostbi is written to the buffer, an amountb0i of data is read from the buffer, and
the amount of data in the buffer is increased instantly by an amountb at the
end of this cycle because of the repositioning of the read pointer. Asbi � b0i, it
turns out that the write pointer does not interfere with the read pointer: At the
moment that the read pointer is about to be repositioned, the amount of data
in the buffer is at mostb0i(jl�1)+ bi � b0i � 2b0i, so that the read pointer can

5.5 Dealing with record streams 93

indeed be placed backb bits without interference. Asl�1� 1 and arbitrary,
this proves (b). Furthermore, it holds that

b0i(jl�1+1) � b0i(jl�1)+bi�b0i +b

� b0i +bi +b

� 2b0i +b;

which proves (d).
Returning to (a), we next consider two cases: either (1) during all remain-

ing cyclesjl�1+1; jl�1+2; : : : ; jl �1 a block for record streami is written to
disk, or (2) there is a cycle, sayk, with jl�1 < k < jl, during which no block
is written to disk for record streami.

In case (1), we have thatjl � jl�1 = l0i , wherel0i is given by Equation 5.6.
During the remainingl0i � 1 cycles, an amount of data at most(l0i � 1)bi is
written to the buffer, whereas exactly an amountu�b0i is read from the buffer.
Thus,

b0i(jl) � b0i(jl�1+1)+(l0i �1)bi� (u�b0i)

� b0i +bi +b+(l0i �1)bi� (u�b0i)

� 2b0i + l0i bi +b�u

= 2b0i +

�
u�b

bi

�
bi +b�u

� 2b0i:

Alternatively, in case (2), it holds thatb0i(k) < b0i, as no data is written to disk
for record streami during cyclek. Again, following a reasoning similar to
that given in the proof of Theorem 5.1, we establish thatb0i(j)� 2b0i for each
j = k+1;k+2; : : : ; jl, as record streami again behaves as an ordinary stream
during these cycles. So in particular we have thatbi(jl) � 2b0i. This also
completes the proof of part (a).

Lemma 5.2. For each j � j0+1 it holds that b0i(j)� 2b0i +b.
Proof. For j = j0+1; j0+2; : : : ; j1, the above follows from Lemma 5.1(c).
We next proceed by proving the above result for eachl � 1 and for each
j = jl + 1; jl + 2; : : : ; jl+1 by induction onj.

Let l � 1. Lemma 5.1(d) states thatb0i(jl +1)� 2b0i+b. Now suppose that
b0i(j�1) � 2b0i +b for some j with jl +1< j � jl+1. We have to prove that
b0i(j)� 2b0i+b. First note that the read pointer is not repositioned at the end of
cycle j�1. During cyclej�1, an amount of data at mostbi is written to the
buffer. In caseb0i(j�1)< b0i, we certainly have thatb0i(j)< b0i +bi � 2b0i +b.
In caseb0i(j�1) � b0i, an amountb0i � bi of data is written to disk as well, so

94 Storage and Retrieval of Variable-Bit-Rate Video Streams

thatb0i(j)� b0i(j�1)+bi�b0i � b0i(j�1)� 2b0i +b. So, in any case, it holds
thatb0i(j)� 2b0i +b. This completes the proof.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2 Lemma 5.2 ensures that at the start of each cycle there
is sufficient room in the buffer to store an additional amountbi � b0i of data,
whereas Lemma 5.1(b) ensures that repositioning the read pointer does not
cause any problems, so that buffer overflow is guaranteed never to occur.

When considering in more detail the structure of the proofs above, note that,
although Lemma 5.1(a) is not used directly in either the proof of Theorem 5.2
or that of Lemma 5.2, it is used to prove Lemma 5.1(d), which in turn is used
in the proof of Lemma 5.2.

5.6 Concluding remarks

We end this chapter by providing some remarks on possible refinements and
optimizations that are possible in this context.

Although sufficient, a buffer size of 3b0i + b is not necessary. By a more
careful analysis of the required buffer size, it can be shown that a smaller
buffer of size 2bi +max(b0i;bi +b) is enough to prevent overflow for a record
streami.

For each record stream, the same overlapb was used, but it goes without
saying that different values ofb can be chosen for the different streams, cor-
responding to the rates at which the recorded files are typically played back.

We have illustrated howTB can be generalized to deal with record streams
as well. Alternative disk scheduling algorithms exist that can similarly be
generalized. Korst & Pronk [2005] discuss two alternative algorithms, namely
the variable-block double buffering (VDB) and the dual sweep algorithm (DS).

VDB bears great resemblance toTB, the main differences being that for
each streami, blocks of variable size are fetched from disk and a buffer for
two blocks suffices. GeneralizingVDB to incorporate record streams compli-
cates the writing process a little further. As the blocks that are successively
written to disk are generally of variable size, it cannot be guaranteed that the
allocation unit is completely filled with an integer number of such variable-
size blocks. One way to fix this is the following. If the next block to be written
to disk does not fit in the current allocation unit, the read pointer is placed back
and writing the next allocation unit starts by rewriting the lastb bits written in
the current allocation unit instead of writing the next block. The remaining,
unused part of the current allocation unit is at most one block of sizeb0i. This

5.6 Concluding remarks 95

increases the bit rate to be allocated, and hence the block sizeb0i. In that case,
Equation 5.5 should be replaced by

r0i �
u�b0i

u�b0i�b
ri; (5.8)

whereb0i = pr0i. This yields a quadratic inequality forr0i, which, together
with the requirement that the denominator in Equation 5.8 is positive, yields
a minimal value forr0i, provided thatri is not too large. We do not further
elaborate on this.

DS, like TB, only fetches fixed-size blocks for a stream and only requires
a buffer for two blocks, be it that the sizes of the blocks are larger than for
TB. We conjecture thatDS allows for a generalization, similar to that ofTB, to
incorporate record streams.

6
Resource-Based File Allocation

on a Multi-Zone Disk

In the preceding chapter, we have used a fairly simple model of a disk consist-
ing only of a transfer rater and an access-time functiona. They are used to
bound the actual transfer times of blocks and the associated overhead incurred
by head movements and rotational latencies, respectively.

In practice, the rate at which data is transferred from disk depends on
where this data is stored on disk. Assuming that data is stored at a con-
stant density, the size of a track is proportional to its distance to the spindle
of the disk. As the disk rotates at a constant angular velocity, the transfer
rate increases as the heads move from the inner toward the outer tracks. The
ideal situation of aconstant-density disk is approximated bymulti-zone disks,
where the cylinders are grouped into a number of zones. A zone consists of a
number of adjacent cylinders, each of which has a constant track size, so that
the transfer rate is constant within a zone.

In the previous chapter we used the transfer rate that can be sustained
in the innermost zone, to provide guarantees on the transfer time of a block,
irrespective of the location of this block on disk. As such, we did not exploit
the higher rates that can be achieved in the other zones, which can be a factor
of two higher.

97

98 Resource-Based File Allocation on a Multi-Zone Disk

In this chapter, we present and compare three alternative approaches that
alleviate this shortcoming. Two of them are based ontrack pairing, originally
introduced by Birk [1995a]. Track pairing allows the average transfer rate of
the disk to be used instead of the conservative disk rate. This transfer rate
can be guaranteed, irrespective of which files are being requested. In the third
approach files are stored on disk contiguously and in a particular order so as
to minimize overall disk resource usage. This approach is useful if informa-
tion is available on the popularity of individual files, something that cannot
be exploited by track pairing. We will show that, under several simplifying
assumptions, this contiguous storage can outperform track pairing if there is
sufficient skew in popularity.

For ease of exposition, we make a number of simplifying assumptions on
the disk model. We assume that it has only one head and that the number of
tracks is even. We also assume that the time required to switch from one track
to an adjacent track is negligible.

6.1 Track pairing

To improve the efficiency of reading data from disk, Birk [1995a] introduced a
storage strategy calledtrack pairing, where tracks are combined two-by-two,
starting at the two extreme tracks of the disk. If there arec tracks, numbered
1;2; : : : ;c, starting at the outer track, then tracks 1 andc, 2 andc�1, . . . ,t and
c+1� t, . . . , are combined to formc=2 track pairs. For a constant-density
disk, each track pair has the same size. For a multi-zone disk, where the
tracks in one zone have equal size, the size of a track pair may vary somewhat
across the disk, depending on the zones or zone in which the two tracks are
positioned. The minimal size of any of the track pairs can then be used as a
lower bound.

Track pairing improves upon an earlier method by Heltzer, Menon & Mit-
oma [1993] in terms of buffering requirements. The latter considers logical
tracks, where each logical track consists of one track of each of the zones. The
idea is to emulate a fixed track size and to read only whole logical tracks.

Returning to track pairing, blocks are stored on disk as follows. The trans-
fer rate of the disk at a positionx is denoted byr(x). A block of sizeb is stored
using one or more track pairs. In the case of one track pair, say trackst1 and
t2 = c+1� t1, the block is subdivided into two sub-blocks 1 and 2 of sizeb1

andb2, respectively, such that

b1

b2
=

r(t1)
r(t2)

: (6.1)

6.1 Track pairing 99

Sub-block 1 is stored on trackt1 and sub-block 2 is stored on trackt2. It
immediately follows that the reading times of these sub-blocks are equal, that
is, b1=r(t1) = b2=r(t2). Figure 6.1 illustrates this subdivision.

t1

t2

b1

b2

Figure 6.1. Illustration of how a block of sizeb = b1+b2 is stored on track
pair t1 andt2.

The transfer rate realized for this block is given by

b
b1

r(t1)
+ b2

r(t2)

=
b1 (1+

r(t2)
r(t1)

)

2b1
r(t1)

=
r(t1)+ r(t2)

2
; (6.2)

which is the average of the two transfer rates. For a constant-density disk,
this is a constant, independent of the track pair. This leads to the following
definition.

Definition 6.1. For a constant-density disk, itsaverage transfer rate ravg is
defined as

ravg=
rmin+ rmax

2
;

wherermin andrmax denote the transfer rates at the inner and outer tracks of
the disk, respectively.

The average transfer rate of a constant-density disk that uses track pairing can
be used to provide guarantees on the transfer time of data. For a multi-zone
disk, the minimal value attained in Equation 6.2 as(t1; t2) ranges over the track
pairs can be used for this purpose. Note that transfer rates can be guaranteed
irrespective of the popularity distribution over the files.

100 Resource-Based File Allocation on a Multi-Zone Disk

Another consequence of subdividing a block as given by Equation 6.1 is
that, as blocks are stored on a track pair, each of its tracks fills up at the same
speed in terms of their relative filling. Storing a block on more than one track
pair is thus a straightforward extension of the above.

Consequences for scheduling. By storing a block on disk in the above
way, it requires two accesses instead of one to retrieve the block from disk.
This increases the access-time overhead when compared to storing the block
contiguously, and diminishes the advantage of reading the block at the average
transfer rate.

An alternative to this approach is the following. For simplicity, we re-
strict ourselves to constant-block-size (CBS) scheduling algorithms like the
triple buffering algorithm discussed in the previous chapter. These scheduling
algorithms require that at most one block is retrieved from disk during any
cycle. Consider a streami with block sizebi, and let the blocks to be succes-
sively retrieved from disk for this stream be numbered 1;2;3; : : :. Instead of
storing these blocks individually on disk as described above, successive pairs
(2i�1;2i) of blocks are stored as a large block and a small block, whereby
the large block contains block 2i�1 and part of block 2i and the small block
contains the remaining part of block 2i. Assuming that only one track pair is
required for storing the pair of blocks, the large block is stored on the outer
of the two tracks and the small block on the inner track. It is then sufficient to
retrieve at most one large or one small block for streami from disk during any
cycle, provided that the buffer size is sufficiently increased and reading starts
with an odd block. This is because data is then only read ahead of time. In
other words, in the same access that an odd block is retrieved, part of the next
even block is also retrieved. The next access for streami causes the remaining
part of the even block to be retrieved. The amount of additional buffer space
required is given by the maximum amount of data that is prefetched. This oc-
curs when reading a sub-block for the stream that is closest to the outermost
track of the disk.

The requirement that reading should start with an odd block has a detri-
mental effect on the start-up latency. If the first block requested happens to be
an even block, which may happen if starting anywhere in the file is allowed,
then two accesses are necessary to retrieve this block.

For reference, we call the two approaches outlined abovedouble-access
track pairing (DTP) andsingle-access track pairing (STP), respectively. Both
approaches are illustrated in Figure 6.2.

Assuming again a constant-density disk, forDTP, the time required to read
a block of sizebi for streami is fixed and can be written asbi=ravg. For STP,

6.2 Resource-based file allocation 101

t1

t2

STPDTP

Figure 6.2. Illustration ofDTP, where reading a block requires two accesses,
andSTP, where reading a block requires only one access, provided that, for
the light-grey block, the part on trackt1 has been read during the access
where the dark-grey block was read.

the time to read a large or a small block is given by the same expression. This
again shows that the average transfer rate of the disk can be used instead of
the transfer rate in the innermost zone. For multi-zone disks, the situation is
similar.

6.2 Resource-based file allocation

The condition for safeness for the disk scheduling algorithm discussed in the
previous chapter makes use of the fact that the transfer rate is guaranteed,
providing an upper bound on the time to read a block from disk. These con-
ditions can be relaxed if we take into account the location of the files on disk.
In particular, considerTB, for which the safeness condition, stated also in
Theorem 5.1, is given by

p� a(n)
r

r�∑n
i=1 ri

; (6.3)

wherep is the period length,a is the access-time function,r is the transfer rate,
n is the number of streams, andri the bit rate of streami, for i = 1;2; : : : ;n.
If we associate a transfer rate ˆri with each streami, indicating the minimal
rate at which the file requested by streami can be retrieved from disk, then
Equation 6.3 can be relaxed to

p � a(n)
1

1�∑n
i=1 ri=r̂i

: (6.4)

102 Resource-Based File Allocation on a Multi-Zone Disk

The transfer rate ˆri equalsr(xi), wherexi denotes the position of a block,
from the file requested by streami, that is stored closest to the inner track of
the disk. As ˆri � r, and generally even ˆri > r, the right-hand side in this equa-
tion will generally be smaller than that in Equation 6.3, leading to a smaller
minimal period length, or to possibly more simultaneous streams if the period
length is not changed.

In this section, we take a closer look at the problem of how to store a num-
ber of files on disk to take maximum advantage of this idea. For reference, we
call this resource-based file allocation. We do this while taking the popularity
of files into account. We will see that, although it is tempting to store the pop-
ular files closer to the outermost track of the disk than the less popular ones
[Ghandeharizadeh, Ierardi, Kim & Zimmermann, 1996], the situation is more
complicated than this.

In the remainder of this section, we formally define the offline problem of
storing a number of files contiguously on a multi-zone disk and prove that it
is NP-hard. We propose a heuristic algorithm and analyze its performance by
analysis as well as simulation. In Section 6.3 we consider a special case and
analytically compareRFA with DTP andSTP. Then, in Section 6.4, we provide
simulation results pertaining to this comparison. We provide related work in
Section 6.5. Finally, we end with some concluding remarks in Section 6.6.

6.2.1 Problem definition

Informally, the problem we consider is how to storem video files on disk
such that disk resource usage is optimized. To this end, each filei, with
i = 1;2; : : : ;m, is characterized by its bit rateri, durationdi, popularity γi,
and sizesi. The bit rate is as defined in the previous chapter. The durationdi

typically expresses the linear playout time of the entire file, but could alter-
natively describe the average playout time of an associated stream in case,
for example, jumping and replaying are performed often. The popularityγi is
given as the fraction of the total number of stream requests per unit time that
request the file, and the sizesi gives the size of the file. Note that for aVBR

file it generally holds thatri > si=di, although this is not used in the remainder
of this chapter.

When a filei has been stored on disk, there is a positionxi at which the
transfer rate of data from this file is minimal. We associate a transfer rate
r̂i = r(xi) with this file. This rate corresponds to the transfer rate that is at-
tained when reading data from this file that is stored closest to the inner track
of the disk.

For a stream, the actual transfer rate that can be guaranteed may increase
over time, such as when the requested file is viewed linearly and reading the

6.2 Resource-based file allocation 103

file from disk is performed from its innermost location outward. Furthermore,
in such a situation, the required bit rate may likewise be decreased as the file
is being viewed. We do not take these complicating issues into account, but
instead allow increased flexibility in viewing a file.

When a stream request for filei is admitted, we have to allocate to this
stream a bit rate of (at least)ri, which corresponds to a fractionri=r̂i of the
time available for reading, for an average ofdi time units. The valueri=r̂i can
be considered as the momentary disk load for this stream. Allocating less than
ri=r̂i may eventually lead to a buffer underflow, as the stream may consume
data at a rate ofri for an indefinite amount of time. This leads to an allocation
of a total ofri di=r̂i of disk resource to this stream. The expected amount of
disk resource to be allocated to an arbitrary stream is thus given by

m

∑
i=1

ri di

r̂i
γi: (6.5)

The unit of this expression is time, and reflects the total expected amount of
reserved transfer time on the disk for an arbitrary stream.

The problem we consider is to find a file allocation strategy that minimizes
Equation 6.5. It is easily seen that we only have to consider file allocation
strategies where each file is stored contiguously on disk, as interleaving files
cannot increase the individual transfer rates, and that storing the files should
proceed from the outer track inward, without gaps between the files.

Equation 6.5 allows for an alternative interpretation. Consider an arbitrary
moment in time, and assume that admission control ensures that the popularity
of individual files is reflected in the distribution of the streams over the files.1

For a randomly chosen stream at that moment, the probability that it is
associated with filei is proportional todi γi, and ri=r̂i gives its momentary
disk load, given that it is associated with this file. Equation 6.5 thus gives the
expected, momentary disk load for a randomly chosen stream at an arbitrary
moment in time. As a result, minimizing the value of Equation 6.5 also implies
that the expected number of simultaneous streams is maximized.

To simplify the appearance of Equation 6.5, we introduce for each filei a
weightwi = ri di γi. We are now ready to formally state the problem.

Problem 6.1. [Resource-based file allocation problem (RFA)]. Given are a
disk of size s > 0 with a non-increasing transfer rate functionr > 0 on
f1;2; : : : ;sg andm files numbered 1;2; : : : ;m, each filei being characterized

1This need not be the case if certain files are favored over others for economic or other
reasons, or if files with smaller bit rates are favored over others during admission control.

104 Resource-Based File Allocation on a Multi-Zone Disk

by a weightwi > 0 and sizesi > 0, with ∑m
i=1 si = s. Find an orderingπ of

these files on disk, such that the costc(π) is minimal, wherec(π) is defined as

c(π) =
m

∑
i=1

wπ(i)

r(∑i
j=1sπ(j))

: (6.6)

Note that the functionr is sufficiently general to cover multi-zone disks. The
orderingπ lists the order in which the files are stored on disk: fileπ(1) is
stored first, starting at the outermost track, followed by fileπ(2), et cetera.
The transfer rate associated with fileπ(i) is the transfer rate at the position on
disk where the last bit of fileπ(i) is stored, which is given byr(∑i

j=1sπ(j)).
We next prove thatRFA is NP-hard. NP-hardness implies that no poly-

nomial-time algorithm exists that solves each instance ofRFA to optimality,
unlessP=NP. We refer to Garey & Johnson [1979] for more background on
the theory of computational complexity.

Theorem 6.1. RFA is NP-hard.
Proof. An optimization problem isNP-hard if its decision variant isNP-com-
plete. The decision variantRFA-D of RFA is defined as follows. Given an
instanceI and a costk, is there an orderingπ such thatcI(π)� k?

RFA-D is clearly inNP: given an instanceI, a costk, and an orderingπ, it
can be checked in polynomial time whethercI(π) � k. We next present a re-
duction fromPARTITION, a well-knownNP-complete problem [Garey & John-
son, 1979].PARTITION is defined as follows. Given a setU = f1;2; : : : ;mg of
items, each itemi being characterized by a positive, integer sizeai, is there a
subsetV of U such that∑i2V ai = ∑i2UnV ai?

Let a1; a2; : : : ; am denote an arbitrary instance ofPARTITION, and let
U = f1;2; : : : ;mg. We assume a disk of sizes = ∑m

i=1 ai, containing two
zones 1 and 2 both of sizes=2 with transfer rates ˆr1 andr̂2, with r̂1 > r̂2. We
considerm files, each filei being characterized bywi = si = ai, and we define
k = s=(2r̂1) + s=(2r̂2). We next prove that we have a yes-answer to the in-
stance ofPARTITION if and only if we have a yes-answer to this instanceI of
RFA-D.

Assume that there is aV �U such that∑i2V ai = ∑i2UnV ai = s=2. Then
storing the files inV in the outer zone and the others in the inner zone results in
a cost equal to∑i2V ai=r̂1+∑i2UnV ai=r̂2 = s=(2r̂1)+ s=(2r̂2) = k, so that this
instance ofRFA has a yes-answer. This is illustrated in Figure 6.3a, where the
files inV are stored in the dark-grey area and the files inUnV in the light-grey
area of equal size.

6.2 Resource-based file allocation 105

r 2

r 1

(a)

(b)

S/2 S

^

^

bit position

tr
an

sf
er

 r
at

e

Figure 6.3. Illustration of the two cases. For explanation, see the running
text.

Conversely, assume that there is an orderingπ such thatcI(π)� k, that is

∑
i2U

aπ(i)

r(∑i
j=1aπ(j))

� s
2r̂1

+
s

2r̂2
: (6.7)

Note that the left-hand side of this equation can alternatively be written as
∑i2V ai=r̂1+∑i2UnV ai=r̂2, with ∑i2V ai � s=2 for someV �U . This is because
there are only two zones, with transfer rates ˆr1 and r̂2, respectively, and the
total size of all files with associated transfer rate ˆr1 is at most the size of
the corresponding zone, which iss=2. Elementary calculus now shows that,
as r̂1 > r̂2, Equation 6.7 can only hold if∑i2V ai � s=2, so that∑i2V ai = s=2
holds. In other words, the instance ofPARTITION has a yes-answer. Therefore,
RFA-D is NP-complete and henceRFA is NP-hard.

Figure 6.3b illustrates the equivalent case that there is no equal split. All
files in the dark-grey area have an associated transfer rate of ˆr1, whereas all
files in the larger, light-grey area have an associated transfer rate of ˆr2, result-
ing in a total cost that is easily seen to be larger thank.

It can be shown thatRFA is NP-hard in the strong sense by applying a similar
reduction from 3-PARTITION. The latter problem is known to beNP-hard in
the strong sense [Garey & Johnson, 1979]. As this reduction from a given
case of 3-PARTITION with 3m elements leads to a disk withm zones, we can
conclude that, if we add the restriction toRFA that the disk contains only two
zones, the problem is notNP-hard in the strong sense anymore, but stillNP-
hard.

106 Resource-Based File Allocation on a Multi-Zone Disk

Theorem 6.2. RFA with equal file sizes is in P, and an optimal solution is
found by storing the files in order of non-increasing weight from the outermost
to the innermost track of the disk.
Proof. In the case that all files have equal size ˜s, then Equation 6.6 simplifies
to

c(π) =
m

∑
i=1

wπ(i)

r(i s̃)
:

In this equation, besides having a fixed set of numerators, the set of denom-
inators is now also fixed. This means that, by interchanging the positions of
two files, only their weights switch places, whereas all denominators remain
identical. Suppose we have two numeratorsw1 andw2 and two denominators
r1 andr2, with r1 � r2. It readily follows that, ifw1 � w2, then

w1

r1
+

w2

r2
� w2

r1
+

w1

r2
;

so that storing the files in order of non-increasing weight from the outermost
to the innermost track of the disk yields an optimal solution.

6.2.2 A heuristic algorithm

As RFA is (strongly)NP-hard, algorithms that solve this problem to optimality
can only deal with relatively small instances. For larger instances, it is neces-
sary to consider heuristic algorithms that produce good results, although not
necessarily optimal. Surprisingly enough, applying a simple sorting algorithm
on them files, which takesO(m logm) time, yields remarkably good results
for practical cases. By storing files in order of non-increasing weight-size ra-
tio on disk, results are generally obtained that are either optimal or close to
optimal. For reference, we call this heuristic thelargest ratio first algorithm
(LRF).

Note that, if all files have the same size,LRF effectively stores the files in
order of non-increasing weight. In this case,LRF yields an optimal solution
by Theorem 6.2.

If each filei is streamed at a constant bit rateri and only once from be-
ginning to end, then for each filei, it holds thatsi = ri di and, consequently,
wi=si = γi. The ordering suggested above then boils down to storing files in
order of non-increasing popularity, corresponding to the approach by Ghan-
deharizadeh, Ierardi, Kim & Zimmermann [1996].

We next investigate the worst-case performance ratio ofLRF, where we
show thatLRF is one of the worst algorithms. We proceed by illustrating
why this algorithm performs remarkably well in practice and substantiate this
further by simulation results.

6.2 Resource-based file allocation 107

Worst-case performance ratio. The general form of the problem statement,
in particular the fact that the transfer rater of the disk need only be non-
increasing, leads to the following result.

Theorem 6.3. The worst-case performance ratio of LRF is ∞.
Proof. We prove this result by, for a fixed, but arbitrary value ofk, providing
an instance and comparing the solution found byLRF for this instance with an
alternative solution. The ratio of their costs then provides a lower bound on
the worst-case performance ratio.

We fix a value ofk and consider a multi-zone disk withn zones numbered
1;2; : : : ;n. Each zonei, except zonen, has sizezi = z, wherez is a constant,
and zonen has sizezn = n. The transfer rateri in zonei, for i = 1;2; : : : ;n; is
given byri = r1=ki�1, wherer1 is a constant. We haven+1 files, numbered
1;2; : : : ;n+ 1. File 1 has sizes1 = 1 and weightw1 = n +1 and filei, for
i= 2;3; : : : ;n has sizesi = zi�1 = z and weightwi =(n+2� i)si =(n+2� i)z.
Finally, file n+1 has sizesn+1 = zn�1= n�1 and weightwn+1 = n�1.

The file sizessi sum up to the disk size, which is the sum of the zone
sizeszi. Indeed,∑n+1

i=1 si = 1+∑n
i=2 z+ n�1 = (n� 1)z + n, which equals

∑n
i=1 zi = (n�1)z+n.

As the weight-over-size ratios of each filei is n+2� i, LRF stores these
files on disk in the order 1;2; : : : ;n+1, starting at the outer track, as illustrated
in Figure 6.4.

bit position

transfer
rate

1 2 3 4 . . . n n + 1
LRF solution

12 3 4 . . . n
n + 1

alternative solution

Figure 6.4. Illustration of howLRF stores then+1 files on disk.

We compare the costcLRF of the LRF solution with the costcALT of the alter-
native solution, whereby file 1 is repositioned between filesn andn+1 and

108 Resource-Based File Allocation on a Multi-Zone Disk

files 2 ton shifted outward, as illustrated in the same figure. We have that

cLRF =

n

∑
i=1

wi

ri
+

wn+1

rn

=
n+1

r1
+

n

∑
i=2

(n+2� i)z
r1=ki�1 +

n�1
r1=kn�1

=
1
r1

(n+1+(n�1)kn�1+ z
n

∑
i=2

(n+2� i)ki�1)

=
1
r1

(n+1+(n�1)kn�1+ zk q);

whereq is defined as

q =

n

∑
i=2

(n+2� i)ki�2
: (6.8)

Similarly, we have that

cALT =
w1

rn
+

n

∑
i=2

wi

ri�1
+

wn+1

rn

=
n+1

r1=kn�1 +

n

∑
i=2

(n+2� i)z
r1=ki�2 +

n�1
r1=kn�1

=
1
r1

(2nkn�1+ zq);

with q as defined in Equation 6.8. As, for fixedk, r1, andn, it holds that

lim
z!∞

cLRF

cALT

= k;

we can choosez large enough to establish that

cLRF

cALT

� k=2:

As k was arbitrary, we have proved that the worst-case performance ratio of
LRF is ∞.

A few remarks on this proof are in place. Firstly, it can be shown that the
alternative solution is the optimal solution, provided thatz is sufficiently large,
using a similar reasoning as used in the proof of Theorem 6.2. Secondly, it
is remarkable that in the instance, all except two files have the same size,
whereas Theorem 6.2 states that, ifall files have the same size, the problem
is in P. Evidently,LRF can have significant difficulty with even ”almost easy”
instances.

6.2 Resource-based file allocation 109

Thirdly, switching the positions of adjacent files does not improve upon
the result. This can be seen by adding a filen+2 of size 1 and weightn+0:5
and reducing the size of filen+1 by 1. Files 1 andn+2 will be stored by
LRF at the outermost positions. Switching filesn+2 and 2 does not decrease
the cost, as the transfer rate associated to file 2 does not change, whereas the
transfer rate associated to filen+2 decreases. Furthermore, although moving
file n+1 outward by switching adjacent files until it is next to filen+2 does
lower the initial cost ofLRF, its effect, that is, the term(n�1)kn�1 is replaced
by the termn�1, is marginal and does not influence the overall result. Finally,
switching two adjacent files with the same size does not improve upon the
result either, as argued earlier. Consequently, no strategy based on switching
adjacent files improves upon the result.

Fourthly, the disk parameters used are not realistic in practice. On a multi-
zone disk, one would expect the transfer rate to approach that of a constant-
density disk, where the transfer rate decreases linearly from the outermost
track to the innermost one, resulting in a rate that decreases as a square-root
function of the bit position, and not as a negative-exponential function.

The following theorem provides more practical results, where we express
the worst-case performance ratio in terms of some disk characteristics.

Theorem 6.4. The worst-case performance ratio of LRF is 1=ρ, where ρ de-
note the ratio of the minimum and maximum transfer rate of the disk.
Proof. We first prove that 1=ρ is an upper bound forany algorithm that
computes an ordering for the files. This then holds in particular forLRF. Con-
sider Equation 6.6. The cost of any ordering can be bounded from above by
substituting the minimum transfer ratermin for the denominators, leading to
an upper bound of∑n

i=1wi=rmin. Conversely, the cost of an optimal ordering
can be bounded from below by substituting the maximum transfer ratermax

for the denominators, leading to a lower bound of∑n
i=1 wi=rmax. The ratio of

these two bounds equals 1=ρ.
We next construct an instance that approaches this bound; see Figure 6.5.

The disk of sizes has two zones, the outer is of sizes�1 and the inner is of
size 1. We have two files, file 1 has sizes�1 and weightw1, file 2 has size 1
and weightw2. We assume thatw1 >w2 >w1=(s�1), so thatLRF stores file 2
on the outer track. The associated costcLRF is given by

cLRF =
w2

rmax
+

w1

rmin
:

The alternative solution has costcALT , given by

cALT =
w1

rmax
+

w2

rmin
:

110 Resource-Based File Allocation on a Multi-Zone Disk

bit position

transfer
rate

2 1
LRF solution

alternative solution
21

rmax

rmin

Figure 6.5. Illustration of a worst-case instance.

As w1 >w2, it holds thatcALT < cLRF, as is easily verified, so that the alternative
solution is the optimum. We now have that

cLRF

cALT

=

w2
rmax

+ w1
rmin

w1
rmax

+ w2
rmin

=
w+ 1

ρ

1+ w
ρ
;

with w = w2=w1. We choosew = (1+ ε)=(s�1) for some smallε > 0 and
conclude that

cLRF

cALT

! 1=ρ as s ! ∞:

It thus turns out that, in terms of the worst-case performance ratio,LRF is one
of the worst algorithms. In practice, however, the algorithm works remarkably
well, as we will illustrate below.

Performance analysis. To illustrate why the sorting algorithm works so
well, we split each filei into si sub-files of unit size, where sub-filej of i is
characterized by a weightwi j = wi=si, for eachj = 1;2; : : : ;si.

The splitting operation results in a total of∑m
i=1si sub-files of unit size,

whereby all sub-files of one file have equal weight. On account of Theo-
rem 6.2, storing these sub-files in order of non-increasing weight from the
outermost to the innermost track of the disk yields an optimal ordering. In
particular, as all sub-files of one file have the same weight, these sub-files
may be stored contiguously without violating the property of optimality. As
such, Equation 6.6 is minimized for this collection of sub-files.

6.2 Resource-based file allocation 111

Now, let us only look at contiguous orderings of the sub-files where all
those associated with a single file are stored contiguously. For each such
ordering of sub-files, each sub-filej of file i has a transfer rate ˆri j, based on
its location on disk, and the cost of this ordering is given by

m

∑
i=1

si

∑
j=1

wi j

r̂i j
=

m

∑
i=1

wi

si

si

∑
j=1

1
r̂i j

: (6.9)

Now, observe that(∑si
j=11=r̂i j)=si denotes the average of the reciprocal values

of the bit rates associated with the sub-files of filei. In casesi is not too large
and the transfer rate function descends relatively smoothly, the individual bit
rates in this average will be relatively close to each other, as all sub-files of file
i are stored contiguously, so that replacing this average by maxsi

j=11=r̂i j will
result in a cost function that only differs marginally from Equation 6.9. Opti-
mizing Equation 6.9 then also yields a good ordering for this approximating
cost function. But then, as this maximum denotes the reciprocal value of the
bit rate associated with the sub-file ofi that is stored closest to the innermost
track of the disk surface, it also denotes the reciprocal value of the bit rate as-
sociated with the entire file in the original problem, so that this approximating
cost function is the cost function of the original problem.

Summarizing, storing files in order of non-increasing ratio of their weights
and sizes from the outermost to the innermost track of the disk may lead to
close to optimal orderings, especially when the individual file sizes are not too
large and the transfer rate function descends relatively smoothly.

These conditions are satisfied when a large number of files of comparable
size has to be stored on a disk with relatively many, approximately equal-size
zones in terms of the number of tracks and where the track size of the succes-
sive zones decrease relatively smoothly from the outermost to the innermost
zone. The latter properties are typical for contemporary disks.

Simulations. To support these findings for relatively small numbers of files,
we conduct a set of simulations on 1,000 small instances using a constant-
density version of a contemporary disk; see Korst & Pronk [2005], assuming
that only a single surface is used for video files. The constant-density version
of this disk is characterized as follows; see also Figure 6.6. The transfer rate
at the innermost track of each zone of the original disk is equal to the transfer
rate of the corresponding track on the constant-density disk.

This constant-density disk has a maximum transfer ratermaxof 467 Mbit/s,
a minimum transfer ratermin of 221 Mbit/s, and a sizes of 172 Gbit. For each
instance, we choose the numberm of files randomly in the rangef5;6; : : : ;10g,
each file being characterized by a randomly chosen weight in the range [0,1)

112 Resource-Based File Allocation on a Multi-Zone Disk

track number

transfer
rate

Figure 6.6. The transfer rate function of the original disk (gray step function)
and the constant-density version (black line).

and a randomly chosen integer size in the range [0,z), wherez is chosen as
4s=m to allow a relatively large variation in file sizes. For the generation of
each instance, repeatedlym file sizes are chosen until the sum of the sizes is
at most the disk size. The small number of files allows optimal orderings to
be computed.

The results forLRF are as follows. In approximately 70% of the instances,
an optimal ordering is found. For the remaining 30%, the cost of each ordering
is at most 3% larger than the cost of an optimal ordering. To give an indication
of the relevance of finding good or optimal orderings, we also generate for
each instance a worst ordering with maximal cost. The costs of the worst
orderings are 35% larger than the optimal costs on average, and the cost of
the worst ordering observed is 88% larger. Note that any ordering can be at
mostrmax=rmin�1 = 111% larger than the optimal cost, as all transfer rates
are between the minimum and maximum transfer rates. It thus turns out that
LRF performs quite well, even for small numbers of large and small files.

We next conduct the same simulations as described above, but instead of
using a constant-density disk, we use the original multi-zone disk. The results
are as follows. In approximately 30% of the instances, an optimal ordering is
found. For the remaining 70%, the cost of each ordering is at most 6% larger
than the cost of an optimal ordering, but in only 2% of the instances, the cost
is more than 2% larger. For these simulations, the costs of the worst orderings
found are 37% larger than the optimal costs on average, and the cost of the
worst ordering observed is also 88% larger.

6.3 Analysis of a special case 113

An ordering found by the sorting algorithm can, of course, be used as an
initial ordering by other algorithms that attempt to improve upon this ordering.
As an example, consider the operation of scanning an initial ordering once
from the beginning to the end, where the positions of two adjacent files are
switched in case this results in an improvement. Applying thisO(m) algorithm
to the orderings found byLRF improves upon the results in the sense that, for
the constant-density disk, in 98% instead of 70% of all instances an optimal
ordering is found. For the multi-zone disk, the improvement is that in 68%
instead of 30% of all instances an optimal ordering is found.

6.3 Analysis of a special case

In this section and the next, we study a special case in more detail. In particu-
lar, we compareRFA with DTP andSTP. We start with an analytical compari-
son of the maximum number of streams that can be sustained simultaneously,
under various simplifying assumptions, most notably that the files only differ
in their popularity. We initially ignore the issue of start-up latency, but include
this in a second analysis. Section 6.4 provides simulation results, supporting
the results of this section while relaxing some of the assumptions.

6.3.1 Without constraints on the start-up latency

We considerm files, numbered 1;2; : : : ;m, of equal durationd̃, equal size ˜s,
and equal bit rate ˜r, each filei being characterized by its popularityγi, with
∑m

j=1γ j = 1 andγ j � γ j+1 for j < m. The files are thus numbered in order
of non-increasing popularity. We use a single, constant-density disk with a
minimal transfer rate ofrmin and a maximal transfer rate ofrmax. We assume
that the disk is exactly large enough to contain all files, that is, we assume that
its sizes equalsms̃.

Referring again to the remark at the end of Section 6.2.1, as all files are of
equal size ˜s, they are already sorted appropriately, and they should be stored
in order of increasing file number from the outermost to the innermost track
of the disk to minimize the cost. Note thatLRF also results in this ordering.

The bits on the disk are numbered from 1 onwards, starting at the outer-
most track. Filei thus occupies bits(i�1) s̃+1;(i�1) s̃+2; : : : ; i s̃. It can be
shown that at bit positioni s̃, the transfer rate is accurately described by

r(i) = rmax

r
1� (1�ρ2)

i
m
; (6.10)

whereρ = rmin=rmax. This rate is based on the assumption that the successive
bits on disk are organized as a spiral, rather than as a number of concentric cir-

114 Resource-Based File Allocation on a Multi-Zone Disk

cles. The difference with the actual transfer rate can be shown to be negligibly
small.

For file i, the minimum rate used to read data from disk is thus given
by r(i). The average transfer rate is given byravg= (rmin+ rmax)=2, as shown
in Section 6.1.

Now, assume that a large numbern of streams simultaneously exist, and
that a partγi n of them is associated with filei. For simplicity, we ignore the
fact that these fractions need not be integer-valued. Each of theγi n streams
associated with filei only uses at most a fraction ˜r=r(i) of the time available
for reading, the latter of which can be arbitrarily close to 1 per unit time. So,
it should hold that

m

∑
i=1

γi n
r̃

r(i)
< 1;

or, equivalently,

n <
1

r̃ ∑m
i=1

γi
r(i)

: (6.11)

The right-hand side of this inequality is maximized if the sum in the denomi-
nator is minimized, which nicely illustrates the relevance ofRFA.

To substantiate this result further, we assume that the popularity of files is
given by Zipf’s law, which is often used as a popularity distribution [Breslau,
Cao, Fan, Phillips & Shenker, 1999; Griwodz, B¨ar & Wolf, 1997]. Zipf’s law
states that, for each filei,

γi =

1
i

∑m
j=1

1
j

: (6.12)

Note that the denominator is just a normalization constant. In practice, Zipf’s
law is generally not followed exactly, and in Section 6.4 we provide simulation
results where Zipf’s law is followed only statistically.

By substituting Equations 6.10 and 6.12 in Equation 6.11, we can express
n as a function of the known parameters.

Numerical results. We usem = 10 files, each with a bit rate ˜r = 7 Mbit/s
and size ˜s = 17:2 Gbit, rmin = 221 Mbit/s, andrmax = 467 Mbit/s, so that
ρ = 0:473 andravg= 344 Mbit/s.

When using eitherDTP or STP, a maximum ofb344=7c = 49 streams can
be sustained simultaneously. UsingRFA and assuming Zipf’s law, evaluation
of Equation 6.11 yields a maximum of 54 simultaneous streams, an increase
of slightly over 10% when compared to both variants of track pairing.

6.3 Analysis of a special case 115

In the case that all files are equally popular, that is,γi = 1=m for all i, RFA

performs worse thanSTP. This is because it can be shown that∑m
i=11=r(i) is

bounded from below bym=ravg. However, this bound becomes tighter asm
increases.

For completeness, we mention that, when using the minimum transfer
rate of 221 Mbit/s, only 31 streams can be sustained simultaneously, and
the absolute maximum number of simultaneously active streams is given by
brmax=r̃c= 77. The latter is possible if all streams only read data at the outer-
most track of the disk.

6.3.2 With constraints on the start-up latency

In practice, the transfer rate of the disk is not fully exploited, in order to keep
the start-up latencies and buffer requirements at an acceptable level. Refer-
ring to Equation 6.4, allowing∑n

i=1ri=r̂i to approach 1 leads to very large
period lengths, which in turn leads to correspondingly large blocks, buffers,
and start-up latencies. The latter was already observed in the previous chap-
ter. In this section, we investigate how this influences the maximum number
of simultaneously sustainable streams forDTP, STP, andRFA.

We assume that then streams are served using the triple buffering algo-
rithm discussed in Chapter 5 with period lengthp so that the block size for
each stream equalsp r̃. For the access time functiona we use the following
affine function, where forn disk accesses the access time is given by

a(n) = α+βn; (6.13)

for some constantsα and β. For details, we again refer to Korst & Pronk
[2005].

The worst-case start-up latency for a new stream is 2p. We now con-
cisely reconsider the safeness condition in Equation 6.3 forDTP, STP, and
RFA. Clearly, the period length should be large enough to read one block from
disk for each of then streams. ForDTP, reading a block results in a transfer
time of p r̃=ravg, whereas the access time isa(2n), since each block requires
two accesses. It should thus hold that

p � a(2n)+n
p r̃

ravg
:

Using Equation 6.13, this can be rewritten as

n � p�α
2β+

p r̃
ravg

: (6.14)

116 Resource-Based File Allocation on a Multi-Zone Disk

For STP, reading a large or small block also results in a transfer time of
p r̃=ravg, whereas the switching overhead is onlya(n), so that it should hold
that

p � a(n)+n
p r̃

ravg
:

Using Equation 6.13, we obtain

n� p�α
β+

p r̃
ravg

: (6.15)

When comparing Equations 6.14 and 6.15, it follows that, for any value ofp,
STP performs at least as well asDTP in terms of the maximum number of
simultaneously sustainable streams, at the cost of a small increase in buffer
size.

For RFA, each of theγi n streams associated with filei requires a read time
of at mostp r̃=r(i) for each block. Consequently, forRFA, it should hold that

p� a(n)+
m

∑
i=1

γi n
p r̃

r(i)
;

which can likewise be rewritten as

n � p�α
β+ p r̃ ∑m

i=1
γi

r(i)

: (6.16)

Numerical results. We next compare Equations 6.14 – 6.16 for several val-
ues ofp and assuming Zipf’s law. For the parameters of the switching over-
head in Equation 6.13, we useα = 27 ms andβ = 17:3 ms, derived from the
parameters of the disk used. The other parameters are as before. The results
are shown in Table 6.1. For each value ofp, it lists the maximum values of
n satisfying Equations 6.14 – 6.16. Figure 6.7 shows the comparison graphi-
cally.

As α andβ vanish in each of the three equations for growing values ofp,
the curves forDTP andSTPapproach 49, and the curve forRFA approaches 54,
whenp becomes sufficiently large.

The results show thatRFA outperforms bothDTP and STP, the absolute
differences betweenSTP and RFA generally becoming more pronounced as
the period length increases.

Alternatively, to be able to simultaneously sustain, say, 35 streams,DTP

leads to a worst-case start-up latency of 9 s,STP4.5 s, and forRFA with Zipf’s
law, between 3.5 and 4 s.

6.3 Analysis of a special case 117

p DTP STP RFA p DTP STP RFA

0.25 5 9 10 2.75 30 37 40
0.50 10 17 17 3.00 31 37 41
0.75 14 22 23 3.25 31 38 41
1.00 17 25 27 3.50 32 39 42
1.25 20 28 30 3.75 33 39 43
1.50 22 30 32 4.00 34 40 43
1.75 24 32 34 4.25 34 40 44
2.00 26 34 36 4.50 35 41 44
2.25 27 35 37 4.75 35 41 45
2.50 28 36 39 ∞ 49 49 54

Table 6.1. Comparison betweenDTP, STP, andRFA of the maximum number
of simultaneously sustainable streams, assuming Zipf’s law forRFA.

0

10

20

30

40

50

1 2 3 4 5

m
ax

im
um

 n
um

be
r

of
 s

tr
ea

m
s

period length (s)

RFA
STP
DTP

Figure 6.7. Graphical comparison betweenDTP, STP, andRFA of the max-
imum number of simultaneously sustainable streams, assuming Zipf’s law
for RFA.

Recall that forSTP, reading should start with an odd block. This is to ensure
that data is only read ahead of time. In case it should be possible to start
reading at any block, then the worst-case start-up latency is given by 3p. This
may occur when the first block to read is an even block, which is split in two

118 Resource-Based File Allocation on a Multi-Zone Disk

parts and stored at two locations on disk. This requires two cycles to read the
entire block instead of one. Hence, to achieve comparable worst-case start-up
latencies as withDTP andRFA, a smaller period length should be used. For
example, to achieve a worst-case start-up latency of 6 s,p should be chosen
equal to 3 forDTP andRFA and equal to 2 forSTP. The maximum number of
simultaneously sustainable streams in this case is then 31 forDTP, 34 forSTP,
and 41 forRFA. In the next section, we do not consider this issue and assume
that reading starts at an odd block.

6.4 Simulations

The results in Section 6.3.2 are obtained while assuming an ideal division
of the streams among the files, that is, filei hasγi n associated streams. In
practice, deviations will generally exist, most notably becauseγi n need not be
integer, but also because Zipf’s law is only followed statistically.

To obtain insight into the actual number of simultaneously sustainable
streams usingRFA and assuming Zipf’s law, we conduct 106 independent sim-
ulation runs for each of the worst-case start-up latencies of 2, 5, and 10 s, cor-
responding to period lengths of 1, 2.5, and 5 s, respectively. The parameters
are as before. In each run, we start with zero streams, successively generate
additional streams according to Zipf’s law, and stop just before the disk be-
comes overloaded by adding a stream with largest disk resource requirements,
in this case with minimal transfer rate. This admission control criterion ex-
presses fairness among the files in the sense that Zipf’s law is indeed followed
statistically.

Figure 6.8 illustrates for the three values of the start-up latency the three
normalized frequency histograms of the maximum number of simultaneously
sustainable streams. The dashed lines directly to the left of each histogram
indicate the corresponding values forSTP. It shows thatSTP is outperformed
by RFA with high probability for each of the three cases.

6.5 Related work

Birk [1995b] considers track pairing in the broader context of various load
balancing techniques, for single disks as well as multiple disks. He also briefly
considers tertiary storage such as tapes.

Ghandeharizadeh, Ierardi, Kim & Zimmermann [1996] also consider the
problem of storing files on a single multi-zone disk. The cost function they
minimize is the expected time to read an entire file from disk, taking into
account that a file may cross zone boundaries. The authors store files con-
tiguously from the outermost to the innermost track of the disk in order of

6.5 Related work 119

0

0.1

0.2

0.3

0.4

0.5

20 25 30 35 40 45 50 55

no
rm

al
iz

ed
 f

re
qu

en
cy

number of streams

p = 1.0 s
p = 2.5 s
p = 5.0 s

Figure 6.8. Normalized frequency histograms for period lengths 1, 2.5, and
5 s, assuming Zipf’s law and the corresponding bounds forSTP. For further
explanation, see the text.

non-increasing popularity and prove that this is indeed optimal for this cost
function. For each file, they thus consider the total amount of resource, that
is, disk reading time, used by a stream when it reads the entire file once. In a
practical context, this measure is not necessarily representative of the amount
of resource required or reserved to provide real-time guarantees to individ-
ual streams, although it can be used as a lower bound. Actually attaining or
approaching this lower bound generally leads to complex admission control,
(online) renegotiation, and disk scheduling algorithms, as resource require-
ments may vary over time. This holds in particular forVBR files, but also for
CBR files that cross a zone boundary. Allocating an explicit bit rate to a stream
for its entire lifetime to provide real-time guarantees greatly simplifies these
tasks, but results in the cost function given by Equation 6.6.

Tse & Leung [2000] consider a constant-density disk and analyze an al-
location strategy wherein the files with higher bit rates are stored closer to
the outermost track of the disk. The authors also consider non-real-time data,
which is stored closer to the innermost track.

Tong, Huang & Liu [1998] discuss two strategies for reorganizing the
zones on disk, called free-π and fixed-π. Both strategies define logical zones,

120 Resource-Based File Allocation on a Multi-Zone Disk

less in number than the physical zones, and aim at maximizing the average
bandwidth achieved when scanning the disk once.

Michiels [1999] and Michiels & Korst [2001] propose an alternative ap-
proach to exploiting the multi-zone properties of a disk. The authors choose
a fixed transfer time for all blocks that is smaller than the transfer time of a
block stored in the innermost zone. As the actual transfer times of the individ-
ual blocks during a cycle may be smaller or larger than this fixed transfer time,
additional buffering, expressed in number of blocks, is required to prefetch a
sufficient amount of data to prevent buffer underflow. As a result of using this
fixed transfer time, the period length, and thus the block size, can generally be
chosen smaller when compared to using the guaranteed transfer rate. This ef-
fectively decreases the required buffer size. Distributing the successive blocks
of a single file appropriately over the zones allows the fixed transfer time to
be chosen to correspond closely to the average transfer rate of the disk.

In this chapter, we have mainly concentrated on the effective utilization
of the variable transfer rate of a multi-zone disk, and put less emphasis on
access-time overhead. The primary reason is that it is difficult to develop a
worst-case model that improves upon the access-time function used in this
chapter. We next provide some references where the access-time overhead is
taken into account.

Ghandeharizadeh, Kim, Shahabi & Zimmermann [1996] introduce two
allocation strategies:FIXB andVARB. In FIXB, a file is subdivided into fixed-
size blocks and assigned in a round-robin fashion to the zones of the disk. In
VARB, the blocks have variable size, depending on the bandwidth of the zone
it is allocated to. Huang & Tsao [1997] propose to partition a disk in logical
zones, each of which has the same number of tracks. A file is divided into
variable-length blocks, of which the size corresponds to a fixed number of
whole tracks, and the successive blocks are stored in successive logical zones
in a zig-zag fashion. Both Ghandeharizadeh et al. and Huang and Tsao use the
read-ahead established by reading near the outermost zones to compensate for
the insufficient amount of data read near the innermost zones. By assuming
that all streams are synchronized such that they all require a block in the same
zone, a reduction in the access-time overhead is realized.

Tewari, King, Kandlur & Dias [1996] allocateCBR andCTL VBR blocks
on disk, assuming that blocks are retrieved independently and randomly ac-
cording to a popularity distribution on the blocks. The authors minimize the
mean response time to fetch a block from disk. Starting at the innermost and
outermost cylinder, blocks are allocated to the disk in order of non-decreasing
popularity, converging toward a ‘hottest’ cylinder, where the most popular
blocks are allocated.

6.6 Concluding remarks 121

Kim, Lho & Chung [1997] define the cylinder containing the middle sec-
tor of the disk as the hottest cylinder and allocate blocks toward the inner-
most and outermost cylinder, starting at the hottest cylinder, in order of non-
increasing popularity. The authors compare this with the allocation strategy
whereby the files are stored in order of non-increasing popularity from the
outermost cylinder inward.

Triantafillou, Christodoulakis & Georgiadis [2000] calculate the optimal
placement of blocks on disk such that accessing any number of these blocks
incurs minimal cost, given an access probability for each block.

Triantafillou, Christodoulakis & Georgiadis [2002] provide an analytical
model to assess the performance of disk devices, including multi-zone disks,
under random workloads.

Wang, Tsao, Chang, Chen, Ho & Ko [1997] and Tsao, Chen & Sun [2001]
propose to calculate a block size for each zone, based on the file to store, such
that the read time for any block for this file is constant. The problem addressed
is where to store the successive blocks on disk, assuming a fixed number of
blocks per zone for the file.

Kang & Yeom [1999] propose a file allocation strategy called nearly con-
stant transfer time whereby, for each file, a nearly constant transfer time is
realized for each block stored. The authors employ aCTL approach for defin-
ing block sizes. As part of their file allocation strategy, they use the popularity
of the individual files.

Kang & Yeom [2003] include multi-rate smoothing ofVBR video with
prefetching for storing files on a single multi-zone disk.

Several papers consider generalizations to multiple disks, such as Kim,
Lim, Kim & Chung [1997], Lho & Chung [1998], Huang & Tsao [1999], and
Chen & Wu [2003]. Park, Kim & Chung [1999] consider the heterogeneous
case where the multi-zone disks need not be identical. Aerts [2003] focuses
on the redundant storage of multiple files on multiple disks, where the disks
may have a multi-zone character.

6.6 Concluding remarks

In this chapter, we have considered the offline problem of storing a given
set of files on a multi-zone disk such that expected disk resource usage is
minimized. One of the parameters describing the files is the popularity of
each file. We have shown that this problem inNP-hard in the strong sense, but
proposed a heuristic that performs remarkably well in practice. On the down
side, the worst-case performance ratio is the worst obtainable with any storage
algorithm for this problem.

122 Resource-Based File Allocation on a Multi-Zone Disk

Comparison with the well-known technique of track pairing shows that
resource-based storage of files can outperform track pairing, provided that
the popularity of the files is sufficiently skewed with respect to a uniform
distribution.

The proposed heuristic algorithm suggests how to apply the results in an
online setting, where files are occasionally added and deleted. This algorithm
sorts the files, based on a simple function of the parameters that describe each
file. Hence, by subdividing the disk into a number ofvirtual zones and associ-
ating to the successive virtual zones, from the outer to the inner zone, a range
of relevant function values in decreasing order, files can be stored in a virtual
zone with associated function value that is closest to the value of the function,
when applied to the file to be stored. This storage need not be contiguous and
can be based on a segmented storage strategy, e.g., the storage strategy with
overlap presented in Chapter 5, within each virtual zone.

It stands to reason that, as the disk fills up or popularities of files change,
file migration and deletion strategies will be necessary. This more dynamic
problem is considered a subject for further research.

7
On the Fixed-Delay

Pagoda Broadcast Schedule

Providing true video on demand requires a dedicated stream or channel
for each user to enable full control by the user over this stream, such as
pause/resume or skipping parts of the video. Large-scale introduction of this
service is still hindered by resource limitations and cost aspects, as resource
requirements, in the server as well as in the cable access network, increase
linearly with the number of users.

During the past decade, research efforts in this area have led to alternative
solutions that provide less flexibility, but are more cost effective. These solu-
tions collectively go by the name ofnear video on demand (NVOD), and differ
from their counterpart in that the emphasis is on linear viewing of a video
rather than on full interactivity. The availability of local storage in the form of
a hard disk at the user’s home is generally assumed, so that significant parts
of the selected video can, if necessary, be stored before they are consumed.

By restricting user control in this way, it is possible to have users share
streams, thereby significantly reducing resource requirements. Video data is
broadcast, or multicast to a group of users, rather than transmitted to individ-
ual users.

123

124 On the Fixed-Delay Pagoda Broadcast Schedule

The various strategies that have been proposed in the literature can broadly
be subdivided into two categories, namelyclient-centered anddata-centered.
In the first category, the broadcasting of a video is mainly governed by the
users requesting access to this video. Depending on the requests, the server
broadcasts the video trying to serve as many requests as possible with an
acceptable start-up latency. The start-up latency is defined as the time that
elapses between the moment that a user issues a request for a video and the
moment that the user can start watching this video. Data-centeredNVOD tech-
niques, on the other hand, use fixed broadcast schedules, independent of user
requests, also aiming at minimizing the maximum start-up latency. A survey
paper on the latter category is given by Kameda & Sun [2004].

In this chapter, we focus on data-centeredNVOD, and in particular on
thefixed-delay pagoda broadcast (FDPB) schedule, proposed by Pˆaris [2001].
FDPB is a fragmented broadcast schedule, where a video file is split up into
multiple, equal-size fragments and fragments near the start of the video are
broadcast more frequently than fragments near the end of the video. Playout
of the video is assumed to be at a constant bit rate (CBR), so that each fragment
also has the same duration. For broadcasting the fragments, a number of chan-
nels are available, each having a bandwidth equal to the bit rate of the video at
hand. These channels are slotted and synchronized at slot boundaries, where
the duration of a slot equals the transmission time or, equivalently, play-out
time of a fragment.FDPB describes when and on which channel each of the
fragments is broadcast.

The idea of fragmented broadcasting already dates back to a patent filing
by DeBey [1989], who proposes the following broadcast schedule for a given
video file. Assume that the video file is partitioned inton fragments, numbered
1;2; : : : ;n. Fragmentk is broadcast strictly periodically at slots if and only if
s modk = 0, where slots are numbered from 0 onwards. Fragmentk is thus
broadcast at slots 0;k;2k; : : :.

After requesting the video, a user only needs to wait until the start of the
next slot, upon which it starts receiving and can start viewing fragment 1, as
it is broadcast every slot. At the start of the next slot, either fragment 2 has
already been received during the first slot, or it will be received during this
slot, as fragment 2 is broadcast every other slot. Hence, during this next slot,
the user can view fragment 2. Using a similar reasoning for fragments 3; : : : ;n;
it can be shown that the user receives all fragments in time to view the video
without interruption, provided that he does not start watching the video until
the start of the first slot after his request. The maximum start-up latency is
thus one slot, which corresponds to a fraction of 1=n of the total duration of
the video.

On the Fixed-Delay Pagoda Broadcast Schedule 125

It goes without saying that for this broadcast schedule, the reception be-
havior at the user is quite bursty, ranging from 1 fragment at slot 1, ton frag-
ments at slot 0, thus occasionally requiringn channels. This can be alleviated
somewhat by appropriately shifting some periodic schedules.

The above schedule can be improved considerably [Hollmann & Holz-
scherer, 1991] by not broadcasting each fragmentk strictly periodically, that
is, exactly once everyk slots, but instead broadcasting itat least once ev-
ery k slots. This does not increase the maximum start-up latency, but allows
the burstiness to be minimized, at the cost of broadcasting fragments possi-
bly more often than strictly necessary. We formalize this as theBroadcast
Schedule Composition problem (BSC).

Problem 7.1. [Broadcast Schedule Composition Problem (BSC)] Given are a
constant-bit-rate video filef andm channels, each with a bandwidth equal to
the bit rate of the file. Compose a broadcast schedule, while maximizing the
numbern of equally sized fragments in whichf can be split up such that (i)
the fragments are transmitted in them available channels and such that (ii)
each fragmentk is broadcast at least once everyk slots.

Figure 7.1, taken from Korst & Pronk [2005], gives an example of a periodic
broadcast schedule with a period of 12 and form = 3. Since the schedule
contains fragments 1 to 9, that isn = 9, the maximum start-up latency is 1=9,
again expressed as a fraction of the duration of the video. Van Kreij [2001]
proves that there are no periodic fragmented broadcast schedules form = 3
channels that subdivide the video into more than 9 fragments.

1 1 1 1 1 1 1 1 1 1 1 1

4 2 3 2 4 2 6 2 3 2 5 2

6 5 7 8 9 3 5 7 4 8 9 3

timechannel

1

2

3

Figure 7.1. A periodic broadcast schedule with a period of 12 andm = 3 to
broadcast fragments 1 to 9.

This problem formulation can be generalized [Hollmann & Holzscherer,
1991; Pâris, 2001] by introducing anoffset o and requiring that each frag-
mentk is broadcast at least once everyo+ k slots. In this case, the start-up
latency is bounded from below byo slots and from above byo+1 slots. Dur-
ing theo complete slots that a user is waiting, data is already received and
stored locally. As we shall see, this offset allowsn to be chosen considerably
larger than when no offset is used.

126 On the Fixed-Delay Pagoda Broadcast Schedule

Problem 7.2. [Broadcast Schedule Composition with Offset Problem (BSCO)]
Given are a constant-bit-rate video filef , m channels, each with a bandwidth
equal to the bit rate of the file, and an offseto. Compose a broadcast schedule,
while maximizing the numbern of equally sized fragments in whichf can be
split up such that (i) the fragments are transmitted in them available channels
and such that (ii) each fragmentk is broadcast at least once everyo+ k slots.

TheFDPB schedule provides a broadcast schedule for any offseto, although it
generally does not optimize the number of fragments. The termfixed delay in
FDPB pertains to the fact that the start-up latency is approximately constant,
that is, approximatelyo slots.

In this chapter, we present two new results onFDPB. The first result per-
tains to the empirically found square-root heuristic used in the construction
of the broadcast schedule. This heuristic aims to maximize the number of
fragments that fit in a particular channel. We substantiate this heuristic and
show that it can be slightly improved. The second result is that the schedule is
asymptotically optimal in terms of the maximum start-up latency, by choosing
the offset large enough.

The remainder of this chapter is organized as follows. We describeFDPB

in detail in Section 7.1. Then, in Section 7.2, we discuss the square-root
heuristic, and in Section 7.3 we prove thatFDPB is asymptotically optimal in
terms of the maximum start-up latency.

7.1 The fixed-delay pagoda broadcast schedule

The following description ofFDPB is primarily taken from Verhaegh, Rietman
& Korst [2004], slightly modified, and is included to make the chapter self-
contained.

We are given a video file that, for normal playout, requires a constant
bit rate, and we are givenm broadcast channels, numbered 1;2; : : : ;m; each
having a bandwidth equal to the bit rate of the video file. The video file is
split up inton equally sized fragments, numbered 1;2; : : : ;n. The channels are
slotted and synchronized on slot boundaries, where each slot corresponds to
the time required for the playout, and thus the transmission, of one fragment.

In addition to using an offset as introduced above, we assume that at most
r � m channels may be tapped simultaneously, where tapping a channel is
performed for a channel-dependent, prescribed number of consecutive slots.
Initially, channels 1;2; : : : ;r are tapped. Upon completion of tapping chan-
nel i, channeli+ r starts being tapped, provided thati+ r � m.

7.1 The fixed-delay pagoda broadcast schedule 127

We next describe the general structure of the broadcast channels. We de-
note the first slot at which the user starts tapping channels by slot 0. We denote
the start of tapping channeli by si, and the number of consecutive slots that is
tapped in this channel byti. In order not to exceed the maximum numberr of
channels that may be tapped in parallel, tapping channeli = r+1;r+2; : : : ;m
is started after the tapping channeli� r has ended. Hence, it holds that

si =

�
0 for i = 1;2; : : : ;r
si�r + ti�r for i = r+1;r+2; : : : ;m:

(7.1)

In channeli a consecutive series of fragments is transmitted, the lowest frag-
ment number being given byli and the number of fragments byni. We thus
have that

li =

�
1 for i = 1
li�1+ni�1 for i > 1:

(7.2)

Of course, we have thatni � ti, as we can put at mostti fragments in channeli,
but in general, strict inequality will hold. This is because these fragments are
each generally broadcast more than once in theseti slots.

Figure 7.2 globally illustrates the mapping of the fragments of a desig-
nated part of the video file onto a channel. The sub-channels in this figure are
explained shortly.

1

video file:

2 3 li li + ni

channel i: . . .

. . .

. . .

si

si + ti

sub-channels:

1 2 3 di 1 2 3 di

.

.1

Figure 7.2. Global mapping of a number of consecutive fragments of the
video file onto a channeli. The actual mapping is governed by a subdivision
of this channel into a number of sub-channels.

In order to receive each fragment in time, fragmentk should be transmitted at
least once everyo+k slots. However, if fragmentk is transmitted in channeli,
which starts being tapped in slotsi, then fragmentk should be broadcast in this
channel at least once everyo+ k� si slots. Ideally, this period is exactly met
for each fragmentk, but it may be smaller. The problem we face here is that
for a number of consecutive values ofk, these periods should be approximated
from below as well as possible.

128 On the Fixed-Delay Pagoda Broadcast Schedule

The structure within a channeli in the fixed-delay pagoda schedule is
as follows. Firstly, channeli is divided into a numberdi of sub-channels,
numbered 1;2; : : : ;di; wheredi is defined as

di =

hp
o+ li� si

i
; (7.3)

that is, the square root of the optimal period of the lowest fragment numberli
in channeli, rounded to the nearest integer. This is the square-root heuristic
mentioned earlier that was initially proposed by Pˆaris. In Section 7.2 we in-
vestigate this in more detail. Each of these sub-channels gets a fraction 1=di

of the slots in a round-robin fashion.
Each fragmentk is given a fixed period within the sub-channel in which

it is placed. Now, if a fragmentk is given a periodpk within a sub-channel
of channeli, it is broadcast in channeli with a period ofpk di. Hence, as we
must have thatpk di � o+ k� si, this means that

pk �
�

o+ k� si

di

�
: (7.4)

By taking equal periods for all fragments within each sub-channel, we can
trivially avoid collisions. So, ifli j is the lowest fragment number in sub-
channelj of channeli, this means that we choose a period

pi j =

�
o+ li j� si

di

�
(7.5)

for sub-channelj of channeli, and hence we can transmitni j = pi j fragments
(fragmentsli j; : : : ; li j + ni j �1) in this sub-channel. The fragment numberli j

is given by

li j =

�
li for j = 1
li; j�1+ni; j�1 for j > 1:

(7.6)

The total numberni of fragments transmitted in channeli is then given by

ni =

di

∑
j=1

ni j: (7.7)

Finally, we need an expression forti, the number of consecutive slots that
have to be tapped in channeli. It must be tapped long enough to receive all
fragments at least once. Asli j is increasing inj, so isni j, which implies
that sub-channeldi of channeli must be tapped for the longest time, which
amounts toti = di ni;di .

7.1 The fixed-delay pagoda broadcast schedule 129

Note that the description above only considers frequencies at which frag-
ments are broadcast and numbers of slots that must be tapped in each channel
to ensure that all fragments are received at least once. This not only leaves
some freedom in composing an actual schedule, it also means that any sched-
ule that satisfies the structure outlined above will do. In other words, given an
actual schedule, a user may start tapping (the firstr) channels at the start of
any slot. This completes the description ofFDPB.

Figure 7.3 illustrates the composition of part of a schedule form = 5 channels,
of which at mostr = 2 channels may be tapped simultaneously and with offset
o = 0. For channeli = 5, tapping starts at slots5 = s3+ t3 = 1+4= 5. The
first fragment tapped isl5 = l4+n4 = 7+5= 12. The number of sub-channels
in channel 5 isd5 =

�p
l5� s5

�
=
�p

12�5
�
= 3. In sub-channel 1, the

lowest fragment number isl5;1 = l5 = 12; so that this sub-channel contains
n5;1 = p5;1 = b(12�5)=3c = 2 fragments. For sub-channel 2, we thus have
l5;2 = 14 and it containsb(14�5)=3c = 3 fragments. For the last sub-channel
we havel5;3 = 17, so that this sub-channel containsn5;3 = b(17�5)=3c = 4
fragments, giving a total ofn5 = 9 fragments in channel 5. The number of
slots that channel 5 has to be tapped ist5 = 3�4= 12.

1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 3 2 3 2 3 2 3 2 3

6 4 5 4 6 4 5 4 6 4 5 4

8 7 9 8 7 8 9 7

1 1

2 3

6 4

8

channel
1

2

3

4 11 11 10 1110

sub-channel

1

2

3

12 13

14 15 16

17 18 19 20

12 13 12 13

14 15 16 14

17 18 19 20

12 13 12 1314 15 16 1417 18 19 20merge

12 13 12 1314 15 16 1417 18 19 20

7 9 8

5 4 6

2 3 2

1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
slot
0

Figure 7.3. Composition of an example schedule. For further explanation,
see the running text.

Table 7.1 illustrates the numbern(m;r) of fragments that can be realized using
m channels, of which at mostr channels may be tapped in parallel, using an

130 On the Fixed-Delay Pagoda Broadcast Schedule

offset o = 0. Each of the series converges to a power series, with bases of
about 1.75, 2.42, 2.62, ande� 2:72, for r = 2, 3, 4, andm, respectively.

m r = 2 r = 3 r = 4 r = m

1 1 1 1 1
2 3 3 3 3
3 6 8 8 8
4 11 17 20 20
5 20 39 47 50
6 38 86 113 124
7 68 198 276 316
8 122 467 692 822
9 221 1102 1770 2176

10 397 2632 4547 5818
11 708 6308 11800 15646
12 1244 15192 30748 42259
13 2195 36672 80273 114420
14 3862 88710 210027 310284
15 6757 214792 549998 842209

Table 7.1. The values forn(m;r) for different values ofm and r, and an
offseto = 0. The last column corresponds to having no limit on the number
of channels that may be tapped in parallel.

The maximum start-up latency as fraction of the total duration of the video is
given by(o+1)=n(m;r) = 1=n(m;r), since we haveo = 0. Hence, for exam-
ple, usingm = 10 channels, of which at mostr = 3 channels may be tapped
simultaneously, the maximum start-up latency is 1=2632, which amounts to
less than 3 seconds for a 2-hour video. When using an offset ofo = 1, this
reduces to 1 second.

7.2 On the square-root heuristic

From the description ofFDPB in the preceding section, it follows that the
numberni of fragments that are transmitted in channeli is a function of the
numberdi of sub-channels in this channel, which can be freely chosen. In
this section we focus on the problem of finding the optimal valuedopt

i for di

that maximizesni. In particular, we substantiate by analysis the square-root
heuristic, but also provide an improvement upon it.

Optimizing the number of fragmentsni in each channeli separately does
not necessarily lead to a global optimumn for the total number of fragments
in all channels. As an example, consider the case(m;o;r) = (4;2;2). In each

7.2 On the square-root heuristic 131

channeli = 1;2;3;4; the optimal valuesdopt
i are 1, 2, 2, and 4, respectively,

and the corresponding numbersni of fragments is 3, 7, 12, and 23, leading to
a total of 45 fragments. The global optimum, however, is 46 fragments, which
is achieved by, for instance, using 1, 1, 3, and 5 sub-channels and 3, 6, 12, and
25 fragments in each of the channels, respectively. Figure 7.4 illustrates the
schedules for each of these cases.

(a)

1 2 3
4 5 67 8 9 10

11 12 13 14 1516 17 18 19 20 21 22
23 24 25 2627 28 29 30 3132 33 34 35 36 3738 39 40 41 42 43 44 45

11
23 2524

4
12

27 2832 262933

1 2 3
4 5 6 7 8 9

10 11 1213 14 15 1617 18 19 20 21
22 23 2425 26 27 2829 30 31 32 3334 35 36 37 38 3940 41 42 43 44 45 46

10 1113
22 2325 242629 22273034

(b)

Figure 7.4. Two schedules for the case(m;o;r) = (4;2;2). Part (a) illustrates
the schedule using locally optimal valuesdopt

i , part (b) illustrates a globally
optimal schedule.

We next investigate how to expressni directly in terms ofdi by aggregating
the results of the procedural steps that involve the sub-channels.

Theorem 7.1. The total number ni of fragments in channel i is bounded from
below as

ni � (zi�di) �
 �

1+
1
di

�di

�1

!
; (7.8)

where zi = o+ li� si.
Proof. By using Equations 7.5 and 7.6 and thatni j = pi j, we have

ni j � o+ li j� si

di
�1 =

zi�di +∑ j�1
k=1 nik

di
: (7.9)

Note that for j = 1, the summation on the right-hand side is empty. We next
definemi j by the following recurrence relation:

mi j =
zi�di +∑ j�1

k=1 mik

di
(7.10)

and first prove by induction onj that

ni j � mi j: (7.11)

132 On the Fixed-Delay Pagoda Broadcast Schedule

For j = 1, we have thatni1 � (zi� di)=di = mi1. Suppose that Equation 7.11
holds for j = 1;2; : : : ; j0. We next prove thatni; j0+1 � mi; j0+1. It holds that

ni; j0+1 � (zi�di +

j0

∑
k=1

nik)=di

� (zi�di +

j0

∑
k=1

mik)=di

= mi; j0+1; (7.12)

whereby the second inequality follows from the induction hypothesis. This
establishes Equation 7.11. By defining

mi =

di

∑
j=1

mi j;

we thus have, by Equations 7.7 and 7.11, thatni � mi. Proving that

mi = (zi�di) �
 �

1+
1
di

�di

�1

!

then completes the proof. To this end, we will prove, again by induction onj,
that

mi j =
zi�di

di

�
1+

1
di

� j�1

: (7.13)

For j = 1, this follows directly from Equation 7.10. Suppose that Equa-
tion 7.13 holds for j = 1;2; : : : ; j0. We next prove that it also holds for
j = j0+1. We derive

mi; j0+1 =
zi�di +∑ j0

k=1 mik

di

=

zi�di +∑ j0
k=1

zi�di
di

�
1+ 1

di

�k�1

di

=
zi�di

di

1+

1
di

j0

∑
k=1

�
1+

1
di

�k�1
!

=
zi�di

di

0
B@1+

1
di

1�
�

1+ 1
di

� j0

1�
�

1+ 1
di

�
1
CA

7.2 On the square-root heuristic 133

=
zi�di

di

�
1+

1
di

� j0

;

whereby on the second line we used the induction hypothesis and on the fourth
line the identity

n�1

∑
i=0

ai =
1�an

1�a
:

Using Equation 7.13, we now have that

mi =

di

∑
j=1

mi j

=
zi�di

di

di

∑
j=1

�
1+

1
di

� j�1

=
zi�di

di

1�
�

1+ 1
di

�di

1�
�

1+ 1
di

�

= (zi�di)

 �
1+

1
di

�di

�1

!
;

which completes the proof.

The above theorem boundsni from below directly in terms of the free parame-
terdi. It stands to reason that a value fordi that maximizes the right-hand side
of Equation 7.8 is a good candidate value. Hence, the next step is to maximize
the right-hand of Equation 7.8.

Theorem 7.2. For large values of z, the function fz(x), defined by

fz(x) = (z� x)

��
1+

1
x

�x

�1

�

attains its maximum value at

x �
r

ez
2e�2

� 0:89
p

z: (7.14)

Proof. By straightforward differentiation with respect tox of fz(x), we obtain
that

f 0z(x) = 1+

�
1+

1
x

�x �
(z� x) log

�
1+

1
x

�
� z+1

x+1

�
: (7.15)

134 On the Fixed-Delay Pagoda Broadcast Schedule

By equatingf 0z(x) to zero and rearranging terms, we obtain that

z

�
1

1+ x
� log

�
1+

1
x

��
=

1�
1+ 1

x

�x �
1

1+ x
� x log

�
1+

1
x

�
:

From this equation we can see that, as forx�1, the right-hand side is bounded,
the left-hand side must be bounded as well. This means that, for increasing
z, the other factor on the left-hand side decreases to 0. The latter, however, is
only possible whenx increases to infinity.

This establishes that, for large values ofz, the positive roots off 0z(x) are
large as well. To simplify Equation 7.15, we use the following approximation.�

1+
1
x

�x

� e:

Next, as we expectx to be in the order of
p

z, we should use the following
approximation.

log

�
1+

1
x

�
� 1

x
� 1

2x2 :

This simplifies the equationf 0z(x) = 0 to

1+ e

�
(z� x)

�
1
x
� 1

2x2

�
� z+1

x+1

�
= 0:

By straightforward calculus, we can rewrite this formula as

(2�2e)+
2�3e

x
+

e(z+1)
x2 � ez

x3 = 0

As the term 2�2e is a negative constant, and for largez, and hence largex, the
terms(2�3e)=x ande=x2 vanish, we can discard these two terms. Further-
more, the termez=x3 vanishes, relative to the termez=x2. When considering
the already simplified equation, this implies that the latter term is bounded
and, consequently, the former vanishes in absolute terms. These observations
simplify the equation to

ez
x2 = 2e�2;

which has as single positive root the value as given in Equation 7.14. As
f 0z(x)< 0 asx!∞, fz(x) attains a maximum value at this root. This completes
the proof.

Applying the results to the current context, wherez = zi = o+ li� si, we can
conclude that, for large values ofo+ li�si, the right-hand side of Equation 7.8

7.2 On the square-root heuristic 135

is maximized fordi �0:89
p

o+ li� si. This resembles the square-root heuris-
tic, given in Equation 7.3, save a constant.

0

500

1000

1500

2000

0 50 100 150 200

nu
m

be
r

of
 f

ra
gm

en
ts

di

ni(di)

f1195(di)

Figure 7.5. Comparison off1195(di) with ni as a function ofdi.

Figure 7.5 comparesf1195(di) with ni(di) as a function ofdi. Clearly, the
slope of the asymptote off1195(di) for di ! ∞ is 1� e, which follows easily
from the definition of fz(x). The values ofni, however, seem to approach
an asymptote with slope(1� e)=2. This can be understood when, instead of
using Equation 7.9, we use

ni j � o+ li j� si

di
� 1

2
;

where we have replaced the lower bound by an approximation. Assuming
equality in the above equation directly leads to the functionfz+x=2(x), whose

maximum value is attained atx �
p

ez=(e�1) � 1:26
p

z for large values of
z. The function f1195+di=2(di), not shown in Figure 7.5, practically coincides
with ni(di) for the range of values fordi shown in the figure.

Searching for an optimal value for small values ofo+ li� si, say at most
1000, and using the 1.26-square-root heuristic for larger values, improves
upon the results of using the original square-root heuristic. Table 7.2 pro-
vides a comparison with Pˆaris’ results form = 15, o = 0, and various values
of r. The second column, headed ‘

p
’, repeats Pˆaris’ results, which are also

given in the last row of Table 7.1. The third column, headed ‘1:26
p

’, gives

136 On the Fixed-Delay Pagoda Broadcast Schedule

our results. The numbers between brackets give the relative deviation in per-
cent from the local optima given in the fourth column. These were obtained
by maximizingdi for each channel separately. Our results thus improve upon
those by Pˆaris and approach the local optima.

local
r

p
1:26

p
optimum

2 6757 (16) 8027 (0.4) 8058
3 214792 (10) 237481 (0.6) 238841
4 549998 (6) 583461 (0.3) 584993
m 842209 (5) 885801 (0.1) 887124

Table 7.2. Comparison of our results with Pˆaris’ results form= 15 channels,
offset o = 0, and various values ofr, the number of channels that can be
tapped in parallel. For further explanation, see the running text.

Verhaegh, Rietman & Korst [2004] suggest another improvement to Pˆaris’
schedule by refining the way in which channels are tapped. Where, according
to Equation 7.1, channeli starts being tapped when tapping in channeli�r has
ended, Verhaegh et al. suggest to start tapping additional sub-channels when
the tapping of the appropriate, earlier sub-channels has ended. This results in
a further increase in the number of fragments in which a video file can be split,
and thus in a further decrease in the maximum start-up latency. Their schedule
does require that switching among sub-channels in different channels can be
carried out fast enough. Their approach can also benefit from a better choice
of di.

7.3 On the asymptotic optimality of FDPB

In this section, we will prove thatFDPB is asymptotically optimal in terms of
the maximum start-up latency by choosing the offset large enough. We start
with a result from Hollmann & Holzscherer [1991] on a lower bound on the
maximum start-up latency of any fragmented broadcast schedule, for which
we supply the proof to provide some insight into this lower bound.

Theorem 7.3. Given is a fragmented broadcast schedule that uses m channels
and an offset o. Then the maximum start-up latency wmax can be bounded from
below by

wmax � 1
em�1

: (7.16)

7.3 On the asymptotic optimality of FDPB 137

Proof. In order to broadcast fragmenti at least once everyo+ i slots, we need
at least a fraction of 1=(o+ i) of a channel. In order to broadcastn fragments
with an offseto, we need at least∑n

i=11=(o+ i) =∑o+n
i=o+11=i channels. Hence,

it is required that

m �
o+n

∑
i=o+1

1=i:

Since 1=x is decreasing forx > 0, we have

1=i >

Z i+1

i

1
x

dx:

Consequently,

m >

Z o+n+1

o+1

1
x

dx

= ln(o+n+1)� ln(o+1)

= ln(1+n=(o+1)):

Since the maximum waiting timewmax is given by(o+1)=n, we have

m > ln(1+1=wmax):

Sinceex is monotonically increasing inx, this implies that

em
> 1+1=wmax:

Rewriting this expression implies the required result.

Korst & Pronk [2005] provide, with some hand waving, a proof thatFDPB is
asymptotically optimal. Here, we provide a rigorous proof of correctness of
this theorem.

Theorem 7.4. For the fixed-delay pagoda broadcast schedule, using m chan-
nels that may all be tapped in parallel, we have

lim
o!∞

wmax =
1

em�1
:

Proof. Since we assume that all channels can be tapped simultaneously, we
havesi = 0 for all i = 1;2; : : : ;m. Using Theorem 7.1 and Equation 7.3, we
can boundni from below by

138 On the Fixed-Delay Pagoda Broadcast Schedule

ni � (zi� [
p

zi]) �
0
@ 1+

1�p
zi
�
![pzi]

�1

1
A ; (7.17)

with zi = o + li ! ∞ as o ! ∞ for all i = 1;2; : : : ;m. As the right factor
approachese�1 and the left factor can be written aszi (1� yi), with yi # 0 as
o ! ∞, we can simplify Equation 7.17 to

ni � (o+ li)(ei�1); (7.18)

whereei " e aso! ∞. We next prove by induction oni that

li � (o+1)
i�1

∏
k=1

ek�o: (7.19)

for i = 1, the statement clearly holds, asl1 = 1. Suppose the statement holds
for i = i0� 1. We next prove that the statement also holds fori = i0+1. Using
Equations 7.2 and 7.18, we have that

li0+1 = li0 +ni0

� li0 +(o+ li0)(ei0 �1)

= o(ei0 �1)+ ei0 li0

� o(ei0 �1)+ ei0 ((o+1)
i0�1

∏
k=1

ek�o)

= (o+1)
i0

∏
k=1

ek�o;

whereby the second inequality follows from the induction hypothesis. This
establishes Equation 7.19. The total number of fragments in them channels is
given bylm+1�1, which is thus bounded from below by(o+1)(∏m

k=1 ek�1).
As the maximum start-up latency is given bywmax= (o+1)=(lm+1�1),

we can conclude that

wmax � 1

∏m
k=1 ek�1

: (7.20)

Sinceek " e aso!∞ for all k = 1;2; : : : ;m; the right-hand size of this inequal-
ity approaches 1=(em�1) from above. Combining this with Theorem 7.3 then
gives the desired result.

When considering the proof above, we can conclude that the exact choice ofdi

does not matter. As long asdi=(o+ li)! 0 anddi !∞, we have thatyi # 0 and

7.3 On the asymptotic optimality of FDPB 139

ei " e, respectively, aso ! ∞. Hence, even choosingdi = [log(o+ li)] would
result in an asymptotically optimal schedule. When considering the relative
simplicity of FDPB, it is surprising that it is asymptotically optimal, in view of
the proof of Theorem 7.3.

Note furthermore that the asymptotic optimality ofFDPB implies that al-
lowing more freedom in the construction of the schedule, for instance by not
limiting the placement of blocks to only one channel, cannot improve upon
this result. Also attempting to use globally optimal numbers of sub-channels
does not result in any improvement.

8
Conclusion

Providing a video-on-demand service over a cable access network creates var-
ious challenges for the management of resources, the foremost important ones
being the real-time delivery of large amounts of video data to the homes and
realizing acceptable response times to support interactivity. In this context, we
have discussed six problems on a variety of subjects. Two of these problems
are related to the transmission of data from the cable modems at the homes to
a central node in the network, called the head end. These problems relate to
the response times that should be kept to a minimum. The four other problems
concern the storage of video data on disk and the transmission of video data,
or other real-time data, over these networks. Here, the real-time requirements
for the delivery of data as well as the volume of the data calls for optimal
use of the scarce resources, namely disk bandwidth and the bandwidth of the
communication channel from the head end to the homes.

The first problem, addressed in Chapter 2, concerns a medium-access-
control protocol, as defined in one of the relevant standards on cable access
networks. This contention-based protocol is used by a cable modem just after
powering up and serves to establish a first contact between the cable modem
and the head end. Although the protocol resembles the well-known proto-
col named frame-basedALOHA, it differs from the latter in several respects.
Firstly, there is a non-negligible feedback delay. This complicates the deter-

141

142 Conclusion

mination of the frame length. Secondly, the channel model, which describes
the reception behavior by the head end of packets sent by the cable modems,
does not obey the commonly-used rules. For example, two packets sent si-
multaneously may both be received correctly, and in case only one packet is
sent, it may be received correctly, it may be received as if a collision occurred,
or it may not be received at all. These differences call for a renewed analysis
of optimal frame-length control.

We define a generalized channel model to reflect these differences and
study the effect of this channel model on the control parameters that govern
the protocol. The main findings are the following. Firstly, where the con-
ventional protocol sets the length of the current frame in terms of the number
of slots equal to the expected numberN of cable modems that will trans-
mit in this frame, using the generalized model and for largeN, this number
changes toβN, where the value ofβ depends only on the channel model pa-
rameters. Secondly, the estimation of the expected number of transmitting
cable modems in the current frame, which we base on the fraction of empty
slots seen in the previous frame, is characterized by a similar, albeit somewhat
more complex adjustment. We show that, under some mild channel conditions
and assuming that both the number of cable modems as well as the length of
the previous frame are large, instead of requiring an additional constant, the
logarithmic function used for the conventional channel model should be re-
placed by a more complex function, again dependent only on the channel pa-
rameters. Thirdly, the feedback delay impacts the minimal frame length that
should be imposed to limit the signaling overhead from the head end to the
cable modems: the feedback delay should not be an integer multiple of the
minimal frame length.

A special case of interest is the arrival of a burst of cable modems that
enter the protocol simultaneously. This event may happen after a local power
outage, when multiple cable modems power up nearly simultaneously. Upon
such an event, the behavior of the protocol resembles that of a Galton-board
experiment, in that a high concentration of cable modems in a relatively short
frame should be distributed over multiple short frames in order to observe
empty slots, necessary to obtain an estimate of the number of cable modems
present.

We provide simulations to support our findings and illustrate that the re-
sults are relatively insensitive to inaccurately estimated channel model param-
eters.

A subject for further research is to investigate how a burst of simultane-
ously arriving cable modems can be detected early. A possible approach is to
take a closer look at the distribution of the empty slots in the previous frame.

Conclusion 143

In Chapter 3, we consider cable modems in normal operation, each of
which sustains a number of connections. When a cable modem enters a
request-grant procedure to transmit data to the head end on behalf of a first
connection, it starts by transmitting a packet containing a request in contention
with other cable modems. Requests for other connections should be temporar-
ily queued until the request for the first connection is successfully received by
the head end. An important performance characteristic is the delay that a re-
quest incurs before it is successfully received by the head end. This delay may
thus include a queuing delay.

We propose to introduce multi-requests wherein multiple, sayR, requests
at a single modem can be merged and transmitted simultaneously as a single
packet, also in contention, and analyze the reduction in request delay. This
merging is such that the packet size is fixed, irrespective of the actual number
of requests it contains, and such that the head end can retrieve the original
requests from a multi-request. The overhead that is incurred when a multi-
request is not completely used, that is, it still contains less thanR requests,
is offset against the possibility to add new requests to such a multi-request.
After all, a multi-request may have to be transmitted repeatedly before it is
successfully received by the head end, providing opportunities to add requests
before a retransmission is done.

We use results on the gated machine-repair model that can be used for
modeling the multi-request delay and extend the analysis to obtain results on
the delay of the individual requests. In particular, we obtain an approximation
of the mean delay of an individual request under high loads, and show that the
expected request delay decreases only if the the size of a packet containing a
multi-request with up toR requests is shorter thanR packets, each containing
only a single request. Under the latter assumption, simulation results indi-
cate that, under low loads, the request delay increases, as could have been
expected, but under higher loads, the request delay decreases asR increases.
Under these loads, the results also show a good match with the analytical re-
sults.

In the next chapter, Chapter 4, we consider the problem of fairly sharing
a resource, such as a transmission link, among a number of heterogeneous
users. Each user is characterized by its reserved share of the resource, and the
shares add up to at most the capacity of this resource. Besides guaranteeing,
for each user, its share of the resource, the aim is to minimize the jitter that
users incur in receiving their share.

We first report on an error in a publication, wherein it is stated that the
scheduling algorithm the authors propose bounds the worst-case absolute jit-
ter by a non-trivial bound, by providing a simple counterexample. We then

144 Conclusion

propose a scheduling algorithm called relaxed-earliest-deadline-first (R-EDF),
of which we prove that it does obey this bound. We furthermore prove that
this bound cannot be improved upon, implying thatR-EDF is optimal in this
respect. The algorithm is a non-preemptive version of the well-known earliest-
deadline-first algorithm for preemptively scheduling a set of periodic tasks.
The computational complexity of the proposed algorithm is linear in the num-
ber of users.

We also discuss its operation in a dynamic environment, wherein users
may be admitted service and may depart again. One of the major findings is
that, after a departure, there should be a so-called dead time, during which no
admissions are allowed. We provide an upper bound on the length of this dead
time, namely the time until the scheduler becomes idle for the first time after
a departure, but we conjecture that this can be improved. We consider this a
subject for further research.

Chapter 5 concerns the storage on and retrieval from disk of a variable-bit-
rate video stream. To offer flexibility in the way that video data is retrieved
from disk in terms of, e.g., bit rate or starting position, special provisions
are necessary while storing the data on disk. In particular, we assume that
relatively small, fixed-size parts of the video data to be stored, should be stored
twice.

We integrate this requirement into an existing disk scheduling algorithm,
called triple buffering, and prove that, under suitable assumptions, the result-
ing algorithm is safe. By safeness we mean that it prevents the buffers, used
for temporarily storing incoming data before it is written to disk or outgoing
data before it is transmitted, from under- and overflowing. The required in-
crease in buffer size is at most the size of a single part that should be written
twice.

A subject for further research is how to integrate the aforementioned re-
quirement into an alternative disk scheduling algorithm, called dual sweep
[Korst & Pronk, 2005], which compares favorably with triple buffering in
terms of the required buffer sizes.

In Chapter 6 we consider the problem of storing a given set of video files
on a multi-zone disk. Each file is characterized by a set of parameters such
as its size, its bit rate required for streaming the file into a network, and its
popularity. The aim is to minimize the expected resource usage, where the
resource is the disk load. Minimizing this implies that more streams or streams
with a higher bit rate can be provided service simultaneously.

We show that this problem isNP-complete in the strong sense. In the spe-
cial case that all files have the same size, we show that the problem is inP. We
provide a heuristic solution with a computational complexity ofO(m logm),

Conclusion 145

wherem is the number of files to be stored. We show that the worst-case per-
formance ratio is given by the ratio of the maximum and minimum bit rate
of the disk. Although this implies that the proposed algorithm is one of the
worst in terms of its performance ratio, we argue that it will work quite well
in practice if the file sizes are not too large. We further substantiate this by
simulations.

We compare the approach followed with the well-known technique of
track pairing and show, by analysis as well as by simulation, that our ap-
proach outperforms track pairing if the popularity distribution of the files is
sufficiently skewed with respect to a uniform distribution.

The heuristic solution suggests how to apply the results in an online set-
ting, where files are occasionally added and deleted and provide an outline of
how this may be done.

Our last subject, discussed in Chapter 7, is on near-video-on-demand
and concerns a well-known video broadcasting algorithm, called fixed-delay
pagoda broadcasting. In this algorithm, a constant-bit-rate video file is subdi-
vided into a numbern of fixed-size fragments. Each fragment is periodically
broadcast at its own frequency on one of a fixed number of channels, each
of the same bit rate of the video file at hand, where the frequencies generally
become smaller as the fragments occur later in the file. The idea behind this
approach is that, once a user starts viewing a video from the beginning to the
end, he will need fragments near the start of the video sooner than those near
the end. The aim is to maximizen, as this provides a measure for the waiting
time before the user can start watching the video.

We solve two still open issues. The first relates to the so-called square-
root heuristic that is used to determine the number of sub-channels within
a channel. We substantiate this heuristic and indicate that it can be slightly
improved. The second concerns the optimality of the broadcast schedule. In
particular, we show that the schedule is asymptotically optimal in terms of the
maximum waiting time. The asymptotic behavior is defined as the limit to
infinity of the period with which the first fragment is broadcast.

A
Related output

Books and Book contributions

KORST, J., AND V. PRONK [2005]. Multimedia Storage and Retrieval: An Algo-
rithmic Approach, Wiley & Sons, Ltd.

PRONK, V. [2003]. Storage of VBR video content on a multi-zone recording
disk based on resource usage,Algorithms in Ambient Intelligence (Eds.
W. Verhaegh, E. Aarts, and J. Korst), Kluwer.

External Publications

AARTS, E., E.DEN BOEF, J. KORST, V. PRONK, W. VERHAEGH, AND C. WÜST [2002].
Adaptive scheduling and resource management in ambient intelligence,
PT Embedded Systems Research Dossier, 12�15.

DENTENEER, T.J.J.,AND V. PRONK [1998]. Traffic models for telecommunication,
Proceedings of the 13th COMPSTAT Conference of the International
Association for Statistical Computing, IASC’98, Bristol, England, Au-
gust 24�28.

147

148 Related output

DENTENEER, T.J.J.,AND V. PRONK [1999]. WWW traffic modelling for HFC net-
works,Proceedings of the 48th Annual NCTA Convention and Interna-
tional Exposium, CABLE’99, Chicago, Illinois, June 13�16, 145�152.

DENTENEER, T.J.J.,AND V. PRONK [2001]. On the number of contenders in a
contention tree,Proceedings of the 14th ITC Specialists Seminar on
Access Networks and Systems, Girona, Spain, April 25�27, 105�112.

DENTENEER, T.J.J., V. PRONK, J.M. GRIFFITHS, AND L.G. CUTHBERT [2000]. Im-
pact of the resource needed for renegotiating ATM rates,Computing
Networks 34, 211�225.

DRIEL, C.-J.L.VAN , P.A.M.VAN GRINSVEN, V. PRONK, AND W.A.M. SNIJDERS[1997].
The (r)evolution of access networks for the information super-highway,
IEEE Communications Magazine 35, 2�10.

DRIEL, C.-J.L.VAN , P.A.M.VAN GRINSVEN, W.A.M. SNIJDERS, AND V. PRONK [1997].
Drivers of the evolution of the broadband networks,Proceedings of
the European Telecommunications Congress, FITCE’97, Thessaloniki
Greece, September 22�27, 15�20.

GRINSVEN, P.A.M. VAN , S.-B. COLAK , A. JANSEN VAN DOORN, V. PRONK, F. SNIJDERS

[2001]. Reconfigurable active nodes on HFC/CATV networks with hy-
brid fiber-wireless ad-hoc links of mesh topology,Proceedings of the
SCTE’01.

HEKSTRA-NOWACKA, E.B., V. PRONK, L. TOLHUIZEN, AND T.J.J. DENTENEER[1999].
Bandwidth allocation in HFC networksProceedings of the Philips
Workshop on Scheduling and Resource Management, SCHARM’99,
Eindhoven, The Netherlands, December 8�9, 129�137.

KORST, J.,AND V. PRONK [1999]. Bit-rate smoothing algorithms for prerecorded
VBR video, Proceedings of the Philips Workshop on Scheduling and
Resource Management, SCHARM’99, Eindhoven, The Netherlands,
December 8�9, 29�38.

KORST, J., V. PRONK, E.H.L. AARTS, AND F. LAMERIKX [1995]. Periodic schedul-
ing in a multimedia server,Proceedings of the INRIA/IEEE Symposium
on Emerging Technologies and Factory Automation, ETFA’95, Paris,
October 10�13, Vol. 1, 205�216.

KORST, J., V. PRONK, AND P. COUMANS [1997]. Disk scheduling for variable-
rate data streams,Proceedings of the European Workshop on Interac-
tive Distributed Multimedia Systems and Telecommunication Services,
IDMS’97, Darmstadt, September 10�12, Lecture Notes in Computer
Science, LNCS 1309, 119�132.

Related output 149

KORST, J., V. PRONK, P. COUMANS, G. VAN DOREN, AND E. AARTS [1998]. Compar-
ing disk scheduling algorithms for VBR data streams,Computer Com-
munications 21, 1328�1343.

PRONK, V. [2002]. Disk storage of VBR video content based on resource usage,
Proceedings of the 1st Philips Symposium on Intelligent Algorithms,
SOIA’02, Eindhoven, The Netherlands, December 11�12, 245�257.

PRONK, V., P.A.M. VAN GRINSVEN, AND C.-J.L. VAN DRIEL [1998]. A perfor-
mance analysis of the bit-map access protocol for shared-medium
networks,Proceedings of the International Zurich Seminar, IZS’98,
Zurich, Switzerland, February 17�19, 69�73.

PRONK, V., AND J. KORST [2001a]. Comment on ”Carry-Over Round Robin: A
Simple Cell Scheduling Mechanism for ATM Networks”,IEEE/ACM
Transactions on Networking 9:3, 373�374.

PRONK, V., AND J. KORST [2001b]. Scheduling ATM cells using the R-EDF
algorithm,Proceedings of the Philips Workshop on Scheduling and Re-
source Management, SCHARM’01, Eindhoven, The Netherlands, June
28�29, 187�196.

PRONK, V., AND J. KORST [2007]. Fair resource sharing using the R-EDF
scheduling algorithm,accepted for publication in Springer Real-Time
Systems Journal.

PRONK, V., AND R. RIETMAN [2002]. Medium access control using request
merging,Proceedings of the 1st Philips Symposium on Intelligent Al-
gorithms, SOIA’02, Eindhoven, The Netherlands, December 11�12,
133�142.

PRONK, V., AND L. TOLHUIZEN [2001]. Medium access control for unregistered
cable modems,Proceedings of the Philips Workshop on Scheduling and
Resource Management, SCHARM’01, Eindhoven, The Netherlands,
June 28�29, 169�178.

SINHA , A.N., T.J.J. DENTENEER, AND V. PRONK [1996]. Traffic Contract: key to or-
derly use, provisioning, and charging of ATM services,Proceedings of
the IEE Colloquium on Charging for ATM, London, England, Novem-
ber 12, 8/1�8/6.

TOLHUIZEN, L., V. PRONK, E.B. HEKSTRA-NOWACKA, AND T.J.J. DENTENEER[1999].
Scheduling for HFC networks,Proceedings of the Philips Workshop on
Scheduling and Resource Management, SCHARM’99, Eindhoven, The
Netherlands, December 8�9, 139�146.

150 Related output

Internal Publications

HEKSTRA-NOWACKA, E.B.,AND V. PRONK [1999]. Piggybacking in DVB/DAVIC-
compliant HFC networks,Philips Technical Note Nr. 394/99.

PRONK, V. [2000]. Upstream channel bandwidth allocation in a DVB-
compliant HFC network,Philips Technical Note 2000/429.

PRONK, V., T.J.J. DENTENEER, J. GRIFFITHS, L. CUTHBERT, D. BOTVICHM AND J.

KARLSSON [1997]. Source modelling and its applications for ATM net-
works,Philips Report Nr. 7012

PRONK, V., E.B. HEKSTRA-NOWACKA, L. TOLHUIZEN, AND T.J.J. DENTENEER[1999].
Description and performance analysis of the DVB/DAVIC MAC proto-
col for HFC networks,Philips Report 7105.

PRONK, V., AND M.J.M. DE JONG [1998]. Multi-standard simulation platform for
hybrid fiber/coax networks; I standards survey, IIU basic architecture,
Philips Technical Note 179/98.

PRONK, V., AND J. KORST[2002]. On fair queuing and scheduling periodic tasks,
Philips Technical Note 2002/218.

PRONK, V., AND L. TOLHUIZEN [2000]. Ranging in DVB/DAVIC II,Philips Tech-
nical Note 2000/317.

PRONK, V., L. TOLHUIZEN, AND P.A.M. VAN GRINSVEN [2000]. Optimal ranging in
DVB/DAVIC, Philips Technical Note Nr. TN 2000/113.

SINHA , A.N., T.J.J. DENTENEER, V. PRONK, AND H.G.J. THEUNIS [1996]. Video
source modelling for ATM networks,Philips Report Nr. 6943.

TOLHUIZEN, L., AND V. PRONK [2001]. Downstream signalling in an HFC net-
work: on the Reservation Grant Message in DVB/DAVIC,Philips Tech-
nical Note Nr. TN 2001/174.

Patents and patent applications

DENTENEER, T.J.J., S.P.P. PRONK, E.B. HEKSTRA-NOWACKA, L.M.G.M. TOLHUIZEN

[2001]. Method of and system for transmitting a plurality of messages,
U.S. Patent 7,251,251, granted July 31, 2007.

KORST, J.H.M.,AND S.P.P. PRONK [1998]. Method of and system for interleaving
real-time files with different periods,U.S. Patent 5,848,437, granted
December 8, 1998.

Related output 151

KORST, J.H.M., AND S.P.P. PRONK [1999]. Method and system for reading data
for a number of users,U.S. Patent 5,950,015, granted September 7,
1999.

KORST, J.H.M., E. LAWERMAN, S.P.P. PRONK, AND G. VAN DOREN [2000]. Method
and system for supplying streams of data having identical maximum
consumption rate in a storage medium,U.S. Patent 6,138,221, granted
October 24, 2000.

PRONK, S.P.P.[2003]. Method for storing programs on a disk,Patent applica-
tion, submitted January 22, 2003.

PRONK, S.P.P.,AND R. RIETMAN [2002]. Medium access control using request
merging,Patent application, submitted May 2, 2002.

PRONK, S.P.P.,AND L.M.G.M. TOLHUIZEN [2006]. Contention resolution protocol,
U.S. Patent 7,009,993, granted March 7, 2006.

PRONK, S.P.P., L.M.G.M. TOLHUIZEN, AND E.B. HEKSTRA-NOWACKA [2005]. Com-
munication network having minimized roundtrip contention delay,U.S.
Patent 6,967,968, granted November 22, 2005.

SINHA , A.N., T.J.J. DENTENEER, S.P.P. PRONK, AND H.G.J. THEUNIS [1999]. En-
coded digital video transmission system,U.S. Patent 5,990,945, granted
November 23, 1999.

Bibliography

AERTS, J. [2003]. Random redundant storage for video on demand, Ph.D. The-
sis, Eindhoven University of Technology, Eindhoven, The Netherlands.

ABRAMSON, N. [1970]. The ALOHA system� another alternative for com-
puter communications,Proceedings of the Fall Joint Computer Confer-
ence 37, AFIPS’70, Montvale, NJ, 281�285.

AL-MARRI, J., AND S. GHANDEHARIZADEH [1998]. An evaluation of alterna-
tive disk scheduling techniques in support of variable bit rate contin-
uous data,Proceedings of the 6th International Conference on Extend-
ing Database Technology, EDBT’98, Valencia, Spain, March 23�27,
231�245.

BENNETT, J.C.R.,AND H. ZHANG [1996]. WF2Q: worst-case fair weighted fair
queuing,Proceedings of the 15th Annual Joint Conference of the IEEE
Computer and Communications Societies, IEEE INFOCOM’96, March
24�28, San Francisco, California, 120�128.

BERTSEKAS, D.P.,AND R.G. GALLAGER [1992]. Data Networks, Prentice Hall.
BIERSACK, E., F. THIESSE, AND C. BERNHARDT [1996]. Constant data length

retrieval for video servers with VBR streams,Proceedings of the 3rd
IEEE International Conference on Multimedia Computing and Systems
ICMCS’96, Hiroshima, Japan, June 17�21, 151�155.

BIRK, Y. [1995a]. Track pairing: A novel data layout for VoD servers with
multi-zone recording disks,Proceedings of the 2nd IEEE International
Conference on Multimedia Computing and Systems, ICMCS’95, Wash-
ington, DC, May 15�18, 248�255.

BIRK, Y. [1995b]. Deterministic load-balancing schemes for disk-based video-
on-demand storage servers,Proceedings of the 14th IEEE Symposium
on Mass Storage Systems, MSS’95, Monterey, CA, September 11�14,
17�25.

BISDIKIAN , C., K. MARUYAMA , D. SEIDMAN , AND D. SERPRANOS [1996]. Cable
access beyond the hype: on residential broadband data services over
HFC networks,IEEE Communications Magazine 34, 128�135.

BOLOSKY, W.J., J.S. BARRERA, R.P. DRAVES, R.P. FITZGERALD, G.A. GIBSON, M.B.

JONES, S.P. LEVI , N.P. MYHRVOLD, R.F. RASHID [1996]. The Tiger video file

153

154 Bibliography

server,Proceedings of the 6th International Workshop on Network and
Operating System Support for Digital Audio and Video, NOSSDAV’96,
Zushi, Japan, April 23�26, 212�223.

BORST, S.C.[1996]. Polling Systems, CWI Tracts, Amsterdam.
BOXMA , O., T.J.J. DENTENEER, AND J. RESING [2002]. Some models for con-

tention resolution in cable networks,Networking 2002 Workshops, Lec-
ture Notes in Computer Science 2345, 117�128, Springer, 2002.

BRESLAU, L., P. CAO, L. FAN, G. PHILLIPS, AND S. SHENKER [1999]. Web caching
and Zipf-like distributions: Evidence and implications,Proceedings of
the 18th Annual Joint Conference IEEE Computer and Communica-
tions Societies, IEEE INFOCOM’99, New York, NY, March 21�25,
126�134.

BRUCKER, P. [2001]. Scheduling Algorithms, 3rd edition, Springer.
BURTON, W. [1976]. A buddy system variation for disk storage allocation,

Communications of the ACM 19:7, 416�417.
CABLE TELEVISION LABORATORIES, INC. [2001]. Data-over-cable service inter-

face specifications (DOCSIS), Radio frequency interface specification,
SP-RFIv2.0�W02�011024.

CABRERA, L., AND D.D.E. LONG [1991]. Swift: Using distributed disk striping
to provide high I/O data rates,Computing Systems 4:4, 405�436.

CAPETANAKIS, J.I. [1979]. Tree algorithms for packet broadcast channels,IEEE
Transactions on Information Theory 25:5, 505�515.

CHANG, E., AND H. GARCIA-MOLINA [1996]. Reducing initial latency in a mul-
timedia storage system,Proceedings of the International Workshop on
Multimedia Database Management Systems, IW-MMDBMS’96, Blue
Mountain Lake, NY, August 14�16, 2�11.

CHEN, M.-J., AND C.-C. WU [2003]. A zone-based data placement and retrieval
scheme for video-on-demand applications regardless of video popular-
ity, IEICE Transactions on Communications E86�B:10, 3094�3102.

CHENG, A.M.K. [2002]. Real-Time Systems: Scheduling, Analysis, and Verifi-
cation, Wiley.

DEBEY, H.C. [1989]. Program transmission optimisation,United States Patent
5,421,031.

DEMERS, A., S. KESHAV, AND S. SHENKER [1989]. Analysis and simulation of a
fair queuing algorithm,Proceedings of the ACM Symposium on Com-
munications Architectures & Protocols, ACM SIGCOMM’89, Septem-
ber 19�22, Austin, Texas, 1�12.

DENGLER, J., C. BERNHARDT, AND E. BIERSACK [1996]. Deterministic admis-
sion control strategies in video servers with variable bit rate streams,

Bibliography 155

Proceedings of the 3rd International Workshop on Interactive Dis-
tributed Multimedia Systems and Services, IDMS’96, Berlin, March
4�6, 245�264.

DENTENEER, T.J.J., V. PRONK, E.B. HEKSTRA-NOWACKA, L.M.G.M. TOLHUIZEN

[2003]. Method of and system for transmitting a plurality of messages,
United States Patent application 20030091060.

DENTENEER, T.J.J.[2005]. Data transfer in cable networks: Delay models for
multiaccess with contention trees, Ph.D. Thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands.

DENTENEER, T.J.J.,AND V. PRONK [2001]. On the number of contenders in a
contention tree,Proceedings of the 14th ITC Specialists Seminar on
Access Networks and Systems, Girona, Spain, April 25�27, 105�112.

DIGITAL VIDEO BROADCASTING (DVB) [1998]. DVB interaction channel for cable
TV distribution systems (CATV),ETS 300 800.

VAN DRIEL, C.-J.L., P.A.M.VAN GRINSVEN, V. PRONK, AND W.A.M. SNIJDERS[1997].
The (r)evolution of access networks for the information super-highway,
IEEE Communications Magazine 35, 2�10.

DUTTA-ROY, A. [1999]. Cable, it’s not just for TV,IEEE Spectrum 35, 53�59.
FENG, W.-C., AND J. REXFORD [1999]. Performance evaluation of smoothing

algorithms for transmitting prerecorded variable-bit-rate video,IEEE
Transactions on Multimedia 1:3, 302�313.

FREEDMAN, C.S., AND D.J. DEWITT [1995]. The SPIFFI scalable video-on-
demand system,Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD’95, San Jose, CA, May
22�25,SIGMOD Record 24:2, 352�363.

GAREY, M.R., AND D.S. JOHNSON[1979]. Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman.

GEMMELL , D.J., H.M. VIN , D.D. KANDLUR, P.V. RANGAN, AND L.A. ROWE [1995].
Multimedia storage servers: A tutorial,IEEE Computer 28:5, 40�49.

GHANDEHARIZADEH, S., D.J. IERARDI, D. KIM , AND R. ZIMMERMANN [1996]. Place-
ment of data in multi-zone disk drives,Proceedings of the 2nd In-
ternational Baltic Workshop on Databases and Information Systems,
BalticDB’96, Tallin, Estonia.

GHANDEHARIZADEH, S., S.H. KIM , AND C. SHAHABI [1995]. On configuring a sin-
gle disk continuous media server,Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling o f Computer Systems,
SIGMETRICS’95, Ottawa, Canada, May 15�19, Performance Evalu-
ation Review 23:1, 37�46.

156 Bibliography

GHANDEHARIZADEH, S., S.H. KIM , C. SHAHABI , AND R. ZIMMERMANN [1996].
Placement of continuous media in multi-zone disks, in: S. Chung (Ed.),
Multimedia Information Storage and Management, Chapter 2, 23�59,
Kluwer.

GOLESTANI, S.J. [1994]. A self-clocked fair queuing scheme for broadband
applications,Proceedings of the 13th Annual Joint Conference of the
IEEE Computer and Communications Societies, IEEE INFOCOM’94,
June 12�16, 1994, Toronto, Ontario, Canada, 636�646.

GOLMIE, N., Y. SANTILLAN , AND D.H. SU [1999]. A review of contention resolu-
tion algorithms for the IEEE 802.14 networks,IEEE Communications
Surveys 2, 2�12.

GRIMMETT, G.R., AND D.R. STIRZAKER [2001]. Probability and Random Pro-
cesses, third edition, Oxford University Press, Oxford.

GRIWODZ, C., M. BÄR, AND L.C. WOLF [1997]. Long-term movie popularity
models in video-on-demand systems: Or the life of an on-demand
movie,Proceedings of the 5th ACM International Conference on Mul-
timedia, MM’97, Seattle, WA, November 11�13, 349�357

HAJEK, B., N.B. LIKHANOV, AND B.S. TSYBAKOV [1994]. On the delay in a
multiple-access system with large propagation delay,IEEE Transac-
tions on Information Theory 40:4, 1158�1166.

HASKEL, B.G., A. PURI, AND A.N. NETRAVALI [1997]. Digital Video: An Intro-
duction to MPEG-2, Digital multimedia standards series, Chapman &
Hall.

HEKSTRA-NOWACKA, E.B. [2000]. Fixed Rate Scheduling� Implementation,
Philips Research Report 7149.

HELTZER, S.R., J.M. MENON, AND M.F. MITOMA [1993]. Logical data tracks ex-
tending among a plurality of zones of physical tracks of one or more
disk devices,United States Patent 5,202,799.

HOLLMANN , H.D.L., AND C.D. HOLZSCHERER[1991]. Information on demand
with short access times: Preliminary investigations,Philips Research
Technical Note 109/91.

HUANG, Y.-M., AND S.-L. TSAO [1997]. An efficient data placement and retrieval
scheme of zoned disks to support interactive playout for video servers,
IEEE Transactions on Consumer Electronics 43:1, 69�79.

HUANG, Y.-M., AND S.-L. TSAO [1999]. An efficient data layout scheme for
multi-disks continuous media servers,Multimedia Tools and Applica-
tions 9:2, 147�166.

Bibliography 157

IEEE WORKING GROUP[2000]. http://www.media.mit.edu/physics/pedagogy/fab/
fab 2002/helppages/networkingresources/Protocols/
home.knology.net/ieee80214/index.html

JANSSEN, A.J.E.M.,AND M.J.M. DE JONG [2000]. Analysis of contention tree al-
gorithms,IEEE Transactions on Information Theory 46:6, 2163�2172.

KAMEDA , T., AND R. SUN [2004]. A survey of VOD broadcasting schemes,to be
published.

KANG, J.,AND H.Y. YEOM [1999]. Placement of VBR video data on MZR disks,
Proceedings of the 9th International Workshop on Network and Op-
erating System Support for Digital Audio and Video, NOSSDAV’99,
Basking Ridge, NJ, June 23�25, 231�236.

KANG, S., AND H.Y. YEOM [2003]. Storing continuous media objects to multi-
zone recording disks using multirate smoothing technique,IEEE Trans-
actions on Multimedia 5:3, 473�482.

KARSTEN, M. [2006]. SI-WF2Q: WF2Q approximation with small constant
execution overhead,Proceedings of the 25th Annual Joint Conference
of the IEEE Computer and Communications Societies, IEEE INFO-
COM’06, April 23�29, Barcelona, Spain.

KATEVENIS, M., S. SIDIROPOULOS, S., AND C. COURCOUBETIS [1991]. Weighted
round-robin cell multiplexing in a general-purpose ATM switch chip,
IEEE Journal on Selected Areas in Communication 9:8, 1265�1279.

KIM , J.-W., Y.-U LHO, AND K.-D. CHUNG [1997]. An effective video block place-
ment scheme on VOD server based on multi-zone recording disks,Pro-
ceedings of the 4th IEEE International Conference on Multimedia Com-
puting and Systems, ICMCS’97, Ottawa, Canada, June 3�6, 29�36.

KIM , J.-W., H.-R. LIM , Y.-J. KIM , AND K.-D. CHUNG [1997]. A data placement
strategy on MZR for VoD servers,Proceedings of the International
Conference on Parallel and Distributed Systems, ICPADS’97, Seoul,
South Korea, December 11�13, 506�513.

KLEIN, M.H., T. RALYA , B. POLLAK , AND R. OBENZA [1993]. Practitioner’s Hand-
book for Real-Time Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems, Kluwer.

KNIGHTLY, E.W., D.E. WREGE, J. LIEBEHERR, AND H. ZHANG [1995]. Funda-
mental limits and trade-offs of providing deterministic guarantees to
VBR video traffic,Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS’95,
Ottawa, Canada, May 15�19, Performance Evaluation Review 23:1,
98�107.

158 Bibliography

KNUTH, D.E. [1969]. The Art of Computer Programming. Volume I, Funda-
mental Algorithms, 442�445, Addison Wesley.

KOCH, P.D.L. [1987]. Disk file allocation based on the Buddy system,ACM
Transactions on Computer Systems 4:5, 352�370.

KORST, J., AND V. PRONK [1996]. Storing continuous-media data on a compact
disc,Multimedia Systems 4:4, 187�196.

KORST, J., AND V. PRONK [2005]. Multimedia Storage and Retrieval: An Algo-
rithmic Approach, Wiley & Sons, Ltd.

VAN KREIJ, A.J. [2001]. Near video on demand broadcasting strategies, M.Sc.
Thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands.

KUNZ, A., AND C. STEPPING[2003]. Overview and implementation of schedul-
ing algorithms for wireless environments,Proceedings of the 5th Euro-
pean Personal Mobile Communications Conference, EPMCC’03, April
22�25, Glasgow, England, 441�446.

KUO, W.-K., S. KUMAR, AND C.-C.J. KUO [2003]. Improved priority access, band-
width allocation and traffic scheduling for DOCSIS cable networks,
IEEE Transactions on Broadcasting 49:4, 371�382.

KWAAITAAL , J.J.B. [1999]. A Multi-standard simulation platform for hybrid
fiber/coax networks, Graduate Report, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands.

LAWERMAN, E. [1995]. System with data repetition between logically sucessive
clusters,United States Patent 5,890,168.

LAWLER, E.L., J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS [1993]. Se-
quencing and scheduling: Algorithms and complexity, in: S.C. Graves,
A.H.G. Rinnooy Kan, and P. Zipkin (Eds.),Handbooks in Operations
Research and Management Science, Volume 4: Logistics of Production
and Inventory, 445�522, North-Holland.

VAN LEEUWAARDEN, J. [2005]. Queueing Models for Cable Access Networks,
Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands.

VAN LEEUWAARDEN, J., T.J.J. DENTENEER, AND J. RESING [2006]. A discrete-time
queueing model with periodically scheduled arrival and departure slots,
Performance Analysis 63, 278�294.

LEGALL , D.J. [1991]. MPEG: A video compression standard for multimedia
applications,Communications of the ACM 34:4, 46�58.

LHO, Y.-U., AND K.-D. CHUNG [1998]. Performance analysis and evaluation of
allocating subbanded video data blocks on MZR disk arrays,Proceed-
ings of the Advanced Simulation Technologies Conference, ASTC’98,
Boston, MA, April 5�9, 335�340.

Bibliography 159

LIAO, W., AND H.-J. JU [2004]. Adaptive slot allocation in DOCSIS-based
CATV networks,IEEE Transactions on Multimedia 6:3, 479�488.

LIN, Y.-D., W.-M. YIN, AND C.-Y. HUANG [2000]. An investigation into HFC
MAC protocols: Mechanisms, implementation, and research issues,
IEEE Communications Surveys and Tutorials 3:3.

L IU, C.L., AND J.W. LAYLAND [1973]. Scheduling algorithms for multipro-
gramming in a hard-real-time environment,Journal of the ACM 20:1,
46�61.

LIU, J.W.S.[2000]. Real-Time Systems, Prentice Hall.
MATHYS, P., AND P. FLAJOLET [1985]. Q-ary collision resolution algorithms

in random-access systems with free or blocked channel access,IEEE
Transaction on Information Theory 31:2, 217�243.

MATSUFURU, N., AND R. AIBARA [1999]. Efficient fair queuing for ATM net-
works using uniform round robin,Proceedings of the 18th Annual
Joint Conference of the IEEE Computer and Communications Societies,
IEEE INFOCOM’99, March 21�25, New York, New Jersey, 389�397.

MCNS HOLDINGS [1999]. DOCSIS: Data-over-cable service interface specifi-
cation,Public Report SP-RFIv2.0�W02�011024.

MICHIELS, W. [1999]. Block placement on multi-zone disks, M.Sc. Thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands.

MICHIELS, W., AND J. KORST [2001]. Min-max subsequence problems in multi-
zone disk recording,Journal of Scheduling 4:5, 271�283.

ÖZDEN, B., R. RASTOGI, AND A. SILBERSCHATZ [1996]. On the design of a low-
cost video-on-demand storage system,ACM Multimedia Systems 4,
40�54.

PALMOWSKI , Z., S. SCHLEGEL, AND O. BOXMA [2003]. A tandem queue with a
gate mechanism,Queueing Systems 43, 349�364.

PAREKH, A.K., AND R.G. GALLAGER [1993]. A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case,IEEE/ACM Transactions on Networking 1:3, 344�357.

PÂRIS, J.-F. [2001]. A fixed-delay broadcasting protocol for video-on-de-
mand,Proceedings of the 10th International Conference on Computer
Communications and Networks, ICCCN’01, Scottsdale, AZ, October
15�17, 418�423.

PARK, Y.-S., J.-W. KIM , AND K.-D. CHUNG [1999]. A continuous media place-
ment using B-ZBSR on heterogeneous MZR disk array,Proceedings
of the International Workshop on Parallel Processing, ICPP’99 Work-
shop, Wakamatsu, Japan, September 21�24, 482�487.

160 Bibliography

PINEDO, M. [2001]. Scheduling: Theory, Algorithms, and Systems, 2nd edition,
Prentice Hall.

PRONK, V. [2000]. Upstream channel bandwidth allocation in a DVB-
compliant HFC network,Philips Research Technical Note 2000/429.

PRONK, V. [2002]. Disk storage of VBR video content based on resource usage,
Proceedings of the 1st Philips Symposium on Intelligent Algorithms,
SOIA’02, Eindhoven, The Netherlands, December 11�12, 245�257.

PRONK, V. [2003]. Storage of VBR video content on a multi-zone recording
disk based on resource usage,Algorithms in Ambient Intelligence (Eds.
W. Verhaegh, E. Aarts, and J. Korst), Kluwer, 2003.

PRONK, V., E.B. HEKSTRA-NOWACKA, L.M.G. TOLHUIZEN, AND T.J.J. DENTENEER

[1999]. Description and performance analysis of the DVB/DAVIC
MAC protocol for HFC networks,Philips Research Report 7105.

PRONK, V., AND M.J.M. DE JONG [1998]. Multi-standard simulation platform for
hybrid fiber/coax networks; I standards survey, IIU basic architecture,
Philips Research Technical Note 179/98.

PRONK, V., AND J. KORST [2001]. Comment on ”Carry-Over Round Robin: A
Simple Cell Scheduling Mechanism for ATM Networks”,IEEE/ACM
Transactions on Networking 9:3, 373�374.

PRONK, V., AND J. KORST [2007]. Fair resource sharing using the R-EDF
scheduling algorithm,accepted for publication in Springer Real-Time
Systems Journal.

PRONK, V., AND J. KORST[2002]. On fair queuing and scheduling periodic tasks,
Philips Research Technical Note 2002/218.

PRONK, V., AND R. RIETMAN [2002]. Medium access control using request
merging,Proceedings of the 1st Philips Symposium on Intelligent Al-
gorithms, SOIA’02, Eindhoven, The Netherlands, December 11�12,
133�142.

PRONK, V., AND L. TOLHUIZEN [2000]. Ranging in DVB/DAVIC II,Philips Re-
search Technical Note 2000/317.

PRONK, V., AND L. TOLHUIZEN [2001]. Medium access control for unregistered
cable modems,Proceedings of the Philips Workshop on Scheduling and
Resource Management, SCHARM’01, Eindhoven, The Netherlands,
June 28�29, 169�178.

REXFORD, J.,AND D.F. TOWSLEY [1999]. Smoothing variable-bit-rate video in an
internetwork,IEEE/ACM Transactions on Networking 7:2, 202�215.

ROBERTS, L.G. [1975]. ALOHA packet system with and without slots and cap-
ture,ACM SIGCOMM Computer Communication Review 5:2, 28�42.

Bibliography 161

RUEMMLER, C., AND J. WILKES [1994]. An introduction to disk drive modeling,
IEEE Computer 27:3, 17�29.

SAHA , D., S. MUKHERJEE, AND S.K. TRIPATHI [1998]. Carry-over round robin:
A simple cell scheduling mechanism for ATM networks,IEEE/ACM
Transactions on Networking 6:6, 779�796.

SALA , D. [1998]. Design and Evaluation of MAC Protocols for Hybrid
Fiber/Coaxial Systems, Ph.D. Thesis, Georgia Institute of Technology,
Atlanta, GA.

SALA , D., D. HARTMAN , AND J.O. LIMB [1996]. Comparison of algorithms for
station registration on power-up in an HFC network,IEEE 802.14 Meet-
ing, Doc. nr. 96�012, Boulder, Colorado, January 1996.

SCHOUTE, F.C. [1983]. Dynamic frame length ALOHA,IEEE Transactions on
Communications 31:4, 565�568.

SDRALIA , V., P. TZEREFOS, AND C. SMYTHE [2001]. Recovery analysis of
the DOCSIS protocol after service disruption,IEEE Transactions on
Broadcasting, 47:4, 377�385.

SHENOY, P.J.,AND H.M. VIN [1998]. Cello: A disk scheduling framework for
next generation operating systems,Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS’98, Madison, WI, June 22�26,Performance Evaluation
Review 26:1, 44�55.

SHIMONISHI , H., M. YOSHIDA, AND H. SUZUKI [1997]. Improvement of weighted
round robin cell scheduler,Technical Report of IEICE CQ96�57
(1997�02), 25�32.

SHREEDHAR, M., AND G. VARGHESE [1995]. Efficient fair queuing using deficit
round robin,Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, ACM
SIGCOMM’95, August 28�September 1, Cambridge, Massachusetts,
231�242.

SINCOSKIE, W.D. [1991]. System architecture for a large scale video on demand
service,Computer Networks and ISDN Systems 22, 155�162.

SRIVASTAVA , A., A. KUMAR, AND A. SINGRU [1997]. Design and analysis of a
video-on-demand server,ACM Multimedia Systems 5:4, 238�254.

STEPPING, C. [2001]. Wireless scheduling approaches and practical imple-
mentation issues,Proceedings of the Personal Wireless Conference,
PWC’01, August 8�10, Lappeenranta, Finland, 39�57.

STOICA, I., H. ABDEL-WAHAB , K. JEFFAY, S.K. BARUAH, J.E. GEHRKE, AND C.G.

PLAXTON [1996]. A proportional share resource allocation algorithm
for real-time, time-shared systems,Proceedings of the 17th IEEE Real-

162 Bibliography

Time Systems Symposium, RTSS’96, December 4�6, Washington, Col-
orado, 288�299.

SUBRAHMANIAN , V.S. [1998]. Principles of Multimedia Database Systems,
Morgan Kaufman, San Francisco.

SURI, S., G. VARGHESE, AND G. CHANDRANMENON [1997]. Leap forward virtual
clock: a new fair queuing scheme with guaranteed delays and through-
put fairness,Proceedings of the 16th Annual Conference of the IEEE
Computer and Communications Societies, IEEE INFOCOM’97, April
7�11, Kobe, Japan. Extended version: Washington University of St.
Louis, Technical Report #96-10.

TANENBAUM , A.S. [2003]. Computer Networks, Fourth Edition, Prentice Hall.
TEWARI, R., R. KING, D. KANDLUR, D.M. DIAS [1996]. Placement of multimedia

blocks on zoned disks,Proceedings of the SPIE Multimedia Computing
and Networking, San Jose, CA, January 29,SPIE Proceedings 2667,
360�367.

TONG, S.-R., Y.-F. HUANG, AND J.C.L. LIU [1998]. Study of disk zoning for video
servers,Proceedings of the IEEE International Conference on Multime-
dia Computing and Systems, ICMCS’98, Austin, TX, June 28�July 1,
86�95.

TRIANTAFILLOU , P., S. CHRISTODOULAKIS, AND C.A. GEORGIADIS [2000]. Opti-
mal data placement on disks: A comprehensive solution for different
technologies,IEEE Transactions on Knowledge and Data Engineering
12:2, 324�330.

TRIANTAFILLOU , P., S. CHRISTODOULAKIS, AND C.A. GEORGIADIS [2002]. A com-
prehensive analytical performance model for disk devices under random
workloads,IEEE Transactions on Knowledge and Data Engineering
14:1, 140�155.

TSAO, S.-L, M.C. CHEN, AND Y. SUN [2001]. Placement of VBR video on zoned
disks for real-time playback,IEICE Transactions on Information and
Systems E84�D:12, 1767�1781.

TSAO, S.-L., Y.-M. HUANG, C.-C. LIN, S.-C. LIOU, AND C.-W. HUANG [1997]. A no-
vel data placement scheme on optical disks for near-VOD servers,Pro-
ceedings of the 4th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication services, IDMS’97, Darm-
stadt, Germany, September 10�12, 133�142.

TSE, P.K.C., C.H.C. LEUNG [2000]. Improving multimedia systems performance
using constant-density recording disks,Multimedia Systems 8, 47�56.

TSYBAKOV, B.S.,AND V.A. M IKHAILOV [1978]. Free synchronous packet access
in a broadcast channel with feedback,Problems in Information Trans-
mission 14, 259�280.

Bibliography 163

VALENTE, P. [2004]. Exact GPS simulation with logarithmic complexity, and
its application to an optimally fair scheduler,Proceedings of the An-
nual Conference of the Special Interest Group on Data Communication,
SIGCOMM’04, August 30�September 3, Portland, Oregon, 269�280.

VERHAEGH, W.F.J., R. RIETMAN , AND J. KORST [2004]. Near video-on-demand
with limited bandwidth and distributed servers, in: W. Verhaegh, E.
Aarts, and J. Korst (Eds.),Algorithms in Ambient Intelligence, Kluwer.

VIN, H.M., AND P.V. RANGAN [1993]. Designing a multi-user hdtv storage server,
IEEE Journal on Selected Areas in Communication 11:1. 153�164.

VAN DER VLEUTEN, R.J., W.C.VAN ETTEN, AND H.P.A. VAN DEN BOOM [1994]. Op-
timal controlled ALOHA for two-way data communication in a ca-
ble television network,IEEE Transactions on Communications 42:7,
2453�2459.

WANG, Y.-C., S.-L. TSAO, R.-Y. CHANG, M.C. CHEN, J.-M. HO, AND M.-T. KO [1997].
A fast data placement scheme for video server with zoned disks,Pro-
ceedings of the SPIE Multimedia Storage and Archiving Systems II,
MSAS’97, Dallas, TX, November 3,SPIE Proceedings 3229, 92�102.

WELLS, J., Q. YANG, AND C. YU [1991]. Placement of audio data on optical
disks,Proceedings of the 1st International Conference on Multimedia
Information Systems, MIS’91, Jurong, Singapore, January, 123�134.

WOLTERS, R., H.VAN HOOF, C. BOTTE, AND C. SIERENS[1997]. Initialisation proto-
col for a burst-mode transport HFC system with delay determination by
power distribution measurement,Proceedings of SPIE 3233, 353�360.

YIN, W.-M., AND Y.-D. L IN [2000]. Statistically optimized minislot allocation
for initial and collision resolution in hybrid fiber coaxial networks,
IEEE Journal on Selected Areas in Communications 18:9, 1764�1773.

YU, C., W. SUN, D. BITTON, Q. YANG, R. BRUNO, AND J. TULLIS [1989]. Effi-
cient placement of audio data on optical disks for real-time applications,
Communications of the ACM 32:7, 862�871.

ZHANG, H. [1995]. Service disciplines for guaranteed performance ser-
vice in packet-switching networks,Proceedings of the IEEE 83:10,
1374�1396.

ZHAO, Q, AND J. XU [2004]. On the computational complexity of maintain-
ing GPS clock in packet scheduling,Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies,
IEEE INFOCOM’04, March 7�11, Hong Kong.

Author Index

A
Abdel-Wahab, H., 6, 57, 74
Abramson, N., 6
Aerts, J., 121
Aibara, R., 64
Al-Marri, J., 8

B
Bär, M., 114
Barrera, J.S., 7
Baruah, S.K., 6, 57, 74
Bennett, J.C.R., 6, 57
Bernhardt, C., 10, 80, 84
Bertsekas, D.P., 6, 15
Biersack, E.W., 10, 80, 84
Birk, Y., 10, 98, 118
Bisdikian, C., 3
Bitton, D., 81
Bolosky, W.J., 7
Boom, H.P.A. van den, 9, 14, 17
Borst, S.C., 44
Botte, C., 15
Boxma, O.J., 6, 43, 44
Breslau, L., 114
Brucker, P., 7
Bruno, R., 81
Burton, W., 81

C
Cabrera, L., 7
Cao, P., 114
Capetanakis, J.I., 6, 15, 40, 42
Chandranmenon, G., 57, 65, 75

Chang, E., 81
Chang, R.-Y., 121
Chen, M.-J., 121
Chen, M.C., 121
Cheng, A.M.K., 7
Christodoulakis, S., 121
Chung, K.-D., 121
Courcoubetis, C., 58

D
DeBey, H.C., 124
Demers, A., 6, 57
Dengler, J., 84
Denteneer, T.J.J., 6, 15, 34, 38, 40,

43, 44
DeWitt, D.J., 7
Dias, D.M., 120
Draves, R.P., 7
Driel, C.-J.L. van, 3
Dutta-Roy, A., 3

E
Etten, W.C. van, 9, 14, 16

F
Fan, L., 114
Feng, W.-C., 8
Fitzgerald, R.P., 7
Flajolet, P., 43
Freedman, C.S., 7

G
Gallager, R.G., 6, 15, 57
Garcia-Molina, H., 81

165

166 Author Index

Garey, M.R., 104, 105
Gehrke, J.E., 6, 57, 74
Gemmell, D.J., 7
Georgiadis, C.A., 121
Ghandeharizadeh, S., 8, 81, 102,

106, 118, 120
Gibson, G.A., 7
Golestani, S.J., 6, 57
Golmie, N., 6
Grimmett, G.R., 44
Grinsven, P.A.M. van, 3
Griwodz, C., 114

H
Hajek, B., 16
Hartman, D., 15
Haskel, B.G., 4, 55
Hekstra-Nowacka, E.B., 6, 15
Heltzer, S.R., 98
Ho, J.-M., 121
Hollmann, H.D.L., 125, 136
Holzscherer, C.D., 125, 136
Hoof, H. van, 15
Huang, C.-W., 81
Huang, C.-Y., 15
Huang, Y.-F., 119
Huang, Y.-M., 81, 120, 121

I
Ierardi, D.J., 102, 106, 118

J
Janssen, A.J.E.M., 6, 16, 40, 43
Jeffay, K., 6, 57, 74
Johnson, D.S., 104, 105
Jones, M.B., 7
Jong, M.J.M. de, 6, 16, 40, 43
Ju, H.-J., 15

K
Kameda, T., 8, 124

Kandlur, D.D., 7, 120
Kang, J., 121
Kang, S., 121
Karsten, M., 57
Katevenis, M., 58
Keshav, S., 6, 57
Kim, D., 102, 106, 118
Kim, J.-W., 121
Kim, S.H., 81, 120
Kim, Y.-J., 121
King, R., 120
Klein, M.H., 7
Knightly, E.W., 84
Knuth, D.E., 81
Ko, M.-T., 121
Koch, P.D.L., 81
Korst, J., 8, 55, 56, 75, 79–81, 84,

88, 89, 94, 111, 115, 120,
125, 126, 136, 137, 144

Kreiy, A.J. van, 125
Kumar, A., 81
Kumar, S., 15
Kunz, A., 6, 57
Kuo, C.-C.J., 15
Kuo, W.-K., 15
Kwaaitaal, J.J.B., 6

L
Lawerman, E., 79
Lawler, E.L., 7
Layland, J.W., 7, 58, 65
Leeuwaarden, J. van, 6, 38
LeGall, D.J., 4, 55
Lenstra, J.K., 7
Leung, C.H.C., 119
Levi, S.P., 7
Lho, Y.-U., 121
Liao, W., 15
Liebeherr, J., 84
Likhanov, N.B., 16

Author Index 167

Lim, H.-R., 121
Limb, J., 15
Lin, C.-C., 81
Lin, Y.-D.J., 15, 23
Liou, S.-C., 81
Liu, C.L., 7, 58, 65
Liu, J.C.L., 119
Liu, J.W.S., 7, 70
Long, D.D.E., 7

M
Maruyama, K., 3
Mathys, P., 43
Matsufuru, N., 64
Menon, J.M., 98
Michiels, W., 120
Mikhailov, V.A., 6, 16, 40
Mitoma, M.F., 98
Mukherjee, S., 58, 60, 74, 75
Myhrvold, N.P., 7

N
Netravali, A.N., 4, 55

O
Obenza, R., 7
Özden, B., 81

P
Palmowski, Z., 6
Parekh, A.K., 6, 57
Pâris, J.-F., 11, 124, 125
Park, Y.-S., 121
Phillips, G., 114
Pinedo, M., 7
Plaxton, C.G., 6, 57, 74
Pollak, B., 7
Pronk, V., 3, 6–8, 15, 22, 34, 38,

39, 43, 55, 56, 75, 79–81,
84, 88, 89, 94, 111, 115,
125, 137, 144

Puri, A., 4, 55

R
Ralya, T., 7
Rangan, P.V., 7, 80
Rashid, R.F., 7
Rastogi, R., 81
Resing, J., 38, 43, 44
Rexford, J., 8
Rietman, R., 38, 126, 136
Rinnooy Kan, A.H.G., 7
Roberts, L.G., 6
Rowe, L.A., 7
Ruemmler, C., 84

S
Saha, D., 58, 60, 74, 75
Sala, D., 6, 15
Santillan, Y., 6
Schlegel, S., 6
Schoute, F.C., 9, 14, 16
Sdralia, V., 15
Seidman, D., 3
Serpranos, D., 3
Shahabi, C., 81, 120
Shenker, S., 6, 57, 114
Shenoy, P.J., 7
Shimonishi, H., 58
Shmoys, D.B., 7
Shreedhar, M., 58
Sidiropoulos, S., 58
Sierens, C., 15
Silberschatz, A., 81
Sincoskie, W.D., 7
Singru, A., 81
Smythe, C., 15
Snijders, W.A.M., 3
Srivastava, A., 81
Stephens, D.C., 57
Stepping, C., 6, 57

168 Author Index

Stirzaker, D.R., 44
Stoica, I., 6, 57, 74
Su, D.H., 6
Subrahmanian, V.S., 81
Sun, R., 8, 124
Sun, W., 81
Sun, Y., 121
Suri, S., 57, 65, 75
Suzuki, H., 58

T
Tanenbaum, A.S., 6
Tewari, R., 120
Thiesse, F., 10, 80
Tolhuizen, L.M.G., 6, 15, 22
Tong, S.-R., 119
Towsley, D.F., 8
Triantafillou, P., 121
Tripathi, S.K., 58, 60, 74, 75
Tsao, S.-L., 81, 120, 121
Tse, P.K.C., 119
Tsybakov, B.S., 6, 16, 40
Tullis, J., 81
Tzerefos, P., 15

V
Valente, P., 57
Varghese, G., 57, 58, 65, 75
Verhaegh, W.F.J., 126, 136
Vin, H.M., 7, 80
Vleuten, R.J. van der, 9, 14, 16

W
Wang, Y.-C., 121
Wells, J., 81
Wilkes, J., 84
Wolf, L.C., 114
Wolters, R., 15
Wrege, D.E., 84
Wu, C.-C., 121

X
Xu, J., 57

Y
Yang, Q., 81
Yeom, H.Y., 121
Yin, W.-M., 15, 23
Yoshida, M., 58
Yu, C., 81

Z
Zhang, H., 6, 57, 84
Zhao, Q, 57
Zimmermann, R., 102, 106, 118,

120

Subject Index

A
access network, 1, 3–4

community antenna television
(CATV), 3

hybrid fiber-coax (HFC), 3
standardization of

DOCSIS, 3
DVB, 3
IEEE, 3

access protocol,see also
contention resolution
protocol

contention-based, 14, 37
contention-free, 37
request-grant procedure, 5, 38

access time, 81
access-time function, 85, 97

affine, 115
active time, 41
allocation

bandwidth, 9, 38
bit-rate, 89, 103
file, see file allocation

allocation unit, 10, 79
size of, 79, 81

B
Bernoulli trial, 22
bit rate, 83

allocated, 89
constant (CBR), 124
mean, 84
renegotiation of, 119

requested, 89
broadcast schedule

client-centered, 124
data-centered, 124
fixed-delay pagoda (FDPB),

11, 123–139
fragmented, 124

buffer
under- or overflow of, 78, 103

C
cable access network,see access

network
cable modem (CM), 3

active time, 41
idle time, 41
normal operation of, 15
start-up phase of, 15
unregistered, 13–36

channel
downstream, 3
upstream, 3

connection
active time, 41
idle time, 41

contention channel, 14, 17
contention resolution protocol, 6

address splitting, 15
ALOHA, 6

frame-based, 9, 14
stabilized, 15

binary exponential back-off,
15

169

170 Subject Index

contention tree, 6, 15, 42
ternary, 42

p-persistence, 15
cycle, 83, 87

D
data block, 82
dead time, 74
delay, 9

activation, 65
feedback, 14

maximum, 16
fixed, 11, 126
medium access, 39
round-trip, 50
signal propagation, 13, 41
transfer, 86
transmission, 6, 9, 39
variation in, 10

disk
access time, 84
constant-density, 97, 98
multi-zone, 97
read time, 84
size of, 2
transfer rate of, 85, 97, 115

average, 99
disk scheduling algorithm, 10, 78,

83
constant block size (CBS),

100
cycle-based, 83
dual sweep (DS), 94
round-robin (RR), 81
safeness of, 83, 101
triple buffering (TB), 10,

86–89, 101
with record streams (TBR),

89
variable block size (VBS), 94

variable-block double
buffering (VDB), 94

E
electronic program guide (EPG), 2
empirical envelope, 84

F
fair queuing,see scheduling

algorithm
file

contiguous storage of, 10
linear playout time of, 102
playout of, 77
popularity of, 10, 102
prerecorded, 84
transfer rate of, 101, 102, 111
weight of, 103

file allocation, 77, 97–122
Buddy system, 81
contiguous, 77, 103
FIXB, 120
resource-based, 101–113
segmented, 79
VARB, 120

file allocation strategy, 79, 103
largest ratio first (LRF), 106
nearly constant transfer rate,

121
frame, 16

contention, 25
feedback, 26
length of, 27
originating, 26

frame rate, 84
frame time, 84

G
Galton board experiment, 31
guarantee

deterministic, 81

Subject Index 171

quality of service, 2
real-time, 2, 77
statistical, 81

H
head-end (HE), 3

I
idle time, 41
internal bus, 82, 86

J
jitter, 10, 56

worst-case absolute, 57

L
Laplace-Stieltjes transform, 44

cumulant expansion of, 47
latency

rotational, 78
start-up, 11, 78, 83, 100, 124

maximum, 137

M
medium access control (MAC), see

also access protocol, 3,
13–36

layer, 40
MPEG, 55

P
period length, 83
periodic task,see task
personal video recorder (PVR), 2
physical layer, 3, 40

guard band, 13
prefetching, 100
problem

broadcast schedule
composition (BSC), 125

broadcast schedule
composition with offset
(BSCO), 126

partition, 104
resource-based file allocation

(RFA), 103
protocol,see also access protocol

admission control, 2
Internet (IP), 2

Version 6 (IPV6), 2
real-time transport (RTP), 2
reservation, 2
transmission control, 2

Q
quality of service,see guarantee

R
ranging, 13
request

disk access, 84
multi-, 38
simultaneous, 9

request merging, 37–54
request update

active time, 42
request-grant procedure,see

access protocol
resource management, 2, 5–9
response time,see also latency, 9,

56

S
safeness,see disk scheduling

algorithm
scheduling algorithm,see also

disk scheduling
algorithm, 2

credit-based, 57
deadline-driven, 66

172 Subject Index

earliest-deadline-first (EDF),
66

relaxed (R-EDF), 58, 62–65
fair queuing, 6, 57, 58
leap forward virtual clock

(LFVC), 65, 75
non-preemptive, 56
preemptive, 58
round-robin

carry-over (CORR), 58,
60–62

deficit (DRR), 58
uniform (URR), 64
weighted (WRR), 58

server
video, 2
virtual fluid-flow, 57

service
best-effort, 2, 37
guaranteed,see guarantee

share
allocated, 57
assignment of, 60
fair, 57

stream(s)
activation of, 73
admission control of, 58
busy, 59
constant bit rate (CBR), 106
departure of, 58
eligible, 63
heterogeneous, 55
idle, 59
variable bit rate (VBR), 55, 78

streaming, 4
sweep, 84

T
task

idling, 68

periodic, 58
relaxed idling, 70

time-shifted viewing, 5
track

logical, 98
track pairing, 98–101

double-access (DTP), 100
single-access (STP), 100

transmission
non-preemptive, 56

V
video data, 4

retrieval of, 10
smoothed transmission of, 8
storage of, 10

video file,see file
video on demand (VOD), 1, 2, 4–5,

55
near (NVOD), 11, 123
true, 4, 123

Z
Zipf’s law, 114, 118
zone(s)

logical, 119, 120
virtual, 122

Samenvatting

Effici ënte opslag en transmissie van data
in kabelnetwerken

Een kabelnetwerk is tegenwoordig niet meer alleen een medium waarover
analogeTV-signalen vanuit een centraal punt,kopstation genaamd, naar de
aangesloten huizen worden gestuurd. Sinds enkele jaren is het mogelijk
om thuis data digitaal te versturen en te ontvangen. Deze data gaat via
een kabelmodem thuis en het kopstation, dat in verbinding staat met andere
netwerken. Op deze wijze zijn kabelnetwerken onderdeel geworden van het
wereldwijde Internet en kunnen computers thuis hier mee verbonden worden.

Door aan zo’n kopstation een digitaal videosysteem met duizenden films
te koppelen, ontstaat er de mogelijkheid eenvideo-op-verzoek dienst aan te
bieden: Via de computer of zelfs deTV thuis kunnen films worden besteld en
direct bekeken, of worden opgeslagen in de computer.

Om dit te bewerkstelligen is meer nodig dan alleen een netwerk: Voor de
transmissie van video data dient er zorg voor te worden gedragen dat deze
zonder hinderende interrupties kan geschieden, omdat dergelijke gebeurtenis-
sen door de gebruiker direct te zien zijn in de vorm van een stilstaand of zwart
beeld. Verder is ook de reactiesnelheid van het systeem van belang voor het
ondersteunen van operaties door de gebruiker, zoals het bestellen van een film,
maar ook het vooruit- of terugspoelen, pauzeren, enzovoorts.

Binnen deze context beschrijven en analyseren we in dit proefschrift zes
problemen. Vier daarvan houden verband met de transmissie van data over het
kabelnetwerk en de overige twee houden verband met het opslaan van video
data op een harde schijf.

In twee van de vier problemen uit de eerste categorie analyseren we de
vertraging die data ondervindt wanneer die vanuit een modem wordt gestuurd
naar het kopstation. Deze vertraging bepaalt met name de reactiesnelheid van

173

174 Samenvatting

het systeem. Karakteristiek voor dataverkeer in deze richting is dat pakket-
ten van verschillende modems tegelijkertijd mogen worden verstuurd en daar-
door verloren gaan. Met name de vereiste hertransmissies zorgen voor ver-
traging. Meer concreet beschouwen we een variant op het bekendeALOHA

protocol, waarbij we uitgaan van een kanaalmodel dat afwijkt van het conven-
tionele model. Het afwijkende model is van toepassing wanneer een modem
een eerste contact probeert te leggen met het kopstation na te zijn opgestart.
Met name na een stroomuitval, wanneer een groot aantal modems tegelij-
kertijd opnieuw opstart, kunnen de vertragingen aanzienlijk zijn. Daarnaast
beschouwen we modems tijdens normale operatie en analyseren wij de ver-
betering in vertraging wanneer pakketten die vanuit ´eén modem moeten wor-
den verstuurd, worden verpakt in een groter pakket. In beide studies worden
wiskundige resultaten vergeleken met simulaties die re¨ele situaties nabootsen.

In de andere twee van de vier problemen richten wij ons op de trans-
missie van video data in de andere richting, namelijk van het kopstation
naar de modems. Hierbij spelen stringente tijdsrestricties een voorname rol,
zoals hierboven reeds is beschreven. Meer specifiek presenteren we een plan-
ningsalgoritme dat pakketten voor een aantal gebruikers op een kanaal zo-
danig na elkaar verstuurt dat de variatie in de vertraging die de verschil-
lende pakketten ondervinden, minimaal is. Op deze wijze wordt zo goed
mogelijk een continue stroom van data gerealiseerd die van belang is voor
het probleemloos kunnen bekijken van een film. Daarnaast analyseren we
een bestaand algoritme om een film via een aantal kanalen periodiek naar de
aangesloten huizen te versturen. In dit geval ligt de nadruk op de wachttijd
die een gebruiker ondervindt na het bestellen van een film. In deze analyse
onderbouwen we een in het algoritme gebruikte heuristiek en brengen hierin
verdere verbeteringen aan. Daarnaast bewijzen we dat het algoritme asympto-
tisch optimaal is, iets dat reeds langer werd aangenomen, maar nooit rigoreus
bewezen was.

Bij de laatste twee problemen, die verband houden met het opslaan van
video data op een harde schijf, analyseren we hoe deze data zodanig kan wor-
den opgeslagen dat die er nadien efficient van kan worden teruggelezen. In het
ene probleem beschouwen we een bestaand planningsalgoritme om pakketten
van verschillende videostromen naar een harde schijf te schrijven en passen
dit aan om ervoor te zorgen dat het teruglezen van de stroom met bijvoorbeeld
een andere pakketgrootte mogelijk wordt zonder daarbij de schijf onnodig te
belasten. In het andere probleem analyseren we hoe we effectief gebruik kun-
nen maken van het gegeven dat data aan de buitenkant van de schijf sneller
gelezen kan worden dan aan de binnenkant. We bewijzen dat het probleem

Samenvatting 175

van het zo efficient mogelijk opslaan van een gegeven aantal video filesNP-
lastig is en presenteren een eenvoudige heuristiek die, hoewel voor bijzondere
instanties een bewijsbaar slechte prestatie levert, in de praktijk in het alge-
meen goede prestaties levert. Hierbij maken we met name gebruik van het
verschil in populariteit van de verschillende films.

Biography

Verus Pronk was born in Vught, The Netherlands, on April 28, 1963. Af-
ter graduating from Maurick College, Vught, The Netherlands, in 1981, he
went to the Eindhoven University of Technology, Eindhoven, The Nether-
lands. As part of his curriculum, which specialized in computer science, he
did an apprenticeship on low-level hardware design at the California Institute
of Technology in Pasadena, California. He graduated from the University with
honors in the field of mathematics in 1988. His graduation work concerned
the derivation of algorithms in the area of string matching and was performed
under the supervision of M. Rem and F.E.J. Kruseman-Aretz.

Since 1988, Verus has been working at the Philips Research Laboratories
in Eindhoven, where he has worked in various areas, such as fault-tolerant
computing, multimedia systems prototyping, scheduling, communication net-
works, and machine learning. Together with Jan Korst, he co-authored the
bookMultimedia Storage and Retrieval: An Algorithmic Approach, published
by Wiley & Sons, Chichester. He wrote a contribution to the bookAlgo-
rithms in Ambient Intelligence, published by Kluwer Academic Publishers,
Dordrecht. He has co-authored more than 27 conference and journal papers
and holds seven U.S. patents.

177

	Contents
	Preface
	1. Introduction
	2. Medium access control for unregistered cable modems
	3. Request merging in cable networks
	4. Fair resource sharing
	5. Storage and retrieveal of variable-bit-rate video streams
	6. Resource-based file allocation on a multi-zone disk
	7. On the fixed-delay pagoda broadcast schedule
	8. Conclusion
	A. : Related output
	Bibliography
	Author index
	Subject index
	Samenvatting
	Biography

