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CHAPTER1

INTRODUCTION

1.1 Motivation

Video streaming has recently grown dramatically in popularity over the InteCable TV, and wire-
less networks. Currently, the main applications include Live Webcasting,G@aferencing, Video-on-
Demand (VOD), Distance Learning, Employee Training, Collaboratiorejut Announcements, and
Automated Video Surveillance (AVS). YouTube, a social video streamirgiie is currently ranked as
the third most popular Internet website according to Alexa daily trafficirenK]. Video surveillance
systems have also withessed a huge growth, with governments spending roiflimikars on installing
these systems. For example, the number of installed surveillance cameraglamd&and Wales in-
creased from 100 in 1990 to 40,000 in 2002 [2], and now the number is éstinmabe about 2 million,
leading to one camera per 32 persons in UK [3]. Similarly, Chicago city aitidgspent at least $60
millions on video surveillance systems [4]. Furthermore, the revenue ob wdeveillance in China is

expected to reach $9.5 billion by 2014 [5].

1.2 Overview

Because of the highly demanding nature of video streaming applications, masgmesource uti-
lization in any video streaming system is essential for enhancing the scalahiitpwaering the cost.
These resources may include server bandwidth, network bandwidttgyemand processing resources.
In video streaming systems, the consumption of various resources is pgedint. For example,
increasing the transmission data rate of a station increases both its powsstauoadk bandwidth con-
sumption. As a result, any proposed solution to maximize the utilization of a sirgglenee should take
into consideration all other resources in the system.

In this research, we concentrate our work on two video streaming sysiédi3.and AVS. In the



VOD system, shown in Figure 1.1, a central video server system streamesprded videos to clients
upon their requests. The server maintains a waiting queue for everyamdemutes incoming requests
to their corresponding queues. In such a systesgurce sharingndrequest schedulingre key players
in the utilization of the server bandwidth. Besides, enhancing the clieneipedcquality-of-service

(QoS) in these systems is an other important objective.

Network

Storage

b
(1

-

Network
Interface

ﬁ V!deo - Scheduler
Deiverer

soepoU|
abesoig

Streaming Server

Figure 1.1: Simplified VOD Streaming Environment

In the AVS system under study, depicted in Figure 1.2, a set of wireles® &durces stream live
videos to a central video processing proxy over a shared wireless me@he wireless medium can be
WLAN, cellular, or WIMAX network. The wireless stations can be batterywpaed or outlet-powered.
The central processing proxy is connected with a high bandwidth link todbesa pointAP), which
means that this connection is not generally the bottleneck in the system. Ingtessynaximizing the
network bandwidth utilization poses a serious challenge that needs to tesseld!.

The main objectives of this research can be summarized as follows:

e To increase the utilization of resources in VOD systems by encouragirigneerss to wait for

service by providing them with accurate expected waiting time for service.

e To propose a new class of scheduling policies that consider not onlyutihent state but also

the future state of the VOD system. Current scheduling decisions haveng stffect on future



Access
Point

===y Wireless Mediu
High Speed

|
‘o
&

Figure 1.2: AVS System Overview

scheduling and stream delivery decisions in the system. What we seeghisduting policy that
predicts the future state of the system and takes the prediction results irsideration in the

current scheduling decision to achieve maximum system bandwidth utilization.

e To solve the problem of dynamic bandwidth allocation in AVS systems in order xinmee the
utilization of network bandwidth. The dynamic bandwidth allocation solution lshoansider all

the characteristics of a typical AVS system.

1.3 Proposed Work on VOD Systems

Unfortunately, the distribution of streaming media by a video streaming systs fasignificant
scalability challenge due to the high server and network requirements.eHeanmerous techniques
have been proposed to deal with this challenge, especially in the aressdd delivery(also called
resource sharingandrequest schedulingscalable video delivery can be achieved usittgam merging

[6, 7, 8,9, 10, 11, 12] anderiodic broadcasting13, 14, 15, 16, 17]. These techniques offer scalable



performance when compared with unicast delivery.

Stream merging techniques reduce the cost by aggregating clients intodasges that share the
same multicast streams. These techniques inckitgeam-TappingPatching [6, 18, 19], Transition
Patching[7, 20], andEarliest Reachable Merge TargdERMT) [8, 21]. The client makes up to one
merge with Patching, up to two merges with Transition Patching, and multiple meige&ERMT.
Thus, these techniques offer three levels of performance (in terms attieved resource sharing and
thus the number of customers that can be serviced concurrently) which abthree levels of imple-
mentation complexity, with higher performance achievable at higher implementatioplexity. For
these techniques, request scheduling is an important aspect. A scheuhlity is used to select the
requests for service. A cost-based scheduling policy, cMlieémum Cost Firs{22], has recently been
proposed to capture the significant variation in stream lengths causddebynsmerging techniques
through selecting the requests requiring the least cost.

While stream merging delivers data in a client-pull fashion, periodic biastohg techniques deliver
data in a server-push fashion by dividing each video into multiple segmedtbraadcasting each
segment periodically on dedicated server channels. Thus, they casebteanly for the most popular
videos and require the clients to wait until the next broadcast time of thedégsbhent. This part of the
proposed research considers the stream merging approach.

Most prior studies focused on only three main performance metrics: rsémaaighput, average
waiting time, and unfairness against unpopular videos. Motivated by fhidlyagrowing interest in
human-centered multimedia, we consider other user-oriented metrics,sstiehability to inform users
about how long they need to wait for service. Today, even for shdebs with medium quality, users of
online video websites may experience significant delays. The transitiorg iretlr future, to streaming
long videos (such as full-length movies) at high quality (such as HD) maytteaden larger delays.
We plan to analyze two approaches for giving waiting-time feedback ts a$aicalable video stream-

ing. The first approach provides users with hard time-of-serviceagtees. By contrast, the second



approach provides expected times of service, or alternatively expeetitidg times. Thus, this ap-
proach is referred to as thmedictive approach Providing users with waiting-time feedback enhances
their perceived QoS and encourages them to wait, thereby increasugg sélization by increasing
server throughput. In the absence of any waiting-time feedback, aisensore likely to defect because
of the uncertainty as to when they will start to receive services. The efsp®viding time-of-service
guarantees has not been analyzed in the context of scalable videsrgledighniques.

The achieved resource sharing by stream merging depends greatiywothé waiting requests
are scheduled for service. Despite the many proposed stream merdimigtexs and the numerous
possible variations, there has been only a little work on the issue of schgdulihe context of these
scalable techniques. The choice of a scheduling policy can be as impastanteven more important
than the choice of a stream merging technique, especially when the seloadésl. Motivated by the
development of cost-based scheduling, we plan to investigate its effeetivén great detail and discuss
opportunities for further tunings and enhancements. In particular, visetplanswer the following two
important questions. First, is it better to consider the stream cost only atittentscheduling time or
consider the expected overall cost over a future period of time? Sgsbadld the cost computation
consider future stream extensions done by advanced stream merdimigters (such as ERMT) to
satisfy the needs of new requests? These questions are importargdteacurrent scheduling decision
can affect future scheduling decisions, especially when stream meagithgost-based scheduling are
used. Additionally, we will analyze the effectiveness of incorporatingeigrediction results into the
scheduling decisions. We also plan to study the interaction between sclgepaolicies and the stream
merging technigues and explore new ways for enhancements.

The specific research objectives for this part can be summarized asgollo

e To study how to provide hard time-of-service guarantees in scalable siglaery techniques.

e To propose a waiting-time prediction approach, which provides users wittceed waiting times



rather than hard time-of-service guarantees.

e To analyze the effectiveness of incorporating video prediction restttstiie scheduling deci-

sions.

¢ To study the interaction between scheduling policies and the stream mergimipiees.

1.4 Proposed Work on AVS Systems

Most research on AVS focused on developing robust computer vigimmithms for the detection,
tracking, and classification of objects [23, 24, 25, 26, 27, 28, 29]thadletection and classification
of unusual events [30, 31, 32, 33, 34, 35]. Much less work, hew@onsidered resource utilization in
video surveillance systems. Enhanced resource utilization necessitylzismuse increasing the cover-
age through employing additional video sources leads to increasing thieagtandwidth and thus the
computational capability to process all these video streams. (The fact¢hedging the bandwidth also
increases the computational cost applies to most practical circumstanees.yvgen a distributed pro-
cessing architecture is used to increase scalability, the cost of suctemsyan still be a big concern as
computer vision algorithms are computationally intense. Power consumptiontieeanaajor problem,
especially in battery-powered (wireless) video sources. Considemgitteo sensors consume orders
of magnitude more resources than scalar sensors, reducing povesingamion is essential even when
the power is available [36].

Enhanced resource utilization in AVS systems can be achieved by contribléreending rate of a
video source according to the state of that video source. The state dfifesource may include the
network channel conditions, the video source power constrains, tkeat@ threat level at the video
source location, the placement of the video source, the source locationtamgs and the lighting
conditions in the source environment. This controlling process can bevadhiy dynamic network

bandwidth management and allocation. With the introduction of 802.11e sthrttiar provision of



deferential bandwidth allocation is now possible among different traffiegcaies in the same station.
Unfortunately, bandwidth management and providing differential barttvaidbcation among different
stations within the same access category is not yet provided by the stamdbnéeds further investiga-
tion.

As depicted in Figure 1.2, AVS systems usually h&e 1 video sources. Each video souce
streams a different encoded video stream of r&g.(These video streams are being sent to a central
processing proxy that is linked to the AP. Each video sosittas a physical rate/{) and a weight factor
(ws). The weights can be assigned based on many factors, including théigldteeat level, placement
of video sources, and location importance. The wireless network in thensygas limited available
bandwidth that have to be estimated accurately and distributed efficiently aimemnideo sources to
achieve the best results in terms of some objective function.

In prior bandwidth management studies [37, 38, 39, 40, 41, 42, 43 r&}imizing the overall
perceived video quality or minimizing overall video distortion is the main objectinesome of these
studies, the problem was formulated as an optimization problem using a ratdidisfunction. This
function characterizes the relationship between video bit rate and videwtidis. In AVS systems,
however, computer vision algorithms are utilized to produce automatic alertsaviyeevent of interest,
such as object detection, happens in the surveillance area. Condgdgtisnmore intuitive to consider
maximizing the accuracy of the computer vision algorithm as the objective ofetweork bandwidth
management. This can be done by formulating the bandwidth managementpesbén optimization
problem using a rate-accuracy function. This function characterizaetationship between the video
bit rate and the accuracy of the used computer vision algorithm.

Another motivation behind using a rate-accuracy function instead of alisti@rtion function is that
computer vision algorithm accuracy is less sensitive to the reduction of the kitirate when compared
to video quality [45, 46, 47].

In this research, the main idea is to formulate the bandwidth allocation problencass-layer



optimization problem of the sum of the weighted event detection accura@jtéonatively the sum of
the weighted detection error), subject to the constraint in the total availabbteaidth.

The specific research objectives for this part can be summarized as.follo

e To build a cross-layer framework for managing the network bandwidth i systems.

e To develop an online and dynamic approach for estimating the effective aofithe network.

e To develop accurate models that characterize the relationship betweerbitidgte and the accu-

racy of a computer vision algorithm.



CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Main Performance Metrics of Video Streaming Systems

The main performance metrics of video streaming serversisee defection probabilityaverage
waiting time andunfairness The defection probability is the probability that a new user leaves the
server without being serviced because of a waiting time exceeding thie terance. It is the most
important metric, followed by the average waiting time, because it translateglylite the number
of users that can be serviced concurrently and to server throughimfihirness measures the bias of
a scheduling policy against unpopular videos and can be computed atatigdarsl deviation of the

defection probability among the videos:

i=1

Unfairness= \J > @ —d?/(n-1), (2.1)

whered is the defection probability for videq d is the mean defection probability across all videos,

andn is the number of videos.

2.2 Scalable Déelivery of Video Streamswith Stream Merging

Stream merging techniques aggregate users into larger groups thetlshaame multicast streams.
In this subsection, we discuss three main stream merging techniques: Bdii®, 19], Transition
Patching [7, 20], and ERMT [8, 21]. Each of these techniques regjtive download channels at the
client.

In Patching, a new request joins immediately the latest full-length multicast stoedine video and
receives the missing portion agpatchusing a unicast stream. A full-length multicast stream is called

regular stream Both the regular and patch streams are delivered at the video playdtack he length
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of a patch stream and thus its delivery cost are proportional to the tehgiera from the latest regular
stream. The playback starts using the data received from the patch sivbaneas the data received
from the regular stream is buffered locally for use upon the completioneop#tich stream. Because
patch streams are not sharable with later requests and their cost isongtsthe temporal skew from
the latest regular stream, it is cost-effective to start a new regular stus@m the patch stream length
exceeds a certain value, callegyular window(Wr). Figure 2.1 further explains the concept. Initially,
one regular stream (first solid line) is delivered, followed by two pataastis (next two dashed lines)
to service new requests. Note that the length of the patch stream is the teskmvao the regular

stream. Subsequently, another regular stream (second solid line) is initikbeebd by two other patch

streams.

—— Regular Stream 4s0l| — Regular Stream Regular Stream
- - - Patch Stream Patch Stream 500 Stream Extension

Video Length = 600 seconds 400f| = = = Transition Patch Stream - - =~ Patch Stream

Wr = 97 seconds
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g
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a
g
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g

178 219 260 304 353 384 415444 0 51 102 151 202 253 302339 404439 539 600

-
0 233446 68 108 136 164 185 262 0 32 64 108
Time (seconds)

Time (seconds) Time (seconds)

Figure 2.1: Patching Figure 2.2: Transition Patching Figure 2.3: ERMT

Transition Patching allows some patch streams to be sharable by extendinignigés. Specifi-
cally, it introduces another multicast stream, caliethsition stream The threshold to start a regular
stream isWr as in Patching, and the threshold to start a transition stream is ¢edlesition window
(Wt). Figure 2.2 further illustrates the concept. For example, the client at time&i$hds starts lis-
tening to its own patch stream (second dotted line) and the closest predeadisigion patch stream
(second dashed line), and when its patch is completed, it starts listening toshst@receding regular
stream (first solid line).

ERMT is a near optimal hierarchical stream merging technique. Whereiasaamscan merge at

most once in Patching and at most twice in Transition Patching, ERMT allovesys$r merge multiple



11

times, thereby leading to a dynamic merge tree. In particular, a new userewlamerged group of
users snoops on the closest stream that it can merge with if no latedsapre@mptively catch them
[8]. To satisfy the needs of the new user, the target stream may be esteanttl thus its own merging
target may change. Figure 2.3 illustrates the operation through a simple exaifglzan see that the
third stream length got extended after the fourth stream had merged withténdtons are shows as
dotted lines. ERMT performs better than other hierarchical stream mernggngatives and close to the
optimal solution, which assumes that all request arrival times are knowdvanae [8, 48, 49].
Patching, Transition Patching, and ERMT differ in complexity and performamoth the imple-
mentation complexity and performance increase from Patching to Transitichiftato ERMT. Patch-
ing is the simplest to implement since it allows only one merge during the client'&sgreriod and
allows only regular streams to be shared. Hence, it enables the clientwotkastreams it will listen
to in advance. Transition Patching also informs the client about all the stitealiaten to in advance,
but it allows up to two merges per client. ERMT is the most complex because itsadoyw number
of merges that can help in maximizing resource sharing. The client needsctintinuously informed
about all previous streams for the same video, and the client (or the'seeesls to perform frequent
calculations to decide on the next merge target when a merge occurstirgethe most appropriate
stream merging technigue depends on a tradeoff between the requirechienpdtion complexity and

the achieved performance.

2.3 Request Scheduling of Waiting Video Requests

A scheduling policy selects an appropriate video for service whenehesiain availablehannel
A channel is a set of resources (network bandwidth, disk I/O bandwétth) needed to deliver a
multimedia stream. All waiting requests for the selected video can be servicedamy one channel.
The number of channels is referred tosasver capacity

All scheduling policies are guided by one or more of the following primaryabjes: {) minimize
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the overall customer defection (turn-away) probability) (ninimize the average request waiting time,

and {ii ) minimize unfairness. Let us now discuss the main scheduling policies.
e First Come First Servé-CFS) [50] selects the video with the oldest waiting request.

e Maximum Queue LengitMQL) [50] maximizes the number of request that can be serviced at any

time by selects the video with the largest number of waiting requests.

e Maximum Factored Queue LendiiFQL) [51] - This policy attempts to minimize the mean request
waiting time by selecting the queue with tlaggest factored lengthThe factored length of a queue is
defined as its length divided by the square root of the relative acaxpsdincy of its corresponding
video. MFQL reduces the average waiting time optimally only if the server is fuligdd and

customers always wait until they receive service (i.e., no defections).

e Next Schedule Time FirgNSTF) [52] — This policy assigns schedule times to incoming requests,
and it guarantees that they will be serviced no later than scheduled. ditioad it ensures that
these schedule times are very close to the actual times of service. NSHptheimproves both
QoS and server throughput. Improving throughput is attained by emftatie waiting tolerance
of customers. In the absence of any time of service guarantees, custamenore likely to defect
because of the uncertainty of when they will start to receive servicasth&r desirable feature of

NSTF is the ability to prevent starvation (as FCFS).

e Minimum Cost Firs{MCF) [22] policy has been recently proposed to exploit the variationséastr
lengths caused by stream merging techniques. It gives preference taddos whose requests
require the least cost in terms of the amount of video data (measured i toytesdelivered. The
length of the stream (in time) is directly proportional to the cost of servicingstneam since the
server allocates a channel for the entire time the stream is active. Pleashendistinction between
video lengths and required stream lengths. Due to stream merging, evesgthests for the same

video may require different stream lengtCF-P (P for “Per”), the preferred implementation of
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MCF, selects the video with the least cost per request. The objectivedumere is

LiXRi
N

F(i) = (2.2)

wherel; is the required stream length for the requests in quelR is the (average) data rate for
the requested video, adl is the number of waiting requests for vidiedTo reduce the bias against
videos with higher data rateB; can be removed from the objective function (as done in this study).
MCF-P has two variant®Regular as FullRAF) andRegular as PatchRAP). RAP treats regular and
transition streams as if they were patches, whereas RAF uses their nostal RICF-P performs
significantly better than all other scheduling policies when stream mergingiterts are used. In

this study, we simply refer to MCF-P (RAP) as MCF-P unless the situation caltpEcificity.

2.4 |EEE 802.11e Standard

The 802.11e standard enables the provision of different qualityrofese(QoS) levels among dif-
ferent access categories (AC) in the same station, thereby enhancBupftat of multimedia applica-
tions. These access categories include Voice, Video, Best Effor3ackground. The IEEE 802.11e
MAC layer provides two methods for managing the access to the wirelesaelhatybrid Coordina-
tion Function Controlled Channel Acce@4CCA) andEnhanced Distributed Channel Acc¢EDCA).

In contrast with HCCA, EDCA provides reduced complexity and better filityiliby providing a dis-
tributed coordination function [44, 53].

With EDCA, priorities are implemented using four EDCA parameteksbitration Inter Frame
Space (AIFS)Minimum Contention Window (CM\), Maximum Contention Window (C¥Yy), and
Transmission Opportunity Time (TXQMIFS controls the waiting time before an AC starts the trans-
mission when the medium is not busy. In case of a collision, the AC will backoofd random time

between 0 an€CW, whereCW is a variable that is initialized t&€ Whin, is incremented after every
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transmission failure until it reach&Wnay, and is reset t&€ Wiy after a successful transmission. The
backoff timer is decremented every time the medium is sensed to be idle for BRAIERS seconds.
Finally, the TXOP limit controls the time period during which the AC keeps transmittingnat gains

access to the medium.

2.5 Cross-Layer Optimization in Video Streaming Systems

Numerous studies have discussed cross-layer optimization in video streaw@ngvireless net-
works. Studies [37, 38, 39] (and references within) consider arsyistevhich only one station streams
a video at a time, whereas studies [40, 41, 42] (and references wititig)der a system in which mul-
tiple stations receive video streams form a central video server, anids{dd, 44] consider systems in
which multiple stations deliver video streams to a central station. The latter sardi@sore related to
this work.

Study [43] optimizes video streaming over a 2G wireless network. The solptmposed in this
study adapts the video streams by using video summarization techniqueasdtenme skipping, which
are not applicable to video surveillance because of the system’s sensaiibging video frames.

Study [44] formulates and solves an optimization problem that minimizes the sudistoftion
in all video streams. That paper used the formulation in [54] to develop alytexal model for the
effective airtime. The model, however, is incorrect as will be discuss&iibsection 2.6. In addition,
that paper assumgs-persistent EDCA, which differs from the standard EDCA in the backofer
selection process. Moreover, itignored the packetization overhebd ttinsport and application layers
when determining the optimal application rate and link layer parameters. In thig sta address the
problems of that study, and we also improve its link-layer adaptation modelhwias based on the

formulation in [55, 53].



15

2.5.1 Automated Video Surveillance

Major prior work on surveillance systems can be summarized as follows.

e In[56], a prototype for an urban surveillance system is proposed.pratotype, calledetection of
Events for Threat Evaluation and RecognitiWETER), targets the high-end of the security market

and uses a dedicated network for high-quality streaming.

e Studies [30, 25] reduce the bandwidth requirements by proposing sy#ftainsend still images

periodically from the video source to the user.

e Knight [57] is a wide-area surveillance system that detects, tracksclasdifies moving objects

across multiple cameras. It transmits videos with fixed encoding parametecsmdéralized server.

e SfniX [58] is a surveillance system that supports realtime monitoring andgstarfall the video
streams, performs video analysis, and answers semantic database.dLikei&night [57], it trans-

mits videos with fixed encoding parameters to a central server for pingess

e VSAM [23] uses multiple video sensors to provide continuous coverageaple and vehicles in
a cluttered area. Basically, it facilitates the tracking of people and vehiclescim areas. VSAM
sends one low quality video at a time and relies on dedicated workstationg fbetiaction, tracking,
and classification of events. Some of the technologies developed by thsl\p&dject have been

commercialized by companies, such as ObjectVideo.

e Studies [45, 46, 47] generated rate-accuracy curves for facetidetand face tracking algorithms.
They simply limited the video rates of all video sources to one value, refari@sithe “sweet point”.
In this study, we develop a comprehensive cross-layer optimization salutienalso develop an

accurate rate-accuracy model using multiple datasets.
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2.6 Effective Airtime Estimation

The effective airtime is the fraction of the network time that is used for défigesseful data. As
will be discussed later, solving the optimization problem requires an acastteation of the effective
airtime. In [53], the effective airtime for ad-hoc networks was simply detezthas the total throughput
divided by the physical rate, assuming that all stations in the network haxgathe physical rate. Study
[44] developed an analytical model for the effective airtime for videcastiag from multiple stations
to a proxy, based on the formulation in [54]. These two studies involve signifisimplifications,
approximations, and assumptions. The developed airtime model was simptyigiterms of only
CWnin and the number of stations in the network. Furthermore, according to thd,toeleffective
airtime increases with the number of nodes and yields a value closé ®,1100%) in networks with
30 stations or more. Such behavior is logically and empirically incorrect. As&iBhown in Section
5.4, this model leads to significant dropping after the optimization and gilets/ety high distortion.

Other studies [59, 60, 61, 62, 63, 64] sought to determine other relatadhpters, such as the satu-
ration bandwidth and network capacity for ad-hoc networks. None sktbridies is directly applicable

to finding the effective airtime in our considered system.
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CHAPTER 3

INCREASING SYSTEM BANDWIDTH UTILIZATION BY USING
WAITING-TIME PREDICTION IN VIDEO-ON-DEMAND SYSTEMS

3.1 Introduction

In this part of the dissertation, we analyze waiting-time predictability in scaldtdenpwstreaming
services. In particular, we seek to assess through an extensivasianahether the waiting times can
be accurately predicted when stream merging techniques are employedovd we investigate the
impacts of stream merging techniques, scheduling policies, and numerdklsaeand design param-
eters. Providing users with waiting-time feedback enhances their pedcgivality-of-service (QoS)
and encourages them to wait (given that the waiting times are not too loeggpthincreasing server
throughput. In the absence of any waiting-time feedback, users arelikaygo defect because of the
uncertainty as to when they will start to receive services. The propaaititig-time prediction approach
provides users with expected times of service, or alternatively expectéidgtimes.

To assess the effectiveness of the waiting-time prediction approachresenp and analyze two
alternative prediction schemes. The first, calfssign Expected Stream @npletion TimgAEC), is
highly intelligent and adaptive to server workload by utilizing detailed infornmagibout the current
state of the server and considering the specific dynamic nature of thedapplieduling policy. This
information includes the current queue lengths, the completion times of rustngams, and regularly-
updated statistics, such as the average request arrival rate foridachAEC uses the completion times
of running streams to know when server channels will become availall¢has when waiting requests
can be serviced. The main idea of AEC is to predict the future schedulicigigles over a certain
period, callecprediction window As the prediction window increases, the percentage of users regeivin
expected times increases, but at the expense of increasing the implemeotatiplexity and more

importantly reducing the prediction accuracy. The prediction accuraay éssential QoS metric that
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also contributes to establishing the users’ trust and confidence in thiel@deexpected times, and thus
should not be significantly reduced to provide an expected time to eachsetilize feedback control
theory to tune the value of the prediction window to allow a pre-specified tateria the accuracy. The
inability of AEC to provide an expected time to each user is addressed bydbedsecheme, called
Hybrid Prediction This scheme employs two predictors.

We also compare the effectiveness of the waiting-time prediction appro#ctamother approach
that provides users with time-of-service guarantees. The issue dfiprgiime-of-service guarantees
has not been analyzed in the context of scalable video delivery te@migupolicy, calledNext Schedule
Time First(NSTF) [65], was proposed for Batching. This policy provides usétts schedule times and
guarantees that they will be serviced no later than scheduled. We shoiWSi& can be extended to
stream merging but has two inherent shortcomings. First, it performs sgmify worse in throughput
and average waiting time than the recently proposed MCF policy, which utilggpessive cost-based
scheduling but cannot provide time-of-service guarantees. Sel@7d; cannot work with hierarchical
stream merging technigues (suchiegliest Reachable Merge TargERMT) [8, 21]), which achieve
the most scalable performance, because they may extend streams to satisfedls of new requests.
We refer to the extended version of NSTF@aneralized NSTEGNSTF) throughout this chapter.

The proposed waiting-time prediction approach eliminates the shortcomingsTéf bySproviding
expected waiting times of service (or approximate times of service) rathertrantime-of-service
guarantees. This approach can be applied with MCF and hierarchieathrstmerging to ensure the
highest performance.

The results show that the waiting-time prediction approach is highly accurdteads to outstand-
ing performance benefits.

The rest of the chapter is organized as follows. Section 3.2 discusses poovide time-of-service
guarantees in scalable video streaming, and Section 3.3 presents theggrppediction schemes. Sub-

sequently, Section 3.4 discusses the performance evaluation methodotb§getion 3.5 presents and
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analyzes the main results.

3.2 Providing Time-of-Service Guarantees

For Batching, a scheduling policy, call®&kxt Schedule Time FirgNSTF), was proposed in [65]
to provide time-of-service guarantees. In this study, we extend NSTF th with stream merging
techniques and analyze its effectiveness in this environment.

Let us start by discussing how (NSTF) works. NSTF assigns schéichés to incoming requests
and guarantees that they will be serviced no later than scheduled. iioadd ensures that these
schedule times are very close to the actual times of service. Note that the tompitees of running
streams (i.e., currently being serviced streams) represent when &haiihbecome available and thus
when new requests can be serviced. When a new request calls foattieagk of a video with no
waiting requests, NSTF assigns the request a new schedule time thatlisoetipeaclosest unassigned
completion time of a running stream. If the new request, however, is for @ vitd has already at
least one waiting request, then NSTF assigns it the same schedule time édsigme other waiting
request(s) because all these requests can be serviced togethesniginge stream. NSTF eliminates
some potential problems when the basic FCFS is used to provide time-ofesgudacantees as done in
[66].

When all waiting requests for a video are canceled, their schedule timmbs@yvailable and can be
used by other requests. This leads to two variants of NSIEH:FnandNSTFo NSTFn assigns the freed
schedule times to incoming requests, whereas NSTFo assigns them to exdgtiegts that will wait
beyond a certain threshold, and thus are likely to defect without beingnassbetter schedule times.
Hence, requests that are assigned schedule times that require them beweaitl a certain threshold
should be notified that they may be serviced earlier.

NSTFo assigns each freed schedule time to an appropriate waiting quéungetita the following

three conditions(i) it is nonempty(ii ) its assigned schedule time is worse than the freed schedule time,
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and(iii ) the expected waiting time for each request in it is beyond a certain threshotd candidate
is found, NSTFo grants the freed schedule time to a new request. In spntr@ore than one queue
meet these conditions, it selects the most appropriate one.NBi€¢0-MQLimplementation (which
was shown to provide the best overall performance) selects the loggese among the candidates.
NSTFo-MQL combines the benefits of FCFS and MQL by assigning schéiduds on a FCFS basis
and reassigning freed schedule times on a MQL basis.

We present next an efficient generalized implementation of NSTF, caketbralized NSTEGN-
STF), which can be applied for Batching as well as some stream mergingdael, including Patching
and Transition Patching. The server maintains a running quR @, (which keeps track of all currently
running streams. These streams are stored in an decreasing order obmhgletion times. To provide
time-of-service guarantees, the server needs to maintain an iRdgkndex which points to the next
stream inR Qwhose completion time has not been assigned R&0] is the first element oR Q, and
it corresponds to the stream with the furthest completion tiR@.I ndexis incremented when a video
is selected for service and the location of its stream completion tinkkQrprecedesRQIndex In
contrast,RQIndexis decremented every time a schedule time is assigned R@n In addition, the
server needs to maintain a free pool of freed schedule times. Any adsighedule time that is freed
(due to request defection for instance) and thus can be used by gteste will be inserted in this pool.
This pool can be implemented using a priority queue, where schedule timpkeed in an ascending
order. When a request for a video with no waiting requests arrivesdher first tries to assign it a
schedule time from the top of the free pool. If the pool does not contaidiagchedule times (i.e.,
schedule times that are further than the current time), then the servarsagsigiew schedule time that
corresponds to the next unassigned completion time.

For an efficient operation of GNSTF when used with stream merging, ay@ope and utilize two
enhancements. First, GNSTF triggers a schedule-time reassignmentyhath@m a schedule time is

freed but also when a new running stream has a closer completion time tleanli@n stream whose
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completion time has already been assigned. The latter situation does noh halpge Batching is
applied because all streams are of the same length. In stream merging teshhigwever, streams vary
significantly in length, and thus the completion time of a new stream may be closethtiteof an old
stream. Assigning the new completion time to existing requests with significantly kpegted waiting
times enhances performance and increases fairness. Second, weeitigrperformance of NSTFo by
utilizing the old schedule times that have been reassigned with better schedsleWimen the requests
for a certain video receive a new schedule time, their old schedule time assigmed to the requests
for the video with a worse schedule time. This enhancement, catleedule-times cascadinig valid
because the reassignment of schedule times in NSTFo is highly constrathtbdreed schedule times
may not be assigned to the requests with the worst schedule time. This entearican also be used
with Batching but is likely to be more effective with stream merging techniques.

Figure 3.1 clarifies the general operation of GNSTF. The figure shaws tequest waiting queues
(W Qs) (one for each video) and the stream running qu&®)( The stream running queue holds in-
formation for each stream that is currently being delivered. This informatatains the video number,
the stream completion time, and the waiting request to which this completion time isebsigrhe
schedule time. Note th& Q[0] corresponds to the bottom & Q. At time Tg, requestRs for video V,
is made. Since the free pool is empty, this request will be assigned the compilet@of the stream
pointed to byR Q Index and subsequentlR Q I ndexwill be decremented by 1. At tim&;, requestRs
is canceled (request defection) and because it is the only requestimititeg queue, its schedule time
(To) will become available and can be used by other requests. ReBgiésis a further schedule time
and thus will be assigned this schedule time, releasing its own scheduleTighéo(the free pool. At
time Tg, requestR; for video V; is made. Since a schedule timBd) is available in the free pool, this
request will receivdys as the assigned schedule time. Finally, at tifgeRs is serviced, and thus a new

completion time T»4) becomes available and th&&Q I ndexwill be incremented by 1.
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Figure 3.1: Clarification of GNSTF

3.3 Proposed Waiting-Time Prediction Approach

Unfortunately, the NSTF/GNSTF approach has two main inherent shortgemiirst, it may not
perform well in terms of server throughput (or defection probabilityd emiting times compared with
other aggressive scheduling approaches, such as MCF-P. Thbasesl approach is indeed hard to
be outperformed in terms of defection probability, especially by a policy @/main objective is to
provide hard time-of-service guarantees and in which the initial assigrohecledule times is done on
a FCFS basis. Second, NSTF/GNSTF cannot work with hierarchicahstmgerging techniques (such as
ERMT) which achieve the highest performance. NSTF/GNSTF is incompatiliethese techniques
because in hierarchical stream merging, streams may be extended to @$etisiyeds of new users,
thereby violating some time-of-service guarantees.

To overcome both these shortcomings, we proposeviitng-time predictiorapproach. This ap-
proach provides users with expected waiting times for service (or alteehatapproximate times of
service) rather than hard time-of-service guarantees. The main ageanftthis approach is that the
server can use hierarchical stream merging techniques and aggresseduling policies (such ERMT
and MCF-P, respectively) while improving user-perceived QoS byrmifog users with their expected
waiting times. The success of the waiting-time prediction approach dependbeather the waiting

times can be accurately predicted when such scheduling policies areltidezlpredictions are accu-
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rate, users will appreciate the service, trust the service providefeahahotivated to wait. Encouraging
users to wait further improves the server throughput.

We present two schemes for predicting the waiting tindessign Expected Stream@npletion Time
(AEC) andHybrid Prediction These two schemes are compared with a straightforward approach that
dynamically computes the average waiting time for each video and providesahage value as the
predicted waiting time for the new requests for the corresponding vide@s stheme is referred to
asAssign Rer-Video Average \alting Time(APW). In contrast with APW, the proposed AEC scheme
exhibits high intelligence. It predicts the future scheduling decisions oeertain period of time and
uses the completion times of running streams to know when channels will besaitebbe, and thus
when waiting requests can be serviced. The hybrid scheme combines AE@RW to provide an

expected time to each user.

3.3.1 Proposed AEC Scheme

Let us now discuss the proposed AEC scheme in more detail. Basically, ti@megqredicts the
waiting times (or times of service) by “simulating” the future behavior of theesent utilizes detailed
information about the current state of the server to predict the waiting time@mglders the applied
scheduling policy. This information includes the current queue lengthsptigletion times of running
streams, and statistics, such as the average request arrival ragelfiovideo (which is to be updated
periodically).

As discussed earlier, a stream’s completion time indicates when a serverethalh be free and
can be used by new requests. Thus, the server knows when eautethdll be available. The server
can use these times as expected times of service for new requests. ifhenass of a completion time
to a new request is done by predicting the future scheduling decisions.

The basic idea of AEC can be explained as follows. When a new requistsathe server deter-

mines the closest stream completion time that can be assigned to that reqinesergected time of
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service. The server examines the completion times in the order of their césskeom the current time
and finds the expected video to be serviced at that completion time. Thesprometinues until the
expected video to be serviced is the same as the currently requested Tdpredict the scheduling
outcome at a certain completion time, the server needs to estimate the video aqugthe & that com-
pletion time if the scheduling policy requires so (such as MQL, MFQL, and M#2iSed on the video
arrival rates, which are to be computed periodically, but not frequeitig expected queue length for

videoov at completion timeT is given by

expectedglenv] = (glenv] + A[v] x (T — Tnow)) % def_rate[v], (3.2)

whereglen[v] is the queue length of videwat the current timeTyo,), A[v] IS the arrival rate for video

v, anddef_rate[v] is the defection rate of viden. The video waiting queues are likely to experience
some defections, and these defections will become more significant dunigerlperiods. Accounting
for these defections is effective, especially for large prediction wirsdowhus, the expected queue
length is adjusted by the current video defection rate. Note that the waitingutoke distribution is
generally a memoryless process. Therefore, it is hot advantageosge thaicurrent waiting times in
determining when users will actually defect.

Note that the same video may be serviced again at later completion times. Eq@atjoassumes
that videov has not been identified before (while running the AEC algorithm to find tpeaed time
of service for the new request) as the expected video to be servicedearler stream completion
time. Otherwise, the expected arrivals will have to be found during the timevaiteetween the latest
completion time {) at which videow is expected to be serviced afid In that case, the expected queue

length for videaw at completion timeT is given by

expectedglen[o] = A[v] x (T —T)) x def_ratev]. (3.2)
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Note thatglenis not part of the equation because all existing requests (as offiixg for videoov are
expected to be serviced at tinfie To predict the scheduling decisions of MCF-P, AEC considers the
expected stream lengths required by various videos in addition to thetegppeeue lengths.

To reduce the implementation complexity in terms of algorithm computation time, AE@ts¢ae
future scheduling decisions only during certain duration of time, caltediction window(W,). Thus,
it needs to examine only the next stream completion times withlirseconds from the arrival of the
new request. Therefore, AEC may not give an expected time of senvieaEh request. The prediction
window introduces a tradeoff between the percentage of requestgimgcexpected times of service
and prediction accuracy. Subsection 3.3.3 provides additional detaile amptications of the value of
the prediction window.

Figure 3.2 shows a simplified algorithm of AEC. This algorithm is performed uperarrival of
requestR; to videoo; when the server is fully loaded. If the server is not fully loaded, theesgcan
be serviced immediately. The assigned time for vidgassignedtimev]) corresponds to the latest
completion time ;) at which video is expected to be serviced in Equation (3.2).

Figure 3.3 demonstrates the general idea of AEC. A new request far 2ide?) arrives at time
Tnow- The server finds that video 2X) is the expected video to be serviced at stream completion time
T 1. Then, the server examines the next completion firdéwhich is still within the prediction window)
and determines that is the most likely to be serviced at that time. Becauw®és the requested video
for which we need to find the expected time of service, the prediction algotémmnates by assigning
T2 as the expected time of service to the new request.

The proposed AEC algorithm involves another important aspaetdiction of stream completion
times The server here uses aggressive prediction. It not only predietsie completion times will
be assigned to incoming requests but also predicts new stream completion tidnassigns them if
possible to new requests. When AEC assigns a stream completion time to atrag|ilee expected

time of service, it adds the expected completion time of the new stream to thetettofbe examined
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for = 0;0 < N,; 0 + +) // Initialize the assigned time for each video
assignedtimeo] = —1;
T = closest completion timé/ Start with closest completion time
while (T < Tnow + Wp) {// Loop till prediction window is exceeded
// Find expected video queue lengths
for (v =0;0 < N,; v+ +){
if (assignedtimev] == —1) // video v has not been assigned an expected time
expectedglenv] = (gleno] + A[v] x (T — Tnow)) x def_ratefo];
else// videov has been assigned an expected time
expectedglenv] = A[v] x (T — assignedtimgv]) x def_ratefo];
Compute scheduling objective function for video
} llfor
// Find the expected video to be served attime T
expectedvideo = find video with the minimum objective function;
if (expectedvideo==0;){
AssignT to requesR as the expected service time;
break; // Done
}
else
assignedtimegexpectedvideq = T;
T = next completion timef/ Try again for this new completion time
} Iiwhile

Figure 3.2: Simplified Algorithm for the AEC Scheme [performed upon thevarof requestR; to
Videoo;]

completion times if its completion time falls within the prediction window. This aspect iBecizang
to implement efficiently, especially with ERMT, because the impacts of these praalitted” streams
on stream merging decisions should be considered in order to achiayat&cpredictions. To isolate
the actual request scheduling from prediction, the implementation creaigsi@ wnning queue by
duplicating the portion of the running stream queue containing all streams whhicurrent prediction
window. When a new stream is predicted to be scheduled at a certain compigté its own com-
pletion time is inserted in the proper position in the virtual queue. Proper streaging and potential
stream extensions are performed on the virtual queue.

The following points serve as further clarifications of AEC. (1) The assignt of times of service
is done based on predicting scheduling decisions, but the actual $iclgedikept totally isolated from

prediction. Thus, scheduling is performed based on only the scheduifagan and does not consider
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Figure 3.3: Clarification of the AEC Scheme

the assigned expected times of service in any way. (2) AEC may assignnieeesgoected time to
requests for different videos because the assignments are basecconrnt server state and workload,
which vary with time. Similarly, the requests for the same video that are curtegtyher in the waiting
gueue may have received different expected waiting times although theyeva#rviced together. Later
requests in the queue are more likely to receive more accurate predi¢8pBecause of the prediction
window constraint, AEC may not give an expected time for each user. Abavillscussed in Subsection

3.3.4, the proposed hybrid scheme addresses this limitation.

3.3.2 Proposed Enhancements of AEC

We propose the following two enhancements of AlE@ferential Treatment of Real Requeaisl

Refine Assigned Expected Times
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Preferential Treatment of Real Requests

With AEC, the expected queue lengths are computed and used to predietfcieduling decisions.
An expected queue length includes a number of real requests and amirelzpected requests. This
enhancement values real requests more than expected requestste@asting way to implement this
enhancement is to truncate the expected queue lengths in Equations (3(3)2nThus, if a video has
an expected queue length less than one, it will not be selected as ateekgideo to be serviced at any

stream completion time.

Periodic Refinement of Assigned Expected Times

With this enhancement, the server periodically attempts to provide users witedEkpected times
of service. For a waiting request already assigned an expected timevimfese new time of service
becomes available whenever a new request for the same video amiyeésceives an expected time
because all requests for the same video will be serviced concurreirity aisly one stream. The new
expected time will most likely be more accurate than the old one because it is edtinaged on the
latest system state. To avoid unnecessary updates, this enhanceoviepupdated expected times
only when a considerable difference exists between the new and oldteggenes. With the periodic
refinement, some requests that never received expected times befobe miale to get expected times
later on as updates. Therefore, this enhancement is expected to imptbvéad prediction accuracy
and the percentage of users receiving expected times. Unless othiewitseed, the reported accuracy

is determined based on the deviation of the initial expected service time andubhétame of service.

3.3.3 Feedback Control of the Prediction Window

In addition to limiting the implementation complexity, the prediction window introducesdetfh
between the percentage of requests receiving expected times of serditlee prediction accuracy. In

particular, as the prediction window increases, the number of requestsing expected times increases
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at the expense of reducing the prediction accuracy as well as inagghsirmplementation complexity.

The AEC algorithm computation time is proportional to the prediction window andeashown to be
O(N, x Wp), whereN, is the number of videos. Subsection 3.5.4 analyzes the impact of the prediction
window based on actual runs of the algorithm. Large prediction windows hagative impacts on

the algorithm computation time and more importantly the prediction accuracy. @hee# prediction
accuracy may have a serious impact on the user-perceived qualitywifesand the confidence of users

in the provided expected waiting times. The prediction window in AEC is constiiabecause the
proposed AEC algorithm does not predict the waiting times accurately Heyaertain value of the
prediction window, and it is better to provide no prediction than to provide nusigaor inaccurate
waiting times.

We utilize feedback control theory to tug, to allow a pre-specified tolerance in the accuracy.
Here, the administrator sets the minimum value of accuracy that can be tolefdtsdvalue, called
setpoint can be specified in the form of the tolerable average deviation betweanttred and expected
times of service. IdeallyW, should be set to the largest possible value that satisfies the setpoint in
order to maximize the number of users receiving expected times. The lotopldsmiriven by thesrror
(e(t)), which is the difference between the setpoint and the actual averagiole (called theprocess
variable).

For stable and accurate control, we usBraportional Integral Differential(PID), as depicted in
Figure 3.4(a), to adjust/, based on the history and rate of change of the error. It has three cemigo
proportional, integral, and differential. Each component is weighted bynatant. The proportional
component changed/, based on the immediate value of the error. The integral component cansider
the past values of the error, whereas the differential component aiésithe future, and thus they help
reduce the steady state error and the overshoot, respectively.

To eliminate the problem of optimizing three constants in the PID Controller, wagopsoanother

controller, calledeExponential Controllerwhich uses the power of the error, as shown in Figure 3.4(b).
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The power of the error is used because when the error is skivglishould be changed slightly to
minimize overshooting and undershooting. When the error however, & lagshould be changed by

large values to expedite the convergence to the desired setpoint. Byiextanalysis, we found that

the best function isign(e(t)) x 2/¢®1,

r old Wp

+
new Wp

Tolerable
Accuracy

Output

Error (e(t)) Accuracy

. de (1)
K dt

(a) PID Controller

old Wp
Tolerable +< ) . le(t)] o a Output
Accuracy Error (e(t)) stgn(e(t)) * 2 new W, E Accuracy

(b) Proposed Exponential Controller

Figure 3.4: Controllers of Prediction Accuracy

3.3.4 Proposed Hybrid Prediction Scheme

The main problem with the AEC scheme is that not all users may receive anteglgime of service.
To address this problem, we propose and analyze an alternative sciadiedybrid Prediction which
can give an expected time to each user. The hybrid scheme first usetoAFE€tict the waiting time,
and if no prediction is made, it provides the user with the average per-wdgimg time. Thus, it can
be thought of as a hybrid of AEC and APW. The use of APW enables thdachgcheme to provide
a predicted waiting times for each request at the expense of lower predictiniracy. The prediction
windows has an important impact on the accuracy of this hybrid predictethé prediction window
increases, a larger fraction of users will receive expected times u$tdy) which is more accurate than

APW for small values of the prediction window.
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3.4 Evaluation Methodology

We analyze the effectiveness of the proposed schemes throughiextsnsulation.

3.4.1 Workload Characteristics

Table 5.2 summarizes the workload characteristics used. Like most pricestwge generally
assume that the arrival of the requests to the server follows a PoissoesBiwith an average arrival
rated. We also experiment with the Weibull distribution with two parameters: shapscaie [67] . We
analyze the impact of the shagg,(while adjusting the scale so that the desired average request arrival
rate is reached. Additionally, we assume that the access to videos is higdigéalcand follows a Zipf-
like distribution. With this distribution, the probability of choosing tii& most popular video i€ /n1~¢
with a parametef and a normalized consta@t The parametef controls the skew of video access.
Note that the skew reaches its peak whea 0, and that the access becomes uniformly distributed when
6 = 1. We analyze the impact of this parameter, but we generally assume a f/al@& b[66, 65].

We characterize the waiting tolerance of users by three modeldlottel A the waiting tolerance
follows an exponential distribution with meang [66, 65]. InModel B users with expected waiting
times less than will wait, and the others exhibit the same waiting tolerance as Model A [66, 65]
We introduceModel Cto capture situations in which users either wait or defect immediately depending
on the expected waiting times. The user waits if the expected waiting time is lesgthamd defects
immediately if the waiting time is greater thamg,. Otherwise, the defection probability increases
linearly from O to 1 for the expected waiting times betwegs and 2u1y . In all these models, defections
happen only while users are waiting for service.

We generally study a server with 120 videos, each of which is 120 minutgs W& examine the
server at different loads by fixing the request arrival rate at 4@Qests per minute and varying the
number of channels (server capacity) generally from 300 to 750. ditia to the fixed-length video

workload (in which all videos have the same length), we experiment with twiable-length video
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workloads. Moreover, we study the impacts of arrival rate, useringatolerance, number of videos,

and video length (in the fixed-length workload).

Table 3.1: Summary of Workload Characteristics

Parameter Model/Value(s)
Request Arrival Poisson Process (Default)
Weibull Distribution with shap& = 0.6 to 0.9
Request Arrival Ratel( 10 to 70 Requests/min, Default = 40 Requests/min
Server Capacity 300 to 750 channels
Video Access Zipf-Like
Video Skew @) 0.1 to 0.6, Default = 0271
Number of Videos 60 to 240, Default =120
Video Length Fixed-Length Video Workload (Default)

with length of 30 to 120 min (same for all videos),
Default =120 min
Variable-Length Video Workload 1:
with lengths randomly in the range: 30 to 120 min
Variable-Length Video Workload 2:
with lengths randomly in the range: 100 to 200 m
Waiting Tolerance Model A, B,and C
Waiting Tolerance Meanuo) | 15 to 90 sec, Default = 30 sec

n

3.4.2 Performance Metrics

We use two performance metrics to compare the effectiveness of varamistipn schemeswvaiting-
time prediction accuracgndpercentage of clients receiving expected times of se(ACGRE). Theav-
erage deviatiorbetween the expected and actual times of service is used as a measungatyaclhe
accuracy decreases with the deviation.

We compare the effectiveness of the predictive and GNSTF appreactegms of the user defection

probability, average waiting time, and unfairness against unpopularszideo
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3.5 Result Presentation and Analysis

3.5.1 Waiting-Time Distribution under Various Scheduling Policies

Let us start by comparing the waiting-time distributions of requests resulting ¥arious schedul-
ing policies: FCFS, MQL, MCF-P (RAF), and MCF-P (RAP). Figure 3.pides the overall waiting
time distributions (considering all videos), and the waiting distributions of twivithdal videos with
significantly varying popularities. Only the results for Patching with 600erectiannels are shown.
The results for Transition Patching and ERMT are similar, and thus notrshdhe waiting times are
distributed between 0 and 30 seconds because the waiting tolerance i88etdioonds. The waiting
times with MCF-P (RAP) and MCF-P (RAF) are concentrated around 0 tadnsks in this example
and decay quickly as we approach large values, in a manner similar to amestjal distribution. (Note
that the numbers vary with the stream merging technique and server capaiciyth similar behav-
ior.) Moreover, the decay is faster for more popular videos. The waitingstimith MQL follow the
same pattern, but the decay happens less quickly. By contrast, FGH&psm bell-shaped distribution.
These results suggest that using the average value to predict the waitingethaeo the lowest accuracy

in FCFS and the highest accuracy in MCF-P (RAF) and MCF-P (RAP).
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Figure 3.5: Waiting Time DistributiorHatching, 600 Channels, Mode] A
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3.5.2 Waiting-Time Predictability and Effectiveness of Various PredictionrBete

Let us now compare the effectiveness of the proposed predictioimgshim terms of accuracy,
which is the most important metric in this case. Figures 3.6, 3.7, and 3.8 dep&tahege deviation
results for ERMT, Transition Patching, and Patching under three diffeseheduling policies: MQL,
MCF-P (RAF), and MCF-P (RAP). (FCFS, in the form of NSTF/GNSTHniare suited for providing
hard time-of-service guarantees than prediction. Subsection 3.5.8 an#igzperformance of GNSTF.)
These figures demonstrate that AEC performs significantly better than AfeMha results are better
with more scalable stream merging. The deviation with AEC is within only two secokidW has the
advantage of giving an expected time of service to each user, but theegof these expectations is a
more important factor. The hybrid scheme serves as a compromise betE€eard APW.

The two variants of MCF-P (RAF and RAP) perform very close to eackrdthaccuracy. MCF-
P, however, is more predictable than MQL because the scheduling decafidnCF-P are based on
both the queue lengths and the required stream costs, whereas MQanls#ise queue lengths. The
required stream cost for a video can be determined precisely, but ¢ue dgngths in the future require
prediction, as done in Equations (3.1) and (3.2). Fortunately, MCF-Ptisntp more predictable than
MQL but also achieves better performance (as shown in [22]) in termefetton probability, average

waiting time, and unfairness. From this point on, we consider only MCFAP{Rind refer to it simply

as MCF-P.
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3.5.3 Effectiveness of Further Enhancements

The effectiveness of the Preferential Treatment of Real RequestsEament is illustrated in Figure
3.9, which shows that this enhancement significantly improves PCRE, the akxpense of accuracy. It
may be a good choice in certain situations, primarily because the deviation is &#kitonds.

Figure 3.10 illustrates the effectiveness of the Periodic Refinement afest Expected Times
Enhancement in terms of the average deviation when the hybrid prediciemscis used under the
three stream merging techniques. The results are similar when AEC is udéldusmot shown. The
figure shows that the enhancement reduces the average deviationim@alcansition Patching, and

ERMT by up to 24%, 18%, and 11%, respectively.
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3.5.4 Impact of Prediction Window

Figure 3.11(a) plots the impact of prediction window) in AEC on the prediction accuracy and
PCRE for the three stream merging techniques. As expected, both théateaizd PCRE increase with
W,. PCRE significantly increases withl, up to a certain point, after which it starts to increase slightly.
Both these metrics generally improve with more scalable stream merging, dacdéatge values of
W,. When the Preferential Treatment of Real Requests Enhancementlisausignificantly different
behavior is observed, especially in the deviation, as shown in Figureb3.ITie deviation increases
with W, up to a certain point, after which it reaches a steady value. The imp&¢} of the case of the
hybrid prediction scheme is shown in Figure 3.11(c). The accuracyasesewithW, up to a certain

value and then starts to decrease. (Recall that the accuracy decnidisthe deviation.) The increase
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is due to increasing the fraction of clients receiving expected times by AEIjws more accurate)

rather than APW. After a certain value, the reduced accuracy of AECWiitbecomes more dominant.
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Figure 3.12 demonstrates the impact of the prediction window on the avesaggutation time
of the AEC algorithm. The results are obtained by averaging the computation &lmesvduring the
entire lifetime of the simulation. The figure illustrates the increased implementationlexitypvith

the prediction window and indicates a linear relationship.
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Figure 3.12: Impact of Prediction Window on Algorithm Computation TirdA&EC, 500 Channels,
Model A
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3.5.5 Analysis of Deviation Distributions under Various Prediction Schemes

So far, we compared various prediction schemes in only the averagé¢ioievla this subsection, we
discuss the distributions of the deviation results, so that we can compévasvachemes in the range,
standard deviations(), and confidence interval(l). Figure 3.13 shows the distributions of the deviation
for the three prediction schemes. The results for AEC and Hybrid amersfar two and three values
of the prediction window, respectively. Table 3.2 shows the means, sthddsiations, and the 90%
confidence intervals for various schemes. As expected, AEC prothidesmallest standard deviation,
and the shortest confidence interval, and these values increase witrethetipn window. Although
the hybrid scheme performs better than APW in the average accuradyofas ;1 Subsection 3.5.2),
it provides comparable results to APW in terms of the standard deviation ambifidence interval.
Note that the means of the distribution can be positive or negative. A negaitlive indicates a stronger
negative deviation component, whereas a positive value indicates aestjpogjtive deviation compo-
nent. A negative deviation means that a user waits shorter than expedctiéal awpositive deviation
means waiting longer than expected. It is possible to assign different isdggmegative and positive
deviations, but in this study we treat them equally. Accurate waiting times hefs usit accordingly,
so it may not be beneficial if the user waits less than expected becausethmeay be doing something
else meanwhile. Finally, it is useful to study the relative deviation compared tactiual waiting time.
Figure 3.14 compares the distributions of the deviation percentage of tleepttediction algorithms.
These results illustrate that the benefits of AEC, especially compared to &fe\W)ore outstanding in

terms the percentage deviation.

3.5.6 Impact of Workload Parameters on AEC Performance

Figures 3.15 and 3.16 show the impacts of request arrival rate, wgaiting tolerance, skew in
video access), number of videos, and video length on the effectiveness of AEC in tefrascuracy

and PCRE, respectively. The deviation increases with the arrival vateelmains with 2 seconds even
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Figure 3.13: Comparing the Deviation Distributions under Various Predictigordahms ERMT, MCF-
P, 300 Channels, ModellA

for up to 70 requests/minute. The deviation also increases at a relativélydig with the waiting
tolerance because requests stay longer in the waiting queue and qugthe lecome harder to predict.
We believe that smaller values of the mean waiting tolerance are more realidicskabe expectations
of users these days are getting much higher and their waiting tolerance ig ¢miter. PCRE decreases
with the arrival rate but does not change much with the waiting tolerance.

The skew in video access has significant impacts on the average deviadi®@C&RE. Recall that as
6 increases, the skew in video access decreases. Both the predictivacgcand PCRE are worsen by
the reduction in the skew. This is due to the reduced predictability of whiclowide be serviced at any
particular time as the video access approaches the uniform distribution.

Finally, both the accuracy and PCRE also decrease with the number ofvéaeovideo length,
primarily due to the increased load on the server, as can be noted by teasedn the user defection

rate (not shown for space limitation). This behavior is consistent with thétsda Subsection 3.5.2.
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Table 3.2: Summary of Deviation DistributiorlSRMT, MCF-P, 300 Channels, Mode] A

Scheme Mean (sec)| Standard Deviation (sec)| 90% Confidence Interval (sec)
APW -0.027 12.5604 [-14.0396,14.0104]
AEC, W, = 0.25u1 0.4537 2.6762 [-1.5707,2.4793]
AEC, W, = 0.5 0.2367 3.3914 [-3.8063,4.2437]
AEC, Wy = uqol -0.6131 5.2066 [-7.8732,6.6768]
Hybrid, W, = 0.25u10 | 2.4055 11.7448 [-11.7366,16.5134]
Hybrid, Wy = 0.5u1q1 | 2.0781 11.6507 [-11.8441,16.0059]
Hybrid, Wy = 10 1.3027 11.8306 [-13.5439,16.1061]
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Figure 3.14: Comparing the Distributions of the Deviation PercentB&MT, MCF-P, W = 0.5uq1,
300 Channels, Model]A

The increase in the server load as the number of videos increasesbaspa result of the reduction
in data sharing. Although the deviation increases with the number of videespains with 2 seconds
even for up to 240 supported videos.

The results so far are for a video workload of a fixed video length. Ei§ut7 shows the average
deviation and PCRE results for two different variable-length workloatis.first is comprised of videos
with lengths in the range of 30 to 120 minutes, whereas the lengths in the sesaelfrom 100 to
200 minutes. The length of each video is generated randomly within the sdeaifige. The results for
each workload are obtained by averaging the values of three rung&A\H®&lgorithm also works well in
these workloads, with an average deviation within onlyseconds. For workloads with longer videos,
the server load becomes larger (as indicated in Figure 3.17(c)), andtiuthe average deviation and

PCRE become worse.
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Figure 3.15: Impact of Workload on Average Deviati&xE[C, 550 Channels, Y= u, Model A

The results so far assume a Poisson request arrival processs hetvexamine the behavior under
Weibull distribution with different shapé) values. Figure 3.18 demonstrates that the waiting times can
still be predicted accurately with the AEC algorithm. The shape has a little impaet;ially when the

prediction window is smaller than 35 seconds.

3.5.7 Feedback Control of the Prediction Window in AEC

Let us now discuss the effectiveness of using the proposed contsbiler prediction window, when
the AEC scheme is used. Figure 3.19 demonstrates how the PID Controlleffectively achieve five
desired accuracy values (setpoints)5,aL5, 25, 35, and 45 seconds with different stream merging
techniques. By dynamically tunirigy, to the largest possible value that satisfies the setpoint, the PID
Controller ensures the largest possible value of PCRE. As the tolerahleaay increases from®to
4.5, PCRE increases by more than 39%, 46%, and 93% with ERMT, Trans#iohiRg, and Patching
respectively. The system administrator should consider this significant atiplicof the setpoint on

PCRE. Figure 3.20 shows how that the Exponential Controller behavas tddhe PID Controller. The
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Figure 3.16: Impact of Workload on PCREEC, 550 Channels, Y= o, Model A

PID Controller has a little advantage over the Exponential for small setpaihtse it achieves larger

PCRE because it has a slightly larger overshoot and is a little faster irimgable desired setpoint.

3.5.8 Effectiveness of the Waiting-Time Prediction Approach Compared W8TG&

As discussed earlier, GNSTF is a scheduling policy that performs regclesduling based on the
schedule times, which are initially assigned on a FCFS basis. The propaesgugvwime prediction
approach allows the application of aggressive cost-based schedolinge and hierarchical stream
merging techniques (such as MCF-P and ERMT, respectively). In tlisestion, we demonstrate
the implications of the predictive approach on improving system performaniegrits of the overall
user defection rate and average waiting time. The prediction approaehshapplied with MCF-P
and this combination is referred to as “Predictive MCF-P”. Figures 3.2{L3aR2 compare the two
approaches in user defection probability, average waiting time, and nedaifor Model B and C of the

waiting tolerance, respectively. Three variants of Predictive MCFeRaaalyzed. The first two apply
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AEC prediction scheme, whereas the third applies the hybrid. The best imqktina of GNSTF
(GNSTFo-MQL) is used to ensure a fair comparison. These results deratmnthat predictive MCF-
P performs significantly better than GNSTF under both tolerance models in tdrthe two most
important performance metrics. The relative performance among thesthifferedictive MCF-P variants
depends on the tolerance model. Under Model B, the hybrid scheme |Iehdde¢ast defection rate and
the longest waiting time among various variants. With model C, however, it tedlls shortest waiting
time and the highest defection rate. Under both models, the RAP and RARtegurform very close
to each other in the two most important metrics

Finally, Figure 3.23 captures the fact that GNSTF cannot be applied witiT-Rvhereas the

waiting-time prediction approach can. The figure compares GNSTF and aviants of predictive
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MCF-P (AEC and Hybrid), when each is applied with the most scalable stneamging technique that
is applicable to it. Here, only the results under Model C (which is more realmtecshown. Model
B exhibits a similar behavior. The results demonstrate the outstanding penfmergains achieved by
applying the prediction approach in terms of the two most important perfoenauetrics. The two

variants perform generally close to each other.

3.6 Conclusions

We have analyzed the waiting-time predictability in scalable video streaming amedphesented
two prediction schemegssign Expected Stream@npletion TiméAEC) andHybrid Prediction AEC

utilizes detailed information about the server state and considers the ambiestlising policy to predict
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the future scheduling decisions over a certain period, callediction window This window introduces

a tradeoff between the prediction accuracy and the number of useigingcexpected waiting times.
The hybrid scheme uses AEC and then assigns the average video waitingrttmeske requests that did
not obtain a predicted time by AEC.

We have analyzed the effectiveness of the two prediction schemes whledavith various stream
merging techniques and scheduling policies. We have also comparedahtvefiess of the waiting-
time prediction approach with the approach that provides time-of-servaegiees. The latter is rep-
resented by an extended policy, callédneralized Next Schedule Time F{@&NSTF). In addition, we
have studied the impacts of prediction window, server capacity, useitligvéolerance, arrival rate,
skew in video access, video length, and number of videos.

The main results can be summarized as follows.
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e The waiting time can be predicted accurately, especially with AEC and whenRiSkised. MCF-
P is not only highly predictable (in terms of user waiting time) but also achieedsetst performance

in server throughput and average waiting time.

e In contrast with AEC, the hybrid prediction scheme provides expected tineestouser but achieves
lower accuracy and a longer confidence interval.

e Combining AEC or the hybrid scheme with MCF-P leads to outstanding perfaerizenefits, com-
pared with GNSTF.

e This combination, calle®redictive MCF-R can be applied with hierarchical stream merging tech-

niques (such as ERMT) to improve performance further, whereas GN&iinot.
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CHAPTER4

INCREASING SYSTEM BANDWIDTH UTILIZATION BY
ENHANCING SCHEDULING DECISIONS IN VIDEO-ON-DEMAND
SYSTEMS

4.1 Introduction

Motivated by the development of cost-based scheduling, we investigatiedtweness in detail and
discuss opportunities for further tunings and enhancements. In partiwelaitially seek to answer the
following two important questions. First, is it better to consider the streamardgtat the current
scheduling time or consider the expected overall cost over a futuredpafriime? Second, should the
cost computation consider future stream extensions done by advareath snerging techniques (such
as ERMT) to satisfy the needs of new requests? These questions ar¢aimpmrcause the current
scheduling decision can affect future scheduling decisions, espegiadly stream merging and cost-
based scheduling are used.

Additionally, we analyze the effectiveness of incorporating video ptiedicesults into the schedul-
ing decisions. The prediction of videos to be serviced and the predictiamitihg times for service
have recently been proposed in chapter 3. These prediction reswltsydérowere not used to alter the
scheduling decisions. We propose a scheduling policy, cRltedictive Cost-Based SchedulifeCS).
Like MCF, PCS is cost-based, but it predicts future system state andhespsediction results to po-
tentially alter the scheduling decisions. It delays servicing requests alitfentscheduling time (even
when resource are available) if it is expected that shorter streams wébjogred at the next scheduling
time. We present two alternative implementations of PCS.

We also propose an enhancement technique, calbaptive Regular Stream Triggerid\RT),
which can be applied with any scheduling policy to enhance stream merdieghdsic idea of ART is

to selectively delay the initiation of full-length video streams.
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We study the effectiveness of various strategies and design optiongkhextensive simulation in
terms of performance effectiveness as well as waiting-time predictabiligyaflhlyzed metrics include
customer defection (i.e. turn-away) probability, average waiting time, ungfss against unpopular
videos, average cost per request, waiting-time prediction accuratyeanentage of clients receiving
expected waiting times. The waiting-time prediction accuracy is determined byénage deviation
between the expected and actual waiting times. We consider the impacts aheustaiting tolerance,
server capacity, request arrival rate, number of videos, videdHeagd skew in video access. We also
study the impacts of different request arrival processes and videkloads. Furthermore, in contrast
with prior studies, we analyze the impact of flash crowds, whereby thakrate experiences sudden
spikes.

The results demonstrate that the proposed PCS and ART strategies sidlyif@ghance system
throughput and reduces the average waiting time for service, while mg\adcurate predicted waiting
times.

The rest of the chapter is organized as follows. Section 4.2 analyzesased scheduling and
explores alternative ways to compute the cost. Sections 4.3 and 4.4 pghrespntposed PCS and ART
strategies, respectively. Section 4.5 discusses the performancetievatuathodology and Section 4.6

presents and analyzes the main results.

4.2 Analysisof Cost-Based Scheduling

We seek to understand the behavior of cost-based scheduling and asfiotewith stream merging.
Understanding this behavior helps in developing solutions that optimize tmalloperformance. One
of the issues that we explore in this study is determining the duration over whecbost should be
computed. In particular, we seek to determine whether the cost shoularipitaxd only at the current
scheduling time o) Or over a future duration of time, callgaediction windowW,). In other words,

should the system select the video with the least cost per request &iymer the least cost per request
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during W,. The latter requires prediction of the future system state. We devise ahat@itwo ways
to analyze the effectiveness of computing the cost over a period of LiookaheadchndCombinational

scheduling.

4.2.1 Lookahead Scheduling

In Lookahead Scheduling, the service rate (which is the rate at whichem \gdts serviced) is
computed dynamically for each video that has waiting requests. The totdbcgervicing each one of
these videos is computed during the time inteM&l Lookahead Scheduling selects the videthat

minimizes the expected cost per request. Thus, the objective function to mingmize

Zinzl Ci

F(J): Zn N_a
i=1""

(4.1)

wheren is the number of expected service times for videduring W, C; is the cost required to
service the requests for videgoat service time, and N; is the number of requests expected to be
serviced at service timie The number of requests at future service times is predicted by dynamically
computing the arrival rate for each video. Figure 4.1 further illustratesdtee As discussed earlier,
ERMT may extend streams to satisfy the needs of new requests. MCF-&yédmpwoes not consider
later extensions in computing the cost. In analyzing cost-based scheduénglso need to consider
whether it is worthwhile to predict and consider these later extensionselere consider a variant of
Lookahead Scheduling that considers these extensions. (In Figutheltérm “virtual time” means the

the future time imagined or simulated by Lookahead Scheduling, as opposeddctiial system time.)

4.2.2 Combinational Scheduling

In contrast with Lookahead Scheduling, Combinational Scheduling peettie best sequence in

which various videos should be serviced and performs schedulingl lmeséhis sequence. Thus, it
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Figure 4.1: An lllustration of Lookahead Scheduling

considers any correlations on the cost among successive video seeckaure 4.2 illustrates the
operation of Combinational Scheduling. The best sequence is founehayaging all possible sequences
for the nextn stream completion times during,, for only then-best videos according to the MCF-P
objective function. Note that stream completion times indicate when servenelsabecome available
for servicing new requests. The objective function of each sequsrtben calculated. Consider the
sequences; = {X1, Xz, X3, ..., Xn}, whereX; is the video selected to be serviced at the nésdtream

completion time. The objective function for this sequence is

n o
F(S) = %;i—iN;( (4.2)

whereCy; is the cost required to service vide®, and Ny, is the number of waiting requests for that
video. Cy, is determined based on the used MCF-P variant. Combinational Schedutingeshthe
sequence that is expected to lead to the least overall cost. Although mamyzafions are possible
to reduce the implementation complexity, we focus primarily on whether exploitingdahelations

between successive video selections is indeed important in practical siiatio



51

Find all Possible Determining object\ll\_/r(te ftllr_lv_g:hon for sequence S;
Video Waiting Sequences e VitualTime ———
Queues f L S LI A B 1
v1 | @ ® o X; Xo Xs X Current >
203 Scheduling &5’ ao? K >
Time /6 e s/ k5
v[® @ e S | N Rl & e
/S /% A VA
N Sy | : N
s Scheduler i F j
4 3‘ ‘ For each M Yy '
W/ B
E>SA ‘[> sequence S; L= T Ts "
v ® estimate F(S)) At time Ti: Wy
I— eieie Initialize total request count (N) and total cost (C) to zero;
. e iei e Add the number of waiting requests for V1 to N;
. Determine the required stream length and add it to C;
Estimate next service time : T2 = next stream completion time;
Service the Attime T;fori>1and T;< Ty +W,:
v © Sul sequence S, Estimate number of arrivals in [T,, T}
ith the Add the estimated number of arrivals to N
® wi Determine the required stream length and add it to C
Waiting Request smallest F(S)) Estimate next service time : Ti.; = next stream completion time;
After W, is exceeded:
Determine the sequence objective function F(S;) = C/N;

Figure 4.2: lllustration of Combinational Scheduling

4.3 Proposed Predictive Cost-Based Scheduling

The prediction of videos to be serviced and the prediction of waiting timesefwice have been
proposed in Chapter 3. These prediction results, however, weresedtto alter the scheduling de-
cisions. In this study, we analyze the effectiveness of incorporatingovitediction results into the
scheduling decisions. We propose a scheduling policy, cBltedictive Cost-Based Scheduli(fCS).
PCS is based on MCF, but it predicts future system state and uses thigipretb possibly alter the
scheduling decisions. The basic idea can be explained as follows. Wieanael becomes available,
PCS determines using the MCF-P objective function the vidgg, which is to be serviced tentatively
at the current scheduling timé&y,,,) and its associated delivery cost. To avoid unfairness against videos
with high data rates, we use the required stream length for the cost [2&}reBactually servicing that
video, PCS predicts the system state at the next scheduling Tipg)(and estimates the delivery cost
at that time assuming that vid&&, o, is not serviced at tim&y,,. PCS does not service any request at
time Tnow @nd thus postpone the service of vidég,, if the delivery cost at tim&8yext is lower than
that at timeTyo,. Otherwise, vided/y o, is serviced immediately.

To reduce possible server underutilization, PCS delays the serviceeafrsronly if the number of

available server channel$leeChannelkis smaller than a certain thresholfireeChannel T hresh
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Figure 4.3 shows a proposed algorithm to dynamically find the best valtiee@fC hannel T hreshrhe
algorithm changes the value of the threshold and observes its impacttomeusiefection probability
over a certain time interval. The value of the threshold is then updated badbd trend in defection
probability (increase or decrease) and the last action (increaseraadeg performed on the threshold.

The algorithm is to be executed periodically but not frequently to ensuptestgistem behavior.

currDefectionRate- defectedCustomefsernedCustomer;s
if (currDefectionRate< lastDef ection Ratkg{
if (last action was decremeand freeChannelThresk 2)
freeChannelThresh —;
else if(last action was increment)
freeChannelThresh +;
} else if(curr Def ectionRate- lastDef ection Ratg
if (last action was incremeand freeChannelThresk 2)
freeChannelThresh —;
else if(last action was decrement)
freeChannelThresh +;

}
lastDefectionRate curr Def ectionRatg

Figure 4.3: Simplified Algorithm for Dynamically ComputifiggeChannelThresh

We present two alternative implementations of PESS-VandPCS-L These two implementations
differ in how to compute the delivery cost or required stream length ataékestheduling time. PCS-V
predicts the video to be serviced at the next scheduling time and simply useguiised stream length.
The video prediction is done by utilizing detailed information about the custaté of the server in a
manner similar to that of the waiting-time prediction approach in Chapter 3. Thismation includes
the number of waiting requests for each video, the completion times of runmeanss, and statistics
such as the average request arrival rate for each video (which esupdated periodically). Figure 4.4
shows a simplified algorithm for PCS-V.

In contrast with PCS-V, PCS-L computes the expected required stregth kgrthe next scheduling
time based on the lengths of all possible video streams that may be requiréteanurobabilities. A
simplified algorithm for PCS-L is shown in Figure 4.5. The probability that awideselected is equal

to the probability that it has at least one waiting request at figng; times the probability that all video
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VNow = find the video that will tentatively be servicedBioy;

if (freeChannels> freeChannelThresh
Service the requests f&fy oy ;

elsef
curr StreamLerr find required stream length to servigg o, at Tnow;
Vnext = find the video that is expected to be serviced aéxi;
nextStreamLer find required stream length to servi¢R ext at Tnext;
if (currSreamLen< nextStreamLen

Service the requests f&fy oy ;

Figure 4.4: Simplified Algorithm for PCS-V

streams with lower cost (i.e. shorter required streams) are not seletiegrdbability that videe has
at least one arrival during duratidiyext — Tnow CaN be found as one minus the probability of exactly
zero arrivals:

1 _ e—).u X(TNexI—TNOw)’ (43)

where/; is the request arrival rate for videoand assuming a Poisson arrival process. If the video has
already one waiting request, then this probability is 1. Sorting the videosdisgao the scheduling
objective function is required to determine the probability that all videos witretoswst (or higher
objective) are not selected.

As can be clearly seen from the algorithms, both PCS-V and PCS-L reguinee overhead of
O(N,), whereN, is the number of videos, assuming that that a priority queue structure igaisaok

the videos according to the objective function.

4.4 Proposed Adaptive Regular Stream Triggering (ART)

As will be shown later, our analysis reveals a significant interaction betw#eam merging and
scheduling decisions. One of the pertaining issues is how to best hagdlarr@.e., full) streams.
MCF-P (RAP) considers the cost of a regular stream as a patch andrdlairs it in a differentiated
manner. The question arises as to whether it is worthwhile, however, tp régjalar streams in certain

situations. Guided by analysis, we propose a technique, cAliieghtive Regular Stream Triggering
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Vnow = find the video that will tentatively be serviced®{o,;
if (freeChannels> freeChannelThresh
Service the requests &y oy;
else{
curr StreamLers find required stream length to servidRq, at Tyow;
Calculate objective function for each videoTafext;
Sort videos from best to worst according to objective function;
expected StreamLen 0;// initialization
/l'loop to find expected stream length afef;
for  =0;v < N, ; v + +){ // for each video
nextStreamLer find required stream length to servicat Tyext;
Prob(video is selected) = Prob(no other video with better objective is selected)
* Prob(videoo has at least one arrival);
expected StreamLerrProb(videw is selected ) hextStreamLen
}
if (currSreamLen< expectedStreamLén
Service the requests &y o ;

Figure 4.5: Simplified Algorithm for PCS-L

(ART). A possible implementation is shown in Figure 4.6. The basic idea heredsl&y regular
streams as long as the number of free channels is below a certain threghild,is to be computed
dynamically based on the current workload and system state. ART ussartteealgorithm (shown in

Figure 4.3) to dynamically find the best value fafeeChannel T hreshs that of PCS.

VNow = find the video that will be serviced @o,;
if (freeChannels> freeChannelThresh
Service the requests &y oy
elsef{
curr StreamLen= find the required stream length to seMigo, at Tnow;
if (currStreamLen< maieLen) // not a full stream
Service the requests fdfy oy ;
else//full stream
Postpone the requests dK oy ;

Figure 4.6: Simplified Implementation of ART

To further demonstrate the main idea of ART, Figure 4.7 plots the ERMT mergevitkout and
with ART, respectively. The solid lines show the initial stream lengths and dktedilines show later

extensions. The circles identify successive extensions. With ART, ihargap before a regular stream
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is initiated because of the postponement. We also observe that ART eslthastream merging deci-
sions of ERMT. The number of initial regular streams (call&tkeamsn this study) in the merge tree is
relatively much smaller with ART. For example, there is only dsgreamin the merge tree with ART

while there are many moileStreamsn the merge tree without ART.
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Figure 4.7: Impact of ART on ERMT Stream Merge Tr&fideo 11, MCF-P, Server Capacity = 4p0

As can be seen form the ART algorithm in Figure 4.6, ART requires a timeheaerofO(1) in
addition to the time overhead of the base scheduling policy used.
In principle, ART can be used with any scheduling policy, including PCSpaf@ih some negative

interference happens when it is combined with PCS, as will be shown in 8dcéio

4.5 Evaluation Methodology

We study the effectiveness of the proposed policies through simulatiansifrtulation, written in

C, stops after a steady state analysis with 95% confidence interval igtkach
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45.1 Workload Characteristics

Table 4.1 summarizes the workload characteristics used. Like most pridestwee generally

Table 4.1: Summary of Workload Characteristics

Parameter Model/Value(s)
Request Arrival Poisson Process (default)
Weibull Distribution with shapé& = 0.6 to 09
Request Arrival Rate Variable, Default is 40 Req./min
Server Capacity 200 to 750 channels
Video Access Zipf-Like
Video Skew @) 0.1to 0.6, Default = 0.271
Number of Videos Variable, Default is 120
Video Length Fixed-Length Video Workload (Default)

with length of 60 to 180 min (same for all videos),
Default = 120 min

Variable-Length Video Workload:
with lengths randomly in the range: 60 to 180 min

Waiting Tolerance Model A, B, C, Defaultis A
Waiting Tolerance Meanuo) | Variable, Default is 30 sec
Flash Crowds The peak arrival rate is 40 times the normal rate for a perfod o

two movie lengths and flash crowds arrival rate is variable.
Default: no flash crowds

assume that the arrival of the requests to the server follows a PoissoasBrwith an average arrival
rate .. We also experiment with the Weibull distribution with two parameters: shapeeald [68].
We analyze the impact of the shape (k), while adjusting the scale so thatgineddaverage request
arrival rate is reached. Additionally, we assume that the access to vaeighly localized and follows
a Zipf-like distribution. With this distribution, the probability of choosing the nth traagpular video
is C/n'~% with a parameter and a normalized constant C. The paramétaontrols the skew of
video access. Note that the skew reaches its peak @herd, and that the access becomes uniformly
distributed wher® = 1. We analyze the impact of this parameter, but we generally assume a falue o
0.271 [66, 65].

We characterize the waiting tolerance of customers by three modelModiel A the waiting tol-
erance follows an exponential distribution with meayg, [66, 65]. In Model B users with expected
waiting times less thap, will wait and the others will have the same waiting tolerance as Model A

[66, 65]. We useModel Cfrom Chapter 3 to capture situations in which users either wait or defect
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immediately depending on the expected waiting times. The user waits if the expeaited) time is
less thanuo and defects immediately if the waiting time is greater thag,R Otherwise, the defection
probability increases linearly from 0 to 1 for the expected waiting times betwggeand 2uq.

As in most previous studies, we generally study a server with 120 videeoh, & which is 120
minutes long. We examine the server at different loads by fixing the requrdgl rate at 40 requests
per minute and varying the number of channels (server capacity) digrieven 200 to 750. In addition
to the fixed-length video workload (in which all videos have the same lenghgxperiment with a
variable-length video workload. Moreover, we study the impacts ofalnrate, user’s waiting tolerance,
number of videos, and video length (in the fixed-length workload).

Flash crowds workload characteristics were adopted from [69].

4. 5.2 Considered Performance Metrics

To evaluate the effectiveness of the proposed schemes, we con&daaith performance metrics
discussed in Section 2.1. In addition, we analyze waiting-time predictability byrtetoics: waiting-
time prediction accuracy and the percentage of clients receiving expsatgdg times. The waiting-
time prediction accuracy is determined by the average deviation betweerpiteckand actual waiting
times. For waiting-time prediction, we use the algorithm in Chapter 3. Note thatgjoistm may not
provide an expected waiting time to each client because the prediction majmagsade performed

accurately.

4.6 Result Presentation and Analysis

4.6.1 Comparing the Effectiveness of Different Cost-Computation Altereative

Let us start by studying the effectiveness of Lookahead and ComhbiadBcheduling. Interestingly,
there is no clear benefit for computing the cost over a future period of tmmeome cases, as shown in

Figure 4.8, the performance in term of customer defection and averatjegniane may be worse than
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those when computing the cost at the current scheduling time with MCF-R.eBh#ts of Lookahead

Scheduling are shown for two different prediction window values. Orgyrdsults with future stream

extensions are shown. The results without extensions are almost the same.

Although computing the cost over a time interval seems intuitively to be an exceheice, it

interferes negatively with stream merging. Later in this study, we discussh®interaction between

stream merging and scheduling can be utilized by using the proposed Aitiigae, which can be used

with any scheduling policy. Based on these results, we only considercoaxputing the cost at the

current scheduling time.
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Figure 4.8: Effectiveness of Lookahead and Combinational SchedHiRYIT]
4.6.2 Effectiveness of the Proposed PCS Policy

Figures 4.9, 4.10, and 4.11 demonstrate the effectiveness of the two impégimes of PCS when

applied with ERMT, Transition Patching, and Patching, respectively, in tefriee customer defection

probability, average waiting time, and unfairness. The figures show®@@atoutperforms MCF-P and

MQL in terms of both the two most important performance metrics (defection pilithaand average

waiting time), whereas MCF-P is fairer towards unpopular videos. The twtemgmtations of PCS

perform nearly the same and thus PCS-V is preferred because of its siynfrom this point on, we

consider only the PCS-V implementation.
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4.6.3 Effectiveness of the Proposed ART Enhancement

Figure 4.12 shows the effectiveness of the proposed ART technigea ®RMT is used. With

MCF-P, ART reduces the customer defection probability and average wéitiegby up to 25% and

80%, respectively. It also yields significant improvements when used w@i..N\Unfairness, the least

important metric, is a little larger with ART because of its nature in favoring vieethsshorter streams,

but it is still acceptable compared with MQL.

Figure 4.13 depicts the impact of ART on regular streams in ERMT. We obdbat when ART

postpones regular streams, it forces ERMT to make more merges, whicimjnncreases system uti-

lization. We also observe that the number of regular streams does netdedignificantly despite

of postponing these streams. In contrast, Figure 4.13(a) indicates thaerage time between two
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successive regular streams for popular videos is even smaller with ARTthBawithout it. This is

because ERMT keeps extending streams, which eventually become rsgedans. Figures 4.13(b) and

4.13(c) compare the percentage of initial regular streams (I Streamsksrdled regular streams (E

Streams) without and with ART, respectively. We can see that the pegeaoitextended regular streams

with ART is much higher. This supports the fact that the number of regulearsis is not reduced by

postponing. In summary, we can say that ART improves ERMT by replacimy in&treamswith E

Streams
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Let us now discuss the impact of ART when Transition Patching and Patahingsed. Transition

Patching results are presented in Figure 4.14 and Patching results seatpcein Figure 4.15. As

with ERMT, ART reduces significantly the customer defection probability aactkerage waiting time
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when it is combined with MCF-P and MQL. Unfairness with ART is a little larger 4tilt acceptable

compared with that of MQL for medium and high server capacities.

Interestingly, ART improves Transition Patching and Patching despite thiathist scheduling

policy, MCF-P (RAP), depends on a conflicting principle. As discussetiee, MCF-P (RAP) gives

preference to regular streams while ART postpones them in certain situafisribustrated in Figure

4.16, the main impact of ART is dynamically optimizikgr, which is larger than that of MCF-P (RAP)

and smaller than that of MCF-P (RAF) for popular videos, and eventgrézan that of MCF-P (RAF)

for unpopular videos. The horizontal line in the figure marks the equatisedvalue ofVr [70].

(Note that the equation does not yield optimum values because it is based orantsimplifying

assumptions.)
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4.6.4 Comparing the Effectiveness of PCS and ART

Although ART can be applied with any scheduling policy, including PCS, fertime being, we
consider it as an alternative to PCS because of negative interferetveedn the two, as will be shown
in Subsection 4.6.8. In this subsection, we compare the effectivenesd¥Pand ART in terms of
customer defection probability, average waiting time, unfairness agaipsputar videos, and cost per
request. Figures 4.17, 4.18, and 4.19 shows the results of ERMT,iffeari3atching, and Patching
respectively.

With ERMT, MCF-P when combined with ART performs better than PCS-V in tefftteeccustomer
defection probability and average waiting time. The results when TransitiwhiRg and Patching are

used exhibit different behavior than those with ERMT. MCF-P combined AR gives almost the
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same results as PCS-V in terms of customer defection probability, but iteedhe average waiting
time significantly. Unfairness of PCS-V is less than that with ART in all streangimgrtechniques
because ART favors videos with shorter streams more than PCS-V. fémsts indicate that MCF-P

when combined with ART is the best overall performer.

To further support the fact that more customers are served with onlgtogem when using ART,
Figure 4.20 demonstrates the impact of ART on the cost per request. \¥ee#mat the cost per request

with ART is the lowest for different server capacities.
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4.6.5 Impact of Workload Parameters on the Effectiveness of PCS ahd AR

Figures 4.21, 4.22, 4.23, and 4.24 illustrate the impact of the requestlaaie, customer waiting
tolerance, number of videos and video length on the effectiveness $f\P@nd ART. The results
for both Patching and ERMT are shown. The results demonstrate that MRiy/saachieves smaller
customer defection probability and average waiting time than PCS-V in the tB&SMIT. In Patching,
the same trend is observed for the average waiting time, but PCS-V and-fvicimbined with ART”
perform nearly the same in terms of customer defection probability, espestadly the server is highly
loaded.

Figure 4.25 shows that the skew in video access has significant impacte onstomer defection

probability, average waiting time and unfairness. Recall th# mereases, the skew in video access
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Figure 4.22: Impact of Customer Waiting Toleran8efver Capacity = 500

decreases. Both the defection probability and average waiting time arerwloyghe reduction in the
skew. This is because cost-based scheduling policies favor popudarsviy nature. Whefhincreases,
the deference in video popularity decreases which in turn make the dictgedecision harder to make.
Unfairness decreases by increaginghich is as expected. Again, “MCF-P combined with ART” is the
best policy in term of all performance metrics, except unfairness.

The results so far are for a video workload of a fixed video length. Eigu26 shows the customer
defection probability, average waiting time and unfairness results fori@befength video workload.
The workload is comprised of videos with lengths in the range of 60 to 180 nsintike length of each
video is generated randomly within the specified range. The results fordhdoad are obtained by

averaging the values of four runs. The PCS-V and ART algorithms alsk well in this workload.



66

@
=1
=
<)

Patching, PCS-V

ERMT, PCS-V

Patching, MCF-P with ART
ERMT, MCF-P with ART

O Patching, PCS-V 0.035 le)
/A ERMT, PCS-V A
T, ERMT, PCS-V
g Patching, MCF*P_Vg\th ART 0.03 -2~ Patching, MCF-P with ART
ERMT, MCF-P with ART %~ ERMT, MCF-P with ART

Patching, PCS-V

Fomo

w IS
S =)
)
o
[e]

N

% of Customer Defection
S
>
Average Waiting Time (seconds)

-

R

5O
Unfairness

10
o G W
100 150 200 100 150 200 100 150 200
Number of Videos Number of Videos Number of Videos
(a) Defection Rate (b) Average Waiting Time (c) Unfairness

Figure 4.23: Impact of Number of VideoS¢rver Capacity = 500

9
i = m O Patching, PCS-V 0.04
2 Es&wn%&c—% Vv -g 8l A ERMT, PCS-V O Patching, PCS-V
< 50l -3 Patching. MCE—P wi S _|[-= Patching, MCF-P with ART 0.035 A ERMT,PCS-V
o g, with ART o7 . = Patch | h
= Z @ 7|6~ ERMT, MCF-P with ART atching, MCF-P with ART
T |[<&-_ERMT, MCF-P with ART ) 8 0.03 ~$~ ERMT, MCF-P with ART
% 40 6 o (o]
e Eg ° o @ 0025
5 =
D 30 : c
o - = 0.02
5 s 24 P 3
= = . c
é 20 g 3l A 5 0015
G, 4G I} % 0.01€ >
< 10 g A
S 51 0.005
z —— 7
80 100 120 140 _ 160 180 % 80 100 120 140 _ 160 180 0 80 100 120 140 160 180
Video Length (Minutes) Video Length (Minutes) Video Length (Minutes)
(a) Defection Rate (b) Average Waiting Time (c) Unfairness
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“MCF-P combined with ART” as in most cases performs better than all othesigga Moreover, we
can see that the fairness of ART and PCS-V is better than that of MCF-Pvauiidible-length video
workload.

The results so far assume a Poisson request arrival process hetvexamine the behavior under
Weibull distribution with different shape (k) values. Figure 4.27 demotedrinat the shape has a little
impact, especially when the server capacity is larger than 500 channelse Bi@8 compares MCF-P,
PCS-V, and MCF-P with ART under Weibull Arrival Distribution with the sarhage. The results with
other shape parameters have the same trend and thus are not shovam e clearly that PCS-V and
“MCF-P combined with ART” sill perform better than MCF-P. We can see #isd MCF-P with ART

is the best policy.
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4.6.6 Comparing Waiting-Time Predictability with PCS and ART

Figure 4.29 compares the predictability of MCF-P, PCS-V, and “MCF-P doscbwith ART” in
terms of the average deviation and percentage of clients receivingtegpme of service (PCRE)
under waiting tolerance Model B. The results with Model C are similar and dheisiot shown. The
results demonstrate that ART significantly improves the predictability of MOFSS-V is also more
predictable than MCF-P. In particular, ART reduces the average deviayiap to 30% and 75% for
models B and C, respectively. It also increases the number of clienfgingcexpected times by up to
35%. Moreover, “MCF-P combined with ART” gives more customers etqabtimes than PCS-V with

a relatively less significant increase in the average deviation.
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4.6.7 Impact of Flash Crowds on the Effectiveness of PCS and ART

Let us now discuss the impact of flash crowds on the effectivenesS®f\Pand ART. Figure 4.30
demonstrates the impact of flash crowds inter-arrival time on MCF-P,\B@8d “MCF-P combined
with ART”. The results show that MCF-P when combined with ART handles #hfcrowds more
efficiently than the other policies. In particular, it achieves the best custdeiection probability and
average waiting time under all flash crowds inter-arrival times. PCS-iéaef better results than MCF-
P, but it is improvement is less than that of ART. Figure 4.31 confirms that &RiEinces the efficiency
of stream handling even with flash crowds. It is clearly evident that “MRCEombined with ART”

achieves the lowest cost per request for all videos.
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4.6.8 Effectiveness of Combining ART with PCS

Let us now look at the results of combining PCS-V with ART. We show thdtesader ERMT and

Patching in Figures 4.32 and 4.33, respectively. Transition Patching éaauhe trend as Patching and

therefore its results are not shown. These results indicate that “MCiABined with ART” performs

the best among all variations, and that PCS-V performs better than “P@BRVART”. From these

figures, we conclude that negative interference occurs when ARInibined with PCS-V. Removing

this interference by modifying these two strategies is a challenging task araklaffuture study.
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4.7 Conclusions

We have analyzed in detail cost-based scheduling for on-demand wridaming and proposed new
strategies:Predictive Cost-Based Scheduli(@CS) andAdaptive Regular Stream Triggerir@\RT).

The main results can be summarized as follows.

e There is no clear advantage of computing the cost over a future time wircoapared with

computing the cost only at the next scheduling time.

e The proposed PCS scheduling policy outperforms the best existing pMIC¥{P) in terms of
customer defection probability and average waiting time. The waiting times cabhajsedicted
more accurately with PCS. The two variations of PCS (PCS-V and PCS+grpenearly the

same and thus the simpler variant (PCS-V) is preferred because of itsitoplementation com-



71

~

0.6 m = 3
[ & PCS-V 8 SopesvV 0.0% & PCS-V
X ) 2 -©- PCS-V with ART )
c B -©- PCS-V with ART &6 e MOP—P with ART -6~ PCS-V with ART
205 % MCF-P with ART § 0.025, ~*~ MCF-P with ART
g 2s
j5
Qo4 E 5 8 002
5 = 4 c
=2 =
5 g s
g 0.3 .g 3 | 5oo015
5 0.2 S 0.01
K g s W
o 2 ‘ ‘ ‘ ‘ 000
'1;'00 400 500 600 700 C}OO 400 500 600 700 7300 400 500 600 700
Server Capacity Server Capacity Server Capacity
(a) Defection Rate (b) Average Waiting Time (c) Unfairness

Figure 4.33: Effectiveness of Combining PCS-V and ARa&ttching

plexity.

e By enhancing stream merging behavior, the proposed ART techniqstastiblly improves both

the customer defection probability and the average waiting time.

e Although ART in principle can be applied with any scheduling policy, includi@gPnegative in-
terference exists between ART and PCS, and thus their combination leaehéeves worse than
any of them applied individually. Removing this interference by modifying ttwsestrategies is

a challenging task and left for a future study.

e The best overall performer is “MCF-P combined with ART”, followed by @Vith ART, signif-
icantly more clients can receive expected waiting times for service than RESt & somewhat

lower waiting time accuracy.
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CHAPTERS

DISTORTION-BASED CROSS-LAYER OPTIMIZATION FOR
WIRELESS VIDEO STREAMING

5.1 Introduction

In this study, we consider video streaming from multiple video sources (tiorssq to a central
station over a single-hop IEEE 802.11 wireless LAN (WLAN) network. Tdyplication is typical
in Automated Video Surveillance (AVS) systems. As shown in Figure 1.2, thelesi video sources
(video cameras or sensors) share the same medium and can be eithgfdmatiered or outlet-powered.
The central proxy station is connected with a high-bandwidth link to the agum@st, and thus this link
is not deemed as a bottleneck in the system. Large systems may be composéiptd such systems
or cells.

The main challenge in the considered system is that the wireless network had hndttable band-
width, which should be estimated accurately and distributed efficiently amamgusavideo sources.
Our ultimate goal in this study is to build a cross-layer framework for maximizinghéterork band-
width utilization. This cross-layer approach, clarified in Figure 5.1, utilizesrmay adapt parameters
from the application, link, and physical layers of the network layer stadke problem is to be for-
mulated using the AVS intuitive rate-accuracy function. The objective obfftanization will be to
maximize the sum of the weighted accuracy of vision algorithms running in thtersysvhere the
weights are the importance factors of the video sources in the system.

Distortion-based bandwidth optimization in such systems has been addresafdfew studies [43,
44] by using cross-layer optimization and as discussed in Section 2.5 sthletens are highly limited.
For this reason and for comparative purposes, we propose a distbasmu cross-layer framework
that dynamically manages the available network bandwidth in such a way that rménithiz overall

distortion. The proposed cross-layer framework utilizes an online apprfor estimating the effective
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airtime of the network. To yield an accurate estimation, the proposed appcoatputes the effective
airtime when the packet loss is below a specified threshold.

We evaluate the proposed solution by streaming real video frames (ajudtent abstract bit stream)
over a simulated network. The simulations are conducted using OPNET. tBmeent video packets
may be lost, we implement an error concealment algorithm [71] at the protigrsta mitigate the
impact of packet loss on perceptual video quality. We also study therpefwe of the proposed
framework with the existence of other interfering/cross traffic in the nétwor

The main contributions of this part of the dissertation can be summarized agdo(lb) We propose
a complete cross-layer optimization framework, including a new online anandigrapproach for esti-
mating the effective airtime of the network. (2) We develop a new and aecomadel that characterizes
the relationship between the video data rate and the distortion. (3) We prapanhanced online and
dynamic approach for estimating the effective airtime of the network. (4) &eldp a new model for
adapting the link layer parameters in the video sources. (5) We test onevirark by streaming real
video frames over a simulated network and incorporating an error clomeegalgorithm to mitigate the
impact of video packet loss. (6) We study the impact of interfering/crastction the performance of
the proposes framework.

The results show that the proposed framework enhances substantigigrideptual quality of re-
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ceived video streams and that the proposed effective airtime estimatioittaigos accurate and con-
verges quickly. The proposed framework also results in much less mmmsumption, compared with
existing solutions. This behavior is due to sending and dropping much lessRaver consumption is
a primary concern, especially when the video sources are batteryrgabvioreover, results shows that
the proposed framework is highly adaptable for any interfering trafficemttwork.

The rest of this chapter is organized as follows. Table 5.1 summarizes t##one that are used
in this study and their definitions. Section 5.2 presents the proposedlayessaptimization frame-
work. Subsequently, Section 5.3 discusses the performance evaluatiood@legy. Finally, Section

5.4 presents and analyzes the main results.

Table 5.1: Notations Summary

Notation | Definition

CWhin Minimum Contention Window

CWhax Maximum Contention Window

AP Access Point

AC Access Category

AIFS Arbitration Inter Frame Space

TXOP Transmission Opportunity Time

S Number of video sources

rs Rate of the encoded video sent by source s

Vs Source s physical rate

Actt the effective airtime of the medium

fs Airtime fraction of source s

T Frame rate

z Video frame size

ts Throughput of source s video stream as received by the apipliclayer of the proxy station
ds source s data dropping rate

Ax The overall average dropping ratiéy = > o ; ds/Ys.

Athresh A threshold that controls the allowable dropping in the roetw
A Lagrangian constant

as, bs, cs | Distortion curve constants

Xs Optimized TXOP limit

Rs Maximum load rate measured by the MAC layer at source s
Ls Maximum video frame size at source s

Ns Number of MAC layer data frames per maximum video frame atc®s
Is Average data load per MAC layer data frame at source s

Os Average MAC and physical layers overhead at source s

ts Short Interframe Space (SIFS) time

ta Time required to send an acknowledgment
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5.2 Proposed Cross-Layer Optimization Framework

This study considers a system of video streaming from multiple video so(wcesations) to a
central station over a single-hop IEEE 802.11 WLAN network in EDCA mddeshown in Figure 1.2,
the system haS > 1 video sources and each sousreams a different encoded video at rBte Each
video sources may have a different physical rate).

The ultimate goal of this study is to provide an optimal solution that dynamically dis&sband
allocates the available network bandwidth among various video sourciessdittion should consider
all system, video, network, and environmental aspects, which may cligngenically. Therefore, the
proposed cross-layer optimization solution utilizes and dynamically controdsneders in three layers

in the network stack: Application, Link, and Physical.

5.2.1 Cross-Layer Optimization Problem Formulation

As in [44], we formulate the problem as a cross-layer optimization probletheo$um of the dis-
tortion of all video streams received by the central proxy station. We fabk@sdormulation in [44], but
adapt it to include the packetization overhead of the transport and appili¢ayers. Since all video
sources share the same medium, the bandwidth allocation solution should detémmiinaction of
airtime that each video source receives in the system. Obviously, the tdilaleagannot exceed the
effective airtime of the medium. Specifically, the problem is formulated as: fimdptimal fraction of
the airtime allocatiorF* = {fJ|s = 1,2, 3, ..., S} for various video sources that minimizes the total
distortion (Zf‘zl Distortiong(rs)), wherers is the application layer transfer rate for video sowscand
Sis the number of video sources. This optimization is subject to the followingmeonis. (1) The total
airtime of all video sources is less than the effective airtime of the medAun X (2) The application
layer transfer rate of soureds the product of the its airtimef{) and the physical layer transfer ratg)

for video sources. (3) The airtime of each source is between 0 and 1 (inclusive).
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Mathematically, the problem can be stated as follows:

S

Find F*=arg ngln; Distortion(rs) (5.1a)
S
st D fo= Aer (5.1b)
s=1
rs = fs X ys (5.1C)
0<fs<1 (5.1d)
s=1,2,3,...,S (5.1e)

whereF* is the set of optimal fractionsf{) of the airtime of all sources; is the optimal application-
layer rate of video sourcg Vs is the physical-layer rate of video sourgeand Ag¢+ is the total effective
airtime.

To solve the problem formulated in Equation (5.1), we need to charactegzaidtortion function

and assess the effective airtime of the network.

5.2.2 Distortion Function Characterization

We seek to find a model of the relationship between the size of a JPEG shépsditernatively the
rate of an MJPEG video) and the distortion of the snapshot. We determirigabgistortion relationship
based on the following image data sets: CMU/MIT [72], Georgia Tech FBRET [74], and SCFace
[75]. We also use these image sets in our experiments to assemble the MIRIEGtvehms using
the streamer discussed in Section 5.3 to load the network with video trafficfaif@valuations of
bandwidth allocation solutions, each video source should be able to strearidédo at a bitrate that
matches that of the optimization solution. The Georgia Tech image set praalhigisly limited range
of bitrates for the studied network. To produce a better variety, we gananother image set from

the original Georgia Tech image set by changing the resolution of each imége $et to 50% of the
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original resolution. The new image set have a resolution of 82d0. For each image set, we use the
IJG JPEG library to compress each picture in the set with quality factors Irasml00, with 1 being
the lowest, and then assess the distortion of each image against the origigalusiag the Root Mean
Square Error (RMSE) metric. Finally, we find the average size and thhagaelistortion of all images
with the same quality factor. The results are shown in Figure 5.2. Thedésrigslicate that the model
formulated in [76] (identified as “Existing Model”) is not accurate. We deiae that the distortion can

be better characterized as follows:

Distortion(RMSB = a x Z° +c, (5.2)

whereZ is the image size amd b, ¢ are constants. This model is referred to as “New Model” in Figure
6.1. For MJPEG videos, image siZecan be calculated a8 = R/7, whereR is the video playback

rate andr is the video frame rate.

5.2.3 Effective Airtime Estimation

As finding an accurate value for the effective airtime of the medium is nage$sr solving the
formulated optimization problem, we propose a novel online and dynamictieffegirtime estima-
tion algorithm for wireless networks in infrastructure configuration. Intcast with existing analytical
models, the algorithm uses complete information about the network and intb&esoperation of the
access point and all video sources as well as various layers in eae sdhe algorithm does not incur
additional network traffic and can be executed only when significamgd®in the network (such as
variations in the physical rates) happen.

As shown in Figure 5.3, the algorithm proceeds as follows. First, for e@mdo sources, it finds
the throughputt{) of its video stream as received by the application layer of the proxy statiben

all sources stream videos, each at a rate that is equal to the maximumagbhgsgcof the network
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Figure 5.2: Size-Distortion Models

divided by the number of sources [77]. The algorithm then uses thisghput to determine the initial
value of the effective airtimeAgs¢) as follows: At = Zle ts/Ys. Our experiments indicate that this
initial value significantly overestimates the effective airtime, causing the actoaived video rates to
not conform to the cross-layer optimization solution because of the highdepacket packet dropping

in the network. Thus, this value has to be adjusted based on the expdrlenekof packet dropping.
Subsequently, during a period of time, called estimation period, each videcesoassesses its own
data dropping ratedf) while sending its video stream, and then sends this information to the acdeiss po
(AP). Meanwhile, the AP determines the overall average dropping rafmless: Ay = Zsszl ds/Vs.

A, is used to adjust the current value Afs at the end of the current estimation period. Af is
greater than some threshodéhesh, the AP reduce®\ess by Ax — Athresh Athresh CONtrols the allowable

dropping in the network. IA,, however, is less thaAresh, the AP increasefess by a valuel , which
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set as half the last increment or decrement value, depending on wttethast operation is increment or
decrement, respectively. Guided by extensive experiments, weaialf the last decrement/increment
to ensure better convergence and stability. The algorithm terminates wherttbments become less
than a thresholdinresn The estimation period anighresh Should be chosen based on the best tradeoff

between convergence and stability.

if this is the first time to run the algorithm
At = ZSS::L ts/Ys:
At the end of each estimation period
Ar = Zsszl dS/ys;
if (AA < Athresh){
if (last operation was decremet)
| =0.5«lastDecrement

Aett = Aetr + |}

else if(last operation was incremefit)
| =05 1;
Aett = Aetr + |}

else//no decrements happened before
/lkeep increasingAg¢ss to cause the first decrement
Actt = Aett+ 0.05;
if (lastIncrement< linresh)
Stop the estimation algorithm;
}
else if(Ax > Athrest){
Actt = Aett — (Axr — Athresh);
lastDecrement= Ap — Athresh}

}

Figure 5.3: The Algorithm for Dynamically Estimating the Effective Airtime

5.2.4 Enhanced Effective Airtime Estimation

By studying the online estimation algorithm proposed in the previous sectionailsjeve have
found some options for further enhancements. One of these enharisamém eliminate the initial
period that the algorithm spend to find an initial value ¢ to start with. We find that starting with
a moderate initial value such as 0.5 is sufficient. The other enhancemeptathbe done is to make
the incrementing step of the algorithm directly dependent on the de8ifggsr. By doing this, the

algorithm become more stable and converges to a more accurate efféttme salue. By employing
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these enhancements, the resulting algorithm came out to be much simplerteeaaiérate, and uses
less design parameters. Figure 5.4 shows the enhanced algorithm.

The algorithm starts with initializinghe s with 0.5. This statement is only executed once when the
system start running. Next, as in the algorithm in the previous section,gdanperiod of time called
estimation period, each video soulcassesses its own data dropping ratg While sending its video
stream, and then sends this information to the access point (AP). Meanthieil&P determines the
overall average dropping ratio as follow&, = Zsszl ds/Ys- Ax is then used to adjust the current value
of A¢tr at the end of the current estimation period Alf came out to be zerddq¢¢ is incremented by
Athresh If An is greater than the thresholdhrest, the AP reduce#\es by C = (Ax — Athresn) Where Cis
a positive constant. IA,, however, is less thaAnresh the AP increaseBes s by C* (Athresh— Aa). The
estimation period and the const&hshould be chosen based on the best tradeoff between convergence

and stability.

Initialize Aess with 0.5
At the end of each estimation period
Ap = Zss=1 ds/Ys;
if (Ap ==0)
Actt = Aett + Athresh
else |f(AA < A[hresh)
Actt = Aett + C * (Athresh— Aa);
else If(AA > Athresr‘D
Actt = Aett — C * (Aax — Athresh);

}

Figure 5.4: Enhanced Effective Airtime Estimation Algorithm

5.2.5 Cross-Layer Optimization Solution

Now that we have a distortion function and a value for the effective airtirescam solve the prob-

lem formulated in Equation (5.1). The problem solution can be summarizeti@sso

Step 1: We first prove that the formulated problem is a convex programming probjedetermining

that all constraints ((6.1b)-(6.1e)) in the problem are linear and thugegamd that the optimization
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function (Zle(as(fsys/rs)bs + Cs)) is also convex. The latter is valid since the derivative of the sum
term is monotonically non-decreasing and convex.
Step 2: Since the problem is a budget constrained convex programming problean,iecsolved using

the Lagrangian relaxation technique [78]. Thus, we can write the follohéggangian-relaxed formula:

S S
L(F*, 2) = D" @s(fsys/79)™ + &) + A fs — Aerr), (5.3)

s=1 s=1

where 0< fs < 1,ands=1, 2, 3, ..., S. Next, the Lagrangian conditions are formulated as follows:

oL oL
o Oanda 0 (5.4)

Assuming that all video sources have the ségyavhich is empirically valid, solving these two equations

yields the following solution:

—A"1s (1/(bs—1))
- s 5.5
s (asbsys(ys/ 75) (Ps=D) ’ (5:5)

where

2= (= _Af” —— )=, (5.6)
zs:l(asbSYS(YS/is)( g_l))( (=)

5.2.6 Enforcing the Optimization Results

With the aforementioned solution, the AP determinésind then each video soursaletermines
its fraction of the airtimefg after receivingt* from the AP. Subsequently, each video sowsahould
change the application data rate, which is the video encoding rate in thisasafedlows:r; = f& x
ys. Finally, the link-layer parameters are determined based on the allocated dotimach source.
The link-layer parameters can either be the transmission opportunity dutiatiorf TXOP limit) or

alternatively the frequency of the transmission opportunity. The confrdteo TXOP limit is more
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preferred since it is only one parameter, whereas the transmissiorfreginvolves three parameters
(AIFS, CWhin, andC W,ax), which complicates the control process design.

In [44], the TXOP limit (Z) for sources is determined as the time required to transmit the number of
MAC data frames that soureean transmit during one beacon interval tiig.(As discussed in Section
5.4.3, our results show that choosing intervals other the beacon intarvakbieve better performance.
In particular, the received video quality improves with the chosen time integvab a certain point,
and then it starts to worsen. In addition, the time interval that achieves theelse#is varies with the
network size. Furthermore, the model in [44] does not incorporate tbleepaation overhead of the
transport and application layers.

In our framework, we address these problems as follows. Each videoesdetermines its TXOP
limit as the time required to transmit the packets that belong to a single video framg \&ith all
associated overhead. Because of the cross-layer approach, tGddyér in sources can know the
frame raters of the video sent by the application layer in that source. The MAC layealsandetermine
the maximum load ratd&Rs coming from the source’s upper layers. Using this information, we can
determine the maximum video frame sikze (with overhead) afs/zs and the number of MAC layer
data frames per maximum video framig asLs/ls, wherels is the average data load per MAC layer
data frame. Given thaDg is the average MAC and physical layers overhdagds Short Interframe
Space (SIFSjme, andt; is the time required to send an acknowledgment, TXOP limit can be found as

follows:
OsNg

S

Xs = [%] +1 1+ [(2Ns — Dts] + [Nsta], (5.7)

wheref is the time required for transmitting the data of a single video frame and the avkdfi¢he
upper layers associated with that video frarﬁé\f—S is the time required for transmitting the associated
MAC and physical layers overhea@N s — 1)t is the sum of the&SIFSperiods needed for transmitting

all the packets of the video frame, ahdt, is the time required for receiving all the acknowledgment
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packets of the video frame packets.

5.3 Performance Evaluation Methodology

We use the OPNET simulator to conduct various experiments. In contragpmothstudies, which
deal with video streams as abstract data streams with certain bitrates, we imipéetnaffic source
in OPNET that streams MJPEG videos as Real-time Transport Protoco) (RtRets. Moreover, we
implement a realistic video streaming client at the application layer of the prokgrstarhis client
receives and reassembles the RTP packets from various video stegairthen carries out error con-
cealment to mitigate the impact of packet loss. The use of MJPEG enablestbé standard image
data sets that are suitable for surveillance applications because the Mitli6Gtream is a set of JPEG
images. We use the the following image sets to assemble the video streams: CMWayjIGeorgia
Tech [73], and FERET [74]. The streamer at each source takes tepdarframe rate, and an image set
as inputs and produces a corresponding MJPEG video stream.

As shown in Figure 5.1, the implementation of the proposed framework is digtditlhetween the
video sources and the AP. Each video source send its state informatj@icgdiiate, data dropping rate,
and Rate-Distortion curve characteristics) to the AP periodically using amavagement packet. This
packet can be callestate reporf44]. The AP can than calculate using Equation 5.6 and distribute it
using the beacon packet. Each video sosrttean uses* from the received beacon packet to calculate
fs according to Equation 5.5 that is used eventually by sositoecalculate its optimal application rate
according to Equation 5.1c and its optimal TXOP limit time using Equation 5.7.

For comparative purposes, we implement the cross-layer algorithm ggdgo [44], referred to
here asDistortion Optimization (DO) Our proposed solution is referred to Behanced Distortion
Optimization (EDO) We also compare the results with standard EDCA. In addition, we implement a
variation of the standard EDCA, calle&tdaptive EDCAin which the application layer in each video

source adapts its video rate according to the physical rate of that saatéhus the rate is set g/ S.
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We analyze the followingerformance metrics

e Perceptual Video Quality It is the main metric and is measured in the overall Peak Signal to Noise

Ratio (PSNR). We set the PSNR of missed frames to 0.

e Average video packet delayrhe average time needed for the access point to receive a video data
packet sent by a video source. The average video packet delayeissantial metric due to the

real-time playback requirement.
e Average percentage of received complete video frames
e Average percentage of received incomplete video frames
e Average percentage of missed video frames
e Overall network load It is defined as the total load sent from the application layers of all ssurc
e Overall dropping rate due to buffer overflow
e Overall dropping rate due to reaching the retransmission limit

e Power Consumption It is the average power consumption of the wireless interfaces of the vide
sources and is determined by using the power consumption model proipog&d] for MJPEG

video streaming.

Since the proposed cross-layer framework utilizes a dynamic and onfawied airtime estimator
that estimates the useful fraction of the airtime that can be used for sureeiliaffic, the framework
adapts the sending rates of the video sources to achieve the besinaeréerwith the existence of any
other interfering/cross data traffic in the network. To show the impact ofrttesfering/cross traffic on
the performance of the proposed framework, we conduct varioweiexgnts with 8 none-video sources
that are sharing the same wireless medium of the surveillance system. Tmesgideo sources send
best effort traffic to the access point all with the same pr-specified Yeéeperform experiments with
three packet rates of cross traffic. Cross traffic 1 sources sakegavith 0.005 seconds inter-arrival

time. In cross traffic 2 sources, we set the inter-arrival time to 0.00hseshile we set the inter-arrival
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time to 0.001 seconds in cross traffic 3 sources.

Table 5.2 summarizes the main simulation parameters.

Table 5.2: Summary of Simulation Parameters

Parameter Model/Value(s)

Number of video sources 10-44

Simulation Time 10 min

Packet Size 1024 bytes

Application Rate Optimized, Default = Max Physical Rate / No. of Sources
Video Frame Rate 20 frames/sec

Physical characteristics | Extended Rate (802.11Q)

Physical Data Rate Random from{12Mb/s, 18Mb/s, 24Mb/s, 36Mb/s, 48Mb/s, 54Mp/s
Weight One of five levels between [0 1] chosen randomly

Buffer size 256 Kb

Video TXOP limit Optimized, Default = 3008s

Video CWhin 15

Video CWnax 31

Video AIFS 2

Short Retry Limit 7

Long Retry Limit 4

Beacon Interval 0.02 second

State Report Interval 1 second

5.4 Results Presentation and Analysis

5.4.1 Effectiveness of Using the Cross-Layer Approach in Bandwidthaditboc

Let us start by demonstrating the benefits of utilizing information from diffenetwork layers in
bandwidth allocation. Figure 5.5 compares standard EDCA and adapt@& Eiterms of PSNR.These
results indicate that adapting the application rate according to the physeat each video source (as

done in Adaptive EDCA) improves the PSNR by at least 50%!

5.4.2 Analysis of the Enhanced Effective Airtime Estimation Algorithm

Extensive analysis of the design parameters of the enhanced effaictinee estimation algorithm
indicates that their values are best set as follows to enhance the peréarimaterms of stability and
convergenceAiresh = 0.0075,C = 0.2, andEstimation Period= 5 seconds. Figure 5.6 shows the

effective airtime over the whole time of running the EDO solution using FERET éns&gs. Results
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for other image sets follow the same trend and thus are not shown. The $igows that the algorithm

converges quickly in all studied network sizes.
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Figure 5.7 shows the impact of calculation period on the convergence arsiathility of the en-
hanced effective airtime estimation algorithm. The figure shows the effemititrme values over the
whole time of running the EDO solution using Georgia Tech at 50% resolutiontkrige different val-
ues of calculation period: 2, 5 ,and 10 seconds. As expected, the estimlgioithm with 10 seconds
calculation period achieves the best stability and the longest convertjerecehile the run with 2 sec-

onds calculation period achieves the fastest convergence and thestabibty. In this study, we choose
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5 seconds as our calculation period because it achieves very goeebffdmbtween the convergence and
the stability of the estimation algorithm.

Impact of Aihresh, Which determines the allowable dropping in the network, on perceptuab vide
quality is shown in Figure 5.8. This figure depicts the results of running thyegsed EDO solution for
two different network sizes: 28 and 32 stations. The results show thgutiliy of the received video
streams improves withresh UP tO @ point and then the quality starts to worsen. The peak happens when
Ainresh is smaller than @1, suggesting that that optimal perceptual video quality is achieved wken th

dropping is very small.

5.4.3 Analysis of Link-Layer Adaptation

As discussed in Subsection 6.2.5, study [44] determines the TXOP kfj)itf¢r sources as the
time required to transmit the number of MAC data frames that saices transmit during one beacon
interval time (,). Let us know discuss the impact of choosing time intervals other than theiea
interval. Table 5.3 shows the PSNR when running the solution proposediinPD) for different
time intervals and network sizes. These results indicate that perceptual ouiddity improves with
increasing the chosen time interval until a peak is reached, and then itstadssen. Furthermore, the

best value of the time interval varies with the network size.

Table 5.3: Impact of the Time Interval Selected to Determine TXOP Limit on ParakVideo Quality
[PSNR (dB)]

Network Size
Time 10 16 20 24
Interval
0.02 19.15| 12.30| 10.25| 8.81
0.5 24.46| 18.77| 16.17| 15.69
1 24.46| 19.00| 16.40| 15.66
2 24.46| 19.00| 16.46| 15.66
3 24.46| 19.00| 16.46| 15.65
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5.4.4 Comparing Various Bandwidth Allocation Solutions

Figure 5.9 compares the performance of various solutions (EDCA, D@)&EDterms of(a) per-
ceptual video qualityb) average video packet delag) percentage of received complete video frames,
(e) percentage of received incomplete video frangé3,percentage of missed video framég) overall
network load, andh) overall dropping rate due to buffer overflow, aigl overall dropping rate due to
reaching the retransmission limit. This figure shows the results when usingMh#MIT image set.
Figures 5.10 and 5.11 show the same results when using Georgia Te€ a¢$olution and FERET

image sets respectively.
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The results show that EDO significantly outperforms other studied solutiongarticular, it im-
proves PSNR by more than 100% compared with standard EDCA and by 2000% compared with
DO. In addition to that, we can see clearly that EDO almost eliminates video tpdelesy. Moreover,
EDO vyields the highest percentage of completely received video frantethariowest percentage of
incomplete and missed frames. This behavior is due to the effective airtime estimlgioithm, which
minimizes packet dropping and to the effective link-layer adaptation moeel. uaccordingly, EDO
reduces significantly the following three metrics: overall network loadiebwiropping rate , and re-
transmission dropping rate. These results indicate that EDO consumes resi@ndeessing power by
sending and dropping much less data. Finally, the results show that EDificsigtly enhances the wire-
less interface power consumption at the video sources. It reduceswiee ponsumption on average by

20%.

5.4.5 Impact of Interfering Traffic on the Performance of the Prop@&settiwidth Allocation Solution

In this subsection, we analyze the impact of cross traffic with differetat iddéies on the performance
of the studied bandwidth allocation solutions. Figures 5.12 and 5.13 shoedghksrin terms of PSNR,
Packet Delay, and Normalized Power Consumption with Georgia Tech atré§8tution and FERET
image sets respectively when using EDO solution. We show only the resultsria té these three
metrics because they summarize all other performance metrics. The reswitghestt the proposed
framework is highly adaptable to cross traffic in the network. In partictiiardegradation of PSNR and
average packet delay is almost negligible even with the highest data ratetadic (cross traffic 3).
Power consumption is less with cross traffic because the proposed foaknaghapts the video sources
and make them send video streams with lower rates.

Figures 5.14 and 5.15 compare EDO, DO, and EDCA all with cross traffict@rins of PSNR,
Packet Delay, and Normalized Power Consumption when using Geordaaiés)% resolution and

FERET image sets respectively. Figures 5.16 and 5.17 show the same wesultsoss traffic 3. Re-
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Figure 5.10: Comparing Various Bandwidth Allocation Solutions [Georgid Teage Set At 50% Res-
olution]

sults show that even with cross traffic, EDO outperform DO and EDCAifsgntly in terms of all
performance metrics.

Figures 5.18 and 5.19 compare EDO with cross traffic 3, DO and EDCA witoucross traffic
in terms of PSNR, Packet Delay, and Normalized Power Consumption whergi@elech at 50%
resolution and FERET image sets are used respectively. Despite theatdeDt® was running with the
highest data rate cross traffic and other solutions are running withgutrass traffic, results show that

EDO still outperforms DO and EDCA significantly in terms of all studied perfaroeametrics.
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Figure 5.11: Comparing Various Bandwidth Allocation Solutions [FERET Intej$

5.5 Conclusions

We have proposed a cross-layer video optimization framework that mattagaetwork bandwidth
to minimize the total distortion in video streams. The proposed framework utilizes amine network
effective airtime estimation algorithm. Moreover, we have developed a ndvaecurate model for
characterizing the video data rate and distortion relationship as well asraoee! for adapting the link-
layer parameters. We have evaluated our framework by streaming real frames over an OPNET-
simulated wireless network.

The main results can be summarized as follows. (1) The proposed framnewoances substan-
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tially the perceptual quality of received video streams. (2) The propeSedtive airtime estimation
algorithm is accurate and converges quickly. (3) Optimal perceptuabgjdality is achieved when the
packet dropping is very small. (4) The transmission opportunity adaptatioelmodks effectively. (5)
The proposed framework results in much less processing power cotisarapd the wireless interface
power consumption, compared with existing solutions. This behavior is duentirgy and dropping
much less data. Power consumption is a primary concern, especially whadebesources are battery-
powered. (6) The proposed framework is highly adaptable to the exéstéany other interfering traffic

in the network.
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Figure 5.14: Comparing EDCA, DO, and EDO all with cross traffic 2 [Geofgch Image Set At 50%

Resolution]
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Figure 5.15: Comparing EDCA, DO, and EDO all with cross traffic 2 [FERB&ge Set]
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Figure 5.16: Comparing EDCA, DO, and EDO all with cross traffic 3 [Geofgch Image Set At 50%

Resolution]
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Figure 5.17: Comparing EDCA, DO, and EDO all with cross traffic 3 [FEREBage Set]
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Figure 5.18: Comparing EDCA, DO, and EDO with cross traffic 3 [GeorgiehTimage Set At 50%
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CHAPTERG

ACCURACY-BASED CROSS-LAYER OPTIMIZATION FOR
AUTOMATED VIDEO SURVEILLANCE

6.1 Introduction

In this chapter, the main idea is to formulate the bandwidth allocation problem esss:layer
optimization problem of the sum of the weighted event detection accura@jtéonatively the sum of
the weighted detection error), subject to the constraint in the total availabteidth. The weights can
be assigned based on many factors, including the potential threat leven@at of video sources, and
location importance. Therefore, the weights represent the importande @#vwearious video sources
at the current time. With this formulation, we show that the problem can bedaobiag Lagrangian
relaxation techniques. The solution employs rate-accuracy curves ¢caragy functions of the rate
or bandwidth), which are best to be generated for each video souitedesignated location. The
proposed solution considers three layers: Application, Link, and Pdlysic

The main contributions of this part of the dissertation can be summarized agdo(lb) We propose
a complete accuracy-based cross-layer optimization solution. Up to owtédige, this is the first cross-
layer solution that optimizes the detection accuracy in AVS systems. (2) dpeged solution utilizes a
novelProportional Integral DifferentialPID) controller algorithm for estimating the effective airtime of
the wireless medium. (3) We develop an accurate model that charactedzesationship between the
video data rate and the face detection accuracy error. (4) We pragmsedwidth pruning mechanism
that can be used to achieve the desired power consumption and detecticacgidradeoff.

We evaluate the proposed solution by streaming real MJPEG video framgeadajust an abstract
bit stream) and MPEG-4 video streams over a simulated network. The simulat®osnducted using
OPNET. Since the sent video packets may be lost, we implement an erraatment algorithm [71]

at the proxy station to mitigate the impact of packet loss on video quality. Thétgeshow that the
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proposed framework enhances the accuracy of face detection appltbd received video streams and
yields a significant power reduction and that the new proposed effeaitiime estimation algorithm is
accurate and converges quickly.

The rest of this chapter is organized as follows. Section 6.2 presentsapesed accuracy-based
cross-layer optimization framework. Section 6.3 discusses the perfoeneatuation methodology.

Finally, Section 6.4 presents and analyzes the main results.

6.2 Proposed Accuracy-Based Cross-Layer Optimization Framework

In this study, we consider an automated video surveillance (AVS) systenhiaghwnultiple video
sources/stations (cameras and/or sensors) stream videos to a ciatival ever a single-hop IEEE
802.11 WLAN network in the EDCA mode. The main two challenges in the coresddgystem can
be summarized as followg1l) The wireless network has limited available bandwidth, which should be
estimated accurately and distributed efficiently among various video sdorogsximize the detection
accuracy of the computer vision algorithm(s) running on the proxy stati@p.Providing differen-
tial bandwidth assignment to different sources is required becaugeisaources in the network have
different characteristics, including channel conditions, power caims&, and lighting conditions. In
addition, different sources may have different importance levels. &ssin Figure 1.2, the system has
S > 1 video sources and each souscgtreams a different encoded video at rRte Each video source
s may have a different physical ratg;] and importance level or weightof). The weight represents
the importance level of a video source at the current time and dependsmynfactors, including the
potential threat level, placement of video sources, and location importdndhis study, we assume
that the weights are already predetermined.

The ultimate objective of this study is to provide an optimal solution that dynamidaliytaites and
allocates the available network bandwidth among various video sourcessdltition should consider

all system, video, network, and environmental aspects, which may cligngenically. Therefore, the
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proposed cross-layer optimization solution utilizes and dynamically contradsrneders in three layers

in the network stack: Application, Link, and Physical.

6.2.1 Optimization Problem Formulation

We formulate the problem as a cross-layer optimization problem of the summatios weighted
detection accuracy error of the computer vision algorithm running at theadgroxy station. As
in Chapter 5 and [44], since all video sources share the same medium,nitheitden allocation so-
lution should determine the fraction of airtime that each video source racgivihie system. Obvi-
ously, the total airtime cannot exceed the effective airtime of the medium. Sjdlyifithe problem
is formulated as: find the optimal fraction of the airtime allocatléh = {fJS|s = 1,2,3,..., S}
for various video sources that minimizes the summation of the weighted detectionaey error.
(Zsszl ws * accuracyErrokg(rs)), wherews is the importance factor of video soursegrs is the ap-
plication layer transfer rate for video sourgeandS is the number of video sources. This optimization
is subject to the following constraints. (1) The total airtime of all video s@iistess than the effective
airtime of the mediumAy+¢). (2) The application layer transfer rate of sousds the product of the its
airtime (fs) and the physical layer transfer ratg)for video sources. (3) The airtime of each source is
between 0 and 1 (inclusive).

Mathematically, the problem can be stated as follows:

S

Find F*=arg rrginz ws * accuracyErrog(rs) (6.1a)
s=1
s
st. > o= Aers (6.1b)
s=1
rs = fs X ys (61C)
0< fs<1 (6.1d)

s=123..5S (6.1€)
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whereF* is the set of optimal fractionsff’) of the airtime of all sources; is the optimal application-
layer rate of video sourcg Vs is the physical-layer rate of video sourgeand Ag¢+ is the total effective
airtime.

To solve the problem formulated in Equation (6.1), we need to characteeézeturacy error func-

tion and assess the effective airtime of the network.

6.2.2 Rate-Accuracy Characterization

We seek to find a model of the relationship between the playback rate of @ askthe accuracy
error of a computer vision algorithm applied to the video. To keep the studyséal, we analyze only
the face detection algorithm. Experimenting with other computer vision algorithm# fedenother
study. We use the Viola-Jones algorithm for face detection as implemente@iG¥plin this study, we

characterize the rate-accuracy relationship of two video compressiutests: MIJPEG and MPEG-4.

MJPEG Rate-Accuracy Characterization

We determine the MJPEG size-accuracy error relationship based onllitivirig image datasets:
CMU/MIT [72], Georgia Tech [73], and SCFace [75]. We use these avsals in our experiments to
assemble the MIPEG video streams using the streamer discussed in Sectidogdi 3te network with
video traffic. For fair evaluations of bandwidth allocation solutions, eagbossource should be able
to stream the video at a bitrate that matches that of the optimization solution. Tingi&®ech image
set produces a highly limited range of bitrates for the studied network. daupe a better variety, we
generate two image sets from the original Georgia Tech image set by chahginesolution of each

image in the set to 30% and 50% of the original resolution, respectively. néheimage sets have

resolutions of 19% 144 and 32 240, respectively. Using these sets, the video sources can achieve the

rates produced by the optimization more accurately. In SCFace, the imaga&em by three cameras

at three different distances from the subjects. Effectively, the canmagature different resolutions of
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the subjects. We refer to these image sets in decreasing order of the @iat&€Face at Distance, 1
SCFace at Distance,2ndSCFace at Distance.3

For each image set, we use the 1JG JPEG library to compress each picturesat thiéh quality
factors from 1 to 100, with 1 being the lowest, and then apply the computenwadgmrithm on each
image to calculate the accuracy using a predefined ground truth about#i®toof the faces in the
image. We use two metrics for the detection accurgositive indexandnegative indexThe positive
index is determined as/y, assuming the image contaigsfaces and the algorithm detectsfaces
correctly. In contrast, the negative index is determiner)/ gswherez faces are detected but do not exist
in the image. We can then find the average size, the average positive amdethe average negative
index of all images with the same quality factor and then the accuracy errdiecealculated as the sum
of the total erroraccuracyError= (1 — positivelndeX + negativelndex The results are shown
in Figure 6.1. By curve fitting the results, we determine that the accuragy@an be characterized as
follows:

accuracyError=a x Z° +c, (6.2)

whereZ is the image size ana,b, andc are constants. This model is referred to as “Model” in Figure
6.1. For MJPEG videos, image siZecan be calculated a8 = R/7, whereR is the video playback

rate andr is the video frame rate.

MPEG-4 Rate-Accuracy Characterization

We use theYUV Video Sequencéom [80] to characterize the MPEG-4 Rate-Accuracy relation-
ship. In particular, we use the video sequences Akiyo, Carphone eCkRareman, Grandma, Miss
America, Mother and Daughter, News, Salesman, Silent, and Suzie fdf f@€blution characteriza-
tion and we use Foreman, Mother and Daughter, News, and Silent vidaersmes for CIF resolution

characterization. We started by generating a ground truth for the posittithre daces in each frame
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of each video sequence. After that, we Eempeglibrary and the optiorrgscaleto compress each
video with quality scales from 2 to 31, with 2 being the highest quality, and thply dhe computer
vision algorithm on each video frame to calculate the accuracy using thedytauh that we generated
initially. We use two metrics for the detection accurapgsitive indexandnegative index The posi-
tive index is determined as/y, assuming the video contaiysfaces and the algorithm detectdaces
correctly. In contrast, the negative index is determined/35 wherez faces are detected but do not
exist in the video. We can then find the average frame size per videorsexjaed then we can find
the average frame size, the average positive index, and the avegagw@index of all videos with the
same quality factor and resolution and then the accuracy error can ldatadtas the sum of the total
error:accuracyError= (1 — positivelndeX + negativelndex

For comparative purposes, we also perform rate-distortion chaewatten on the MPEG-4 se-
guences. We followed the same approach as with rate-accuracy tehiaton. We assess the dis-
tortion of each video frame against the uncompressed video frame usiRptidMean Square Error
(RMSE) metric. The video distortion can then be calculated as the average flistortion of all the
frames in the video.

The results are shown in Figure 6.2. By curve fitting the results, we detethmméhe MPEG-4

accuracy error and distortion can be characterized using the followidglmo

Model=a x Z°+c, (6.3)

whereZ is the average video frame size amb, andc are constants. For any MPEG-4 videos, average
frame sizeZ can be calculated a& = R/, whereR is the video playback rate ands the video frame

rate. This model is referred to as “Model” in Figure 6.2.



101

6.2.3 Effective Airtime Estimation

As finding an accurate value for the effective airtime of the medium is nage$sr solving the
formulated optimization problem, we propose a new online and dynamic e#egititime estimation
algorithm for wireless networks in infrastructure configuration. In asttwith existing analytical mod-
els, the online approach uses complete information about the network ardeisivhe cooperation of
the access point and all video sources as well as various layers irseade. To yield an accurate
estimation, the proposed approach computes the effective airtime whercket loss in the network is
below a specified threshold.

The proposed algorithm is based on the approach that we proposedpte€b but uses Rropor-
tional Integral Differential(PID) controller for adjusting the currently estimated value of the effective
airtime in order to achieve a faster, more stable, and more accurate estimasiaiepisted in Figure
6.3, the PID controller adjusts the current effective airtime value baseteohistory and the rate of
change of the error. The error depends on the dropping rate in thenket@Whe PID controller has
three componentgroportional, integral, anddifferential These components are weighted by constants
Kp, K; andKp, respectively. The proportional component changes the effedtivm@ based on the
immediate value of the error. The integral component considers the pass\d the error, whereas the
differential component anticipates the future, and thus they help redacgtdhdy state error and the
overshoot, respectively.

As shown in Figure 6.4, the new estimation algorithm proceeds as followst, férseach video
sources, it finds the throughputt{) of its video stream as received by the application layer of the
proxy station, when all sources stream videos, each at a rate thataktegqhe maximum physical
rate of the network divided by the number of sources [77]. The algoritten uses these throughput
values to determine the initial value of the effective airtimdg¢¢) as follows: At = Zss=1 ts/Ys. Our

experiments indicate that this initial value significantly overestimates the efegitiime, causing the
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actual received video rates to not conform to the cross-layer optimizatiotion because of the high
level of packet dropping in the network. Thus, this value has to be adjbsteed on the experienced
level of packet dropping. Subsequently, during a period of time, caliéthation period, each video
sources assesses its own data dropping ratg (vhile sending its video stream, and then sends this
information to the access point (AP). Meanwhile, the AP determines thelbaeeaage dropping ratio
as follows: Ay, = Zsszl ds/Ys. The PID error is than calculated &gresh— Ax and Ag¢¢ is adjusted by
the PID controller to eliminate the error as illustrated in Figure 6.3.

We use the following well-established procedure in control theory to tuntathe PID parameters.
(1) SetK, andKp to zeros and incread€p until the output oscillates, and then $€4 to half of that
value. (2) Increas&, until any offset is corrected in adequate time. (3) Incrdé@geuntil the reference

can be reached quickly after load disturbance.

6.2.4 Optimization Solution

Now that we have an accuracy error function (which is the same for bd®B8% and MPEG-4) and
a value for the effective airtime, we can solve the problem formulated inttequés.1). The problem

solution can be summarized as follows:

Step 1: We first prove that the formulated problem is a convex programming probiedetermining
that all constraints ((6.1b)-(6.1€)) in the problem are linear and thugegamd that the optimization
function Z_f:l(ws(as( fs¥s/7)% + Cs)) is also convex. The latter is valid since the derivative of the sum
term is monotonically non-decreasing and convex.

Step 2: Since the problem is a budget constrained convex programming problean, liecsolved using

the Lagrangian relaxation technique [78]. Thus, we can write the folloldggangian-relaxed formula:

S

S
L(F*, 1) = D (ws(@s(fsys/79)™ + &) + 2D fs = Aero), (6.4)

s=1 s=1
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where 0< fs < 1,ands =1, 2, 3, ..., S. Next, the Lagrangian conditions are formulated as follows:

L L
&t =0 anda— =0. (6.5)
ofs o

Assuming that all video sources have the ség)ghich is empirically valid, solving these two equations

yields the following solution:

—A* Ts —
fr_ (1/(bs1), 6.6
S (wsasbSYS(YS/Ts)(bs_l) ) (6.6)

where

P Aeff )(bs—l).

= (s - (6.7)
ZS:l( wSasbSYS(;SS/TS)(bS_l) )(l/(bs_l))

6.2.5 The Allocation Algorithm

With the aforementioned solution, the access point (AP) determiihesd sends it to all video
sources in the network using the beacon packet. When a video sougceivesi*, it determines its
fraction of the airtimef and it changes the application data rate, which is the video encoding rate in
this case, according to the equatio: = fJ x ys. Finally, the link-layer parameters are determined
based on the allocated airtime for each source. The link-layer paramateedticer be the transmission
opportunity duration limit (TXOP limit) or alternatively the frequency of the traission opportunity.

The control of the TXOP limit is more preferred since it is only one parametesreas the transmission
frequency involves three parameters (AIESNmin, andC W ax), which complicates the control process

design. We used the model proposed in Chapter 5 to determine the TXOP limit.
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6.2.6 Proposed Bandwidth Pruning Mechanism

As discussed earlier, with the optimization solution, each video source tammiee its sending
application rate. The results in Figure 6.1 suggest that the detection egtweeases only slightly with
the video rate (application rate) after a certain point. (That point varigsdban the system, network,
and environmental conditions.) Therefore, we propobaradwidth pruningnechanism to achieve any
desired tradeoff between the detection accuracy and power consumgitinthis mechanism, each
video source adjusts (reduces) its application rate if the anticipated losglettdation accuracy is below
a certain threshold. The threshold can be simply a fixed percentagermtefuof the remaining battery
energy in the video source and its importance. The pruning mechanism igndfcaint importance,
especially when the sources are battery operated.

In this study, we experiment with 4 levels of bandwidth pruning: 95%, 903%,8and 70%. Each
level specifies the percentage of the original accuracy that will besdhigter the pruning mechanism
is applied. Level 95%, for example, means that the achieved detectioraagdar each video source
after pruning will be 95% of that produced by the optimization solution. Inrotleeds, a 5% reduction
in the accuracy will be experienced by each source. Obviously, witkehigiductions in the bandwidth,

greater savings in power consumption will be achieved.

6.3 Performance Evaluation Methodol ogy

We use OPNET to evaluate the effectiveness of the proposed optimizatigiospincluding the
effective airtime estimation algorithm and the bandwidth pruning mechanism.

We use two types of video traffic in our evaluation: MJPEG and MPEG-AMGJPEG, we use the
video streamer described in Section 5.3. In the case of MPEG-4, we implaheenigeo streamer that
takes a video playback rate and a frame rate and produces raw videzgtcsimulate a video stream.

We experimented with QCIF as well as CIF video resolutions.
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We also used similar experiment setups as in Section 5.3 and Table 6.1 sumrferizesn simu-

lation parameters.

Table 6.1: Summary of Simulation Parameters

Parameter Model/Value(s)

Number of video sources 4-68

Simulation Time 10 min

Packet Size 1024 bytes

Application Rate Optimized, Default = Max Physical Rate / No. of Sources
Video Frame Rate 20 frames/sec

Physical characteristics | Extended Rate (802.11Q)

Physical Data Rate Random from{12Mb/s, 18Mb/s, 24Mb/s, 36Mb/s, 48Mb/s, 54Mp/s
Weight One of five levels between [0 1] chosen randomly

Buffer size 256 Kb

Video TXOP limit Optimized, Default = 3008s

Video CWhin 15

Video CWhnax 31

Video AIFS 2

Short Retry Limit 7

Long Retry Limit 4

Beacon Interval 0.02 second

State Report Interval 1 second

We compare the proposed accuracy-based optimization solution, cefeinghe results ad/eighted

Accuracy OptimizatiolfWAO), with the following two solutions.
e The cross-layer solution in Chapter 5, call®dhanced Distortion OptimizatiofiEDO).
e A new version of EDO that uses weights for various video sources,haibiceferred to here as
Weighted Distortion OptimizatiofWwDO).
We analyze the followingerformance metrics

e Weighted Accuracy It is the sum of the weighted detection accuracy of each video sourfce. T
accuracy for each source is found as the average accuracy efciead frames sent by that source.
The accuracy of a dropped video frame is assumed to be 0.

e Overall Network Load It is defined as the total load sent by the application layers of all video

sources.

e Power Consumption It is the average power consumption of the wireless interfaces of the vide
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sources and is determined by using the power consumption model in [79].

6.4 Result Presentation and Analysis

Using the aforementioned manual tuning method and extensive experimentedi@bserve that
the best values for the PID parameters depend on the workload andsineddealue ofAinresn Table

6.2 summarizes these results.

Table 6.2: Summary of PID Parameter Tuning
Workload Athresh | Kp | K| Kp
Georgia Tech at 30% Resolutign0.001 | 1 0.25| 0.25
Georgia Tech at 30% Resolutian0.005 | 1.5 | 0.25| 0.25
Georgia Tech at 50% Resolutian0.001 | 0.5 | 0.25| 0.25
Georgia Tech at 50% Resolutian0.005 | 1.5 | 0.25| 0.25

CMU/MIT 0.005 | 0.5 0.25] 0.25
MPEG-4 QCIF Resolution 0.005 | 1.5 ] 0.25]| 0.25
MPEG-4 CIF Resolution 0.005 | 15| 0.25]0.25

6.4.1 Effectiveness of the Proposed Effective Airtime Estimation

Let us start by showing the effectiveness of the proposed effeatitiene estimation algorithm
utilizing the PID controller in terms of convergence time and stability. Figure 6d8vshhe output
effective airtime values over time for Georgia Tech at 30% and 50% of thimalresolution. The results
demonstrate that the PID estimator is fast to converge to a stable state arehhasall overshooting
and undershooting.

Figure 6.6 shows the average effective airtime versus the number of saieoces for the three
bandwidth allocation solutions. These results show that the effective airtoreasges with the network
size up to a point and then starts to decrease. The peak happens wherpitrebalance between node
contention and network utilization is reached. The peak point in the figurbesthe network size is
16, but this value varies with the total sending rate of the sources. Inydarfithe peak should happen
at a smaller network size if the sources are more demanding for bandwitit arlarger network size

if the sources are less demanding. Note that the three solution yield close sirtispecially for larger
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networks.

Let us now discuss the impact @nresp, Which determines the allowable packet dropping in the
network, on the weighted accuracy metric and power consumption. Figarshéws the results of
running the proposed WAO solution for two different network sizes. fEselts demonstrate that the
weighted accuracy metric improves withnesh Up t0 @ point and then starts to worsen. The peak
happens wher\nresh is smaller than @1, suggesting that that optimal accuracy is achieved when the
dropping is very small. As expected, the power consumption increase®wjith, because the sending
rate increases with\hresh Therefore,Ainresh Should be selected based on the proper tradeoff between
accuracy and power consumption. According to the figure, the valuedliges the peak in accuracy

could be chosen.

6.4.2 Effectiveness of the Proposed Bandwidth Allocation Solution

Figures 6.8 and 6.9 compare the performance of various solutions (EBO, WDO) for A¢nresh
values of 0001 and (005, respectively, when using Georgia Tech dataset at 30% resollRigare
6.10 shows the same results whap,esh is equal to 0005 and for Georgia Tech at 50% resolution.
Furthermore, Figure 6.11 shows the results for CMU/MIT datasetApdsn, = 0.005. Moreover,
Figures 6.12 and 6.13 show the same results for MPEG-4 QCIF and Qlatiess respectively when
Athresh = 0.005.

These results show that the proposed accuracy-based optimizationrsQMAG) outperforms other
solutions in all metrics. In particular, it improves both the weighted accuradypawer consumption
by up to 10%. The improvement in power consumption is due to reducing thieatpm rates (network
loads) of various video sources. In addition, the results indicate thatpoding weights for various
video sources with the distortion-based optimization has no noticeable improzebrethe contrary, it
may worsen the weighted accuracy in some cases. By carefully analyeisg tbsults, we noticed that

applying these weights in WDO forces the video sources with low importabteréato send the video
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streams at extremely low bitrates, and in some cases, it prevents thesesdonimt sending any video,

leading to an unacceptable levels of accuracy for these sources.

6.4.3 Effectiveness of the Proposed Bandwidth Pruning Mechanism

Figures 6.14-6.16 show the effectiveness of the bandwidth pruninganesch in terms of weighted
accuracy, overall network load, and power consumption for variougérdatasets and valuesfesn
Furthermore, Figure 6.17 shows the same results for MPEG-4 CIF resolukion Aihresh = 0.005.
Not all combinations are shown since the shown results are represertative overall behavior. The
results demonstrate that the effectiveness of pruning when the WAO solstissed. Four levels of
pruning are analyzed: 95%, 90%, 80%, and 70%, with each level gperithe percentage of the
original accuracy that will be achieved after the pruning mechanism igedpf he result shows that the
pruning mechanism significantly reduces the overall network load anémpownsumption with much
less reduction in the weighted detection accuracy. For example, with 958#ngruve can save up to
45% in power consumption by scarifying only 5% in the accuracy.

Finally, let us discuss the effectiveness of the proposed WAO solutiontigthpruning mechanism,
compared with the other two solutions (EDO and WDO). Figures 6.18 and 6ripare EDO, WDO,
and WAO to WAO with 95% pruning in terms of weighted accuracy, overall ndtioad, and power
consumption forAhresh Of 0.005 and two different datasets. (The results for other datasets arebvalu
of Ainresh €Xhibit similar behavior.) The results demonstrate that while the WAO solution \gith 9
pruning achieves almost the same values of weighted accuracy as ED@®RQdit yields up to 45%

saving in power consumption and network load.

6.5 Conclusions

We have proposed an accuracy-based cross-layer video optimizatioeviork for automated video

surveillance systems that manages the network bandwidth to minimize the sumwditiited detec-
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tion accuracy in video streams. The proposed framework utilizes an esthaffective airtime esti-

mation algorithm utilizing aProportional Integral Differential(PID) controller. Moreover, we have
proposed a bandwidth pruning mechanism to achieve any desired fradeséen detection accuracy
and power consumption. Furthermore, we have developed an accuragt fmodharacterizing the

rate-accuracy relationship. We have evaluated our framework bynstrgaeal video frames over an
OPNET-simulated wireless network.

The main results can be summarized as follows. (1) The proposed fraksigoificantly enhances
both the detection accuracy and power consumption, compared to the distmaed optimization. The
reduction in power consumption is due to sending and dropping much lesg2)athe proposed PID-
based effective airtime estimation algorithm is accurate, converges quicidymore stable than the
one proposed in Chapter 5. (3) With a 95% pruning level, the proposatiMidth allocation solution
achieves almost the same accuracy as the distortion-based optimizatiodungs@ower consumption

by up to 45%.
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Figure 6.3: Simplified PID Controller for Effective Airtime Estimation

while initialization period is not expired
Force each source to send in a rate equals to the
maximum physical rate divided by the number of sources;
Updatet, value for each source.
Actt = D5 1 ts/Vs;
At the end of each estimation period
Ay =X, ds/ys;
BeforeLastError=LastError;
LastError=error;
error = Athresh— Aa;
Acit = Aeff + Kp x error — K, x LastError + Kp x
BeforeLastError

}

Figure 6.4: Simplified PID Algorithm for Dynamically Estimating the Effective Airtime
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

7.1.1 Waiting-time Predictability

We have analyzed the waiting-time predictability in scalable video streaming amdphesented
two prediction schemegissign Expected Stream@npletion TiméAEC) andHybrid Prediction AEC
utilizes detailed information about the server state and considers the ambiestlising policy to predict
the future scheduling decisions over a certain period, callediction window This window introduces
a tradeoff between the prediction accuracy and the number of useigingcexpected waiting times.
The hybrid scheme uses AEC and then assigns the average video waitingrtimese requests that did
not obtain a predicted time by AEC.

We have analyzed the effectiveness of the two prediction schemes whkgdavith various stream
merging technigues and scheduling policies. We have also comparedéahtvefiess of the waiting-
time prediction approach with the approach that provides time-of-servix@agiees. The latter is rep-
resented by an extended policy, callédneralized Next Schedule Time F{@&NSTF). In addition, we
have studied the impacts of prediction window, server capacity, useitt@éolerance, arrival rate,
skew in video access, video length, and number of videos.

The main results can be summarized as follows.

e The waiting time can be predicted accurately, especially with AEC and whenRISkised. MCF-
P is not only highly predictable (in terms of user waiting time) but also achieedsast performance

in server throughput and average waiting time.

¢ In contrast with AEC, the hybrid prediction scheme provides expected tineagtouser but achieves

lower accuracy and a longer confidence interval.
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e Combining AEC or the hybrid scheme with MCF-P leads to outstanding perfaerizenefits, com-

pared with GNSTF.

e This combination, calle®redictive MCF-R can be applied with hierarchical stream merging tech-

niques (such as ERMT) to improve performance further, whereas GN&iinot.

7.1.2 Scheduling

We have analyzed in detail cost-based scheduling for on-demand ¥idaming and proposed new
strategiesPredictive Cost-Based Scheduli(fgCS) andAdaptive Regular Stream TriggerigRT).

The main results can be summarized as follows.

e There is no clear advantage of computing the cost over a future time windowgared with com-

puting the cost only at the next scheduling time.

e The proposed PCS scheduling policy outperforms the best existing pMiCF-P) in terms of
customer defection probability and average waiting time. The waiting times cabalgredicted
more accurately with PCS. The two variations of PCS (PCS-V and PCSHorpenearly the same

and thus the simpler variant (PCS-V) is preferred because of its lowernmepl@tion complexity.

e By enhancing stream merging behavior, the proposed ART techniqutastially improves both

the customer defection probability and the average waiting time.

e The best overall performer is “MCF-P combined with ART”, followed by ®Vith ART, signifi-
cantly more clients can receive expected waiting times for service than RC8,cbsomewhat lower

waiting time accuracy.

7.1.3 Distortion-based Dynamic Bandwidth Allocation

We have proposed a cross-layer video optimization framework that matfagaetwork bandwidth
to minimize the total distortion in video streams. The proposed framework utilizew amline network

effective airtime estimation algorithm. Moreover, we have developed a nevaecurate model for
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characterizing the video data rate and distortion relationship as well asraoe®! for adapting the link-
layer parameters. We have evaluated our framework by streaming real frames over an OPNET-
simulated wireless network.

The main results can be summarized as follows.
e The proposed framework enhances substantially the perceptual qiabtsedved video streams.
e The proposed effective airtime estimation algorithm is accurate and casvquickly.
e Optimal perceptual video quality is achieved when the packet droppingyisweall.
e The transmission opportunity adaptation model works effectively.
e The proposed framework results in much less power consumption, codnpitineexisting solutions.

This behavior is due to sending and dropping much less data. Powermgptico is a primary

concern, especially when the video sources are battery-powered.

e The proposed framework is highly adaptable to any interfering traffic im¢teork.

7.1.4 Accuracy-based Dynamic Bandwidth Allocation

We have proposed an accuracy-based cross-layer video optimizatieviork for automated video
surveillance systems that manages the network bandwidth to minimize the sumwaitheed detec-
tion accuracy in video streams. The proposed framework utilizes an emthaffective airtime esti-
mation algorithm utilizing aProportional Integral Differential(PID) controller. Moreover, we have
proposed a bandwidth pruning mechanism to achieve any desired fradeséen detection accuracy
and power consumption. Furthermore, we have developed an accurag fmodharacterizing the
rate-accuracy relationship. We have evaluated our framework byrstrgaeal video frames over an
OPNET-simulated wireless network.

The main results can be summarized as follows.

e The proposed framework significantly enhances both the detectionaagcand power consump-
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tion, compared to the distortion-based optimization. The reduction in powsungstion is due to

sending and dropping much less data.
e The PID-based effective airtime estimation algorithm is accurate and mofe #tah the one pro-
posed in Chapter 5.

e With pruning, the proposed bandwidth allocation solution achieves almosathe accuracy as the

distortion-based optimization but reduces power consumption significantly.

7.2 Future Work

In future work, we plan to study the cross-layer framework with more cderpision algorithms,
such as face recognition and object tracking. We also plan to study thevirark with different video
adaptation techniques, including resolution-based adaptation. Furtleereiplan to perform study

with different networks, such as WiMAX.
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ABSTRACT

MAXIMIZING RESOURCE UTILIZATION IN VIDEO STREAMING SYSTEMS
by
MOHAMMAD ABDULLAH ALSMIRAT
May 2013
Advisor: Dr. Nabil Sarhan
Major : Computer Engineering
Degree Doctor of Philosophy
Video streaming has recently grown dramatically in popularity over the Intebadle TV, and wireless
networks. Because of the resource demanding nature of video streapphgations, maximizing re-
source utilization in any video streaming system is a key factor to increasedlabdiity and decrease
the cost of the system. Resources to utilize include server bandwidth, rkdtesodwidth, battery life
in battery operated devices, and processing time in limited processing pewieesl In this work, we
propose new techniques to maximize the utilization of video-on-demand (Ve&®grsresources. In
addition to that, we propose new framework to maximize the utilization of the netlamkiwidth in
wireless video streaming systems.

Providing video streaming users in a VOD system with expected waiting timesegththeir per-
ceived guality-of-service (QoS) and encourages them to wait thenebgasing server utilization by
increasing server throughput. In this work, we analyze waiting-time pialiity in scalable video
streaming. We also propose two prediction schemes and study their effexts/when applied with
various stream merging techniques and scheduling policies. The resultsdgigate that the waiting
time can be predicted accurately, especially when enhanced cost-bhséddlmg is applied. The com-
bination of waiting-time prediction and cost-based scheduling leads to outsjgperformance bene-
fits. The achieved resource sharing by stream merging depends gneditbyv the waiting requests are

scheduled for service. Motivated by the development of cost-baded sling, we investigate its effec-
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tiveness in great detail and discuss opportunities for further tuninggeahancements. Additionally,
we analyze the effectiveness of incorporating video prediction restitt$ha scheduling decisions. We
also study the interaction between scheduling policies and the stream mexdingjtees and explore
new ways for enhancements.

The interest in video surveillance systems has grown dramatically duringghddeade. Auto-
mated video surveillance (AVS) serves as an efficient approach foedttEme detection of threats and
for monitoring their progress. Wireless networks in AVS systems have limitaiéhie bandwidth that
have to be estimated accurately and distributed efficiently. In this resewedtevelop two cross-layer
optimization frameworks that maximize the bandwidth optimization of 802.11 wireletsgork. We
develop a distortion-based cross-layer optimization framework that martsgelwidth in the wire-
less network in such a way that minimizes the overall distortion. We also demal@gcuracy-based
cross-layer optimization framework in which the overall detection accusltlye computer vision al-
gorithm(s) running in the system is maximized. Both proposed frameworksgaaha application
rates and transmission opportunities of various video sources basee dyndgimic network conditions
to achieve their goals. Each framework utilizes a novel online approacéstonating the effective
airtime of the network. Moreover, we propose a bandwidth pruning mésathat can be used with
the accuracy-based framework to achieve any desired tradeoff dretietection accuracy and power
consumption. We demonstrate the effectiveness of the proposed frakseimaluding the effective air-
time estimation algorithms and the bandwidth pruning mechanism, through extergem@ments using

OPNET.
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