119,031 research outputs found

    Adaptive Quadrant Filter Based Phase Locked Loop System

    Get PDF
    Phase-Locked-Loop (PLL) is one of the key technologies extensively used in grid connected power electronics system. A good PLL system can detect the grid phase angle and frequency fast and accurately, and additionally it can extract the positive sequence (or fundamental component for single phase system) exactly. In real applications, source signal (voltage or current) sensed for PLL usually includes harmonic distortion, unbalanced components, noises and frequency variations. Conventional PLL strategy cannot solve all the problems, especially the unbalanced and harmonic distortion. There is a trade-off between the dynamic response and phase angle tracking accuracy. Different PLL solutions are proposed in literature in recent years. The general considerations for these different approaches are to design positive sequence estimator to eliminate the negative sequence components and use filters to filter out the higher order harmonic distortions from the PLLs. In this paper, an adaptive quadrature filter based synchronous reference frame PLL (SRF-PLL) with positive sequence estimation feature is presented. The proposed PLL has good performances in filtering harmonic, eliminating unbalanced components and auto-adjusting frequency change. The simulation model is built in Matlab/simulink and the simulation results are given to verify the mathematical analysis

    Demodulation Type Single-Phase PLL with DC Offset Rejection

    Get PDF

    P and M class phasor measurement unit algorithms using adaptive cascaded filters

    Get PDF
    The new standard C37.118.1 lays down strict performance limits for phasor measurement units (PMUs) under steady-state and dynamic conditions. Reference algorithms are also presented for the P (performance) and M (measurement) class PMUs. In this paper, the performance of these algorithms is analysed during some key signal scenarios, particularly those of off-nominal frequency, frequency ramps, and harmonic contamination. While it is found that total vector error (TVE) accuracy is relatively easy to achieve, the reference algorithm is not able to achieve a useful ROCOF (rate of change of frequency) accuracy. Instead, this paper presents alternative algorithms for P and M class PMUs which use adaptive filtering techniques in real time at up to 10 kHz sample rates, allowing consistent accuracy to be maintained across a ±33% frequency range. ROCOF errors can be reduced by factors of >40 for P class and >100 for M class devices
    corecore