572 research outputs found

    Neural Information Processing: between synchrony and chaos

    Get PDF
    The brain is characterized by performing many different processing tasks ranging from elaborate processes such as pattern recognition, memory or decision-making to more simple functionalities such as linear filtering in image processing. Understanding the mechanisms by which the brain is able to produce such a different range of cortical operations remains a fundamental problem in neuroscience. Some recent empirical and theoretical results support the notion that the brain is naturally poised between ordered and chaotic states. As the largest number of metastable states exists at a point near the transition, the brain therefore has access to a larger repertoire of behaviours. Consequently, it is of high interest to know which type of processing can be associated with both ordered and disordered states. Here we show an explanation of which processes are related to chaotic and synchronized states based on the study of in-silico implementation of biologically plausible neural systems. The measurements obtained reveal that synchronized cells (that can be understood as ordered states of the brain) are related to non-linear computations, while uncorrelated neural ensembles are excellent information transmission systems that are able to implement linear transformations (as the realization of convolution products) and to parallelize neural processes. From these results we propose a plausible meaning for Hebbian and non-Hebbian learning rules as those biophysical mechanisms by which the brain creates ordered or chaotic ensembles depending on the desired functionality. The measurements that we obtain from the hardware implementation of different neural systems endorse the fact that the brain is working with two different states, ordered and chaotic, with complementary functionalities that imply non-linear processing (synchronized states) and information transmission and convolution (chaotic states)

    Brain at work : time, sparseness and superposition principles

    Get PDF
    Abstract : Many studies explored mechanisms through which the brain encodes sensory inputs allowing a coherent behavior. The brain could identify stimuli via a hierarchical stream of activity leading to a cardinal neuron responsive to one particular object. The opportunity to record from numerous neurons offered investigators the capability of examining simultaneously the functioning of many cells. These approaches suggested encoding processes that are parallel rather than serial. Binding the many features of a stimulus may be accomplished through an induced synchronization of cell’s action potentials. These interpretations are supported by experimental data and offer many advantages but also several shortcomings. We argue for a coding mechanism based on a sparse synchronization paradigm. We show that synchronization of spikes is a fast and efficient mode to encode the representation of objects based on feature bindings. We introduce the view that sparse synchronization coding presents an interesting venue in probing brain encoding mechanisms as it allows the functional establishment of multilayered and time-conditioned neuronal networks or multislice networks. We propose a model based on integrate-and-fire spiking neurons

    Stereo-olfaction with a sniffing neuromorphic robot using spiking neurons

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThis paper presents a neuromorphic robot using stereo-olfaction and a sniffing system based on nonselective chemosensors that mimic the animal behavior of tracking a specific odor. In order to be able to go toward an odor source, two tasks must be performed : 1) estimation of the gas-concentration gradient and 2) gas recognition independent of the intensity. It is shown how these two tasks can be implemented with artificial spiking neurons in a biologically inspired approach

    Specific Entrainment of Mitral Cells during Gamma Oscillation in the Rat Olfactory Bulb

    Get PDF
    Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism

    キュウキュウ ソウボウ サイボウ ノ ドウキテキ ハッカ カツドウ ト キュウキュウナイ ジョウホウ ショリ

    Full text link
    Hideki Kashiwadani, Yasnory F. Sasaki, Naoshige Uchida, Kensaku Mori, Synchronized Oscillatory Discharges of Mitral/Tufted Cells With Different Molecular Receptive Ranges in the Rabbit Olfactory Bulb, Journal of Neurophysiology, 82(4), pp.1786-1792, 199

    Intrinsic and Extrinsic Neuronal Mechanisms in Temporal Coding: A Further Look at Neuronal Oscillations

    Get PDF
    Many studies in recent years have been devoted to the detection of fast oscillations in the Central Nervous System (CNS), interpreting them as synchronizing devices. We should, however, refrain from associating too closely the two concepts of synchronization and oscillation. Whereas synchronization is a relatively well-defined concept, by contrast oscillation of a population of neurones in the CNS looks loosely defined, in the sense that both its frequency sharpness and the duration of the oscillatory episodes vary widely from case to case. Also, the functions of oscillations in the brain are multiple and are not confined to synchronization. The paradigmatic instantiation of oscillation in physics is given by the harmonic oscillator, a device particularly suited to tell the time, as in clocks. We will thus examine first the case of oscillations or cycling discharges of neurones, which provide a clock or impose a “tempo” for various kinds of information processing. Neuronal oscillators are rarely just clocks clicking at a fixed frequency. Instead, their frequency is often adjustable and controllable, as in the example of the “chattering cells” discovered in the superficial layers of the visual cortex. Moreover, adjustable frequency oscillators are suitable for use in “phase locked loops” (PLL) networks, a device that can convert time coding to frequency coding; such PLL units have been found in the somatosensory cortex of guinea pigs. Finally, are oscillations stricto sensu necessary to induce synchronization in the discharges of downstream neurones? We know that this is not the case, at least not for local populations of neurones. As a contribution to this question, we propose that repeating patterns in neuronal discharges production may be looked at as one such alternative solution in relation to the processing of information. We review here the case of precisely repeating triplets, detected in the discharges of olfactory mitral cells of a freely breathing rat under odor stimulation

    Neural Circuit Dynamics and Ensemble Coding in the Locust and Fruit Fly Olfactory System

    Get PDF
    Raw sensory information is usually processed and reformatted by an organism’s brain to carry out tasks like identification, discrimination, tracking and storage. The work presented in this dissertation focuses on the processing strategies of neural circuits in the early olfactory system in two insects, the locust and the fruit fly. Projection neurons (PNs) in the antennal lobe (AL) respond to an odor presented to the locust’s antennae by firing in slow information-carrying temporal patterns, consistent across trials. Their downstream targets, the Kenyon cells (KCs) of the mushroom body (MB), receive input from large ensembles of transiently synchronous PNs at a time. The information arrives in slices of time corresponding to cycles of oscillatory activity originating in the AL. In the first part of the thesis, ensemble-level analysis techniques are used to understand how the AL-MB system deals with the problem of identifying odors across different concentrations. Individual PN odor responses can vary dramatically with concentration, but invariant patterns in PN ensemble responses are shown to allow odor identity to be extracted across a wide range of intensities by the KCs. Second, the sensitivity of the early olfactory system to stimulus history is examined. The PN ensemble and the KCs are found capable of tracking an odor in most conditions where it is pulsed or overlapping with another, but they occasionally fail (are masked) or reach intermediate states distinct from those seen for the odors presented alone or in a static mixture. The last part of the thesis focuses on the development of new recording techniques in the fruit fly, an organism with well-studied genetics and behavior. Genetically expressed fluorescent sensors of calcium offer the best available option to study ensemble activity in the fly. Here, simultaneous electrophysiology and two-photon imaging are used to estimate the correlation between G-CaMP, a popular genetically expressible calcium sensor, and electrical activity in PNs. The sensor is found to have poor temporal resolution and to miss significant spiking activity. More generally, this combination of electrophysiology and imaging enables explorations of functional connectivity and calibrated imaging of ensemble activity in the fruit fly.</p

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc
    corecore