6 research outputs found

    Occupancy detection for building emergency management using BLE beacons

    Get PDF
    Being able to reliable estimate the occupancy of areas inside a building can prove beneficial for managing an emergency situation, as it allows for more efficient allocation of resources such as emergency personnel. In indoor environments, however, occupancy detection can be a very challenging task. A solution to this can be provided by the use of Bluetooth Low Energy (BLE) beacons installed in the building. In this work we evaluate the performance of a BLE based occupancy detection system geared towards emergency situations that take place inside buildings. The system is composed of BLE beacons installed inside the building, a mobile application installed on occupants' mobile phones and a remote control server. Our approach does not require any processing to take place on the occupants' mobile phones, since the occupancy detection is based on a classifier installed on the remote server. Our real-world experiments indicated that the system can provide high classification accuracy for different numbers of installed beacons and occupant movement patterns

    Victim Detection and Localization in Emergencies

    Get PDF
    Detecting and locating victims in emergency scenarios comprise one of the most powerful tools to save lives. Fast actions are crucial for victims because time is running against them. Radio devices are currently omnipresent within the physical proximity of most people and allow locating buried victims in catastrophic scenarios. In this work, we present the benefits of using WiFi Fine Time Measurement (FTM), Ultra-Wide Band (UWB), and fusion technologies to locate victims under rubble. Integrating WiFi FTM and UWB in a drone may cover vast areas in a short time. Moreover, the detection capacity of WiFi and UWB for finding individuals is also compared. These findings are then used to propose a method for detecting and locating victims in disaster scenarios.This work was performed in the framework of the Horizon 2020 project LOCUS (Grant Agreement Number 871249), receiving funds from the European Union. This work was also partially funded by Junta de Andalucia (Project PY18-4647:PENTA)

    On the Security of Bluetooth Low Energy in Two Consumer Wearable Heart Rate Monitors/Sensing Devices

    Get PDF
    Since its inception in 2013, Bluetooth Low Energy (BLE) has become the standard for short-distance wireless communication in many consumer devices, as well as special-purpose devices. In this study, we analyze the security features available in Bluetooth LE standards and evaluate the features implemented in two BLE wearable devices (a Fitbit heart rate wristband and a Polar heart rate chest wearable) and a BLE keyboard to explore which security features in the BLE standards are implemented in the devices. In this study, we used the ComProbe Bluetooth Protocol Analyzer, along with the ComProbe software to capture the BLE traffic of these three devices. We found that even though the standards provide security mechanisms, because the Bluetooth Special Interest Group does not require that manufacturers fully comply with the standards, some manufacturers fail to implement proper security mechanisms. The circumvention of security in Bluetooth devices could leak private data that could be exploited by rogue actors/hackers, thus creating security, privacy, and, possibly, safety issues for consumers and the public. We propose the design of a Bluetooth Security Facts Label (BSFL) to be included on a Bluetooth/BLE enabled device’s commercial packaging and conclude that there should be better mechanisms for informing users about the security and privacy provisions of the devices they acquire and use and to educate the public on protection of their privacy when buying a connected device

    Autonomous Vehicles Management in Agriculture with Bluetooth Low Energy (BLE) and Passive Radio Frequency Identification (RFID) for Obstacle Avoidance

    Get PDF
    Obstacle avoidance is a key aspect for any autonomous vehicles, and their usage in agriculture must overcome additional challenges such as handling interactions with agricultural workers and other tractors in order to avoid severe accidents. The simultaneous presence of autonomous vehicles and workers on foot definitely calls for safer designs, vehicle management systems and major developments in personal protective equipment (PPE). To cope with these present and future challenges, the “SMARTGRID” project described in this paper deploys an integrated wireless safety network infrastructure based on the integration of Bluetooth Low Energy (BLE) devices and passive radio frequency identification (RFID) tags designed to identify obstacles, workers, nearby vehicles and check if the right PPE is in use. With the aim of detecting workers at risk by scanning for passive RFID-integrated into PPE in danger areas, transmitting alerts to workers who wear them, tracking of near-misses and activating emergency stops, a deep analysis of the safety requirements of the obstacle detection system is shown in this study. Test programs have also been carried out on an experimental farm with detection ranging from 8 to 12 meters, proving that the system might represent a good solution for collision avoidance between autonomous vehicles and workers on foot

    Season-Based Occupancy Prediction in Residential Buildings Using Data Mining Techniques

    Get PDF
    Considering the continuous increase of global energy consumption and the fact that buildings account for a large part of electricity use, it is essential to reduce energy consumption in buildings to mitigate greenhouse gas emissions and costs for both building owners and tenants. A reliable occupancy prediction model plays a critical role in improving the performance of energy simulation and occupant-centric building operations. In general, occupancy and occupant activities differ by season, and it is important to account for the dynamic nature of occupancy in simulations and to propose energy-efficient strategies. The present work aims to develop a data mining-based framework, including feature selection and the establishment of seasonal-customized occupancy prediction (SCOP) models to predict the occupancy in buildings considering different seasons. In the proposed framework, the recursive feature elimination with cross-validation (RFECV) feature selection was first implemented to select the optimal variables concerning the highest prediction accuracy. Later, six machine learning (ML) algorithms were considered to establish four SCOP models to predict occupancy presence, and their prediction performances were compared in terms of prediction accuracy and computational cost. To evaluate the effectiveness of the developed data mining framework, it was applied to an apartment in Lyon, France. The results show that the RFECV process reduced the computational time while improving the ML models’ prediction performances. Additionally, the SCOP models could achieve higher prediction accuracy than the conventional prediction model measured by performance evaluation metrics of F-1 score and area under the curve. Among the considered ML models, the gradient-boosting decision tree, random forest, and artificial neural network showed better performances, achieving more than 85% accuracy in Summer, Fall, and Winter, and over 80% in Spring. The essence of the framework is valuable for developing strategies for building energy consumption estimation and higher-resolution occupancy level prediction, which are easily influenced by seasons
    corecore