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ABSTRACT 

 

 Real-Time Occupancy Prediction in Residential Building Using Data Mining 

Techniques 

Bowen Yang 

Concordia University, 2021 

Considering the continuous increase of global energy consumption and the fact that buildings 

account for a large part of electricity use, it is essential to reduce energy consumption in buildings 

to mitigate greenhouse gas emissions and costs for both building owners and tenants. A reliable 

occupancy prediction model plays a critical role in improving the performance of energy 

simulation and occupant-centric building operations. In general, occupancy and occupant activities 

differ by season, and it is important to account for the dynamic nature of occupancy in simulations 

and to propose energy-efficient strategies. The present work aims to develop a data mining-based 

framework, including feature selection and the establishment of seasonal-customized occupancy 

prediction (SCOP) models to predict the occupancy in buildings considering different seasons. In 

the proposed framework, the recursive feature elimination with cross-validation (RFECV) feature 

selection was first implemented to select the optimal variables concerning the highest prediction 

accuracy. Later, six machine learning (ML) algorithms were considered to establish four SCOP 

models to predict occupancy presence, and their prediction performances were compared in terms 

of prediction accuracy and computational cost. To evaluate the effectiveness of the developed data 

mining framework, it was applied to an apartment in Lyon, France. The results show that the 

RFECV process reduced the computational time while improving the ML models’ prediction 

performances. Additionally, the SCOP models could achieve higher prediction accuracy than the 

conventional prediction model measured by performance evaluation metrics of F-1 score and area 

under the curve. Among the considered ML models, the gradient-boosting decision tree, random 

forest, and artificial neural network showed better performances, achieving more than 85% 

accuracy in Summer, Fall, and Winter, and over 80% in Spring. The essence of the framework is 

valuable for developing strategies for building energy consumption estimation and higher-

resolution occupancy level prediction, which are easily influenced by seasons. 
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1. INTRODUCTION  

1.1 Background  

       Buildings account for 30%–40% of energy consumption and contribute to approximately 19% 

of greenhouse gas emission. The EU’s Energy Department revealed that buildings account for 

more than 40% of primary energy consumption. Of that, 28% and 14% are consumed in residential 

and commercial buildings, respectively [1]. In France, residential buildings represented 69% of 

the total energy consumption in 2012 and had the largest energy consumption proportion, among 

industry, commercial, and agriculture [2]. Moreover, France initially committed to saving 20% of 

the total energy based on the 2020 energy demand projections. According to the latest French 

Efficiency Plan (24/04/2014), the projections could reduce final energy consumption to 131 

million tonnes of oil equivalent in 2020 [2].  

More than 80% of building energy consumption in the world occurs during the operation 

phase of the building’s life cycle [3]. In residential electricity consumption, lighting, heating, 

ventilation, and air conditioning (L-HVAC) systems account for more than 70% of total electricity 

consumption in buildings [4]. However, due to climate change, the global average temperature 

will rise 1°C by 2050 compared to today, which will lead to more households buying air 

conditioners and increasing the air conditioning load. The population growth trend is another 

important driver of heating and cooling demand. From 2016 to 2030, the world population has 

increased by 1.0%, the EU has risen by 0.1%, and the US has enhanced by 0.7, respectively [5]. 

These two factors can drive energy use of cooling and finding ways to enhance building energy 

efficiency is an urgent need. 

In the International Energy Agency report Total energy use in buildings: Analysis and 

evaluation methods, Annex 53 summarized six factors most influential for energy performance in 

buildings. They are: (1) climate, (2) building envelope, (3) building equipment and energy systems, 

(4) building operation and maintenance, (5) indoor environment condition, and (6) occupant 

behavior [6]. Two necessary variables are needed in the simulation process to forecast building 

energy consumption, and the parameters are building-related and occupant-related information [7]. 

On the one hand, some of these building-related parameters are easy to collect and measure, such 

as building size, construction material, floor area, and building systems. On the other hand, some 

parameters are stochastic and difficult to predict, such as weather conditions and occupancy 
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information [8]. The issue of predicting weather conditions can be addressed by gathering reliable 

meteorology data from weather stations, but it is difficult to observe and predict occupancy state 

due to its highly stochastic activities [9].  

Post-occupancy evaluation is a general approach to obtaining feedbacks about building energy 

performance (BEP), occupant’s satisfaction, indoor environmental quality, and building 

productivity [10]. In many cases of the design phase, if occupant information is not considered, 

this can cause a significant discrepancy between the predicted and actual energy consumption 

levels, such differences range from 30 to 100% in some cases [7]. Therefore, to reduce the gap 

between the simulation results and the actual energy consumption of buildings, occupancy 

information needs further studies.  

 Occupant-centric control (OCC) is a prevalent control technique that acquires data from 

indoor environmental and human–building interaction, and this information can be fed into 

building control systems to improve energy efficiency without sacrificing occupants’ comfort [11]. 

Occupant’s presence information is critical and significantly contributes to the prediction results. 

Occupant’s presence information is critical for optimizing heating, ventilation, and air 

conditioning (HVAC) operations, avoiding energy waste and significantly contributes to building 

energy simulation performance without any cost investments. One of the main challenges in 

predicting building energy demand is the use of unreliable occupancy information. This not only 

causes energy wastages but also lowers the thermal comfort of the occupants [12]. Thus, how to 

obtain reliable and precise occupancy prediction results requires additional investigation. 

 

 

 

 

 

 

 

 

 

Fig. 1. Electricity consumption by sectors in Europe. 



3 

 

1.2  Research objectives  

This study aimed to develop a data mining-based occupancy prediction framework (DM-OPF) 

to establish seasonal-customized occupancy prediction models (SCOP) that consider seasonal 

influence to improve the prediction accuracy of occupancy presence. To develop the DM-OPF, 

three specific research objectives are: 

1. Investigating the seasonal influences on each variable. 

2. Implementing the recursive feature elimination with cross-validation (RFECV) feature 

selection and feature importance to select the optimal variables and rank the most critical 

parameters among the selected features for each season. 

3. Comparing the performances of six machine learning (ML) algorithms in terms of prediction 

accuracy and computational time to study the algorithms’ abilities. 

1.3 Organization of the thesis 

The remaining content of this thesis is organized as follows: in Chapter 2, I review related 

works and clarify the challenges of the existing literature. Chapter 3 contains a description of the 

methodology framework, which integrates supervised learning for occupancy prediction, and 

introduces the validation and assessment indexes. Chapter 4 explores the case study. Chapter 5 

illustrates the results of this study, and Chapter 6 discusses the conclusion and future works.  
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2. LITERATURE REVIEW 

2.1 Application of data mining techniques in building engineering 

In this study, the various data mining (DM) techniques were proposed as the primary 

methodologies to extract hidden and valuable knowledge/information from building-related data. 

DM as a process of knowledge discovery tool can be applied in various research areas, such as 

software engineering [13–15], finance [16], and medical industries [17]. However, the researchers 

need to pay close attention to the application of DM in the research domain of building engineering. 

Some DM techniques have been frequently used, such as cluster analysis, association rule mining 

(ARM), and artificial neural network (ANN). In previous studies, a decision tree (DT) method for 

building energy demand was reported by Yu et al. [18]. The author identified six 

environmental/building-related parameters (air temperature, house type, construction type, floor 

area, and heat loss coefficient) and four occupants-related behaviors (occupant number, heating, 

hot water, and kitchen energy consumption). They created an interpretable DT method to predict 

residential BEP indexes using energy use intensity (EUI). The results demonstrated that the DT 

method could accurately predict building energy demand levels (93% for training data and 92% 

for testing data). In 2011, Yu et al. [19] developed a novel DM technique through clustering 

analysis for identifying the effects of occupant behaviors on electricity, gas, and kerosene 

consumption. The results showed that the hot water supply and HVAC were responsible for the 

largest end-use loads in average annual EUI in four clusters.  

Muhammad et al. [20] compared the performance of the ANN and random forest (RF) for 

predicting the hourly HVAC energy consumption of a hotel in Madrid, Spain. Both models showed 

high-performance scores in the training and testing datasets. Overall, the ANN slightly 

outperformed the RF with root mean square errors of 4.97 and 6.10, respectively. Zhou [21] 

proposed an ARM to analyze the correlations between the physical building parameters and 

heating energy consumption in China’s city, Tianjin. The results indicated that the window heat-

transmission coefficient and heat-terminal type were two vital attributes that affected the heating 

energy consumption significantly.  
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2.2  Impact of occupant-related behavior on building energy performance 

Many scholars have significant interest in the research areas of occupant’s thermal comfort 

and the energy management of buildings. Despite this interest, an estimated 90% of current HVAC 

control systems do not run optimally [22]. Therefore, to increase building energy efficiency, many 

researchers have used OCC to improve energy efficiency and avoid energy waste. The OCC 

strategies are cost-effective compared to retrofit existing HVAC systems and equipment 

concerning expenditures because retrofitting solutions require a major overhaul of the full  building 

energy management systems (BEMS) and physical changes for more comprehensive building 

system control [23]. There is a significant potential energy waste if occupant-related information 

is not considered. For instance, the traditional HVAC control system strategy without involving 

occupancy presence information causes energy waste because the HVAC system is still operating 

even during an unoccupied time or in an unoccupied zone [24]. The difference between designed 

and actual energy use in buildings, as shown in Fig. 2.  

 

 

Fig. 2. Predicted versus real building energy consumption in office and education buildings [25]. 
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Some scholars predicted occupancy states to help control HVAC systems by increasing the 

indoor setpoint temperature automatically during the unoccupied times, and this is an efficient way 

to reduce energy consumption during the unoccupied time [24] as occupancy information greatly 

influences energy consumption [26]. Fig. 3 to Fig. 5 show the various levels of occupancy 

information. Different occupancy levels can be used for different applications. The researchers 

usually use the occupancy presence and number data to control the L-HVAC system to L-HVAC 

control. Smart thermostats specify the setback to the target temperature to maintain the resident’s 

thermal comfort using future occupancy information, and the low accuracy of the occupancy 

prediction model may lead to significant thermal discomfort [26]. Unlike the HVAC control 

system, comfort management, space management, and emergency response need more high-

resolution occupancy data, such as occupant activities data [8].  

A study of the socioeconomic and residential factors that contribute to electrical energy 

consumption in the UK was conducted by Jones and Lomas [27], who summarized 37 previous 

studies and ranked them according to importance concerning socioeconomic and dwelling factors 

(e.g., numbers of occupants, total floor area, and household income). The result showed that the 

number of occupants has the most significant impact on electrical energy consumption than other 

socioeconomic characteristics. On the contrary, the presence of mechanical ventilation has almost 

no impact on electrical consumption. This finding was essential in the data collection stage because 

it helps scholars pay close attention to collecting occupancy data. 

An increasing number of researchers prefer to analyze occupant behaviors because their 

stochastic and complex natures significantly impact energy efficiency. Most previous works 

showed that if occupancy information was not considered, it could lead to a considerable 

performance gap between the estimated and actual energy consumption. Nguyen et al. [28] 

mentioned that do not consider occupant-related information can add an extra one-third to a 

building’s designed energy consumption. Therefore, in the building design and operation phase, 

feeding occupant-related information into the simulation model plays a crucial role in quantifying 

occupancy’s BEP [29].  

Garg and Bansal [30] developed smart occupancy sensors to learn how users’ activity changes 

relative to the time of day for lighting control. Their experiment showed that about 5% more 

lighting energy could be saved by utilizing occupancy sensor technology. In Ref. [31], the author 
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also mentioned that occupancy and activities models could be integrated into building performance 

simulation to promote energy savings. Melfi et al. [32] defined four levels of occupancy resolution: 

occupancy presence (level 1), occupant number (level 2), occupant identity (level 3), and 

occupancy activity (level 4). To date, most recent studies have focused on occupancy prediction 

of occupant presence and numbers because they are reliable and convenient. By contrast, occupant 

identity and activity data are difficult to collect due to tenants’ privacy issues and sensor 

technology limitations. More information on occupancy resolution levels can be found in Chapter 

2.3.  

 

 

Fig. 3. Occupancy presence estimation. 

 

 

Fig. 4. Occupant numbers estimation. 
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Fig. 5. Occupant activity. 

 

2.3 Occupancy resolution levels  

Melfi [32] et al. defined four occupancy resolution levels in three dimensions (as shown in 

Fig. 6): (1) occupancy presence; (2) the numbers of the occupants in each zone of the building; (3) 

their identities; and (4) their activities at each time step. This information helps to determine the 

occupants’ interactions with the buildings and building systems. Occupancy-related information 

is useful for different applications, such as BEMS, parking management, space management, and 

emergency response [33]. Different applications require different occupancy resolution levels [26]. 

The concept of “occupant information” does not have a standardized definition, meaning that the 

OCC can be operated from a wide range of different data collection ranges, each with its own 

characteristics [34]. Labeodan et al. [35] later added two occupancy resolution levels and 

rearranged the levels according to importance regarding building energy consumption. The six 

occupancy resolution levels are defined as follows: (1) Level 1 means occupancy presence. A 

traditional passive infrared sensor (PIR) can be used to record a binary value indicating whether 

occupants appear in a particular zone. The controller could use this occupancy detection 

information to operate some devices. For example, the smart lighting system decides to switch on 

or off depending on the occupancy status information to save energy [36]. (2) Level 2 focuses on 

where this person in the building is. Nonintrusive load-monitoring algorithms can reduce the 

number of potential appliances considered for energy disaggregation using occupant location 

information. Furthermore, the real-time global positioning system (GPS) sensor can utilize the 

occupant’s location data to control the HVAC system. For example, when the GPS sensor detects 

that the resident is approaching the apartment, the feedback will pass to the HVAC system to turn 
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on the heating or cooling system to provide a comfortable environment for the residents’ arrival. 

(3) Level 3 represents how many people are in a zone. Traditional occupancy sensing technologies, 

such as PIR and ultrasonic sensors, can only detect an occupant’s motions. However, some Wi-Fi 

devices and camera sensors could obtain the number of tenants and record binary (occupied or 

unoccupied) occupancy information. (4) Level 4 represents activity (what are they doing), which 

is commonly used for determining the acceptability of indoor thermal environment [37], and it is 

more advanced than the levels of occupancy presence and occupant number [38]. (5) Level 5 refers 

to identity and focuses on who people are. Occupancy identity is high-level occupancy information 

[37], and each occupant has a different identity, including facial features, personal computer 

addresses, and mobile accounts. (6) Level 6 indicates where the person has been. The occupant 

track provides information about the occupant’s movement trajectory across different zones in the 

building by recording their moving-to or moving-from. This information is usually used in the 

design of proactive comfort systems. 

 

 

Fig. 6. Occupancy resolution in three dimensions (identified by Melfi et al.[32]). 
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2.4 Occupancy monitoring  

Building energy consumption has been affected by human behaviors significantly [39]. To 

analyze and predict occupants’ profiles, occupants’ data should be collected over a reasonable 

period [33]. As something that plays a significant role in the data collection phase, occupancy data 

collection is mainly categorized into two major groups: survey and sensor collection. Surveys are 

usually used to identify occupants’ schedules and determine the activities that significantly affect 

human–building interactions, such as window blinds and L-HVAC system operations [33]. Using 

surveys could help collect reliable occupancy information and understand occupants’ preferences 

for these equipment and system settings.  

Another way to collect occupancy data is to use various sensors to detect indoor occupancy 

presence, the number of occupants, occupant identities, and occupant activities. Different sensors 

are used to collect different occupancy data in different resolution levels. For instance, a motion 

detector is used to detect the movements of occupants in specific spaces. In comparison, the camera 

sensor is often utilized to collect information on the number of occupants.  

Some sensor devices, such as PIR, radio frequency identification (RFID), Wi-Fi, Beacon, and 

video cameras, are frequently utilized in occupancy prediction [40]. Table 1 shows the significant 

benefits and drawbacks of different occupancy monitoring techniques. Table 2 summarizes the 

occupant level information, type of sensors, data gathering, data collection period, and estimation 

accuracy.  

2.4.1 Survey  

Some researchers used surveys to collect occupant information. Gul and Patidar [41] used 

questionnaires and interviews to investigate students, control engineers, university energy 

managers, and café staff who work at a post-graduate center in the UK to obtain their usual working 

hours and personal information (gender and age). They found out that the occupant number can be 

used to identify the potential electricity saving. Yun et al. [42] applied questionnaires to reveal 

how a building system was affected by occupants during July to September in Seoul, Korea. In 

their study, 60 staffs participated in the survey, and they were asked to fill out the questionnaires 

five times per day (twice in the morning, twice in the afternoon, and once in the evening). The 

questionnaire’s content included the users’ habits with building control systems, including air 

conditioning, lighting, window, door, and blind. The results showed that the average occupancy 
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time of investigated office was nearly 16 hours on a normal working day, which was longer than 

the expected occupancy time of the office used for building energy consumption design prediction. 

Therefore, surveys can contribute to inform useful information for operating HVAC systems in 

building management.  

Some researchers focused on large-scale occupancy surveys. Hu et al. [43] conducted large-

scale surveys (3,424 valid samples in total) of China’s urban residential occupancy to explain the 

overall occupancy profiles. Few studies focus on large-scale surveys because collecting large 

residential occupancy data is not accessible due to the sample size limitation, sensor accuracy, and 

privacy issues with households [43]. This study conducted four large-scale questionnaires in three 

Chinese cities: Beijing, Yinchuan, and Chengdu, and face-to-face interviews were conducted to 

guarantee the accuracy of the survey results. The questionnaires include two parts: occupancy 

questions and demographic information. For occupancy questions, the tenants need to report the 

room occupancy status during the different times of the workday. The demographic survey items 

include personal information such as age, gender, income, and interviewees’ education.  

2.4.2 Environmental sensors 

Many authors of previous studies focused on environmental data to perform either occupancy 

presence or occupant number prediction. The CO2 concentration detector, as a typical sensor of 

the occupant number prediction, is very prevalent because it does not intrude on residents’ privacy 

[44]. Cali et al. [45] proposed a core algorithm to forecast occupancy presence based on CO2 

concentration for non-residential and residential buildings (five different rooms of two office 

rooms with an HVAC system, one natural ventilated room, one kitchen with natural ventilation, 

and a natural ventilated living room). The results showed that the highest occupancy presence 

prediction model’s accuracy could reach 96% when the door and window positions were known.  

The data information coming from only one detection source may be unreliable for occupancy 

prediction [33]. In multi-sensor technologies, various environmental data and occupancy 

information are combined from different sensors to take full advantage of the strong points of their 

integration. Chen et al. [46] proposed a fusion sensor framework that includes sensors of CO2, 

temperature, relative humidity, and pressure for predicting occupancy presence. Based on the 

fusion sensor technologies, data-driven models that include extreme learning machine (ELM), 

support vector machine (SVM), ANN, K-nearest neighbors (KNN), linear discriminant analysis 
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(LDA), and classification and regression tree (CART) were used. The experiments showed that 

with multi-sensor technologies, the proposed models could improve accuracy by about 5–14%. 

Zimmermann [47] measured CO2 concentration, volatile organic compounds concentration, 

air temperature, and relative humidity in four student apartments for 49 days. Participants were 

provided with Android mobile phones with an application called crafty Apps EU to obtain ground 

truth occupant data. Participants could press a button on their mobile phones when they enter or 

leave their apartments. Different DM methods such as naïve Bayes, C4.5 DT, logistic regression 

(LR), KNN, and RF were used to get a highly accurate occupancy prediction model. The results 

showed that the naïve Bayes outperformed other predictors with an accuracy of 75.1%.  

2.4.3 Motion sensors 

Motion sensors are widely used to detect the movements of occupants in space (whether a 

person is present in a zone or not) and convert that information into binary values [33] (1 = 

occupied, 0 = unoccupied). The common motion sensors include PIR, ultrasonic detectors, and 

pressure sensors. The placement of a motion detector is vital because motion sensors require a 

direct line-of-sight to detect occupant presence [48].  

To improve building operation energy efficiency, obtain high-quality occupancy detection 

information is necessary. Dodier et al. [49] applied a new network of PIR sensors in two private 

offices and deployed the Bayesian probability theory to determine the occupant’s numbers and 

locations. Graphical probability models called belief networks were developed, and the result 

showed that the belief network framework could be applied to data flow analysis of sensor 

networks. Compared to current practice, it provided significant benefits for building operations.  

Nonintrusive ultrasonic sensors are also used in many studies to collect occupancy presence 

data. Khalil et al. [50] presented an ultrasonic-based sensing technique to record occupants’ height, 

width, and movement to identify each person in a commercial building for three months. The 

sensors were placed on the tops and sides of the doors. When people walk through the door, their 

physical shape can be captured by ultrasonic sensors. The clustering method was deployed to 

identify people based on the measured data. The results showed that the proposed approach could 

achieve 95% accuracy in the differentiation people. 
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2.4.4 Vision-based sensors 

Although the motion sensor could detect occupancy presence, some applications may not be 

enough. For example, to predict the number of occupants or occupant’s movement, the motion 

sensors cannot provide high-level resolution occupancy data. Vision-based techniques for 

detecting occupant numbers, locations, and activities are popular to bridge this gap [51]. Tien et 

al. [51] mentioned that even previous studies have already used PIR sensors and deep learning 

(DL) methods to identify occupants’ activities and improve the DL-based occupancy prediction 

model’s accuracy. However, no work has tried to implement DL algorithms to predict real-time 

occupants’ latent heat emissions. Tien et al. [51] used a camera-based DL method to develop real-

time occupant prediction models. The prediction results could be fed into BEMS by establishing 

occupancy heat emission profiles, minimizing the unnecessary HVAC energy loads. Occupant 

behaviors were categorized into sitting, standing, walking, napping, and none patterns, and these 

activity patterns can form the real-time occupancy heat emission profiles. Using the proposed 

method, the highest average accuracy for all activities could achieve 80.62%.  

Furthermore, Benezeth et al. [52] and Ericson et al. [53] deployed camera sensors to collect 

data to estimate occupancy and reported a prediction accuracy of 97% and 80%, respectively. 

Some indirect sensors were also used to predict occupancy, including CO2, lighting, noise level, 

indoor environment sensors, and the like. Candanedo and Feldheim [54] applied eight DM 

algorithms (ELM, ANN, SVM, KNN, LDA, CART, gradient boosting machine (GBM), and RF) 

to predict occupant presence with data from light, relative humidity, indoor temperature, and CO2 

detectors, and digital cameras to collect occupancy ground truth data. The results showed that 

accuracies range from 67% to 99% based on different inputs and algorithms. However, digital 

camera sensors’ operation cost and privacy issues are the most challenging issues to deploy vision-

based sensors technology.  

2.4.5 RF-based sensors 

There are many types of radiofrequency sensors, such as RFID, Wi-Fi technology, wireless 

local area network, Bluetooth, and Zigbee. Radiofrequency identification sensor systems can 

collect not only occupant numbers but also localize occupant’s location. Zhen et al. [55] applied 

the RFID to localize occupants’ locations to save the lighting energy consumption using indoor 

occupancy localization. They developed an SVM-based localization algorithm to determine the 
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occupant locations to control the lighting system. The proposed method demonstrated a high-

accuracy prediction (with an average accuracy of 93.0 %) of occupancy localization in controlling 

lighting systems. 

Concerning sensor data collection accuracy, Wi-Fi technology showed the best result [56]. 

To improve the lighting energy efficiency and reduce lighting power consumption, Zou [57] 

presented a novel occupancy-based lighting control system using Wi-Fi network technology 

WinLight to reduce lighting energy consumption using real-time occupancy information. A local 

controller was connected to each lamp in the experiment zone so the occupants could customize 

the lighting level (dimming to brightness) remotely through the WinLight App. This study found 

that using real-time occupancy information provided by WinLight-OS reduced lighting energy 

consumption by 93.09% and 80.27% compared to use fixed occupancy schedule and PIR sensor-

based lighting control patterns, respectively. 

Compared to Wi-Fi technology, Bluetooth allows communication with lower power energy 

consumption [56]. In Ref. [44], both Wi-Fi and Bluetooth devices with two supervised learning 

models were deployed to estimate occupant numbers in four-indoor and one outdoor environment 

space. The result showed that the combination of Wi-Fi and Bluetooth technology could be used 

to accurately perform occupant number predictions (30% higher than using only one technology, 

either Wi-Fi or Bluetooth).  

Table 1 Major benefits and weaknesses of different occupancy monitoring techniques 

Monitoring 

level 

Monitoring 

method 

Types of 

sensors 

Benefits Weaknesses 

Level 1 Survey Face-to-

face/online 

Cost-efficient; could gather the 

information from a large audience 

Lacking responses; 

dishonest answers 

Level 1 

 

Motion sensor PIR Low cost Cannot defect stationary 

occupants; binary outputs 

  Ultrasonic 

sensor 

Durable and long-lasting More susceptible to 

Positive false error 

Level 2/3 

 

Vision-based 

sensor 

Video High detection Privacy issue 

  Camera Could get fine-grained data Privacy concern 

Level 3/4/5 RF-based 

sensor 

RFID Deployment flexibility 

 

Can work without a line-of-sight 

 

Detect high-resolution occupant 

data  

Privacy issue 

 

Inconsistent connection   Bluetooth 

  Wi-Fi 

  GPS 
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Table 1 shows the major pros and cons of different occupancy monitoring techniques. PIR 

and ultrasonic sensors are common motion detectors to collect the occupancy presence data. Many 

researchers used them due to their low cost and durability. However, the motion sensor cannot 

detect occupants outside the camera’s line-of-sight and fail to detect stationary occupants, which 

means if the residents are sleeping and do not walk around the house, the motion sensor outputs 

an unoccupied value. Vision and RF-based sensors can collect high-resolution occupant data using 

video, camera, Wi-Fi, Bluetooth, and GPS technologies, but the concerns over occupants’ privacy, 

high installation costs, and high computational complexity are still significant challenges.  

Table 2 Summary of occupancy estimation in terms of occupancy level, methods, sensor type, data gathering, and 

collection period 

Reference 

Number 

Occupancy 

Level 

Classification 

Algorithms 
Censor Type Data Gathering/Inputs 

Feature 

Selection 
Collection Period 

 

Ericson et al. 

(2009) 

Occupancy 
Gaussian Model, 

Agent-Based Model 
Camera People movement No 1 day 

 

Candanedo et al. 

(2016) 

Occupancy 

 

LDA, CART, RF, 

ANN, SVM, GBM, 

ELM, KNN 

 

Camera, CO2 

sensor, Zigbee 

radio 

Temperature, light, CO2, 

humidity, humidity radio 
No 1 Month 

 

 

D’Oca et al. 

(2015) 

 

Occupancy DT 

 

Occupancy 

sensor 

 

Season, day of the week, time 

of the day, window change 

 

No 

 

2 years 

 

Wang et al. 

(2018) 

 

Occupant 

number 

 

SVM, ANN, KNN 

 

Wi-Fi probe, 

camera, CO2, 

temperature 

sensor 

Time, temperature, relative 

humidity, CO2, airflow rate, 

air pressure 

 

No 

 

9 days 

 

Haidar et al. 

(2019) 

Occupancy 

DT, extra tree, 

Gaussian naïve Bayes, 

RF, multi-layer 

perception 

CO2, 

temperature 

sensor, etc. 

 

Indoor CO2, humidity, 

temperature, air quality, door 

state window state, outdoor 

humidity, temperature 

 

No 

 

6 months 

 

Fisayo et al. 

(2017) 

 

Occupant 

number 

 

GAKF method (indoor 

climate modeling and 

parameter estimation) 

 

PIR sensor, 

indoor/outdoor 

sensor, camera 

 

outdoor/indoor temperature, 

indoor CO2 

 

No 

 

1 day 

 

Parise et al. 

(2019) 

Occupancy SVM 

 

PIR, 

CO2/temperatu

re sensors 

temperature, CO2, humidity, 

pressure, sound/lighting level 

 

 

No 

 

 

13 days 

Ekwevugbe et al. 

(2013) 

Occupant 

number 
ANN 

PIR, sound 

detection, CO2 

sensor 

 

CO2, sound, illumination 

level, temperature, humidity 

 

Yes 1 month 
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2.5 Occupancy modeling 

Occupancy models are developed by utilizing the data collected during the occupancy 

monitoring period [33]. These models can predict the probability of occupancy and occupant’s 

activities under different conditions. Occupancy presence is a Boolean value of “0” or “1”, which 

refers to the occupied or unoccupied status of a specific space, respectively. Adding fixed 

occupancy schedules into building energy simulation could decrease the simulation result’s 

accuracy because occupant behavior is very stochastic. For example, office staff interacts with 

office buildings in many different ways [33]. Sometimes, they may work in their private cubicles, 

but the other times, they may communicate with their colleagues in other spaces of the building. 

The fixed occupancy information cannot represent the real-life scenario. Therefore, collecting 

occupancy data using reliable sensors and predicting real-time occupancy information accurately 

is critical.  

The occupancy prediction model benefits building emergency management systems. 

Filippoupolitis et al. [58] developed Bluetooth Low Energy using the SVM algorithm. The BLE 

system was composed of applications on mobile phones inside the building and a remotely-control 

server located outside the building. The experiment indicated that the proposed model could 

provide a high classification accuracy for different occupant patterns in the real world. 

Occupancy-related features are highly dependent on the data of weather conditions, time of 

the day, weekday/weekend, indoor environmental conditions, and occupants’ habits. Occupancy 

prediction models are developed using occupancy and environmental data collected by various 

sensors. These models usually are utilized to predict the occupancy probability, occupant numbers, 

occupant activities, and occupant movements in different applications. 

The methods for forecasting occupancy information can be divided into two major groups: 

stochastic prediction models and DM approaches. The stochastic models use real-time data to 

estimate the probability of a presence event [8] or an activity event (i.e., lamps switch on/off 

behavior). Markov chain (MC), hidden Markov model (HMM), and inhomogeneous Markov chain 

(IMC) are three common stochastic models for predicting occupancy. MC, the simplest sequential 

model, has been widely used to predict future occupancy presence [7] since an occupant’s future 

status is highly related to its past state, which is the fundamental of the Markov chain method. 
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2.5.1 Stochastic models 

Stochastic models are developed by utilizing real data linked to occupant’s movement, 

locations, and activities. Stochastic models are used to predict the probability of occupant presence, 

number, and activities to generate profiles [39]. Chen and Soh [59] presented an IMC model to 

estimate the number of occupants and compare the IMC with two DM approaches under four 

different prediction horizons. The real experiments were measured using video camera sensors for 

four months, and the result showed that the DM approaches of the autoregression model performed 

the best in the 15-min to 30-min time horizons. For long prediction horizons within 1-h and 2-h, 

the SVM is suggested. 

To model domestic energy demand, taking occupancy information into account is greatly 

beneficial when occupants are likely to be using appliances [60]. Richardson et al. [60] presented 

a through MC method to predict occupancy based on the weekdays and weekends in UK 

households. In the MC process, each occupancy state depended only on the previous occupancy 

status and the probability of the state changing. These change predictions are called “transition 

probability matrices,” Additional detailed information on transition probability matrices can be 

found in [60].  

A first-order MC model only predicts the state at one preceding time step. Similarly, a second 

or higher MC order only depends on two or more preceding ones [61]. Flett et al. [62] developed 

a higher-order MC model to estimate occupant numbers with a 10-minute time step for single-

person, couple, and family households. Compared to the first-order MC, a high-order Markov 

chain could improve status prediction durations [62]. Moreover, the proposed method remains 

stable for a small dataset sample (down to 200 datasets of a single day).  

Erickson [63] developed an HVAC control strategy based on the occupant number prediction 

model using real-time occupancy monitoring via a camera sensor. Before feeding occupancy 

information into the EnergyPlus model, occupancy ground truth data was collected first. The study 

found that the proposed HVAC control strategy could achieve 8.8% energy savings for office 

buildings. However, two limitations of using the MC method in this study were the following: (1) 

the number of states required to represent a building. Due to the building space limitations, 

transition matrices are sparse, and many state transitions were impossible to achieve [63]. (2) The 

data collection period was short. An extended data collection period should be used to reduce 

prediction errors.  
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Candanedo et al. [64] used various environmental data, including indoor/outdoor, temperature, 

relative humidity, derived humidity radio, CO2, acoustic level, and lighting level, to predict 

occupancy presence in different rooms (kitchen, living room, office, parents’ room, teenager’s 

room, laundry room, ironing room, and bathroom) with 4-time steps (5, 10, 20, 30 time-step). In 

this study, test data was divided into test 1 and test 2 based on the door state. Test 1 was taken with 

the door closed during occupied states, while test 2 was taken with the door open during occupied 

status. The HMM model was developed with the open-source R package. To evaluate the HMM 

model, a confusion matrix was used. The finding showed that the best accuracy result (90.24%) of 

the HMM model was based on the CO2 concentration data at a 5-min time interval. However, the 

result of occupancy prediction may not be accurate due to the unbalance occupancy status data. 

Using the unbalanced dataset makes the results become “accurate,” but the factual accuracy will 

not be very high. 64% and 36% of unoccupied data and 79% and 21% of occupied status data were 

used in tests 1 and 2, respectively. The unbalanced dataset in both training and testing datasets 

would decrease the prediction accuracy. Another limitation was that this study tried to figure out 

how to use a single feature to predict the occupancy status, which did not consider all parameters. 

However, appropriate feature combination always gets the best occupancy prediction result [65]. 

The single feature may not be enough to predict the occupancy accurately.  

A key issue associated with the MC technique development is how to select the best temporal 

time resolution and transition matrix. Zhou et al. [66] mentioned that a small transition matrix 

increases data collection difficulty while a large transition matrix could decrease the accuracy of 

occupant activity prediction [66]. The MC model was developed based on four-time steps (10 mins, 

20 mins, 1h, 2h) to predict four occupant states. Four different transition matrix patterns (10 mins, 

20 mins, 30 mins, 1h, 2h) were also involved in analyzing which time step can get higher accuracy 

results. The occupancy activities states include sleeping, studying, and working, were obtained 

from the UK Time-Use Survey (TUS). The result showed that large time-steps (1h and 2h) have 

low prediction accuracy than other prediction models (10mins, 20 mins, and 30mins). Salimi’s 

finding of [7] sensitivity of time step analysis was consistent with Zhou’s conclusion. As the time-

step increases, R2 decreases accordingly, which means the large time-steps cause a significant error. 

The 5- and 10-min time steps showed the acceptable errors using R2 evaluation for two zones in 

an open-plan office building.  
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2.5.2 Data mining methods 

Solely applying stochastic models may not guarantee the robustness of the prediction models 

[8]. Both efficiency and robustness can be achieved when combining stochastic methods (e.g., 

HMM, standard MC) and statistical methods (e.g., Bayesian probability, Time-series) [33]. 

Huchuk et al. [12] used the MC and HMM models to predict future occupancy status three hours 

ahead with the parameters of time of the day, previous occupancy status, and weekdays/weekends. 

They found that the average accuracy of MC model is slightly lower than 0.8. DM is also known 

as a data-driven method, combining statistical and stochastic techniques to ensure prediction 

robustness. To tackle the low accuracy of the MC model, Huchuk et al. [12] also considered the 

DM methods of LR, RF, and recurrent neural network (RNN) into the occupant prediction model. 

They found that the RF algorithm model outperformed other methods, and the stochastic models 

did not show the best prediction performance.  

DM techniques were developed to learn and predict occupancy in three main formats in 

previous studies: binary occupancy (i.e., occupied or unoccupied) [67], numerical values (i.e., 

occupant number) [65], and continuous occupancy data (i.e., the probability distribution of 

occupancy) [68]. ML is an important principle embody of DM [9], allowing computers to learn 

from historical data and then predict target values. Two major ML types are used frequently in 

building engineering research areas: supervised and unsupervised learning algorithms [69]. 

Supervised learning is a traditional learning method with training data and target labels [9], and It 

can be divided into two categories: classification and regression. Classification is used to predict 

the data categories (e.g., fruit breed prediction), while regression is utilized to predict continuous 

value based on previously observed data (e.g., housing price prediction and height estimation). 

Unlike supervised learning methods, unsupervised methods use data with no labels [70], and the 

main goal of the unsupervised learning method is to explore the data and hidden structure among 

them [70]. Supervised learning methods mainly include ANN, LR, SVM, RF, DT, and KNN. 

Unsupervised learning methods mainly include the principal component analysis, K-mean 

clustering, Gaussian mixture model, and support vector data description [71].  

Some scholars preferred applying DM to estimate occupancy numbers. For example, Wang 

et al. [72] applied three ML approaches (SVM, ANN, and KNN) to three data sources, including 

only environmental data (temperature, relative humidity, and CO2), only Wi-Fi data, and fused 
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data (combining environmental and Wi-Fi data) as inputs to predict the number of occupants in a 

graduate office. Tested with an on-site experiment, the result indicated that using ANN to predict 

fused data has the best performance, while the SVM-based prediction model was more suitable 

with the Wi-Fi data. 

Peng et al. [69] used the number of daily presence, daily maximum occupancy duration, and 

daily maximum vacancy duration working hours to predict the likelihood of occupancy presence 

in 11 office spaces, representing three typical office uses: single-person, multi-person, and meeting 

offices. A supervised learning method KNN was deployed to predict occupancy presence 

probability in three typical office uses, and then the author analyzed how much cooling energy 

could be saved using occupancy probability information. The experiment reported that 7% to 52% 

of HVAC energy could be saved using the proposed machine-learning-based cooling strategy. 

Razavi et al. [73] utilized a wide variety of ML methods to predict households’ future statuses 

using the Customer Behavior Trials (CBT) dataset, which is located in Ireland. The CBT data 

contains a large sample size and detailed demographic information of residents, but it does not 

include occupancy information. To provide occupancy data and train occupancy detection model, 

the occupancy information in the Electricity Consumption Occupancy dataset (ECO) [74], Dutch 

Residential Energy Dataset (DRED) [75], and Smart Dataset [76] was obtained and then applied 

to the CBT dataset to infer the occupancy status. DT, SVM, KNN, GB, and ANN were applied in 

this study. ECO, DRED, and Smart datasets were collected in Switzerland, Netherlands, and the 

United States, respectively. However, whether ECO and DRED occupancy ground truth data can 

be used in CBT for future occupancy predictions requires additional discussion because the 

locations of these datasets differ.  
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2.6 Applications of occupancy information in the energy control system 

2.6.1 Occupancy information and HVAC system control 

HVAC and lighting systems are the main sources of energy consumption in residential 

buildings. Studies showed that Americans and Europeans spent an average of 85 to 90% of their 

time in indoor environments, respectively [33]. In Canada, around 85% of all energy is consumed 

for HVAC systems, lighting, and IT equipment [74]. Occupancy plays a significant role in building 

energy consumption. Not considering occupancy information has led to a considerable error 

between predicted and actual energy consumption [75]. Most researchers developed different 

HVAC control systems in buildings to save the building energy of the residential and commercial 

sectors [76]. 

Previous studies mentioned three control strategy resolutions, including individual, zone, and 

room level [33]. An area that occupants can control HVAC and lighting systems directly is called 

the individual level. For example, an open office may have different zones, and each zone may 

have separate cubicles. Cubicles, in this case, represent individual levels. Room level means a 

space with a full-height wall (e.g., single or a meeting room). The zone level refers to a part of the 

room, and it defines according to either the number of HVAC terminal units or lighting fixtures of 

a room.  

The occupancy information can be used to optimize the operation of HVAC systems and 

enhance energy efficiency in different types of buildings (i.e., residential, commercial, office, and 

institutional buildings) [73]. The occupancy prediction can be roughly divided into two classes: 

real-time and future occupancy estimation. The distinction between these classes depends on the 

nature of the data used to predict real-time or future occupancy [77]. Real-time occupancy 

prediction mainly focuses on forecasting whether occupants occupy a space of buildings based on 

instant variables [78]. Future occupancy prediction aims to estimate occupancy information at later 

times. Except for outdoor and indoor environmental data, some studies used occupancy status at 

the last time-point as an input to build a future occupancy prediction model [79].  

2.6.1.1 HVAC system control using standardized occupancy information  

Predetermined and prediction occupancy data are two primary occupancy profiles that have 

been used to model occupancy information. Some researchers predict the HVAC energy 

consumption, heat gains, and lighting energy follow the predefined schedule offered by ASHRAE 
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Standard 90.1 [80]. As shown in Fig. 7, ASHRAE 90.1 provides a schedule that includes the fixed 

occupancy schedules for different building types and zones by the hour of the day [81]. However, 

using standardized occupancy schedules might lead to inaccuracy. In standardized occupancy 

schedules, all days of occupancy rate are assumed to be the same values throughout the year, which 

is not valid [82]. Duarte et al. [81] analyzed a large-scale commercial multi-tenant office building 

occupancy and showed up to a 46% discrepancy between occupancy prediction patterns and 

standardized occupancy schedules in ASHRAE Standard 90.1-2004. 

The standardized occupant schedule was used in many previous studies due to its simplicity 

[83]. In Fig.8, Wang et al. [84] demonstrated a flowchart of the HVAC system controller based on 

three different control algorithms: always-on, schedule-based, and occupancy-driven control. In 

schedule-based control, there is a fixed period from 9:00 to 17:00. If the time is in this fixed time 

slot, then the heating setpoint will be set to 12 °C, and the cooling setpoint will be adjusted to 

32 °C. However, the fixed occupancy schedule cannot adapt to real occupancy schedules because 

the occupancy patterns are stochastic in nature. Previous studies have shown that occupant arrival 

and departure times are difficult to generalize and predetermine [85–87], and predefined 

occupancy information can result in energy wastages when space is not occupied [88]. 

 

 

 

Fig. 7. Standardized occupancy schedule used in ASHRAE Standard 90.1 (Duarte et al., 2013 [84] ). 
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The standardized occupancy schedules also affect the programmable thermostat directly since 

it heavily relies on default occupancy patterns, resulting in dissatisfied users and minimal energy 

savings [12]. A programmable thermostat allows users to adjust the temperature according to 

programmed settings. Households can set the temperature for each day of unoccupied time, 

occupied time, and sleeping time according to their schedules. However, it is too difficult for most 

people, especially for the elderly to effectively specify the set temperature [89]. Recent studies 

found that tenants use programmable thermostats with higher energy consumption than regular 

thermostats because they do not use the programmable thermostats correctly. This report also 

showed that over 50% of households with programmable thermostats do not use the setback 

periods control function at night or during the day, which increases energy consumption [90].  

The tenants’ habits are complicated, and the standardized occupancy schedules cannot reflect 

occupancy patterns’ stochasticity and complexity [75]. Thus, a highly dynamic occupancy 

prediction model should be considered and studied to analyze energy performance.  

 

 

Fig. 8. Three different control algorithms and operation conditions (identified by Wang et al. [84]). 
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2.6.1.2 HVAC systems control using real-time occupancy information 

The real-time occupancy detection model could solve energy wastage problems caused by 

using standardized occupancy models [79]. Shi et al. [91] developed a real-time occupancy 

prediction model based on the building HVAC control algorithm and then inputted the occupancy 

prediction model into the Model Predictive Control (MPC) framework to control the HVAC 

system and proposed an LR model with change-points to predict real-time occupancy presence. 

The results showed that the proposed real-time occupancy prediction model could reduce energy 

consumption without compromising occupants’ thermal comfort. 

The dynamic occupancy presence information can be used to forecast actual energy 

consumption to improve energy prediction performance. Kim et al. [40] used the DT, SVM, and 

ANN to estimate occupant numbers. Continuous real-time occupancy information at each time 

step was implemented to improve the prediction performance of the energy model. The energy 

simulation study revealed that the estimated occupancy improved the energy consumption 

prediction performance by 17–33% under the root mean square error performance metric 

compared to the reference schedule case. 

Erickson et al. [53] deployed a wireless camera network to collect the people’s movement 

data and used a multivariate Gaussian and agent-based model to predict occupant numbers in a lab 

and office. Then occupancy-based outdoor air volume control strategies were employed to operate 

the HVAC system. The result showed that HVAC energy was saved by 14% when considering 

real-time occupancy information. In addition, Dong et al. [92] proposed three occupancy 

prediction algorithms to estimate occupancy presence and occupant number, and then the 

temperature setpoint control of HVAC was integrated into the model MPC algorithms based on 

these occupancy prediction results. As expected, 20% of HVAC energy was saved by utilizing the 

proposed technique. 

Some researchers incorporated real-time occupancy data into HVAC systems to preheat or 

precool apartments to provide comfortable environments before the occupants arrive. However, 

real-time occupancy presence information is sometimes inadequate to achieve high building 

energy efficiency due to building time lag [59]. 
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2.6.1.3 HVAC system control using future occupancy information 

Some scholars have started to develop the future occupancy prediction model to deal with the 

time lag problem of preheating or precooling caused by utilizing real-time occupancy information 

[79]. Since some cutting-edge sensors exist, such as GPS sensors, the GPS sensor could embed 

with mobile phones or watches to collect the users’ locations or their current state to estimate 

future occupancy state to control HVAC systems [77]. Gupta et al. [93] proposed to use real-time 

data from mobile phones embedded with GPS sensors to detect the user’s location and driving 

trajectory to estimate the time that residents return home. A web mapping service was utilized to 

detect the distance between the users’ current locations and their destinations, and then the HVAC 

system could preheat or precool the house to ensure the home can always be a comfortable 

temperature before the residents arrive home. 

Additionally, the Nest smart thermostat provides the early-on feature to start preheating and 

precooling before the residents arrive at home so that the house can reach the scheduled 

temperature on time. Nest smart thermostat uses ML techniques to learn residents’ behavior 

patterns and predict future occupancy presence. Therefore, the early-on feature can be used to 

calculate how early one switches on heating or cooling based on the future occupancy information.  

Furthermore, Huchuk et al. [12] compared the LR, MC, RF, and RNN to predict future 

occupancy presence 3 hours ahead with 30-min time step. The author evaluated the proposed 

methods’ overall accuracies based on the effects on seasonal, day type, time of the day, and user 

profile. The daily average accuracy distribution result showed that the RF, LR, and MC offer the 

best performance for a shorter prediction horizon. RNN provides a higher daily average accuracy 

result for a longer prediction horizon. Seasons also affect occupancy patterns [86] because 

occupant behaviors are more stochastic in some seasons than others. The accuracy of season effects 

showed that Spring was the most predictable season and always got the highest accuracy than other 

seasons, while Fall was the most challenging season to estimate the occupancy presence accurately.  

Previous occupant status is also an informative variable to help to predict future occupancy 

presence [59]. Chen and Soh [59] predicted the future occupancy presence under four different 

prediction horizons of 15 minutes, 30 minutes, 1hour, and 2 hours using two modeling approaches. 

IMC, multivariate Gaussian MG, and three DM techniques (autoregression integrated moving 

average (ARIMA), ANN, and SVM) were used in this project. Experiment results showed that, at 
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short prediction horizons of 15 min and 30 min, the ARIMA outperformed among all these 

approaches, while at long prediction horizons of 1 hour and 2 hours, SVM has a superior 

performance.  

2.6.2 Occupancy information and lighting system control 

Moreover, lighting system control also requires accurate occupancy information to save 

electrical usage. In the United States, lighting energy consumption occupies around 14% of the 

total electrical energy consumption in residential and commercial sectors [94]. Lighting accounts 

for 20–45% of energy consumption in office buildings [95]. Since occupancy-based lighting 

control plays an essential role in reducing energy consumption in buildings, the building lighting 

system control is implemented utilizing real-time occupancy data to improve lighting control 

efficiency to save electrical energy. Jin et al. [96] compared the proposed temporal sequential-

ANN model to predict occupancy for lighting system control. The occupancy estimation accuracy 

was enhanced from 96.4% of the conventional approach to 97.4% of the proposed method. 

Simultaneously, lighting false-offs significantly reduced from 79.5 times per day to 0.6 times per 

day without compromising the occupants’ thermal comfort.  

As a common sensor for occupancy detection, PIR has been used widely in the lighting control 

system. Although the PIR sensor is easy to implement and inexpensive, it only provides occupancy 

binary information (presence or absence) and fails to detect the occupants’ stationary status [57]. 

Therefore, a novel occupancy-based lighting control system was studied. Zou et al. [57] proposed 

the WinLight system to adjust brightness with a local controller integrated with each lamp. A 

WinLight App was designed to enable occupants to customize their comfortable luminance levels 

using their mobile phones. Eight volunteers were asked to walk around casually for 30 minutes in 

four lab areas and living places to evaluate occupancy detection performance. The experiment 

results showed that 98.66% and 99.04% accuracy were achieved in living areas and lab chambers, 

respectively. Furthermore, after 24 weeks of testing the energy-saving performance of WinLight, 

the study reported that WinLight achieved 93.09% and 80.27% energy savings compared to using 

the fixed lighting control schedule and PIR-based lighting control scheme, respectively. 
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2.7 Feature selection and sensitivity analysis  

One of the primary goals of this study is to investigate which indoor, outdoor environmental, 

time related, and energy consumption parameters provide significant information for predicting 

occupancy presence in an apartment. Indoor CO2 and acoustic levels strongly correlated with 

occupancy information and were used to predict occupancy information in Ref. [97]. The influence 

of occupants’ behaviors on their work environment can be broken down into several interactions, 

and the interactions represent in Fig. 9. 

The building energy efficiency performance can be improved significantly by implementing 

the intelligent building control system. Additionally, to maintain occupants’ thermal comfort, the 

control system should be adjusted appropriately since these control systems are dependent on 

occupancy models [8]. In that case, developing a reliable occupancy prediction model is necessary 

and essential. Reasonable time steps and appropriate inputs are two significant steps to build an 

occupancy prediction model.  

In Salimi’s study [7], a 1-minute time horizon was considered to predict the office occupant 

numbers in two zones, but in the sensitivity analysis section, Salimi concluded that 5-minute and 

10-minute time steps showed acceptable results in occupancy prediction model using R2 evaluation 

[7]. Therefore, a 1-min time interval is not always the best option for predicting occupancy. High 

computational costs and time consumption are two main problems when we use short time interval 

data. Therefore, how to balance accuracy and computational time also requires additional studies. 

 

 

Fig. 9. The interaction between residents and the indoor environment (identified by Dong et al. [98]). 
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Furthermore, Kim [99] compared ARIMA, Holt-Winter, RNN, and long short-term memory 

models to test time steps from 15 to 180 minutes. It turned out that different models have different 

results. ARIMA and Holt-winters’ error rate increases as the time steps increase, but the error rate 

is not very different at the time interval of 15, 30, 45 minutes (error rate approximately 24%, 25%, 

and 27%, respectively). Although Huchuk et al. [12] mentioned that a 30-minute time interval 

could provide a sufficient time horizon and guarantee the HVAC systems have enough time to 

make control decisions, the 30-minute time horizon may not be suitable for all studies. The time 

horizon depends on the time step of data collection and applications. Furthermore, some computers’ 

configurations cannot process short time interval data due to the limited computer memory.  

Therefore, ensuring prediction accuracy and finding an appropriate time step to reduce 

computational cost and time is crucial. 

It is advantageous to limit the classifiers’ inputs to develop an accurate prediction and short 

calculation model [100]. Using different numbers of features would probably change the model’s 

performance and accuracy [101]. Informative feature settings can enhance the model’s accuracy, 

and useless features could decrease accuracy [102]. If one dataset has many irrelevant and 

redundant inputs, it is difficult to get an accurate occupancy prediction result.  

Although previous research has made significant progress, there are still some challenges. 

The existing data collection durations in previous studies are too short (most of them are less than 

four months, as shown in Table 3) to testify the robustness of their occupancy prediction models 

[92,103–105]. There are not too many studies investigating the impact of seasons on the 

performance of occupancy prediction models. Occupant activities are different in different seasons. 

For example, occupants prefer to go outside in Summer and stay at home in Winter, which could 

cause different indoor CO2 levels and energy usages in Summer and Winter. That is, there is no 

fixed optimal variables combination for predicting occupancy presence in all seasons. Thus, 

different seasons require different variables to predict occupancy. Furthermore, whether it is 

feasible and possible to maintain accuracy under seasonal changes needs further studies. To this 

end, it is expected to develop DM-OPF to select optimal features to ensure the robustness of the 

prediction models.  
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Table 3 Overview of different settings and results of studies 

 

 

2.8 Challenges of the existing literature 

To sum up, after reviewing previous studies, three limitations are identified: 

• Using fixed occupancy information cannot reflect the occupancy patterns’ randomness and 

complexity since occupant behaviors are complicated and stochastic.  

• Collected data for a short period is not enough to testify to the robustness of the occupancy 

prediction model.  

• There are not too many studies on the impact of seasons on the performance of occupancy 

prediction models. 

Reference 

Data collection 

time-step 

(min) 

Analysis 

time-step 

(min) 

Methods Building type 
Evaluation 

metric 
Result 

Data 

collection 

period (days) 

Huchuk et al. 

[12] 
5 30 

LR/ Markov model/ RF/ 

HMM/ RNN 

Single family 

apartment  
Accuracy 

73–79% 

(median) 
365 

Razavi et al. 

[73] 
1 30 

 
RF/ SVM/ KNN/ANN/ 

GB 
House Accuracy 90.1% 183 

 

Peng et al. 

[106] 

1 1 KNN Office N/A N/A 210 

 

Ryu et al. 

[65] 

1 1 HMM Office Accuracy 85–93.2% 7 

 

Scott et al. 

[67] 

5 15 KNN House Accuracy 

 

78–82% 

 

61 

 

Mamidi et al. 

[107] 

10 15 

MultiLayer Perceptron/ 

Gaussian Processes/ 

Linear Regression/ 

SVM 

Office Accuracy 62–73% 213 

 

Huang et al. 

[108] 

5 N/A Bayesian method Airport R square 0.747 66 

 

Dobbs et al. 

[104] 

1 s 60 Markov chain Research lab 
Root mean 

square 
0.163 58 

 

Chen et al. 

[46] 

1 15 

SVM/ANN/KNN/linear 

discriminant analysis/ 

CART 

Research Lab Accuracy 61–74% 32 

 

Dong et al. 

[92] 

5 5 

IMC/Hierarchical 

probability 

sampling/ANN/SVR/FFNN 

NA 

 

Accuracy 

 

60.25–

87.59% 
174 



30 

 

3. METHODOLOGY 

3.1 Data composition 

The data composition of this study is explained in Fig. 10 to provide a deep understanding of 

the methodology. The whole dataset was divided into four groups: occupancy, indoor/outdoor 

environmental, time-related, and energy-related data. The occupancy data from the motion 

detectors referred to the occupants’ movements. The outdoor/indoor data included indoor 

temperature (𝑇𝑖𝑛 ), indoor humidity (𝑅𝐻𝑖𝑛 ), indoor CO2 concentration (𝐶𝑖𝑛 ), thermal setpoint 

temperature (𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡), indoor luminosity (𝐼𝑖𝑛), window blind (𝑊𝐵), window auto-lock status 

(𝑊𝐴𝑆), outdoor humidity (𝑅𝐻𝑜𝑢𝑡), outdoor temperature (𝑇𝑜𝑢𝑡), solar irradiance (𝑆𝐼𝑜𝑢𝑡), wind 

velocity (𝑉𝑜𝑢𝑡), outdoor illumination (𝐼𝑜𝑢𝑡), and rain/no_rain (𝑅). Moreover, time-related data, 

such as the time of the day (𝐻), weekday/weekend (𝑊), and day period (𝐷), were also regarded as 

significant occupancy prediction parameters because when tenants enter or leave their home has 

the strongest correlation with the time-series data. Finally, lighting load (𝐸𝐶𝑙𝑖𝑔ℎ𝑡) and plug power 

energy consumption (𝐸𝐶𝑝𝑙𝑢𝑔) were also considered in this project to forecast occupancy presence. 

In data preprocessing, outliers can be removed, and missing values can be calculated. The 

median replaces the missing values. After data preprocessing, the data is divided into training and 

testing data. The training data is employed to train the prediction classifier model for occupancy 

prediction, and then the classifier models utilize the testing data to predict the occupant’s state. 

Next, the feature selection method can be used to determine the relevant parameters to reduce 

computational cost and enhance prediction accuracy.  

 

 

Fig. 10. Data composition. 
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3.2 Overview of the research framework  

Fig. 11 illustrates an overview of the methodology framework in this project, which includes 

three steps:  

Step 1: The collected data from apartment installed a home energy management system 

(HEMS) was cleaned by processing the missing values and removing outliers to guarantee the 

quality of the data. Successively, data transformation was employed to scale the features by 

centering the mean with standard deviation since features with large units could outweigh smaller 

units and cause prediction inaccurately.  

Step 2: Exploratory data analysis. Exploratory data analysis (EDA) is usually performed to 

better understand the data characteristics, distributions, and correlation between variables. 

Boxplots and pairwise scatter plots with correlations were used to study patterns and correlations 

between variables. More information can be found in Chapter 3.4.  

Step 3: Data mining-based occupancy prediction model development. The development of 

DM-OPF is the novelty of this study, which occurred in step 3 and included two steps. After 

dividing the whole year’s data into four datasets (Spring, Summer, Fall, and Winter). Take the 

dataset Spring as an example; first, RFECV was utilized in this framework to select the optimal 

features for different predictive algorithms in Spring, based on prediction accuracy results. Then, 

six ML algorithms were applied to develop SCOP models to predict the real-time occupancy status 

based on the results from RFECV. The selection of these algorithms is mainly based on two 

considerations, i.e., popularity and diversity. The selected algorithms have been widely used to 

solve classification tasks and have achieved encouraging results. Moreover, model parameters are 

optimized through cross-validation to maximize the prediction accuracy. The same strategy is 

applied to the dataset of Summer, Fall, and Winter.  

The uniqueness of the proposed framework is that it considers the seasonal influence on 

occupancy prediction and develops four SCOP models to improve the prediction accuracy than the 

traditional occupancy prediction model. Fig. 12 shows the difference between the SCOP models 

and the conventional occupancy prediction model (i.e., consecutive prediction model). The first 

difference between these two is the features. In the conventional prediction model, the feature 

selection is based on the whole year dataset, while in the SCOP models, the feature selection is 

based on each season. The second difference is parameters settings. Take the DT algorithm as an 
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example. The conventional model only has one setting for the whole year, but they have four DT 

models for each season in SCOP models. The customizable feature selection and parameter setting 

can improve the prediction accuracy, and the results can be found in Section 4.3.3. 

  

Fig. 11. Methodology framework of the occupancy prediction model. 
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Fig. 12. The difference between seasonal occupancy prediction and conventional prediction model. 

3.3 Data preprocessing  

Data is not always perfect. Sometimes some data are missing due to human or mechanical 

errors, such as noisy, missing, or inconsistent data [109]. Data preprocessing is a significant step 

to remove noise and incorrect data before applying DM technology. The raw and original data may 

contain missing values and outliers. Having too many outliers and missing values could decrease 

the prediction accuracy. Moreover, since the raw data variables have different scales, using 

features with different scales does not contribute equally to the analysis. Thus, data cleaning was 

the first step in data preparation, and then data transformation was utilized to achieve uniformity 

of different features’ values. More details are introduced in Chapter 3.3. 

3.3.1 Data cleaning 

3.3.1.1  Missing values  

Missing values is a serious issue that needs to be addressed in the data cleaning process. To 

tackle long-term missing values (i.e., lacking data for several hours in one day and the data is 

missing continuously for a long time), that day is removed from the dataset. To deal with the short-

term missing data (i.e., missing values at a particular time step, not continuously missing), the 

missing values are replaced by the average of the previous two values in the dataset. Since the 
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occupant movement data is a binary value, no abnormal value is detected in the entire dataset. 

Similarly, the missing values of the motion detection are filled in with their previous data as well 

[109,110]. Furthermore, the quantile method is used to detect the outliers in the dataset of 

meteorological, indoor environment, time-related, and appliances energy consumption [111].  

3.3.1.2 Noisy data  

Noisy data is a random error or variance in a measured variable [112]. Usually, data 

visualization of the boxplot can be used to detect outliers. Binning, regression, and outlier analysis 

are three methods of data smoothing. The binning method could smooth the data by consulting its 

“neighborhood” [112] and distributing the values into several bins. Suppose that there is a set of 

the following values: 1, 2, 3, 4, 4, 5, 6, 7, 8. The binning method can divide the data into equal 

frequencies and result in Bin1: 1, 2, 3, Bin2: 4, 4, 5, Bin3: 6, 7, 8. Next, the data could be smoothed 

by minimum medians or means. For example, in smoothing by bin medians, all the values of a 

specific bin are replaced by the median of the values of that bin. The median of 1, 2, and 3 is 2, 

the median of 4, 4, and 5 is 4, and the median of 6, 7, and 8 is 7. Therefore, the result would be 

Bin1 = 2, 2, 2; Bin2 = 4, 4, 4; Bin3 = 7, 7, 7. 

Outlier analysis can also do data smoothing. Outliers’ detection can use the clustering method 

to achieve [112]. Similar values are organized into groups, the values outside the clusters may be 

considered the outliers. Fig. 13 shows three data clusters. The values outside the clusters that are 

marked by the red ellipses are considered to be the outliers.   

 

Fig. 13. The example of the outlier analysis. 
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3.3.2 Data reduction   

Data reduction can involve reducing the data size by aggregation, eliminating redundant 

features, or clustering, and it includes three strategies: dimensionality reduction, numerosity 

reduction, and data compression [112]. Principle component analysis (PCA) is a typical 

dimensionality reduction method in feature extraction. It creates a new set of features to represent 

the dimension of the original feature in a lower dimension. Feature selection is also a technique in 

removing redundant data to reduce the data dimensionality, while PCA does not eliminate 

redundant features. More details about feature selection are shown in Chapter 3.5. 

Data compression is applied to compress and reconstruct the original data [112]. This project 

has 18 categories, but the original dataset has more than 100 features because each category has 

more than four features. For instance, Fig. 14 shows the category of CO2, there are four features 

(KTC01144, KTCO1145, KTCO1146, KTCO1147), which means four CO2 sensors are placed 

and distributed in the different locations of the apartment, but the exact locations are unknown due 

to the privacy issue. Not restructuring the original data causes feature redundancy, so the 

computational cost increases and the accuracy decreases. The apartment is regarded as a whole 

zone in this study. Therefore, compressing the data is a necessary step in data preprocessing.  

 

 

Fig. 14. The example of data reduction. 
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3.3.3 Data transformation  

The parameters of the dataset have different ranges. In general, using a smaller unit to 

represent an attribute leads to a larger range of the attribute, so it tends to give such an attribute a 

more significant influence or “weight” [112]. For example, the data contains the room setpoint 

thermal temperature and luminance level. The luminance values are usually much larger than the 

setpoint temperature. If the attributes are left unnormalized, then the luminance distance 

measurements could outweigh the setpoint temperature measurements. To prevent the features 

with large ranges (e.g., CO2 and luminance) from outweighing those with small ranges (e.g., 

occupancy presence), the data should be normalized or standardized.  

There are two main methods of feature scaling: normalization and standardization. 

Standardization scaled features by centering the mean with standard deviation. In Equation (1.), 

assume that 𝑥 is the original dataset, μ is the mean of the features’ values, and 𝜎 is the standard 

deviation of the values of the features. The value of 𝑥  can be transformed to 𝑥′  using 

standardization. Because there are no rules to guide the choice of when to normalize or standardize 

data, the effective way is to compare the performance for the best performance results. This study 

finally utilized standardization in the data transformation step. Fig. 15 shows the data that was 

used after the standardization methods.  

𝑥′ =
𝑥 − μ

σ
(1.) 

 

Fig. 15. The example of standardization. 
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Attribute construction is also a data-transformation strategy used to create a new feature [112]. 

A motion sensor is also known as PIR, which can detect occupants’ presence, and a movement 

detection could guarantee residents’ occupancy, but “no motion is detected” does not imply 

absence because motion detectors fail to detect stationary objectives [113]. In this case, a time 

delay is required to interpret the motion detection data concerning occupancy status.  

In this study, a time delay is required to interpret the assumption of occupied or unoccupied 

based on the motion detection. During this time, the occupants need to be assumed in a particular 

space [106]. If there is no movement within the time frame greater than the time delay, the zone is 

assumed to be “0” (unoccupied) [114].  

In order to get a high confidence level of confirming a resident’s vacancy, select an optimal 

time delay is significant. A short time delay could increase energy savings, but unwanted false 

switching between on and off may happen [115]. Although long-time delays prevent frequent on 

and off switching, increased energy consumption would be an issue when space is not occupied.  

Usually, the optimal motion detector delay time is between 10 and 20 minutes [26,113,115]. 

Fig. 16 shows an empirical probability distribution of movement detections, which means if 

another detection does not immediately follow one movement detection for more than 10 mins, it 

is unlikely that a new movement will be observed. The space is likely to be unoccupied [113].  

The time delay was set as 10 mins, which was aligned with prior studies [69,113,114]. 

However, case studies of prior research were all office buildings, and time delay value could be 

used all day since the officers or students depart the office and go home at the end of the day. 

 Residential buildings differ from office buildings in terms of occupant schedules. Motion 

detectors cannot monitor stationary occupants when they sleep (i.e., the motion sensor records “0”). 

Therefore, the time delay strategy cannot be applied to a residential building when occupants sleep. 

In this case, before midnight, the time delay strategy is used, and if there is at least one movement 

within a time delay, the space is assumed to be occupied. After midnight, the time delay strategy 

is ditched. During the midnight to the morning (until the motion is detected when the occupants 

get up), if there are at least two movements, it is considered that the apartment is occupied. After 

converting motion detection to occupancy status, each occupancy status was transformed to either 

0 or 1, representing unoccupied and occupied, respectively.  
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Fig. 16. Empirical probability distribution of the frequency of the movement detections (offered by [113]).  

3.4 Exploratory data analysis  

 EDA is an essential step in data analysis. The primary aim of EDA is to use data visualization 

to test hypotheses and obtain a deep understanding of the dataset [116], and it is usually performed 

after data acquisition and data preprocessing. The main objectives of EDA can be summarized as 

follows: (1) outlier detection; (2) understand the structure of the database; (3) preliminary selection 

of appropriate models; (4) uncover the relationship between variables and extract the essential 

parameters; (5) visualize potential relationships between variables and outcome [117]. The EDA 

methods can be classified as graphical and non-graphical. Common graphical EDA includes 

histograms, boxplots, quantile-normal plots, scatterplots, line plots, and heatmaps. The non-

graphical EDA methods include tabulation, statistical tests, and summary statistics.  

Boxplots and scatter plots are two common plotting tools [118]. The former describe essential 

features of data distribution and provide a summary of the sample. The latter usually plot pairwise 

parameters against each other to reveal the correlation and linear/non-linear or monotonic 

dependencies between two variables [118]. Boxplots effectively present information about the 

central tendency, skew, symmetry, and outliers of each variable [119]. A side-by-side boxplot is 

one of the common forms of the boxplot, which involves comparing the characteristics of several 

groups of data [120].  

Fig. 17 shows that the boxplot consists of a rectangular box with “hinges” on the top and 

bottom, indicating the quartiles Q3 and Q1, respectively, with the middle line representing the 

median. The difference between the Q3 quartile and the Q1 quartile is called the interquartile range 
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(IQR), which contains 50% of the data. The upper and lower whiskers are drawn in each direction. 

The extreme point beyond the upper whisker is an outlier. 

In Fig.17, the extreme point more than 1.5IQRs beyond its corresponding hinge in either 

direction is identified as an outlier. Some points beyond the 3IQRs are considered extreme outliers. 

In Ref. [119], the author mentioned that the term “outlier” is not well defined in statistics and the 

definition varies depending on the purposes and situations. The definition of “boxplot outliers” is 

considered any points more than 1.5IQRs above Q3 or more than 1.5IQRs below Q1. This does 

not indicate a problem with those data points because the boxplot is an EDA technique, and the 

boxplot outlier should be considered a suggestion that the point might be a mistake or unusual data. 

Also, points that are not designated as outliers may be mistaken [119]. It is also significant to 

realize that the outlier numbers strongly depend on the data sample size. Usually, it is expected 

that 0.7% of the data be boxplot outliers, with around half in either direction [120].  

Fig. 17 also shows the symmetry of the boxplot because the median is in the center of the box. 

If the whiskers are the same length as each other, then the box is considered symmetrical.  

 

 

Fig. 17. Annotated boxplot [119]. 
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3.5 Data mining-based occupancy prediction framework development  

In EDA, the relationships between variables and occupancy information could change based 

on the seasonality effect. For example, the correlation between light load and occupancy 

information is very weak in Spring, which means light load data may fail to provide much helpful 

information to predict occupancy status, but in Summer, light load correlates with occupancy ratio 

strongly. Therefore, each season requires different features to maximize prediction accuracy. To 

mitigate the seasonal instability and increase prediction accuracy, customized DM models were 

exploited. The customized occupancy prediction model’s framework aims to select the optimal 

feature combination and find a classifier that can provide the best prediction performance for each 

season. 

Filter, wrapper, and embedded are three categories of feature selection methods. To remove 

redundant features and test how many variables are optimal to maximize accuracy, RFECV was 

implemented in this study. Although the filter method does not rely on ML classifiers [121], it may 

discard some valuable variables and decrease prediction accuracy without considering the 

interactions between variables 

The RFECV has been widely used to evaluate the combinations of the input features and 

determine the optimal feature combination to achieve the maximum accuracy prediction result 

[122]. In the feature selection process, first, a wrapper feature selection method named RFECV 

was used to select optimal features, and then an embedded feature selection technique named 

feature importance was employed to rank the importance among the selected features obtained 

from RFECV. The process of the feature selection analysis is shown in Fig. 18. 

 

 

 

 

 

 

Fig. 18. Process of the feature selection analysis.  
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3.5.1 Wrapper method: Recursive feature elimination with cross-validation 

Information gain provides the importance of selected variables, but how many features are 

optimal to improve the prediction model’s accuracy needs further study. Inspired by Candanedo 

et al. [123], RFECV was implemented to select the best number of features in different seasons. 

The RFECV could help to define the optimal number of remained features and avoid overfitting. 

Using cross-validation can retain the best performance characteristics by providing a criterion for 

recursive feature elimination (RFE) to determine the best feature subset. 

Xie et al. [124] provided a diagram that illustrates the theory behind RFE. The fundamental 

behind RFECV is to add cross-validation to the principle of RFE. RFECV initially works on all 

features, and the least important feature is eliminated in each iteration based on the model’s cross-

validation score [125]. Using cross-validation can retain the best performance characteristics by 

providing a criterion for RFE to determine the best numbers of features.  

.  

Fig. 19. Diagram of recursive feature elimination (offered by [124]). 

3.5.2 Embedded method: Feature importance 

As a popular feature selection method, RF works differently for classification and regression. 

For classification, the criterion of impurity is either Gini impurity or the information gain.  

Information gain is a frequently used feature selection technique. It is one of the filter-based 

feature selection methods [126]. Information gain could reduce the redundant features and detect 

the inputs that have most of the information based in the specific class [126], and then the filtered 
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features are ranked based on their importance. Entropy is a measure of uncertainty that can be used 

to infer the distribution of features. The higher the uncertainty of the system, the greater the entropy. 

In information gain, the best features are determined by calculating the entropy of the inputs. The 

entropy can be calculated using Equation (2.).  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑃𝑖 log2(𝑃𝑖

𝑛

𝑖=1

) (2.) 

Assuming that the variables 𝑆= {𝑆1, 𝑆2, 𝑆3 … … 𝑆𝑛} in the set, its corresponding probabilities 

in the set are 𝑃𝑖= {𝑃1, 𝑃2, 𝑃3 … … 𝑃𝑛}. Where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) is entropy. The equation of condition 

entropy is given in Equation (3.) From Equation (2.) and (3.), the information gain can be 

calculated using Equation (4.). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = ∑
𝑁𝑢𝑚(𝑆𝑣)

𝑁𝑢𝑚(𝑆)
𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)

𝐸(𝑆𝑣) (3.) 

 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴)                                           (4.) 

 

where the 𝑆 is the sample, 𝐴 is an attribute, 𝑣 is the possible value for attribute 𝐴, 𝑣𝑎𝑙𝑢𝑒𝑠(𝐴) are 

the set of possible values for 𝐴. 𝑁𝑢𝑚(𝑆𝑣) is the number of 𝑆 for value 𝑣. 𝑁𝑢𝑚(𝑆) is the number 

of samples for all data samples and 𝐸(𝑆𝑣) is the entropy for the sample that has a value of 𝑣.  

This study selected information gain as the first feature selection method as this filter-based 

approach can provide stable sets of selected features due to the robust nature against overfitting 

[126]. Furthermore, filter methods are more efficient than wrapper approaches concerning 

computational cost [127].  

3.5.3 Data mining techniques  

In this chapter, a brief overview of six ML algorithms is given, which are LR, SVM, DT, 

gradient-boosting decision tree (GBDT), RF, and ANN. These algorithms were selected based on 

two main considerations: popularity and diversity [128]. All these supervised ML algorithms have 

been widely used for classification problems, and their performances are robust. Different 
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mathematical fundamentals behind them contribute to their diversity to apply different studies and 

solve various problems, and each selected algorithm has its own unique advantages and 

weaknesses. For example, the DT is simple to understand and interpret, while the LR is well known 

for avoiding overfitting [79]. 

3.5.3.1 Logistic regression 

Logistic regression is commonly utilized for binary and multinomial classification problems. 

The former is only used to predict two classifications while the latter accounts for more than two 

categories [129]. In this study, binary logistic regression was used to predict the real-time 

occupancy presence, occupied or unoccupied specifically. The occupied status refers to the 

occupants’ behaviors, such as cooking, exercising, and walking around. The strengths of LR are 

simple to understand and can be regularized. However, it does not perform well for non-linear and 

complex relationships [79]. The logistic regression used in this study is based on the following 

function:  

𝑃(𝑀|𝑥) =
1

1 + 𝑒−(∑ 𝛽𝑖  ∙𝑋𝑖
𝑛
𝑖=1  +𝛽0)

(5.) 

where 𝑃 is the probability of occupancy presence (from 0 to 1) with X variables as input; 𝛽0 is the 

constant, and the 𝛽𝑖  is an individual weight for each specific feature configuration.  

3.5.3.2 Support vector machine 

An SVM is a supervised learning algorithm that can be used for both classification and 

regression. It has been found to provide robust prediction performance in terms of predicting 

occupancy information [130] without using a large training sample. In the context of classification, 

SVM searches for the optimal hyperplane (“decision boundary” [112]) that can best separate data 

into two categories for the occupied and unoccupied state. Unlike logistic regression, there is no 

probability for output in each class [131]. An optimal hyperplane can then be calculated using 

Equation (6.). 

𝑦 = 𝑤𝑇 + 𝑏 (6.) 

where 𝑤 is a normal vector, which determines the direction of the hyperplane. 𝑏 is displacement, 

which decides the distance between the hyperplane and the origin. For any class of 𝑦, the problem 

is to minimize in Equation (7.).  
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1

2
‖𝑤‖2 (7.) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1,       𝑖 = (1, 2, 3, … … , 𝑚) 

3.5.3.3 Decision tree 

The CART, a type of the DT method, was selected to predict occupancy status using indoor, 

outdoor, and energy consumption data. It is a front-to-bottom tree structure, including internal 

nodes (non-leaf nodes), terminal nodes (leaf nodes), and root nodes. Each internal node of the tree 

corresponds to a predictor, and the number of the branch is equal to the number of possible values 

of the corresponding predictor [65]. The CART can construct binary trees, so each internal node 

has two edges. A notable advantage of CART is that it can deal with numerical and categorical 

variables and can easily handle outliers.  

The classification tree uses the Gini index in order to determine which feature should be 

located at the root and create non-leaf nodes. A small Gini index reflects the difference between 

small samples, and the uncertainty is small. Therefore, the CART selects the attributes with the 

smallest Gini index as the attribute division. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ (
|𝐶𝑘|

|𝐷|
)

2𝑘

𝑘=1

(8.)
 

For a given set of samples 𝐷, where 𝐶𝑘 is the sample of 𝐷 that belongs to class 𝑘, and 𝑘 is the 

number of classes. Because the CART creates a binary tree, non-leaf nodes always have two 

children, and it needs to compute a weighted sum of the impurity of each resulting partition [112]. 

In Equation (9.), if the binary partition of  𝐴 partition 𝐷 is divided into 𝐷1 and 𝐷2, then under the 

partition condition, the Gini index of 𝐷 is calculated as follows: 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) (9.) 

where 𝐺𝑖𝑛𝑖(𝐷1) denotes the uncertainty of set 𝐷, and the 𝐺𝑖𝑛𝑖(𝐷, 𝐴) represents the uncertainty of 

the set D partitioned by 𝐴. 
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3.5.3.4 Gradient boosting decision tree  

GBDT is an iterative DT algorithm consisting of multiple decision trees and using weighted 

voting to make the final decision. As a typical ensemble learning algorithm, GBDT has a higher 

prediction efficiency and lower computational cost compared to a single DT algorithm.  The basic 

idea behind GBDT is to combine a set of “weak learners” to create one “stronger learner” [132]. 

The GBDT, through multiple rounds of iteration, each iteration produces a weak classifier, and 

each classifier is trained based on the residual of the previous round of classifier to obtain better 

results, noted that the weak base learner limits the use of the CART model to minimize the loss 

function. Therefore, the GBDT method iteratively adds a new CART tree at each step to best 

reduce the loss function [133]. Usually, the loss function for the classification problem is set for 

deviance.  

The simple process of GBDT can be illustrated as follows:  

• Initialize prediction results using shallow decision trees. 

• Calculate the value of the negative gradient of the loss function in the current model and 

use it to estimate the residual. 

• Generate a new decision tree in the direction of the gradient descent of loss function 

established in the previous step as input for prediction.  

• Repeat previous steps until the error converges.  

3.5.3.5 Random forest  

RF is a type of ensemble ML technique called bagging, containing multiple decision trees 

[134]. The RF operates by building a multitude of weak CART classifiers. The results utilize 

voting for classification or averaging for regression, so the overall model results have higher 

accuracy and generalization performance. In addition, RF adds additional randomness when 

building each tree independently (there is no correlation between each DT in the RF) to reduce the 

prediction model’s variance. Thus, RF does not need extra pruning to obtain better generalization 

anti-overfitting ability. For predicting binary classification labels, the RF overcomes the unstable 

problem of decision trees by generating a set of trees instead of a single tree [135]. Moreover, it 

can evaluate feature importance ranking (i.e., the RF could predict which variables are the most 

important in label predicting). In this study, the RF was implemented using the Scikit-learn library 

[136] via Python.  
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3.5.3.6 Artificial neural network 

The multi-layer perceptron (MLP) model is an ANN model widely used in building 

engineering to estimate occupancy presence. An MLP model mimics the learning and problem-

solving process of the human brain to predict the outcome. As shown in Fig. 20, the general 

structure of MLP is based on the principles of the backpropagation algorithm and consists of three 

types of neuron layers [137]: an input layer, one or more hidden, layers and an output layer. Nodes 

from one layer are connected to all nodes in the following layers, each connection corresponds to 

a different weight, and there can be no lateral connections in any layers or feedback connections 

[138].  

In the input layer, 18 input neurons are used, and each one represents a variable. The hidden 

layer contains all input variables, each variable multiplied by its weight, and a bias is also 

considered. The equation can be identified in Equation (10.). 

 

Fig. 20. The architecture of an MLP model. 

 

𝑎𝑗 = ∑ 𝑥𝑖 × 𝑤𝑗,𝑖 + 𝑏𝑗

𝑛

𝑖=1

(10.) 
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where 𝑎𝑗 is the summation node, 𝑥𝑖 is the input values used to estimate the occupancy status. 𝑤𝑗,𝑖 

denotes the weight, the 𝑗 is the subscript representing the number of neurons in the next layer, and 

𝑖 is the number of neurons in the previous layer. 𝑏𝑗 is the bias values. After that, the output value 

can be calculated by inputting the 𝑎𝑗 into the transfer function of the neuron:  

𝑦𝑗 = 𝑓(𝑎𝑗) (11.) 

3.6 Performance evaluation  

The model performance metrics used F1-score and area under the curve (AUC) that are 

calculated from confusion matrix, which is a table with two dimensions and can output two or 

more classes defined as true positive (TP), true negative (TN), false positive (FP), and false 

negatives (FN). The confusion matrix for a binary occupancy status classification is shown in 

Table 4.  

Table 4 Confusion matrix for binary occupancy status classification  

F1-score is a measure of test prediction accuracy, and it is a harmonic average of precision 

and recall [139]. The precision, recall, and F1-score are given by the following equations, 

respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(12.) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(13.) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(14.) 

 

Meanwhile, the AUC was also applied. AUC is created by the ratio of TP against the FP rate 

and calculating the area under this plot. AUC ranges from 0 and 1, with 0.5 indicating that the 

model performs no better than random guessing, while 1.0 represents a perfect classification model. 

Predicted class 
Actual class 

1 = Occupied 0 = Unoccupied 

1 = Occupied TP FP 

    0 = Unoccupied FN TN 
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4. CASE STUDY 

4.1 Data description  

To verify the effectiveness of the proposed models, the proposed framework is tested by 

applying them on a one-year dataset collected in 2016 from a high-performance building named 

‘HIKARI’ located in Lyon, France. HIKARI is a mixed-use building containing apartments, 

offices, and shops. In total, there are 32 apartments in the building with different floor areas and 

numbers of rooms. The present case study apartment is a three-bedroom apartment with the floor 

area of 97.6 m2; the floor plan of the apartment is given in Fig. 21 and Table 5. The apartment 

installed a HEMS that various sensors could collect the data of the indoor environment, occupant 

movement, and energy use (plug power consumption and lighting power usage) at 1-min resolution. 

Very high-resolution data does not require for building energy management, inspired by Ref. [7], 

the data in this study was scaled to 10-min time steps. 

 

Fig. 21. Floor plan of apartment 182. 
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Different indoor sensors were installed in different zones in apartment 182 to record the CO2 

concentration, room relative humidity, room temperature, indoor luminosity, window condition, 

appliance energy consumption, occupancy status, and other relevant data. Table 6 shows more 

details about the indoor sensor information (e.g., sensors’ tags, attributes, definitions, and 

numbers), and Table 7 displays the specification of sensors installed in the apartment. All attributes 

in this study are also shown in Table 8. Although the number of sensors and which rooms have 

sensors are known, the specific location of each sensor in the room is unknown due to the privacy 

issues with tenants. 

Table 5 Description of characteristics of apartment 182 

 

Table 6 Information of sensors 

Device tag Attribute Definition Number of sensors 

KTCO 

Temp Room temperature 4 

Humid Room humidity 4 

CO2 Room CO2 concentration 4 

KTMS Thermostat  Thermostat setpoint temperature  6 

KMVL 
Detect Motion detection 14 

Lux Luminosity 14 

KBLD 
Window blind Blind position 10 

Window shade  Slat angle position 10 

KOCL 
Window auto-

lock status 
Normal or auto-locked 7 

KLGT 
Light power Light instant power 14 

Light status Switch button operation record 14 

KPWR Plug power Plug instant power 18 

 

Table 7 Specification of sensors installed in apartment 182 

Sensor Manufacturer Type Detection range Measurement resolution 

Motion detector Theben PlanoCentro A-KNX 
64 m2 if seated 

100m2 if moving 
Event-baseda 

Indoor luminosity Theben PlanoCentro A-KNX 5–2000 Lux 1 min 

Light and plug load ABB KNX Energy Module: EM/S 3.16.1 —— 1 min 

Indoor CO2, temperature, 

and relative humidity 
Theben AMUN 716 

CO2:0–9999 ppm 

RH: 1–100% 
1 min 

Thermostat Theben AG Varia -5 ℃–45℃ 1 min 

Window blind ABB KNX  JRA/S X.230.5.1 0–100% 1 min 

Name Floor area (m2) No. of bedrooms No. of living room No. of kitchen No. of bathrooms 

Apartment 182 97.6 3 1 1 3 
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a Note that the event-based sensor can be triggered at any time. Occupants’ movement collected by motion detector 

was transformed into the structured data at 1-min resolution, which means, if one or more movements are detected 

within one minute, it is recognized as one. 

Table 8 Summary of model inputs 

Categories of data Name of parameter Type Unit 

Time-related data 

Time of the day Numerical 1,2,3, …,143,144 

Weekday/weekend Categorical Weekday=1; weekend=0 

Peak period/ off-peak period Categorical Peak period=1; off-peak=0 

Outdoor weather data 

Outdoor temperature Numerical ℃ 

Outdoor humidity Numerical % 

Solar radiation Numerical W/m2 

Wind velocity Numerical m/s 

Outdoor illumination Numerical Lux 

Rain/non-rain Categorical Rain=1; no rain=0 

Indoor environment data 

Room temperature Numerical ℃ 

Room humidity Numerical % 

Room CO2 concentration Numerical ppm 

Room Luminosity Numerical Lux 

Thermostat setpoint Numerical ℃ 

Window blind Numerical Fully open=0; fully closed=100 

Window auto-lock status Categorical Auto-lock=1; normal=0 

Energy consumption data 

 

Lighting energy consumption Numerical Wh 

Plug energy consumption Numerical Wh  

 

 

Table 9 The number of sensors installed in each room of the apartment 

Sensor Room type Number of Sensors 

Motion detector/Indoor luminosity Living room  2 

 Kitchen  1 

 Corridor  4 

 Bedroom 3 

 Bathroom 2 

 Unknown 2 

Indoor CO2/Temperature/Humidity Living room 1 

 Bedroom 3 

Lighting power/Light on/off Living room 2 

 Kitchen 3 

 Corridor 3 

 Bedroom 2 

 Bathroom 4 

Plug power Living room 6 

 Kitchen  7 

 Bedroom 4 

 Unknown 1 
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5. RESULTS 

5.1 Exploratory data analysis  

EDA was performed on an apartment building, and the dataset has been introduced in the 

previous discussion. Six weather condition data (outdoor temperature, outdoor humidity, outdoor 

illumination, solar irradiance, wind velocity, and rain/no rain), eight indoor building environmental 

data (indoor carbon dioxide, indoor temperature, indoor relative humidity, thermostat setpoint 

temperature, indoor luminosity, window blind, wind shade, and window auto-lock status), light, 

plug load, and occupancy ratios were plotted in a boxplot with three different time horizons (day 

of week variation, seasonal variation, and intra-day variation) from Fig. 22 to Fig. 24. It is worth 

mentioning that the definition of occupancy ratio is the minutes that people stay at home divided 

by the minutes of an entire day. Also, the middle red line of the box is the median of the data, the 

green triangle is the average, and the red dots are outliers in each dataset.   

5.1.1 Temporal attributes analysis 

5.1.1.1 Variables with weekly variation 

In Fig. 22, the variations are displayed in a boxplot for the respective variables, and the days 

of the week are indicated. In general, the variables for each day have limited variation. As seen in 

the upper row, there is little difference in outdoor temperature every day in a week, it fluctuates 

around 13 °C. Similarly, outdoor humidity and solar irradiance have a low level of variance, 

outdoor humidity remains above 60%, and solar irradiance values in a week are greater than 200 

W/m2 on average. There are some outliers over the upper whisker in subplot D because the 

terminology “outlier” is not well defined in statistics and the definition varies depending on the 

objectives of studies, the outliers in the boxplot should be considered just as a suggestion. The 

“outlier” might be a mistake or otherwise unusual data [119].  

In the second row of subplots, limited variation can be found in the outdoor illumination 

subplot, each day’s illumination during a week is around 90 Lux on average. The box’s body 

reveals that 50% of data are distributed from about 50 to 180 Lux. The data distribution of subplot 

E, F, H is positively skewed as there is a longer whisker in the top one, and the average is greater 

than the median. On the contrary, subplot indoor CO2 is a left-skewed distribution because the 

median is greater than the mean. Another interesting finding is the rain ratio. The subplot F shows 
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the proportion of how long it rains in a day on average, and it rains very little in a week. From the 

indoor temperature subplot, the temperature within a week is roughly stable, around 21.5 °C. 

In the third row of subplots, the variations of indoor humidity, thermostat setpoint temperature, 

indoor luminosity, and window blind are described. There is not much difference between each 

day within a week of indoor humidity. To maintain the occupant’s thermal satisfaction, the HVAC 

system would offer heating and cooling in Winter and Summer, respectively. In this case, the 

thermal setpoint temperature stables at 22.23 °C. The maximum of some unusual points could 

reach 23 °C while the minimum of some points hit 21.5 °C. A window blind describes an average 

window covering. 0 indicates that the window covering is fully open, and 100 indicates that the 

window covering is fully closed. As an example, the occupants of apartment 182 use blinds to 

cover 70% of their windows on average. 

In the fourth row of subplots, first, the window shade has a similar trend with the window 

blind because it is maneuvered with either a manual or remote control by rotating the window 

blind from an open or a closed position, which can let the sunshine in or block out most of the 

natural light. Similarly, 0 stands for fully opened (brightness), and 100 refers to fully closed (dark). 

It is worth mentioning that the definition of occupancy ratio in EDA is the minutes that people stay 

at home divided by the minutes of an entire day. Subplot P shows that the residents spent more 

than 60% of their time at home on weekdays and spent relatively little time at home on weekends. 

If residents spend more time at home, they use more electronics and consume more energy, which 

means that weekdays have higher light and plug energy consumption compared to weekends.   
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Fig. 22. Variables with a weekly variation. 
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5.1.1.2  Variables with monthly variation 

The monthly variation is depicted in Fig. 23, which has a significant variation than weekly. 

In the first row of subplots, outdoor weather first shows a rising trend followed by a falling trend. 

The temperature of January, February, and March are low, at 5°C, 5.5°C, and 7 °C, respectively. 

The temperature climbs gradually after March and peaks in July and August, and then the 

temperature falls dramatically until December reaches its lowest value. Furthermore, the monthly 

outdoor humidity undergoes significant seasonal variations throughout the year. The moister part 

of the year in Lyon begins in January and lasts for four months. In June, the humidity becomes dry 

and reaches the driest point in July and August (53%).  

In the second row of subplots, significant variation can be found based on seasonal variation. 

In January and February, the outdoor illumination remains steady at 180 Lux. It fluctuates over 

the next four months, reaches the maximum value in July, and then steadily decreases. The 

difference between solar irradiance and outdoor illumination should be noted. Solar irradiance is 

the energy that the earth receives from the sun, which composes visible and invisible light, while 

outdoor illumination refers to the energy of visible light received per unit area. The indoor CO2 

level is a critical index to estimate occupants’ number in an apartment. In general, the higher the 

ppm value is, the more people present in a space. In subplot G, the indoor CO2 levels are lower in 

July and August because the occupants prefer to do some outdoor activities and go on long 

vacations. Indoor temperature is another essential index for predicting occupancy presence and 

thermal comfort [140]. Indoor temperatures change with the months, July and August having the 

highest temperatures, and November, December, January, and February having the lowest indoor 

temperatures.  

From subplot B, one can see that the most humid months are January and December, and the 

least humid months are July and August. Interestingly, the indoor humidity variation is opposite 

to outdoor humidity change. The most humid months are in Summer, especially in June and July 

(60% and 55%, respectively). Another interesting subplot is the thermostat setpoint temperature. 

During the warm season from March to October, all values stabilize at 22 °C as the householders 

do not change their thermostats during this period. Since October, when the temperature is getting 

colder, they set the temperature at 22.5 °C. For the indoor luminosity, there are two peaks. The 

first one is in April and the second is in November. Since residents were absent 11 days in July 
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and 16 days in August, there was no other light source except natural light, which lowered the 

indoor luminosity in July and August compared to other months. Moreover, householders prefer 

to frequently open window blinds in the cold season and infrequently open them in the warm 

season.  

In the fourth row of the subplots, the window shade has a similar trend with the window blind. 

As mentioned earlier, the controlling of window blinds would affect the window shade, and in 

some ways, they are the same. The amounts of energy used for lights and plugs significantly vary 

in different months. Light and plug energy are consumed more in Winter than in Summer because 

occupants spend more time at home when the weather gets cold outside. Finally, in subplot P, the 

occupancy ratio and the load of the appliance follow similar patterns. For example, residents enjoy 

spending time at home in the Winter months. In addition, since the summer holidays occurred in 

July and August, a significant energy usage decline can be found. Similarly, indoor CO2 level also 

dramatically decreases in July and August due to the summer vacation. That is, occupants have 

different activities in different seasons, which directly leads to the difference of indoor CO2 and 

energy consumption in each season. Therefore, it is very significant to consider seasonal variations 

when predicting occupancy profiles [33].  
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Fig. 23. Variables with a monthly variation. 
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5.1.1.3  Variables with hourly variation 

 Moreover, from the subplots in the first row, it is obvious that the outdoor temperature 

changes significantly over time. The morning and evening temperatures are low, the outdoor 

temperature rises gradually after 11:00 and reaches a peak at 14:00. For the outdoor humidity, the 

pattern appears a U shape during the day. The temperature of night and evening is getting colder, 

so the outdoor humidity is higher while the temperature gets warmer in the noon and afternoon, 

the humidity drops a little bit. Furthermore, there is not much difference in solar irradiance and 

wind velocity during the day.  

In the second row of the subplots, the outdoor illumination starts to increase after 7:00 in the 

morning and continues to increase until 13:00. After sunset at 19:00, the outdoor illumination 

approaches 0, which is also in line with objective laws. An interesting subplot is the rain ratio 

because most of the data is concentrated between 0 and 0.1, which means it does not rain much 

every hour. Although hourly indoor CO2 and temperature have a limited variation, indoor CO2 has 

a slight drop at 8:00 and a slight increase at 17:00.  

 Indoor luminosity reflects the electricity consumption and sleeping schedule of a household 

and a family. Subplot K reveals that the residents wake up around 7:00 and go to bed between 

22:00 to 23:00. From subplot L, the window blind-opening habits of the households can be 

revealed. When occupants get up, they like to open the window blinds to get some sunshine. Before 

they go to bed, they prefer to close the window blinds to create a dark and friendly atmosphere for 

sleeping.  

Residents consume less light and plug energy at night, but there are two peaks of energy 

consumption in the morning and afternoon. The two peaks appear between 8:00 and 9:00 in the 

morning and between 18:00 and 19:00 in the evening for the light load. For plug load, the two 

peaks occur between 11:00 and 12:00 as well as 18:00 and 19:00. 
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Fig. 24. Variables with an hourly variation. 
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5.1.2 Pairwise scatter plots analysis  

Earlier, the temporal attributes were studied based on three-time horizons. In this part, the 

EDA reveals the correlation between variables. Seasonality could affect the accuracy of occupancy 

presence estimation and occupant profiles [7]. Therefore, it is important to consider the seasonal 

variations in pairwise scatter plots analysis. In this section, the results of the EDA are presented, 

and this indicates that the whole year data is broken down into four datasets due to the seasonality 

effect. In this research, 2016 was categorized into four seasons based on the international season 

calendar of 2016. Spring lasts from March 19th to June 19th; Summer is from June 20th to September 

21st, Fall is from September 22nd to December 20th, and finally, Winter is the combination of two 

periods (January 1st to March 18th and December 21st to December 31st). In pairwise scatter plots 

analysis, the time-related data was not involved.  

A pairwise scatter plot with correlation was used to display the relationship between two 

variables. Fig. 25 shows three information groups: (1): the diagonal shows the variables’ names 

with distribution histogram plots. (2): the upper triangle displays the correlation coefficients 

between two variables by performing Spearman correlation. A correlation of 1 is a total positive 

correlation, -1 is total negative, and 0 means no correlation between two variables [123]. (3): to 

detect the monotonic dependencies, the lower triangle shows pairwise scatter plots of the variables 

where the moving average curve is added.  

For group (2) in Fig. 25, some variables have strong correlations with others, such as window 

blind and window shade, outdoor temperature and indoor temperature, indoor CO2, and occupancy 

ratio. However, some variables do not have strong relationships with any other variables, such as 

outdoor solar irradiance, wind velocity, outdoor illumination, rain/no rain, and thermostat setpoint 

temperature because their Spearman correlation coefficient are less than |0.6|. Therefore these 

variables were not analyzed in pairwise scatter plots analysis. Additional details about Spearman’s 

correlation coefficient category interpretation can be found in Ref. [141]). Even though the 

window blind and window shade have a very strong positive relationship (0.98), the fact that the 

window blind causes window shade makes these two variables the same in some way, and window 

shade is a quasi-constant feature. In this case, the window shade was removed. Then Fig. 26 is 

obtained.
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Fig. 25. Pairwise scatter plots and correlation levels between variables. The diagonal shows each variable and its 

distribution histogram. The upper triangle shows the correlation between each variable. The lower triangle depicts 

scatter plots between the pair-wise variables and a moving average curve to detect the linear dependencies.  

 

5.1.2.1  Pairwise scatter plots analysis for one year 

Fig. 26 shows pairwise scatter plots that demonstrate the relationships between all the 

variables in 2016. The outdoor temperature has strong correlations with three variables, which has 

a strong negative correlation with outdoor humidity (-0.67) and strongly correlates with indoor 

temperature (0.81) and indoor humidity (0.70). Furthermore, a clear negative linear correlation 

between outdoor temperature and outdoor humidity and a strong positive non-linear relationship 

between outdoor temperature and indoor temperature could be found in the lower angle scatter 

plots. Indoor CO2 positively and significantly correlates to the occupancy ratio for one year, and 

the Spearman correlation coefficient is 0.66, which means the longer residents stay at home, the 

greater the indoor CO2 levels in their apartment. Additionally, when the occupants stay at home 

for a long time in a day, they would use various appliances, such as television, computer, and 

cooker, which could cause an increase in plug energy consumption. Therefore, there is also a strong 

positive correlation between the occupancy ratio and plug load (0.69). Similarly, the time that 

occupants spent at home influences not only the relationship between occupancy ratio and plug 

load but also affects the correlation between indoor CO2 and plug energy consumption. For 

example, the plug load is higher as the indoor CO2 increases. Another finding is that there is a 

significant negative correlation between indoor luminosity and window blinds because when the 

window blind is fully closed, the indoor luminosity level drops.  

In conclusion, strong non-linear correlations were identified between outdoor and indoor 

temperatures (correlation coefficient: 0.81) and outdoor temperature and indoor humidity 

(correlation coefficient: 0.70). A robust linear correlation is also found between outdoor 

temperature and outdoor humidity (correlation coefficient: -0.67). In addition, the occupancy ratio 

is significantly related to indoor CO2 and plug load but almost does not correlate with outdoor 

temperature, outdoor humidity, and indoor temperature.  
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Fig. 26. Pairwise scatter plots and correlation levels analysis for whole year. 
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5.1.2.2 Pairwise scatter plots analysis in different seasons 

Based on the observations by Page et al. [86] and Huchuk et al. [12], seasonality is expected 

to impact occupant profiles. For this reason, the correlation between two variables based on 

different seasons was analyzed. From Fig. 27 to Fig. 30, the phenomenon can be found: the 

correlation coefficients are significantly different regarding different seasons between two 

variables, even if they are positively or negatively correlated. For instance, although the window 

blind always has a negative relationship with occupancy information in all seasons, the correlation 

coefficients are notably different. There is a strong negative correlation between window blind and 

occupancy in Summer and Winter, with the strongest correlation reaching -0.53 in Summer and -

0.66 in Winter. Nevertheless, there is no correlation between these two features in Fall. To gain a 

deep understanding of the correlation between variables, the correlation matrix of the whole year 

and different seasons is presented in Table 10. 

Moreover, the occupancy ratio is monotonically related to indoor CO2, light load, and plug 

load in all seasons because these three features are easily affected by residents, and their values 

can reflect the occupancy status. For example, the indoor CO2 and appliance energy consumption 

of people at home are higher than when no one is at home. On the other hand, outdoor temperature 

and outdoor humidity are not found to be correlated either linearly or monotonically with 

occupancy in any season. However, the strong correlation does not imply causation, which means 

which features can be used for predicting cannot decide from the results in EDA. Features that do 

not have strong correlation with output lonely does not imply they cannot offer useful information 

because combine them with other features may become a promising feature combination. Hence, 

considering the interaction between various features is also a vital step in feature engineering.  
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 Table 10 Correlation matrix 

 

  
Outdoor 

tem. 

Outdoor 

hum. 

Indoor 

CO2 

Indoor 

tem. 

Indoor 

hum. 

Indoor 

lum. 

Win. 

blind 

Light 

load 

Plug 

load 
O. ratio 

 Outdoor tem. 1.00 -0.9 0.50 0.59 0.72 -0.12 0.14 -0.13 -0.02 0.21 

 Outdoor hum. -0.90 1.00 0.10 0.33 0.48 -0.24 -0.16 -0.06 -0.02 0.15 

 Indoor CO2 0.50 0.10 1.00 0.13 0.18 0.13 -0.24 0.00 0.35 0.52 

 Indoor tem. 0.59 0.33 0.13 1.00 0.73 -0.19 0.04 -0.01 0.05 0.21 

Spring Indoor hum. 0.72 0.48 0.18 0.73 1.00 -0.11 -0.06 -0.14 0.08 0.40 

 Indoor lum -0.12 -0.24 0.13 -0.19 -0.11 1.00 -0.51 0.24 0.35 0.36 

 Win blind 0.14 -0.16 -0.24 0.04 -0.06 -0.51 1.00 -0.32 -0.26 -0.44 

 Light load -0.13 -0.06 0.00 -0.01 -0.14 0.24 -0.32 1.00 0.32 0.16 

 Plug load -0.02 -0.02 0.35 0.05 0.08 0.35 -0.26 0.32 1.00 0.41 

 O. ratio 0.21 0.15 0.52 0.21 0.40 0.36 -0.44 0.16 0.41 1.00 

 Outdoor tem. 1.00 -0.68 0.11 0.53 0.11 -0.14 0.20 0.06 -0.04 0.11 

 Outdoor hum. -0.68 1.00 0.01 -0.25 0.49 0.27 -0.33 0.07 0.19 0.04 

 Indoor CO2 0.11 0.01 1.00 -0.13 0.39 0.44 -0.36 0.66 0.70 0.84 

 Indoor tem. 0.53 -0.25 -0.13 1.00 0.04 0.00 -0.06 -0.06 -0.05 -0.05 

Summer Indoor hum. 0.11 0.49 0.39 0.04 1.00 0.19 -0.17 0.38 0.40 0.38 

 Indoor lum. -0.14 0.27 0.44 0.00 0.19 1.00 -0.88 0.60 0.58 0.56 

 Win. blind 0.20 -0.33 -0.36 -0.06 -0.17 -0.88 1.00 -0.51 -0.56 -0.53 

 Light load 0.06 0.07 0.66 -0.06 0.38 0.60 -0.51 1.00 0.65 0.69 

 Plug load -0.04 0.19 0.70 -0.05 0.40 0.58 -0.56 0.65 1.00 0.78 

 O. ratio 0.11 0.04 0.84 -0.05 0.38 0.56 -0.53 0.69 0.78 1 

 Outdoor tem. 1.00 -0.53 -0.34 0.47 0.83 0.15 -0.08 -0.42 -0.08 0.04 

 Outdoor hum. -0.53 1.00 0.29 -0.39 -0.11 -0.45 0.08 0.35 0.09 0.04 

 Indoor CO2 -0.34 0.29 1.00 0.08 -0.09 0.01 0.07 0.66 0.63 0.65 

 Indoor tem. 0.47 -0.39 0.08 1.00 0.29 0.08 0.21 -0.19 0.05 0.13 

Fall Indoor hum. 0.83 -0.11 -0.09 0.29 1.00 -0.01 -0.08 -0.19 0.12 0.22 

 Indoor lum. 0.15 -0.45 0.01 0.08 -0.01 1.00 -0.35 0.00 0.11 0.10 

 Win. blind -0.08 0.08 0.07 0.21 -0.08 -0.35 1.00 -0.08 0.04 0.00 

 Light load -0.42 0.35 0.66 -0.19 -0.19 0.00 -0.08 1.00 0.54 0.50 

 Plug load -0.08 0.09 0.63 0.05 0.12 0.11 0.04 0.54 1.00 0.76 

 O. ratio 0.04 0.04 0.65 0.13 0.22 0.10 0.00 0.50 0.76 1.00 

 Outdoor tem. 1.00 -0.25 0.05 0.23 0.62 0.08 -0.05 0.06 -0.01 0.04 

 Outdoor hum. -0.25 1.00 0.04 0.20 0.17 -0.30 0.15 -0.05 -0.11 -0.15 

 Indoor CO2 0.05 0.04 1.00 -0.05 0.46 0.51 -0.78 0.52 0.65 0.68 

 Indoor tem. 0.23 0.20 -0.05 1.00 0.17 -0.30 0.15 0.10 -0.08 0.08 

Winter Indoor hum. 0.62 0.17 0.46 0.17 1.00 0.23 -0.33 0.34 0.23 0.36 

 Indoor lum. 0.08 -0.30 0.51 -0.30 0.23 1.00 -0.63 0.41 0.44 0.54 

 Win. blind -0.05 0.15 -0.78 0.15 -0.33 -0.63 1.00 -0.49 -0.61 -0.66 

 Light load 0.06 -0.05 0.52 0.10 0.34 0.41 -0.49 1.00 0.63 0.57 

 Plug load -0.01 -0.11 0.65 -0.08 0.23 0.44 -0.61 0.63 1.00 0.69 

 O. ratio 0.04 -0.15 0.68 0.08 0.36 0.54 -0.66 0.57 0.69 1.00 

 Outdoor tem. 1.00 -0.67 -0.38 0.81 0.70 -0.08 0.31 -0.44 -0.16 -0.05 

 Outdoor hum. -0.67 1.00 0.31 -0.48 -0.08 -0.05 -0.31 0.35 0.15 0.10 

 Indoor CO2 -0.38 0.31 1.00 -0.33 -0.01 0.30 -0.44 0.59 0.60 0.66 

 Indoor tem. 0.81 -0.48 -0.33 1.00 0.59 -0.16 0.33 -0.35 -0.11 -0.02 

One year Indoor hum. 0.70 -0.08 -0.01 0.59 1.00 0.02 0.00 -0.12 0.11 0.24 

 Indoor lum. -0.08 -0.05 0.30 -0.16 0.02 1.00 -0.64 0.33 0.37 0.38 

 Win. blind 0.31 -0.31 -0.44 0.33 0.00 -0.64 1.00 -0.49 -0.41 -0.41 

 Light load -0.44 0.35 0.59 -0.35 -0.12 0.33 -0.49 1.00 0.59 0.53 

 Plug load -0.16 0.15 0.60 -0.11 0.11 0.37 -0.41 0.59 1.00 0.69 

 O. ratio -0.05 0.10 0.66 -0.02 0.24 0.38 -0.41 0.53 0.69 1.00 
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Fig. 27. Pairwise scatter plots and correlation levels analysis for Spring. 
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Fig. 28. Pairwise scatter plots and correlation levels analysis for Summer. 
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Fig. 29. Pairwise scatter plots and correlation levels analysis for Fall. 

 

 

 



68 

 

 

 

Fig. 30. Pairwise scatter plots and correlation levels analysis for Winter. 
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5.1.3 Summary 

Outdoor and indoor variables are recognized as influential variables affecting either positively 

or negatively the occupancy presence prediction. Using appropriate features to predict occupancy 

presence is essential to obtain accurate occupancy information for energy modeling, thermal 

comfort estimation, and OCC. Therefore, exploring the correlation between all variables could 

give us comprehensive insights before occupancy prediction. 

EDA was performed to gain insight into each variable, including the characteristics of 

variables at three-time horizons and the correlations between variables through pairwise scatter 

plots. The main contributions of this chapter are (1) exploring the characteristics of all variables 

using boxplots at weekly, monthly, and hourly time horizons. (2) analyzing the linear, non-linear, 

and monotonic relationship between two continuous variables. Additional details and conclusions 

of EDA analysis are summarized as followed: 

(1) Variables of each day have a limited variation. For example, the daily outdoor temperature 

difference for a week is not obvious.  

(2) Indoor CO2, light, and plug load, along with occupancy ratio variables, practically reach 

their maximum on Wednesday. Because the residents spend more time at home or more people 

stay at home, they would release more CO2 and consume more appliance energy. 

(3) Significant variations can be determined based on monthly trends compared to weekly and 

hourly variations. Data distribution varies greatly from month to month.  

(4) Except for indoor CO2, light load, and plug load, window blind has a moderate relationship 

with occupancy ratio in general, but there is a strong correlation between them in Winter. Thus, 

window blind may have a great potential for predicting occupancy presence. 

(5) Considering the correlations between features and occupancy ratio could change in 

different seasons, one feature may provide valuable information to predict occupancy in some 

seasons and may not be informative in other seasons since it cannot offer any insight during their 

training process. 

In future work, feature selection methods will be employed to explore the crucial variables 

based on different seasons. The next Chapter will also study the optimal feature combinations to 

maximize prediction accuracy and compare comprehensive ML algorithms’ performances with 

various feature combinations under different seasons. 
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5.2 Feature selection analysis 

Selecting optimal variables for predicting occupancy presence is very important when there 

is a large number of features, which is also known as the problem of high dimensionality. Feature 

selection not only reduces the risk of overfitting but also removes some useless variables to 

improve prediction performance. In this chapter, seasonal and consecutive feature selection 

analyses were employed to test how many variables are optimal to maximize prediction accuracy 

for each season using five RFECV based ML algorithms (LR, SVM, DT, GBDT, and RF). RFECV 

based ML methods worked on the entire set of variables to eliminate the least important feature 

recursively according to the feature importance. The research displayed the most informative 

variables among the selected features by showing bar charts of variables ranked by their 

importance. Feature importance based on LR and SVM returns the attribute of coef_ to map the 

significance of features to the label’s prediction, and the feature importance based on DT, GBDT, 

and RF returns feature_importances_ to rank the importance of each variable, which is calculated 

by computing Gini index in this study. 

5.2.1 RFECV-machine learning feature selection analysis 

Although the pairwise plot analysis provides deep insight into the correlations between all 

variables, it does not involve considering the interactions between variables and tell us the optimal 

feature combinations for developing prediction models. Unlike filter and embedded feature 

selection methods, the RFECV provides significant advantages in considering the interactions 

between variables, which helps to reduce the risk of overfitting, improve prediction accuracy, and 

has greater flexibility in practical applications. RFECV-ML models are suffixed by “-1”, “-2”, “ -

3”, “-4”, “-5” used in Spring, Summer, Fall, Winter, and a year, respectively. For example, 

“RFECV-RF-1” denotes the RFECV-RF model developed for occupancy prediction in Spring, 

“RFECV-RF-2” is for Summer, and “RFECV-DT-5” means the RFECV-DT model is used for 

estimating occupancy in a year. In addition, the performance metric F-1 score was used in this 

stage, and a subset of candidates that provides the best predictive score was selected for the SCOP 

models development. 

Fig. 31 through Fig. 35 reveal the optimal inputs for different RFECV-ML methods in 

different seasons or a year. The dotted line indicates the optimal number of features, and the error 

band presents the standard error during the resampling procedure. Different algorithm selection 
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entails that the optimal variables’ combinations may differ in the same season. (e.g., RFECV-LR-

1 selects 18 optimal features, RFECV-RF-1 selects 10). 

If one RFECV based ML could achieve high prediction accuracy with fewer features, this is 

beneficial for the occupancy presence prediction step. The RFECV for the DT, GBDT, and RF get 

relatively high accuracy results in all seasons compared to the RFECV for LR and SVM. In 

Summer, the highest prediction accuracy is achieved by RFECV-RF-2 only used 14 features and 

reached 90.1% accuracy.  

The same DM algorithm may have different performances according to different seasons. For 

instance, RFECV-RF-1 gets a lower prediction accuracy in Spring (83.2%) while it hits the highest 

accuracy in Summer (90.1%). The variables selected by an RFECV- ML method can only feed 

into the corresponding algorithm to tune hyperparameters (e.g., to develop random forest models 

can only use the features chosen by RFECV-RF). Since a year dataset contains more data than the 

seasonal dataset, and the DM algorithms are more complex to predict occupancy presence, 

accuracy is relatively lower than the accuracy in different seasons. Table 11 shows the optimal 

features in different seasons. 
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Fig. 31. RFECV for five machine learning algorithms in Spring. 

 

 

 

 

Fig. 32. RFECV for five machine learning algorithms in Summer. 

ML_Algorithms Number of features 

LR-1 18 

SVM-1 18 

DT-1 10 

GBDT-1 12 

RF-1 15 

ML_Algorithms Number of features 

LR-2 17 

SVM-2 17 

DT-2 10 

GBDT-2 13 

RF-2 14 
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Fig. 33. RFECV for five machine learning algorithms in Fall. 

 

 

 

 

Fig. 34. RFECV for five machine learning algorithms in Winter. 

 

ML_Algorithms Number of features 

LR-3 18 

SVM-3 18 

DT-3 10 

GBDT-3 10 

RF-3 9 

ML_Algorithms Number of features 

LR-4 16 

SVM-4 18 

DT-4 9 

GBDT-4 13 

RF-4 14 
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Fig. 35. RFECV for five machine learning algorithms in a year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ML_Algorithms Number of features 

LR-5 18 

SVM-5 18 

DT-5 14 

GBDT-5 11 

RF-5 14 
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Table 11 Optimal features in different seasons 

 

Season 
Machine Learning 

Algorithms 

Number of 

Features 
Accuracy Features Combination 

Spring 

LR-1 18 0.765 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

SVM-1 18 0.764 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

DT-1 10 0.834 𝐻 + 𝑇𝑜𝑢𝑡 +  𝑅𝐻𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 +  𝐶𝑖𝑛 + 𝑅𝐻𝑖𝑛 +  𝐼𝑖𝑛 +  𝑊𝐵 +  𝐸𝐶𝑙𝑖𝑔ℎ𝑡 +  𝐸𝐶𝑝𝑙𝑢𝑔 

GBDT-1 12 0.824 𝐻 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

RF-1 15 0.831 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵

+ 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

Summer 

LR-2 17 0.859 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

+ 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

SVM-2 17 0.870 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛

+ 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

DT-2 10 0.897 𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

GBTD-2 13 0.891 
𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆

+ 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

RF-2 14 0.901 
𝐻 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆

+ 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

Fall 

LR-3 18 0.825 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

SVM-3 18 0.829 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

DT-3 10 0.852 𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

GBDT-3 10 0.856 𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

RF-3 9 0.853 𝐻 + 𝑇𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

Winter 

LR-4 16 0.836 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

+ 𝐼𝑖𝑛 + 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

SVM-4 18 0.840 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

DT-4 9 0.892 𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 

GBDT-4 13 0.886 
𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵

+ 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

RF-4 14 0.894 
𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛

+ 𝑊𝐵 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

Whole 

year 

LR-5 18 0.815 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

SVM-5 18 0.811 
𝐻 + 𝑊 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑆𝐼𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝑅 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛

+ 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

DT-5 14 0.861 
𝐻 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵

+ 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

GBDT-5 11 0.853 𝐻 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵 + 𝑊𝐴𝑆 + 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 

RF-5 14 0.858 
𝐻 + 𝐷 + 𝑇𝑜𝑢𝑡 + 𝑅𝐻𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑇𝑖𝑛 + 𝑅𝐻𝑖𝑛 + 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼𝑖𝑛 + 𝑊𝐵

+ 𝐸𝐶𝑙𝑖𝑔ℎ𝑡 + 𝐸𝐶𝑝𝑙𝑢𝑔 
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5.2.2 Feature importance analysis 

The embedded feature importance analysis methods were implemented to rank the most 

critical and least essential parameters among the selected optimal features. Fig. 36 through Fig. 40 

illustrate that although different prediction algorithms have different rankings for the same variable, 

indoor CO2 is the most critical variable to predict occupancy presence in all seasons. In particular, 

except for Spring, the indoor CO2 importance could exceed 70% in all seasons using GBDT feature 

importance. Furthermore, feature importance in a year shows that the time of the day, plug, light 

load, and indoor CO2 are the top 4 most significant inputs. Chapter 5.1.2 also concludes that three 

variables strongly correlate with occupancy information are indoor CO2, light, and plug load, 

confirming that the importance ranking is reasonable. Feature importance of an input variable may 

vary significantly in different seasons, take feature importance for DT in each season as an example. 

The window blind is a significant variable in Summer and Fall, while its feature importance value 

is nominal in Spring and Winter. Because residents may tend to adjust the window blind frequently 

in sunny seasons, and they do not regulate the window blind much in Winter when it is often 

cloudy and rainy in France. 

Moreover, some meteorological variables, such as outdoor temperature, outdoor humidity, 

and outdoor illumination, have low feature importance rankings, and these variables also show 

weak correlations with the output in pairwise scatter plot analysis which confirms the importance 

ranking is reasonable. As mentioned in Ref. [142], the variables selected by RFECV may not be 

the most relevant features to the output alone, but as a whole feature combination, they would 

become a promising option for predicting occupancy presence. Although the variable indoor 

humidity does not strongly correlate with the occupancy ratio in a year, the accuracy of the 

RFECV-DT can be as high as 86% when the indoor humidity was combined with other parameters. 

Unlike filter and embedded feature selection methods, RFECV considers the interactions between 

variables to pick the optimal feature combination for various ML algorithms and has greater 

flexibility in practical applications [128]. Feature importance scores among the selected variables 

in all seasons are depicted in Table 12 to Table 16. 
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Fig. 36. Feature importance analysis in Spring. 

 

 

 

 

 

Fig. 37. Feature importance analysis in Summer. 
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Fig. 38. Feature importance analysis in Fall. 

 

 

 

 

 

 

Fig. 39. Feature importance analysis in Winter. 
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Fig. 40. Feature importance analysis in a year. 

 

Table 12 The values of feature importance in Spring 

Features 
Attributes of coef_ Attributes of feature_importances_ 

LR-1 SVM-1 DT-1 GBDT-1 RF-1 

Time of the day -0.010 -0.004 0.130 0.146 0.094 

Weekday_weekend 0.291 0.103 —— —— 0.007 

Day_period 0.189 0.129 —— 0.020 0.031 

Outdoor_temperature -0.108 -0.364 0.025 0.015 0.030 

Outdoor_humidity -0.224 -0.143 0.023 0.013 0.030 

Solar_irradiance 0.088 0.028 —— —— 0.012 

Outdoor_velocity 0.000 0.020 —— —— 0.010 

Outdoor_illumination -0.083 -0.049 0.108 0.016 0.055 

Rain/no_rain 0.034 0.001 —— —— —— 

Indoor_CO2 1.252 0.974 0.294 0.381 0.267 

Indoor_temperature 0.041 0.011 —— 0.007 0.044 

Indoor_humidity 0.315 0.146 0.111 0.254 0.128 

Thermal_setpoint_temperature -0.009 -0.008 —— —— —— 

Indoor_luminosity 0.134 0.038 0.032 0.041 0.083 

Window_blind 0.261 0.069 0.081 0.039 0.076 

Window_autolock_status 0.474 0.138 —— —— —— 

Light_load 0.516 0.265 0.045 0.048 0.053 

Plug_load 0.404 0.254 0.151 0.019 0.081 
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Table 13 The values of feature importance in Summer 

Features 
Attributes of coef_ Attributes of feature_importances_ 

LR-2 SVM-2 DT-2 GBDT-2 RF-2 

Time of the day -0.012 -0.004 0.038 0.051 0.046 

Weekday_weekend -0.040 0.023 —— —— —— 

Day_period -0.232 -0.020 —— —— 0.009 

Outdoor_temperature 0.139 0.308 0.026 0.007 0.017 

Outdoor_humidity 0.223 0.104 0.058 0.006 0.019 

Solar_irradiance 0.041 0.022 —— 0.001 —— 

Outdoor_velocity -0.121 -0.032 —— —— 0.006 

Outdoor_illumination -0.054 -0.044 —— 0.006 0.030 

Rain/no_rain —— -0.006 —— —— —— 

Indoor_CO2 2.092 1.234 0.293 0.798 0.459 

Indoor_temperature -0.172 -0.085 0.083 0.010 0.0227 

Indoor_humidity 0.124 0.000 —— 0.002 0.0576 

Thermal_setpoint_temperature 0.000 —— —— —— —— 

Indoor_luminosity 0.278 0.090 0.026 0.016 0.037 

Window_blind -0.259 -0.080 0.092 0.005 0.038 

Window_autolock_status 0.519 0.359 0.019 0.013 0.014 

Light_load 0.553 0.351 0.214 0.044 0.079 

Plug_load 0.464 0.346 0.150 0.040 0.165 

 

Table 14 The values of feature importance in Fall 

Features 
Attributes of coef_ Attributes of feature_importances_ 

LR-3 SVM-3 DT-3 GBDT-3 RF-3 

Time of the day -0.0104 -0.004 0.143 0.073 0.080 

Weekday_weekend 0.291 0.103 —— —— —— 

Day_period 0.189 0.129 —— —— —— 

Outdoor_temperature -0.104 -0.036 0.043 0.016 0.030 

Outdoor_humidity -0.222 -0.143 0.033 0.007 —— 

Solar_irradiance 0.089 0.028 —— —— —— 

Outdoor_velocity 0.000 0.020 —— —— —— 

Outdoor_illumination -0.083 -0.049 0.065 —— 0.037 

Rain/no_rain 0.034 0.001 —— —— —— 

Indoor_CO2 1.252 0.975 0.273 0.777 0.464 

Indoor_temperature 0.040 0.011 —— 0.014 —— 

Indoor_humidity 0.313 0.146 0.038 0.020 0.033 

Thermal_setpoint_temperature -0.009 -0.008 —— —— —— 

Indoor_luminosity 0.134 0.038 0.022 0.023 0.041 

Window_blind 0.261 0.069 0.089 —— 0.094 

Window_autolock_status 0.475 0.138 —— 0.014 —— 

Light_load 0.516 0.265 0.019 0.037 0.061 

Plug_load 0.404 0.254 0.272 0.019 0.16 
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Table 15 The values of feature importance in Winter 

Features LR-4 SVM-4 DT-4 GBDT-4 RF-4 

Time of the day -0.012 -0.004 0.150 0.073 0.064 

Weekday_weekend 0.174 0.103 —— —— —— 

Day_period -0.060 0.129 —— —— —— 

Outdoor_temperature -0.991 -0.036 0.049 0.020 0.048 

Outdoor_humidity -0.673 -0.143 0.021 0.007 0.023 

Solar_irradiance -0.092 0.028 —— 0.005 0.010 

Outdoor_velocity —— 0.020 —— 0.001 0.011 

Outdoor_illumination 0.158 -0.049 —— 0.012 0.038 

Rain/no_rain 0.128 0.001 —— —— —— 

Indoor_CO2 1.997 0.097 0.290 0.771 0.373 

Indoor_temperature 0.320 0.011 0.055 0.019 0.042 

Indoor_humidity 0.538 0.146 0.127 —— 0.088 

Thermal_setpoint_temperature 0.088 -0.008 0.075 0.004 0.059 

Indoor_luminosity 0.118 0.038 —— 0.026 0.040 

Window_blind -0.168 0.069 0.028 0.004 0.039 

Window_autolock_status —— 0.138 —— —— —— 

Light_load 0.683 0.265 0.203 0.036 0.072 

Plug_load 0.386 0.254 —— 0.022 0.095 

 

Table 16 The values of feature importance in a year. 

Features 
Attributes of coef_  Attributes of feature_importances_  

LR-5 SVM-5 DT-5 GBDT-5 RF-5 

Time of the day -0.012 -0.005 0.056 0.078 0.079 

Weekday_weekend 0.227 0.101 —— —— —— 

Day_period -0.166 -0.027 —— —— 0.011 

Outdoor_temperature -0.734 -0.371 0.021 —— 0.023 

Outdoor_humidity -0.428 -0.221 0.007 —— 0.019 

Solar_irradiance 0.019 0.006 —— —— —— 

Outdoor_velocity -0.032 0.004 0.005 —— 0.006 

Outdoor_illumination -0.113 -0.107 0.012 0.006 0.026 

Rain/no_rain 0.037 0.017 —— —— —— 

Indoor_CO2 1.590 1.155 0.384 0.730 0.437 

Indoor_temperature 0.352 0.183 0.011 0.010 0.030 

Indoor_humidity 0.662 0.302 0.026 0.017 0．048 

Thermal_setpoint_temperature -0.033 -0.018 0.009 0.022 0.016 

Indoor_luminosity 0.202 0.082 0.021 0.025 0.048 

Window_blind -0.036 -0.035 0.040 0.004 0.042 

Window_autolock_status 0.321 0.219 0.006 0.025 —— 

Light_load 0.552 0.337 0.049 0.042 0.081 

Plug_load 0.402 0.291 0.352 0.040 0.135 
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5.2.3 Summary  

In this chapter, the RFECV based on five ML algorithms was first utilized to find the optimal 

input combinations for each season. Then feature importance methods were implemented to rank 

the variables that RFECV selected. The main conclusions are as following: 

(1) Different RFECV based ML algorithms pick different optimal input combinations in the 

same season. For example, in Spring, the RFECV-LR-1 needs 18 variables to get the best 

prediction performance, while the RFECV-DT-1 only needs 10 variables. 

(2) Same RFECV-ML methods have different results based on different seasons. For instance, 

RFECV-RF-2 reaches 90.1% accuracy in Summer, but RFECV-RF-1 only gets 83.1%.  

(3) RFECV based DT, GBDT, and RF have relatively higher prediction ability than RFECV-

LR and SVM. 

(4) Feature importance analysis in a year showed that the time of the day, plug, light load, and 

indoor CO2 are the top 4 most significant inputs, and indoor CO2 is the most critical variable to 

predict occupancy presence in all seasons.   
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5.3 Prediction performance 

This chapter presented the results of four tasks. Firstly, the performance comparison between 

using feature selection and without using feature selection methods. Secondly, prediction models’ 

performance comparisons among different DM algorithms to predict occupancy from various 

meter readings. Thirdly, comparison of seasonal and consecutive accuracy between short and long-

term occupancy forecasting methods. Finally, computational efficiency as a significant 

performance index was also performed in the study.  

5.3.1 With vs. without using feature selection  

Table 17 and Table 18 introduce two comparisons between with and without the RFECV 

feature selection method, with F-1 score and AUC evaluation metrics. According to the tables 

below, one can notice that most models benefit from the RFECV feature selection process because 

their prediction accuracies increase compared to feeding all variables into the prediction models. 

In particular, DT in Spring could achieve an increase of up to 4% using the F-1 score metric and 

improve 6% performance under the AUC metric. Since this study solves a binary problem, the 

accuracy improvement is difficult compared to the regression issues. Therefore, the improvement 

of using feature selection is acceptable. Furthermore, RF resulted in the highest F-1 score, of 0.909, 

and AUC of 0.907 in Summer with feature selection.  

Table 17 Comparison between with and without feature selection using F-1 score evaluation 

 

Table 18 Comparison between with and without feature selection using AUC evaluation 

 

Model 
Spring Summer Fall Winter Whole year 

With Without With Without With Without With Without With Without 

LR 0.785 0.785 0.858 0.862 0.840 0.840 0.850 0.839 0.814 0.814 

SVM 0.763 0.763 0.858 0.877 0.846 0.846 0.850 0.850 0.817 0.817 

DT 0.841 0.809 0.884 0.863 0.858 0.843 0.898 0.876 0.859 0.836 

GBDT 0.834 0.833 0.903 0.896 0.870 0.864 0.893 0.877 0.869 0.868 

RF 0.851 0.839 0.909 0.903 0.879 0.864 0.904 0.894 0.873 0.869 

Model 
Spring Summer Fall Winter Whole year 

With  Without With Without With Without With Without With Without 

LR 0.723 0.723 0.859 0.862 0.790 0.790 0.828 0.816 0.789 0.789 

SVM 0.698 0.698 0.857 0.876 0.789 0.789 0.813 0.813 0.783 0.783 

DT 0.805 0.760 0.883 0.863 0.818 0.785 0.879 0.851 0.820 0.802 

GBDT 0.791 0.802 0.903 0.896 0.829 0.823 0.873 0.850 0.848 0.850 

RF 0.794 0.773 0.907 0.901 0.832 0.805 0.878 0.867 0.839 0.835 
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5.3.2 Performance comparison between data mining algorithms  

Two evaluation metrics, F-1 score and AUC, were also used to evaluate the occupancy 

prediction performances. All of these algorithm parameters were adjusted based on a grid search 

with 10-fold cross-validation of the training data. For instance, the number of hidden neurons of 

the ANN algorithm needed to be tuned, with from 10 to 100 selected to find the optimal hidden 

neurons. The same strategy was also applied for other DM approaches. It is worth mentioning that 

the ANN achieved better performances in many previous studies [12,45,59,69]. Therefore, the 

ANN used all features in this study to predict occupancy presence. The comparison results of the 

six DM models are shown in Fig. 41. GBDT, RF, and ANN produce the most accurate prediction 

results with the highest accuracy, which could have risen above 85% in most seasons under two 

evaluation criteria. Although many previous studies showed that the ANN usually outperformed 

other classifiers [69], it does not stand out very much among these three algorithms. However, 

because this study was devoted to estimating a binary value, ANN would produce the best possible 

power when the problem seems to be complicated, such as in the case of multiclass classification 

(e.g., thermal comfort prediction) and regression problems (e.g., building energy prediction) [143].  

In different seasons, classifiers’ abilities are different, and all algorithms show the highest 

overall performance score in Summer and the lowest performance in Spring, which is consistent 

with Kim’s finding [40]. Chapter 5.1.2 also explored the holistic variables with strong and weak 

correlations with occupancy information in Summer and Spring, respectively. For example, indoor 

CO2 has the strongest correlation with occupancy information, but the correlation coefficient is 

only 0.52 in Spring. One reason may be the low prediction accuracy of occupancy presence in 

Spring. The occupancy data is more complicated than for other seasons, which means the residents’ 

activities are more stochastic in Spring. Thus, the complex data pattern is rigid for simple 

classifiers, such as LR and SVM, to learn and get accurate estimation results easily.   
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Fig. 41. Prediction performance comparison in each season.  

5.3.3 Performance comparison between seasonal and consecutive occupancy 

prediction  

This chapter discussed the performance between the SCOP models and the consecutive 

prediction model. Table 19 and Table 20 compare the short-term and long-term occupancy 

estimation performance scores for each season, and the optimal numbers of features are shown in 

the brackets. Most customized occupancy prediction models show a higher performance score than 

the consecutive prediction model. In addition, both seasonal and consecutive occupancy prediction 

models have higher prediction accuracy in Summer and lower estimation performance in Spring. 

The significant advantages of the DM-OPF are the following: 

(1) As an important step in the proposed framework, RFECV could provide the optimal 

feature combinations to maximize the prediction accuracy based on different seasons. 

(2) All ML prediction accuracies were compared for each season to study their prediction 

abilities. 

Even though most SCOP models show higher accuracy than the consecutive model, the 

difference is sometimes slight. For example, in Spring, the accuracy of DT in the SCOP model is 

only 0.014 higher than DT that of the consecutive model. In order to ensure that a small 

improvement is unlikely to occur randomly or accidentally, a more rigorous technique is to adopt 

a statistical hypothesis test to tackle this issue [144]. In this study, 𝑡-test was conducted to analyze 
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the statistical difference between the accuracies obtained from SCOP models and from the 

consecutive model. A P-value smaller than the significance level (usually defined as 0.05) 

indicates that the difference is statistically significant (i.e., not due to random chance) [145]. Since 

the performance scores of LR and SVM in each season are low, the 𝑡-test is not applied to these 

two algorithms. Table 21 shows the results of 𝑡-test with cross-validation and indicates that only 

the DT and RF in SCOP models can stably provide higher performance than DT and RF in 

consecutive model, since most of their P-values are smaller than 0.05 in all seasons, which means 

the higher performances of DT and RF in SCOP models are statistically significant. 

Although the SCOP models’ improvement is limited because this study is devoted to solving 

a binary classification problem (where the complexity is more diminutive than those of multi-

classification and regression problems), some of the models can still reduce seasonality’s influence 

on the results of predicting occupancy presence and improve prediction accuracy. 

 Table 19 Comparison F-1 score between seasonal and consecutive prediction models 

 

Table 20 Comparison AUC score between seasonal and consecutive prediction models 

Method Algorithms Spring Summer Fall Winter Whole year 

Seasonal 

Prediction Model 

LR 0.785 (18) 0.858 (17) 0.840 (18) 0.850 (16) 0.833  

SVM 0.763 (18) 0.858 (17) 0.846 (18) 0.850 (18) 0.829 

DT 0.841 (10) 0.884 (10) 0.858 (10) 0.898 (9) 0.870 

GBDT 0.834 (12) 0.903 (13) 0.870 (10) 0.893 (13) 0.875 

RF 0.851 (15) 0.909 (14) 0.879 (9) 0.904 (14) 0.886 

ANN 0.856 (18) 0.902 (18) 0.876 (18) 0.920 (18) 0.889 

Consecutive 

Prediction Model 

LR 0.781 (18) 0.860 (18) 0.826 (18) 0.846 (18) 0.814 (18) 

SVM 0.774 (18) 0.874 (18) 0.828 (18) 0.841 (18) 0.817 (18) 

DT 0.827 (14) 0.870 (14) 0.847 (14) 0.872 (14) 0.859 (14) 

GBDT 0.826 (11) 0.898 (11) 0.860 (11) 0.875 (11) 0.869 (11) 

RF 0.843 (14) 0.906 (14) 0.872 (14) 0.895 (14) 0.873 (14) 

ANN 0.854 (18) 0.900 (18) 0.863 (18) 0.912 (18) 0.875 (18) 

Method Algorithms Spring Summer Fall Winter Whole year 

       

Seasonal 

Prediction Model 

LR 0.723 (18) 0.859 (17) 0.790 (18) 0.828 (16) 0.800 

SVM 0.698 (18) 0.857 (17) 0.789 (18) 0.813 (18) 0.789 

DT 0.805 (10) 0.883 (10) 0.818 (10) 0.879 (9) 0.846 

GBDT 0.791 (12) 0.903 (13) 0.829 (10) 0.873 (13) 0.849 

RF 0.794 (15) 0.907 (14) 0.832 (9) 0.878 (14) 0.853 

ANN 0.834 (18) 0.901 (18) 0.842 (18) 0.919 (18) 0.874 

Consecutive 

Prediction Model 

LR 0.711 (18) 0.859 (18) 0.773 (18) 0.827 (18) 0.789 (18) 

SVM 0.706 (18) 0.873 (18) 0.766 (18) 0.803 (18) 0.783 (18) 

DT 0.771 (14) 0.870 (14) 0.793 (14) 0.858 (14) 0.820 (14) 

GBDT 0.777 (11) 0.897 (11) 0.817 (11) 0.846 (11) 0.848 (11) 

RF 0.772 (14) 0.905 (14) 0.813 (14) 0.865 (14) 0.839 (14) 

ANN 0.826 (18) 0.900 (18) 0.824 (18) 0.901 (18) 0.856 (18) 
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Table 21 T-test with cross-validation 

5.3.4  Computational efficiency  

Concerning time efficiency, the computational requirements were compared between using 

feature selection versus without using feature selection, and the time efficiency was studied on 

each RFECV and prediction model. This research computation was performed on a laptop with a 

Windows operating system, a 2.6 GHz processor (Intel Core i7), and a memory size of 16 GB. 

Table 22 compares the required computation time between with and without the RFECV method. 

Computational times were reduced on most models after using RFECV, especially some 

algorithms requiring higher computational cost (e.g., RF). 

Table 23 shows the time requirements of RFECV and DM algorithms (required time: s). The 

computational time includes two components: the computational time of RFECV and model 

prediction. In general, RFECV is computationally expensive in all seasons, but the expense 

depends on the algorithms. For example, developing RFECV-LR models was relatively easy and 

fast, the calculation time is about 1 minute. However, RFECV-RF needs around 3.5 hours to find 

optimal variables on average. Model-1 means one classifier used for occupancy prediction in 

Spring, Model-2 represents one prediction model used for occupancy estimation in Summer, and 

Models- 3, 4, 5 are similar. Once the model has been developed, the time spent on prediction is 

short, especially LR requiring effortless tuning. The computation times of LR in all seasons were 

controlled within 15 seconds. In reality, the additional hyperparameter tuning time should be 

Seasons 
Algorithms 

P–values (significance level: 0.05) 
Seasonal Consecutive 

Spring 

DT 0.036113 

GBDT 0.101076 

RF 0.010564 

ANN 0.056229 

Summer 

DT 0.025037 

GBDT 0.036405 

RF 0.115958 

ANN 0.619963 

Fall 

DT 0.001373 

GBDT 0.089703 

RF 0.008545 

ANN 0.775896 

Winter 

DT 0.022661 

GBDT 0.001912 

RF 0.048038 

ANN 0.377015 
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accounted for, in which case the computational time of these prediction models would be even 

longer than shown.  

Table 22 Time efficiencies of with and without feature selection (s) 

 

 Table 23 Time requirement of RFECV and data mining algorithms (required time: s) 

 

5.3.5 Summary   

In Chapter 5.3, the prediction performances were compared. First, the accuracy of with and 

without RFECV was compared. Second, the prediction abilities of various DM algorithms in 

different seasons were explored. Next, whether the DM-OPF provide reliable forecasting results 

was also studied in this chapter. Finally, the computational requirements for each season were 

being examined. The findings are as follows: 

(1) Using RFECV could reduce computational time compared to without using feature 

selection. 

(2) GBDT, RF, and ANN produce the most accurate prediction results, which could have 

reached above 85% in most seasons under two estimation criteria. ANN could achieve 92% 

accuracy in predicting occupancy information in Winter. 

(3) The customized occupancy prediction models provide decent reliability for a whole year 

and show a higher performance score than the consecutive prediction model in most seasons. 

Summer is the most predictable season, while Spring is difficult to predict for all algorithms. 

(4) Computationally, LR, DT, and GBDT are the most time-efficient concerning training and 

prediction time. 

Model 
Spring Summer Fall Winter Whole year 

With Without With Without With Without With Without With Without 

LR 0.13 0.13 0.06 0.22 0.05 0.05 0.05 0.06 0.25 0.25 

SVM 25.80 25.80 17.74 18.85 37.32 37.32 25.95 25.95 425.70 425.70 

DT 0.05 0.06 0.04 0.04 0.03 0.03 0.03 0.03 0.072 0.076 

GBDT 1.60 1.74 1.76 2.45 1.38 1.91 1.65 1.90 3.56 5.01 

RF 8.18 8.96 8.86 9.19 8.05 7.74 8.03 8.03 30.86 31.14 

Model 
Spring Summer Fall Winter Whole year 

RFECV-1 Model-1 RFECV-2 Model-2 RFECV-3 Model-3 RFECV-4 Model-4 RFECV-5 Model-5 

LR 72.0 0.13 64.0 0.06 61.0 0.05 64.0 0.05 298.0 0.25 

SVM 682.0 25.80 724.0 17.74 14718.0 37.32 10016.0 25.95 18403.0 425.70 

DT 94.0 0.05 90.0 0.04 84.0 0.03 77.0 0.03 364.0 0.072 

GBDT 2683.0 1.60 2626.0 1.76 2364.0 1.38 2510.0 1.65 9133.0 3.56 

RF 12242.0 8.18 11482.0 8.86 10152.0 8.05 11259.0 8.03 4863.0 30.86 

ANN NA 12.54 NA 9.97 NA 15.18 NA 13.28 NA 41.21 
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6. CONCLUSION AND FUTURE WORKS 

This thesis presents a DM-OPF based on the four seasons to improve residential occupancy 

status prediction accuracy using the data of time, indoor/outdoor environment, and energy 

consumption. EDA demonstrated the correlations between all variables. In DM-OPF, the RFECV 

feature selection methods were implemented to select the optimal features for each season. Then, 

six ML algorithms (LR, SVM, DT, GBDT, RF, ANN) were deployed to compare the prediction 

performance. Additionally, the performance comparisons of using versus without using feature 

selection and seasonal versus consecutive occupancy prediction were involved. In addition, 

computational efficiency as a significant performance index was also considered to determine 

machine learning algorithms’ abilities.  

Chapter 1 presented a research background about building energy usage and electricity 

consumption by sectors. Meanwhile, the research objectives introduced the importance of 

occupancy information in this chapter.  

To explore studies in this area, specific occupancy resolution levels were researched. Then, 

what different sensor technologies can be used to collect occupancy information for prediction 

were outlined. Next, two occupancy modeling methods were investigated. Finally, the applications 

of occupancy information in HVAC and lighting systems were discussed. The detailed reviews 

and summary were presented in Chapter 2. 

Chapter 3 proposed and developed the proposed data mining framework, data preprocessing, 

and other data-preparation-related steps in this study had been coded in SPYDER and Google 

Colab with the Python language.  

The practicality of the proposed prediction models was evaluated in Chapter 4. In this chapter, 

the developed models were applied to a one-year residential apartment in Lyon, France. The 

disruption of this apartment and the elaborated information about the sensors were shown.  

The results of EDA showed that the correlations between variables could change based on 

different seasons (from positive to negative, coefficient from big to small, and vice versa), which 

means there were no fixed optimal variables for predicting occupancy status in all seasons. In 

addition, the RFECV feature selection methods extracted first-rank parameters for each season to 

improve estimation accuracy. Feature importance techniques were implemented to rank the most 
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important and least essential parameters among the optimal feature combinations in feature 

selection analysis. Results showed that the time of the day, plug, light load, and indoor CO2 were 

the top 4 most significant inputs of feature importance analysis in a year. The SOCP models were 

developed and evaluated to reduce the impact of seasonality and improve prediction accuracy. The 

results showed that the GBDT, RF, and ANN produced the most accurate prediction results, which 

could have reached above 85% in most seasons under two estimation criteria. ANN could achieve 

91.2% accuracy in predicting occupancy information in Winter. Compared to the consecutive 

occupancy prediction model, the SCOP models provided decent occupancy prediction reliability 

and showed a higher performance score than the consecutive prediction model in all seasons. 

Despite the contributions mentioned above, this study also has some limitations, and further 

studies are suggested for investigation. First, the proposed models were applied to only one unit 

of a residential apartment. Whether the DM-OPF can be generalized to other types of buildings, 

such as offices and even other research studies, needs further discussion. Second, since the DM-

OPF models were developed based on seasons, they may underwork in some regions that do not 

have distinct seasons. Third, the accuracy improvement between the proposed prediction models 

and the consecutive prediction model was limited. In the future, extending the DM-OPF models 

to different types of buildings and generalizing the seasonal prediction models to higher occupancy 

resolution levels (e.g., numbers of residents, occupants’ movements) and building energy 

consumption predictions is highly recommended. Additionally, using some cutting-edge ML 

techniques such as deep learning to improve the accuracy of occupancy estimation is also 

suggested. 
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