11 research outputs found

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Obstructions for three-coloring graphs without induced paths on six vertices

    No full text
    We prove that there are 24 4-critical P-6-free graphs, and give the complete list. We remark that, if H is connected and not a subgraph of P-6, there are infinitely many 4-critical H-free graphs. Our result answers questions of Golovach et al. and Seymour. (C) 2019 Published by Elsevier Inc

    Colouring graphs with no induced six-vertex path or diamond

    Full text link
    The diamond is the graph obtained by removing an edge from the complete graph on 4 vertices. A graph is (P6P_6, diamond)-free if it contains no induced subgraph isomorphic to a six-vertex path or a diamond. In this paper we show that the chromatic number of a (P6P_6, diamond)-free graph GG is no larger than the maximum of 6 and the clique number of GG. We do this by reducing the problem to imperfect (P6P_6, diamond)-free graphs via the Strong Perfect Graph Theorem, dividing the imperfect graphs into several cases, and giving a proper colouring for each case. We also show that there is exactly one 6-vertex-critical (P6P_6, diamond, K6K_6)-free graph. Together with the Lov\'asz theta function, this gives a polynomial time algorithm to compute the chromatic number of (P6P_6, diamond)-free graphs.Comment: 29 page
    corecore