745 research outputs found

    Analysis and Design of Singular Markovian Jump Systems

    Get PDF
    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H? control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat’s Lemma, among other techniques. Features of the book include: · study of the stability problem for SMJSs with general transition rate matrices (TRMs); · stabilization for SMJSs by TRM design, noise control, proportional-derivative and partially mode-dependent control, in terms of LMIs with and without equation constraints; · mode-dependent and mode-independent H? control solutions with development of a type of disordered controller; · observer-based controllers of SMJSs in which both the designed observer and controller are either mode-dependent or mode-independent; · consideration of robust H? filtering in terms of uncertain TRM or filter parameters leading to a method for totally mode-independent filtering · development of LMI-based conditions for a class of adaptive state feedback controllers with almost-certainly-bounded estimated error and almost-certainly-asymptotically-stable corresponding closed-loop system states · applications of Markov process on singular systems with norm bounded uncertainties and time-varying delays Analysis and Design of Singular Markovian Jump Systems contains valuable reference material for academic researchers wishing to explore the area. The contents are also suitable for a one-semester graduate course

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Finite-time stochastic input-to-state stability and observer-based controller design for singular nonlinear systems

    Get PDF
    This paper investigated observer-based controller for a class of singular nonlinear systems with state and exogenous disturbance-dependent noise. A new sufficient condition for finite-time stochastic input-to-state stability (FTSISS) of stochastic nonlinear systems is developed. Based on the sufficient condition, a sufficient condition on impulse-free and FTSISS for corresponding closed-loop error systems is provided. A linear matrix inequality condition, which can calculate the gains of the observer and state-feedback controller, is developed. Finally, two simulation examples are employed to demonstrate the effectiveness of the proposed approaches

    H

    Get PDF
    With the help of a stochastic bounded real lemma, we deal with finite horizon H2/H∞ control problem for discrete-time MJLS, whose Markov chain takes values in an infinite set. Besides, a unified control design for H2, H∞, and H2/H∞ is given

    Fault accommodation controller under Markovian jump linear systems with asynchronous modes

    Get PDF
    We tackle the fault accommodation control (FAC) in the Markovian jump linear system (MJLS) framework for the discrete-time domain, under the assumption that it is not possible to access the Markov chain mode. This premise brings some challenges since the controllers are no longer allowed to depend on the Markov chain, meaning that there is an asynchronism between the system and the controller modes. To tackle this issue, a hidden Markov chain ((Formula presented.), (Formula presented.)) is used where θ(k) denotes the Markov chain mode, and (Formula presented.) denotes the estimated mode. The main novelty of this work is the design of H∞ and H2 FAC under the MJLS framework considering partial observation of the Markov chain. Both designs are obtained via bilinear matrix inequalities optimization problems, which are solved using coordinate descent algorithm. As secondary results, we present simulations using a two-degree of freedom serial flexible joint robot to illustrate the viability of the proposed approach

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions
    corecore