
 

 

 University of Groningen

Fault accommodation controller under Markovian jump linear systems with asynchronous
modes
Carvalho, L. P.; Rosa, T. E.; Jayawardhana, B.; Costa, O. L.V.

Published in:
International Journal of Robust and Nonlinear Control

DOI:
10.1002/rnc.5252

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Carvalho, L. P., Rosa, T. E., Jayawardhana, B., & Costa, O. L. V. (2020). Fault accommodation controller
under Markovian jump linear systems with asynchronous modes. International Journal of Robust and
Nonlinear Control, 30(18), 8503-8520. https://doi.org/10.1002/rnc.5252

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1002/rnc.5252
https://research.rug.nl/en/publications/2fb546b4-03fb-4569-b807-482c20ccbce8
https://doi.org/10.1002/rnc.5252


Received: 13 May 2020 Revised: 31 August 2020 Accepted: 10 September 2020

DOI: 10.1002/rnc.5252

R E S E A R C H A R T I C L E

Fault accommodation controller under Markovian jump
linear systems with asynchronous modes

L. P. Carvalho1,2 T. E. Rosa2 B. Jayawardhana2 O. L. V. Costa1

1Departamento de Engenharia de
Telecomunicações e Controle, Escola
Politécnica na Universidade de São Paulo,
São Paulo, Brazil
2Discrete Technology and Production
Automation (DTPA), Rijksuniversiteit
Groningen, Groningen, The Netherlands

Correspondence
L. P. Carvalho, Departamento de
Engenharia de Telecomunicações e
Controle, Escola Politécnica na
Universidade de São Paulo, São Paulo, SP,
Brazil.
Email: carvalho.lp@usp.br

Funding information
Conselho Nacional de Desenvolvimento
Científico e Tecnológico, Grant/Award
Number: 465755/2014-3; Coordenação de
Aperfeiçoamento de Pessoal de Nível
Superior, Grant/Award Number:
88882.333365/2019-01; Fundação de
Amparo à Pesquisa do Estado de São
Paulo, Grant/Award Numbers:
2014/50279- 4, 304149/2019-5

Summary
We tackle the fault accommodation control (FAC) in the Markovian jump linear
system (MJLS) framework for the discrete-time domain, under the assumption
that it is not possible to access the Markov chain mode. This premise brings
some challenges since the controllers are no longer allowed to depend on the
Markov chain, meaning that there is an asynchronism between the system and
the controller modes. To tackle this issue, a hidden Markov chain (𝜃(k), 𝜃̂(k)) is
used where 𝜃(k) denotes the Markov chain mode, and 𝜃̂(k) denotes the estimated
mode. The main novelty of this work is the design of ∞ and 2 FAC under
the MJLS framework considering partial observation of the Markov chain. Both
designs are obtained via bilinear matrix inequalities optimization problems,
which are solved using coordinate descent algorithm. As secondary results, we
present simulations using a two-degree of freedom serial flexible joint robot to
illustrate the viability of the proposed approach.

K E Y W O R D S

fault-tolerant control, robust linear matrix inequalities, stochastic control

1 INTRODUCTION

Health monitoring of complex control systems has received increased attention in recent years as it can play an important
role in the predictive maintenance of such systems. It allows for an autonomous detection and prediction of the occur-
rence of faults in the systems so that these potential problems can be mitigated in a timely manner. Among a multitude
of structures that tackle this issue, the fault tolerant control (FTC) is one of the leading frameworks.1-5 The FTC frame-
work can be classified into two main methodologies, passive FTC and active FTC.6 In passive FTC, the occasional fault
occurrence is considered in the controller design, where the controller itself does not change its dynamic.3 In active FTC
(AFTC), the controller is reactive by design and can adapt itself whenever faults are presence, such as the gain-scheduled
framework.7
Abbreviations: AFTC, active fault tolerant control; BMI, bilinear matrix inequality; CDA, coordinate descent algorithm; FAC, fault accomodation
control; FTC, fault tolerant control; MJLS, Markovian jump linear systems; SFJR, serial flexible joint robot.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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This article focus on the AFTC methodology, more specifically in the situation where there is no presence of a par-
allel actuator, the so-called fault accommodation control (FAC). The main purpose of this method is to mitigate the fault
effect in the system until a proper solution is made.8 There are several ways to design an FAC scheme, for instance,
the data-driven approach5 or the model-based approach.3 In this article, we tackle this problem using the model-based
approach.

In networked systems, one should not neglect the faults related to the communication channels, since the packet loss
may impact the overall system performance. One possible way to consider such behavior is to use the so-called Markovian
jump linear system (MJLS) as a tool to model the network behavior.9

Regarding more recent works, we can, for instance, encounter methods that use an augmented system as a descrip-
tor system associated with a sliding mode observer for MJLS.10 The use of sliding mode ∞ finite-time boundedness in
the discrete-time domain under the Markovian jump system framework has also been used for fault accommodation.11

When Markovian jump systems with mode-dependent interval time-varying delay and Lipschitz nonlinearities is con-
sidered, an FTC approach has also been well studied.12 For multiagent systems with a switching topology, a consensus
algorithm-based FAC has been investigated for such systems.13 Tariverdi et al14 provide FTC design implementing
adaptive sliding mode control method applied to multiuser telerehabilitation systems. Zhang et al15 present a solution
based on interval sliding mode observer combine with nonminimum phase linear-parameter-varying systems. Jiang
et al16 compile several works on fault detection and fault accommodation in the context of switching systems applied
to spacecraft. Li et al17 tackle the state estimation problem under the assumption that the system is subjected to delay
and the transition probabilities are uncertain. One similarity of the aforementioned works is the premise that the
Markov chain modes are instantly accessible, which is not a realistic premise in most of practical applications. Regard-
ing some works that do not assume that the Markov modes are directly accessible but, instead, there is a detector
providing information about this parameter, we can refer to References 18-21 that deal with the control and filtering
problem of such systems considering a hidden Markov set up for the Markov and detector parameters. Along simi-
lar lines, the paper by Ogura et al22 deals with a state feedback control for MJLS considering hidden Markov mode
observations, while that by Cheng et al23 presents an event-based asynchronous approach for MJS under a hidden
mode detection formulation and missing measurements. However, the aforementioned works do not tackle the FAC
problem. Therefore, we have as a motivation the development of a new procedure to design FAC for MJLS that does
not rely on this particular premise (Markov chain being directly accessible), that is, we consider the eventual asynchro-
nism between the actual network mode and the mode used by the sensor or actuators (obtained through the means of
estimation).

This article aims to provide an FAC under the discrete-time MJLS framework with partial information on the jump
parameter. The partial information on the jump parameter is inspired by the work of Todorov et al,18 which allows the
possibility to consider the eventual asynchronism between the actual network mode and the mode implemented in the
controllers. This framework yields to a control design that mitigates the fault effect in the MJLS where the Markov mode
is not instantly accessible, under two performance criteria: the ∞ and 2 norms. The main novelties in this article are
summarized as follows:

• Analysis of the ∞ FAC problem in the discrete-time domain for the MJLS framework with partial information on the
Markov mode, based on bilinear matrix inequalities (BMIs).

• Analysis of the 2 FAC problem in the discrete-time domain for the MJLS framework with partial information on the
Markov mode, based on BMIs.

• Analysis of the mixed ∞/2 FAC problem in the discrete-time domain for the MJLS framework with partial
information on the Markov mode, based on BMIs.

• Simulations using a two-degree of freedom serial flexible joint robot (SFJR), Quanser Model:2DSFL.

The main advantages of the proposed approach when compared with other fault accommodations control design can
be listed as follows: (i) the proposed approach considers the eventual asynchronism between the actual network mode
and the mode used by the sensor or actuators; (ii) the proposed approach only acts to mitigate the fault effect, without
the need to alter the nominal control performance.

Hereafter, this article is organized as follows. Section 2 presents the theoretical background. Section 3 formulates the
FAC problem. Section 4 introduces the main novelties of this article. Section 5 presents the simulation the experimental
results. The final comments are provided in Section 6.
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2 PRELIMINARIES

In this section, we provide a basic theoretical background to understand the concepts presented herein.

2.1 Notation

The notation throughout this article is standard. The real Euclidian space is presented by Rn where n denotes its dimen-
sion, and n×m represents the real matrices dimension, as for example A(Rn,Rm). The symbol (⋅)′ denotes the transpose
of a matrix, and I indicates the identity matrix. The operator Her(⋅) represents the symmetric sum (X)=X +X′. A diago-
nal matrix is represented by the operator diag(⋅). The symbol • represents a symmetric block in a partitioned symmetric
matrix. On a probability space (Ω,ℱ ,P) with filtration {ℱk}, the expected value operator is represented by (⋅), the con-
ditional expected operator, by (⋅|⋅), and the space of all discrete-time sequences of dimension r, ℱk-adapted processes,
such that ||z||22 ≜

∑∞
k=0 (||z(k)||2) < ∞, by r

2.

2.2 Markovian jump linear systems

Let us define a generic Markovian jump system as

 ∶
⎧⎪⎨⎪⎩

x(k + 1) = A𝜃(k)𝜃̂(k)x(k) + J𝜃(k)𝜃̂(k)w(k)
z(k) = C𝜃(k)𝜃̂(k)x(k) + D𝜃(k)𝜃̂(k)w(k)
x(0) = x0, 𝜃(0) = 𝜃0,

(1)

where x(k) ∈ Rn denotes the state process, w(k) ∈ Rr is a stochastic disturbance with finite energy (w(k) ∈ 2), and
z(k) ∈ Rp represents the output signal. The index 𝜃(k) is a Markov chain taking its value from the set N = {1, 2, … ,N},
and its jump behavior is described by the transition matrix P = [pij], which is assumed to be nondegenerate, meaning that
there are no columns equal to zero, see.24 For a set of matrices Q1, … , QN , we define i(Q) =

∑N
j=1 pijQj.

An important hypothesis in this article is that the Markov chain mode, denoted by 𝜃(k), is not instantly
accessible, instead there is a finite set M, which contains all the possible estimated values for 𝜃(k), with
the estimation being represented by 𝜃̂(k). ̂0 represents the 𝜎-field generated by {x(0), 𝜃(0)} and ̂k is the
𝜎-field generated by {x(0), 𝜃(0), 𝜃̂(0), … , x(k), 𝜃(k)}. It is supposed that 𝜃̂(k) ∈ {1, … ,M} is related with 𝜃(k) as
described by

Prob(𝜃̂(k) = 𝓁 |̂k) = Prob(𝜃̂(k) = 𝓁|𝜃(k)) = 𝛼𝜃(k)𝓁 , 𝓁 ∈ M. (2)

Consequently, 𝛼i𝓁 represents the probabilities that the detector will emit the signal l ∈ M considering 𝜃(k) = i. The set
Mi is given by

Mi = {𝓁 ∈ M; 𝛼i𝓁 > 0} = {ki
1, … , ki

𝜏i
}, ∪N

i=1Mi = M, (3)

where
∑M

𝓁=1 𝛼i𝓁 = 1 for each i ∈ N.
Consider k as the 𝜎-field generated by {x(t), 𝜃(t), 𝜃̂(t); t = 0, … , k}. We assume that

Prob(𝜃(k + 1) = j|k) = Prob(𝜃(k + 1) = j|𝜃(k)) = p𝜃(k)j. (4)

Summing up, system (1) depends on two indexes the first one is 𝜃(k) that represents the Markov chain mode, which
we assume that is not directly accessible. The second one represents an observable estimation of 𝜃(k), denoted by 𝜃̂(k).
This conjointly dependency is based on the hidden Markov models.24 This particular dependency presented in system (1)
is an important aspect that will be useful later on in this article.

We present next the definition of stochastic stability that will be used throughout this article.

Definition 1 (Stochastic stability19). We say that system (1) is stochastically stable with w(k)≡ 0 if ||x||22 =∑∞
k=0 (||x(k)||2) < ∞ holds for every x0 with finite second moment, and every initial Markov state 𝜃0.
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2.3 ∞ norm

Before introducing the definition of the ∞ norm, it is necessary to define the set i ≜ {w̃ ∈ r
2 ∶ ||w̃||2i > 0}, where

for any signal g= {g(k), k= 0, 1, 2, … }, ||g||22i ≜ (||g(k)||2|𝜃0 = i).18

Definition 2 (∞ norms). Considering that (1) is stochastically stable, as in Definition 1, the ∞ norm of (1) is given by

||||∞ ≜ sup
i∈N

sup
w∈i

||z||2i||w||2i
.

Considering the matrices that compose system (1), the bounded real lemma presented in Reference 18 proposes the
following inequalities to obtain an upper bound 𝛾 > 0 for the ∞ norm:[

Pi 0
0 𝛾2I

]
>

∑
𝓁∈Mi

𝛼i𝓁

[
Mi𝓁 •
Ni𝓁 Si𝓁

]
, (5)[

Mi𝓁 •
Ni𝓁 Si𝓁

]
>

[
Ai𝓁 Ji𝓁

Ci𝓁 Di𝓁

]′ [
i(P) 0

0 I

][
Ai𝓁 Ji𝓁

Ci𝓁 Di𝓁

]
. (6)

Lemma 1 (Bounded-real lemma). System (1) is stochastically stable with ||||∞ < 𝛾 , if there exist Pi > 0, Mi𝓁 > 0, Si𝓁 > 0,
and Ni𝓁 such that the inequalities (5), (6) hold for all i ∈ N, and 𝓁 ∈ Mi.

2.4 2 norm

Definition 3 (2 norms). Suppose that (1) is stochastically stable, as in Definition 1. For x̃(0) = 0, define zs, i, the outputs
of (1) for the initial condition 𝜃(0) = i and the input w(k) = 0 for k≥ 1 and w(0) = es, where es is the sth vector of the
standard basis of Rs. The 2 norm of (1) with respect to the outputs zs, i is given by

||||2 =

√√√√ r∑
s=1

N∑
i=1
𝜇i||zs,i||22, (7)

where Prob(𝜃(0) = i) = 𝜇i ≥ 0 for all i ∈ N represents the initial Markov chain state distribution.

Considering (1), and writing the following inequalities

N∑
i=1

∑
𝓁∈Mi

𝜇i𝛼i𝓁Tr(W i𝓁) < 𝛿2, (8)

⎡⎢⎢⎢⎣
W i𝓁 • •
Ji𝓁 i(Q)−1 •
Di𝓁 0 I

⎤⎥⎥⎥⎦ > 0, (9)

Qi >
∑
𝓁∈Mi

𝛼i𝓁Ri𝓁 , (10)

⎡⎢⎢⎢⎣
Ri𝓁 • •
Ai𝓁 i(Q)−1 •
Ci𝓁 0 I

⎤⎥⎥⎥⎦ > 0, (11)

and defining

𝜓 = {W i𝓁 ,Qi,Ri𝓁 , i ∈ N, 𝓁 ∈ Mi}

Δ = {{W i𝓁 ,Qi,Ri𝓁}i𝓁 ∈ 𝜓 | (8) − (11) hold for some 𝛿}. (12)
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F I G U R E 1 Fault compensation control scheme diagram

we have the following result (see the proof in References 19 and 20):

Lemma 2. System (1) is stochastically stable with ||||2 < 𝛿, if there exists 𝜓 ∈ Δ.

We define the following optimization problem related to the 2 norm:

inf
{W i𝓁 ,Qi,Ri𝓁}i𝓁∈Δ

𝛿2. (13)

3 PROBLEM FORMULATION

The FAC problem is a particular class of FTC, which uses a different approach when compared to the usual FTC in
the literature. The majority of FTC approaches considers the occurrence of faults during the design process of a static
controller. In the case of FAC, there are two controllers working alongside each other where the first one is designed for
the nominal conditions while the other one will be active when a fault occurs.

For the FAC problem, we consider the following MJLS formulation

 ∶
⎧⎪⎨⎪⎩

x(k + 1) = A𝜃(k)x(k) + B𝜃(k)utotal(k) + J𝜃(k)d(k) + F𝜃(k)f (k),
y(k) = C𝜃(k)x(k) + D𝜃(k)d(k),
x(0) = x0,

(14)

where the vectors x(k) ∈ Rn, y(k) ∈ Rp, d(k) ∈ Rr, f (k) ∈ Rq, utotal(k) ∈ Rm are, respectively, the system state, output,
exogenous input, fault signal, the control input, and 𝜃(k) denotes the mode of a Markov chain which is initialized at 𝜃0.
The nominal control is provided by state-feedback controller

u(k) = K𝜃̂(k)x(k), (15)

where x(k) ∈ Rn represents the states of system (14).
Figure 1 depicts the overall block diagram of the MJLS along with the FAC controllers K𝓁 for the nominal one and

c𝓁 for the faulty ones.
As shown in Figure 1, the signal utotal is the sum of the nominal control signal u(k) and the fault compensation control

signal h(k). Consequently, in nominal conditions, the signal h(k) is close to zero. In other words, the fault compensation
control signal only acts in the presence of a fault as expected.

The FAC controller c is assumed to have the following structure

c ∶
⎧⎪⎨⎪⎩
𝜂(k + 1) = 𝔄𝜃̂(k)𝜂(k) +𝔐𝜃̂(k)u(k) +𝔅𝜃̂(k)y(k),
h(k) = ℭ𝜃̂(k)𝜂(k),
𝜂(0) = 𝜂0,

(16)

where 𝜂 ∈ Kq represents the FAC state vector, u(k) and y(k) are, respectively, the control signal from the nominal con-
troller and the measured signal from the system. It is of utmost importance to note that the FAC does not depend on the
index 𝜃(k). Instead it depends solely on the index 𝜃̂(k), which is one of the novelties of the present work.
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As presented in Figure 1, the closed-loop for system (14), the state feedback control law (15), and the proposed FAC (16)
can be compactly written as

aug ∶
⎧⎪⎨⎪⎩

x(k + 1) = Ā𝜃(k)𝜃̂(k)x(k) + J𝜃(k)𝜃̂(k)w(k),
z(k) = C𝜃(k)𝜃̂(k)x(k) + D𝜃(k)𝜃̂(k)w(k),
x(0) = 𝜂0,

(17)

where x(k) = [x(k) 𝜂(k)] and w(k) = [d(k) f (k)], with the augmented matrices given by

Āi𝓁 =

[
Ai − BiK𝓁 Biℭ𝓁

𝔅𝓁Ci −𝔐𝓁K𝓁 𝔄i

]
, Ji𝓁 =

[
Ji Fi

𝔅𝓁Di 0

]
. (18)

As previously stated, the main purpose of this work is to provide an FAC design, as in (16), where the supplementary
control signal will accommodate the fault signal. This accommodation for the ∞ case is described by the difference
o(k) = F𝜃(k)f (k) − B𝜃(k)h(k), which we desire to be close to zero. From the above, the optimization problem regarding the
∞ case can be described as

||aug||∞ = sup||w||2≠0,w∈2

||o||2||w||2 < 𝛾, 𝛾 > 0, (19)

where the augmented matrices Ci𝓁 and Di𝓁 are given by

Ci𝓁 =
[

0 −Biℭ𝓁

]
, Di𝓁 =

[
0 Fi

]
. (20)

The use of the 2 norm as a performance criteria is due to the similarities to the LQR controllers, which are known
in the literature for its good performance and reliability. Therefore, the optimization problem for the 2 case can be
described as

||aug||22 =
m∑

s=1

N∑
i=1
𝜇i||o||22 < 𝛿2, (21)

where the augmented matrices are

Ci𝓁 =
[
0 −Biℭ𝓁

]
, Di𝓁 =

[
0 Fi

]
.

It is important to point out that the controller K𝓁 is obtained beforehand, for instance, the con-
troller in Reference 18, but any other controller that guarantees stability in the same condition can be
implemented.

4 MAIN CONTRIBUTION

In this section, we present the main novelty of this article, which is the design of an FAC under MJLS considering partial
knowledge of the Markov modes for the ∞ norm case and 2 norm case.

4.1 ∞ case

Our first main result on the procedures to design the FAC for the ∞ norm case is presented in
Theorem 1 below.

Theorem 1. There exists a mode-dependent FAC as described in (16) satisfying the constraint (19) for some 𝛾 > 0 if there
exist symmetric matrices Zi, Xi, M11

i𝓁 , M22
i𝓁 , S11

i𝓁 , S22
i𝓁 and matrices M21

i𝓁 , N11
i𝓁 , N12

i𝓁 , N21
i𝓁 , N22

i𝓁 , S21
i𝓁 , R𝓁 , 𝔄𝓁 , 𝔅𝓁 , 𝔐𝓁 , and ℭ𝓁 with
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compatible dimensions such that inequalities

⎡⎢⎢⎢⎢⎢⎣

Zi • • •
Zi Xi • •
0 0 𝛾2I •
0 0 0 𝛾2I

⎤⎥⎥⎥⎥⎥⎦
>

∑
𝓁∈Mi

𝛼i𝓁

⎡⎢⎢⎢⎢⎢⎣

M11
i𝓁 • •

M21
i𝓁 M22

i𝓁 •
N11

i𝓁 N12
i𝓁 S11

i𝓁 •
N21

i𝓁 N22
i𝓁 S21

i𝓁 S22
i𝓁

⎤⎥⎥⎥⎥⎥⎦
, (22)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11
i𝓁 • • • • • •

M21
i𝓁 M22

i𝓁 • • • • •
N11

i𝓁 N12
i𝓁 S11

i𝓁 • • • •
N21

i𝓁 N22
i𝓁 S21

i𝓁 S22
i𝓁 • • •

Π5,1
i𝓁 Π5,2

i𝓁 i(Z)Ji i(Z)Fi i(Z) • •
Π6,1

i𝓁 Π6,2
i𝓁 R𝓁Ji + R𝓁𝔅𝓁Di R𝓁Fi 0 Π6,6

i𝓁 •
−Biℭ𝓁 0 0 Fi 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (23)

with

Π5,1
i𝓁 = i(Z)Ai − i(Z)BiK𝓁 + i(Z)Biℭ𝓁 ,

Π5,2
i𝓁 = i(Z)Ai − i(Z)BiK𝓁 ,

Π6,1
i𝓁 = R𝓁(Ai − BiK𝓁 + Biℭ𝓁 +𝔄𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Π6,2
i𝓁 = R𝓁(Ai − BiK𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Π6,6
i𝓁 = Her(R𝓁) − i(X) + i(Z),

hold for all i ∈ K and for all 𝓁 ∈ Mi .

Proof. The proof is based on the results presented in References 21 and 25. We impose the structure of the matrices Pi
and P−1

i of (5)-(6) as

Pi =

[
Xi •
Ui X̂i

]
, P−1

i =

[
Z−1

i •
Vi Ŷi

]
. (24)

Also define the matrices 𝜏i and 𝜐i as

𝜏i =

[
I I

ViZi 0

]
, 𝜐i =

[
I i(X)
0 i(U)

]
. (25)

Observing that (23) is diagonal block, we can also write that Her(R𝓁) > i(X − Z) > 0, and as a by-product R𝓁 is
nonsingular. Setting Ui = −X̂ i, allow us to rewrite the matrices Pi and P−1

i as

Pi =

[
Xi •

Zi − Xi Xi − Zi

]
, (26)

P−1
i =

[
Z−1

i •
Z−1

i Z−1
i + (Xi − Zi)−1

]
. (27)

Hence, Equation (25) are now

𝜏i =

[
I I
I 0

]
, 𝜐i =

[
I i(X)
0 i(Z − X)

]
. (28)
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As R𝓁 is nonsingular, and using the results presented in References 25 and 26, we get that R𝓁i(X − Z)−1R′
𝓁 ≥

Her(R𝓁) + i(Z − X), so that the constraint (23) still hold if the diagonal term Her(R𝓁) + i(Z − X) is substituted by
R𝓁i(X − Z)−1R′

𝓁 , resulting in

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11
i𝓁 • • • • • •

M21
i𝓁 M22

i𝓁 • • • • •
N11

i𝓁 N12
i𝓁 S11

i𝓁 • • • •
N21

i𝓁 N22
i𝓁 S21

i𝓁 S22
i𝓁 • • •

Ξ5,1
i𝓁 Ξ5,2

i𝓁 i(Z)Ji i(Z)Fi i(Z) • •
Ξ6,1

i𝓁 Ξ6,2
i𝓁 Ξ6,3

i𝓁 Ξ6,4
i𝓁 0 Ξ6,6

i𝓁 •
−Biℭ𝓁 0 0 Fi 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (29)

where

Ξ5,1
i𝓁 = i(Z)Ai − i(Z)BiK𝓁 − i(Z)Biℭ𝓁 ,

Ξ5,2
i𝓁 = i(Z)Ai − i(Z)BiK𝓁 ,

Ξ6,1
i𝓁 = R𝓁(Ai − BiK𝓁 + Biℭ𝓁 +𝔄𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Ξ6,2
i𝓁 = R𝓁(Ai − BiKi +𝔅𝓁Ci −𝔐𝓁K𝓁),

Ξ6,3
i𝓁 = R𝓁Ji + R𝓁𝔅𝓁Di,

Ξ6,4
i𝓁 = R𝓁Fi,

Ξ6,6
i𝓁 = R𝓁i(X − Z)−1R′

𝓁 .

Now defining the matrix Πi𝓁 as

Πi𝓁 =

[
i(Z)−1 I

0 R−T
𝓁 i(X − Z)

]
, (30)

and pre and post multiplying (29) by diag(I, I,Πi𝓁 , I), and its transpose, respectively, we get that⎡⎢⎢⎢⎢⎢⎣

𝜏′i Mi𝓁𝜏i • • •
Ni𝓁𝜏i Si𝓁 • •
𝜐′i Āi𝓁𝜏i 𝜐′i Ji𝓁 𝜐′ii(P)−1𝜐i •
Ci𝓁𝜏i Di𝓁 0 I

⎤⎥⎥⎥⎥⎥⎦
> 0. (31)

By pre and pos multiplying (31) by diag(𝜏−1
i , I, 𝜐−1

i , I), and after that using the Schur complement to the resulting
constraint, we obtain that (6) holds. At last, observing that (22) can be rewritten as[

𝜏′i Pi𝜏 •
0 𝛾2I

]
>

∑
𝓁∈Mi

𝛼i𝓁

[
𝜏′i Mi𝓁𝜏i •

Ni𝓁𝜏i Si𝓁

]
, (32)

we get, after pre and post multiplying (32) by diag(𝜏−1
i , I), that constraint (5) holds. Since (5)-(6) hold for the closed-loop

system as in (17), we get from Lemma 1 that ||aug||∞ < 𝛾 , and the claim follows. ▪

Remark: Notice that the matrices for the FAC controller in (16) and satisfying (19) are directly obtained from the
solution of the inequalities (22), (23).

4.2 2 case

We present now the design of an FAC for the 2 norm case.
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Theorem 2. There exists a mode-dependent FAC c as in (16) satisfying the constraint (21) for some 𝛿 > 0 if there exist
symmetric matrices Ti, Oi, W11

i𝓁 , W22
i𝓁 , V 11

i𝓁 , V 22
i𝓁 and matrices W21

i𝓁 , V 21
i𝓁 , R𝓁 , 𝔄𝓁 , 𝔅𝓁 , 𝔐𝓁 , and ℭ𝓁 with compatible dimensions

such that the inequalities
N∑

i=1

∑
𝓁∈Mi

𝜇i𝛼i𝓁Tr

([
W11

i𝓁 •
W21

i𝓁 W22
i𝓁

])
< 𝛿2, (33)[

Ti •
Ti Oi

]
>

∑
𝓁∈Mi

𝛼i𝓁

[
V 11

i𝓁 •
V 21

i𝓁 V 22
i𝓁

]
, (34)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

W11
i𝓁 • • • •

W21
i𝓁 W22

i𝓁 • • •
i(T)Ji i(T)Fi i(T) • •

R𝓁Ji + R𝓁𝔅𝓁
Di R𝓁Fi 0 Θ4,4

i𝓁 •
0 Fi 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> 0, (35)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V 11
i𝓁 • • • •

V 21
i𝓁 V 22

i𝓁 • • •
Θ̌

3,1
i𝓁 Θ̌

3,2
i𝓁 i(T) • •

Θ̌
4,1
i𝓁 Θ̌

4,2
i𝓁 0 Θ̌

4,4
i𝓁 •

−Biℭ𝓁 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> 0, (36)

with
Θ4,4

i𝓁 = Her(R𝓁) + i(O) − i(T),

Θ̌
3,1
i𝓁 = i(T)(Ai − BiK𝓁 + Biℭ𝓁),

Θ̌
3,2
i𝓁 = i(T)(Ai − BiK𝓁),

Θ̌
4,1
i𝓁 = R𝓁(Ai − BiK𝓁 + Biℭ𝓁 +𝔄𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Θ̌
4,2
i𝓁 = R𝓁(Ai − BiK𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Θ̌
4,4
i𝓁 = Her(R𝓁) + i(O) − i(T),

hold for all i ∈ K and for all 𝓁 ∈ Mi.

Proof. The proof uses a similar scheme as the one of Theorem 1. Consider Qi in (8)-(11) with the following form

Qi =

[
Oi •
Ūi Ôi

]
, Q

−1
i =

[
T−1

i •
V i T̂i

]
, (37)

and define the matrices 𝜂i and 𝜎i by

𝜂i =

[
I I

V iTi 0

]
, 𝜎i =

[
I i(T)
0 i(Ū)

]
. (38)

It follows from (35)-(36) that R𝓁 is nonsingular. By imposing Ūi = −Ôi and recalling that QiQ
−1
i = I, we can rewrite

(37) as

Qi =

[
Oi •

Ti − Oi Oi − Ti

]
, Q

−1
i =

[
T−1

i •
T−1

i Υ1i

]
, (39)

where Υ1i = T−1
i − (Oi − Ti)−1, and we can also rewrite (38) as

𝜈i =

[
I I
I 0

]
, 𝜎i =

[
I i(T)
0 i(T − O)

]
. (40)
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Using the same idea applied as in the proof of Theorem 1 we get that R𝓁i(O − T)−1R′
𝓁 ≥ Her(R𝓁) + i(T − O). Let us

rewrite (35)-(36) as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎣

W11
il • • • •

W21
il W22

il • • •
i(T)Ji i(T)Fi i(T) • •

R𝓁Ji − R𝓁𝔅𝓁Di R𝓁Fi 0 T33 •
0 Fi 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

T33 = Her(R𝓁) + i(O) − i(T), (41)

and

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V 11
i𝓁 • • • •

V 21
i𝓁 V 22

il • • •
Ψ3,1

i𝓁 Ψ3,2
i𝓁 i(T) • •

Ψ4,1
i𝓁 Ψ4,2

i𝓁 0 R𝓁i(O − T)−1R′
𝓁 •

−Biℭ𝓁 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> 0, (42)

Ψ3,1
i𝓁 = i(T)(Ai − BiK𝓁 + Biℭ𝓁),

Ψ3,2
i𝓁 = i(T)(Ai − BiK𝓁),

Ψ4,1
i𝓁 = R𝓁(Ai − BiK𝓁 + Biℭ𝓁 +𝔄𝓁 +𝔅𝓁Ci −𝔐𝓁K𝓁),

Ψ4,2
i𝓁 = R𝓁(Ai − BiK𝓁 + Bi +𝔅𝓁Ci −𝔐𝓁K𝓁).

By defining

Πi𝓁 =

[
i(T)−1 I

0 R−T
𝓁 i(O − T)

]
,

pre and pos multiplying (41) by diag(I, I,Πi𝓁), and (42) by diag(I, I,Πi𝓁 , I) we get

⎡⎢⎢⎢⎣
Wi𝓁 • •
𝜎′i Ji𝓁 𝜎′ii(Q)−1𝜎i •
Di𝓁 0 I

⎤⎥⎥⎥⎦ > 0, (43)

⎡⎢⎢⎢⎣
𝜈′i Ri𝓁𝜈i • •
𝜎′i Āi𝓁𝜈i 𝜎′ii(Q)−1𝜎i •
Ci𝓁𝜈i 0 I

⎤⎥⎥⎥⎦ > 0. (44)

By pre and pos multiplying (43) by diag(I, 𝜎−1
i , I), and (44) by diag(𝜈−1

i , 𝜎−1
i , I) we get that (9), (11), hold with the

closed-loop matrices of system (17). Consequently we can rewrite (33) as

𝜈′i Qi𝜈i >
∑
𝓁∈Mi

𝛼i𝓁𝜈
′
i Ri𝓁𝜈i. (45)

Therefore, it is noticeable that (33) and (8) are equivalent, we can see that (10) is also satisfied by pre and pos
multiplying (45) by 𝜈−1

i . From Lemma 2, ||aug||2 < 𝛿, and the claim follows. ▪
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Remark: As for the ∞ case, the matrices for the FAC controller in (16) and satisfying (21) are directly obtained from
the solution of the inequalities (33)-(36).

4.3 Mixed 2 / ∞

New we provide the design of mixed 2 / ∞ FAC for MJLS with partial information on the jump parameter.
By inspecting the BMI constraints provided in Theorems 1 and 2, we can observe that the structure to solve the FAC

problem is similar. This similarity allows us to also obtain a mixed solution.
The main motivation to provide the mixed solution is that the FAC will consider both ∞ and 2 norms during the

design process. On the one hand, a guaranteed ∞ norm implies that the closed-loop system is robust against external
noise signal. On the other hand, the energy of control signal is minimized in the 2 design approach which is desirable
as there is no parallel actuators in the systems.

Bearing in mind this information, we provide the mixed design of a FAC using the BMI conditions for Theorems 1
and 2. Hence, we rewrite the constraints as

𝜙 = {Zi,Xi,M11
i𝓁 ,M

22
i𝓁 , S

11
i𝓁 , S

22
i𝓁 ,M

21
i𝓁 ,N

11
i𝓁 ,N

12
i𝓁 ,N

21
i𝓁 ,N

22
i𝓁 , S

21
i𝓁 ,Ti,Oi,W11

i𝓁 ,W
21
i𝓁 ,W

22
i𝓁 ,V

11
i𝓁 ,V

21
i𝓁 ,V

22
i𝓁

R𝓁 ,𝔄𝓁 ,𝔅𝓁 ,𝔐𝓁 ,ℭ𝓁 , i ∈ N, 𝓁 ∈ Mi} (46)

𝜅 =
{{

Zi,Xi,M11
i𝓁 ,M

22
i𝓁 , S

11
i𝓁 , S

22
i𝓁 ,M

21
i𝓁 ,N

11
i𝓁 ,N

12
i𝓁 ,N

21
i𝓁 ,N

22
i𝓁 , S

21
i𝓁 ,Ti,Oi,W11

i𝓁 ,W
21
i𝓁 ,W

22
i𝓁 ,V

11
i𝓁 ,V

21
i𝓁 ,V

22
i𝓁

R𝓁 ,𝔄𝓁 ,𝔅𝓁 ,𝔐𝓁 ,ℭ𝓁}i𝓁 ∈ 𝜙| (22) − (23) and (33) − (36) hold for some 𝛾 and 𝛿} , (47)

in which case, the mixed ∞ and 2 optimization problem is given by

inf
𝜙∈𝜅

{𝛾2𝜁 + 𝛿2𝛽}. (48)

for given weighting scalars 𝜁 > 0, 𝛽 > 0.

Theorem 3. There exists a mode-dependent FAC c as in (16) such that ||aug||∞ < 𝛾 and ||aug||2 < 𝛿 for given 𝛾 > 0 and
𝛿 > 0 if there exist symmetric matrices Zi, Xi, M11

i𝓁 , M22
i𝓁 , S11

i𝓁 , S22
i𝓁 , Ti, Oi, W11

i𝓁 , W22
i𝓁 , V 11

i𝓁 , V 22
i𝓁 and the matrices M21

i𝓁 , N11
i𝓁 , N12

i𝓁 ,
N21

i𝓁 , N22
i𝓁 , S21

i𝓁 , W21
i𝓁 , V 21

i𝓁 , R𝓁 , 𝔄𝓁 , 𝔅𝓁 , 𝔐𝓁 , and ℭ𝓁 with compatible dimensions such that inequalities, (22), (23), (33), (34),
(35), and (36) hold for all i ∈ N and for all 𝓁 ∈ Mi.

The proof for Theorem 3 is a direct consequence of Theorems 1 and 2 . ◼
Remark: It is important to mention that the level of conservatism in Theorem 3 is higher in comparison to that of

Theorem 1 and Theorem 2, since Theorem 3 considers the BMI constraints (22)-(23) from Theorem 1 and (33)-(36) from
Theorem 2 simultaneously. Note that the number of variables for each theorem is

Theorem 1 → 10 × imax × 𝓁max + 2 × imax + 5 × 𝓁max + 1
Theorem 2 → 6 × imax × 𝓁max + 2 × imax + 5 × 𝓁max + 1
Theorem 3 → 16 × imax × 𝓁max + 4 × imax + 5 × 𝓁max + 2.

It is noteworthy that the number of variables in Theorem 3 is not the direct sum of the variables in Theorem 1 and
2, due to the fact that matrices R𝓁 , 𝔄𝓁 , 𝔅𝓁 , 𝔐𝓁 , and ℭ𝓁 , which are the matrices that compose the FAC (16), are present
in the BMIs constraints of Theorems 1 and 2. Regarding the number of BMI constraints, Theorem 1 has 2× imax ×𝓁max
BMIs, Theorem 2 has 4× imax ×𝓁max BMIs, and the number of BMIs in Theorem 3 is the sum of BMIs in Theorems 1
and 2, therefore, the number of BMI is 6× imax ×𝓁max. Hence, the region of feasible solutions in Theorem 3 is smaller in
comparison to the ones for Theorem 1 and Theorem 2, and by consequence increasing the computational effort necessary
to solve Theorem 3.

4.4 Coordinate descent algorithm

As stated previously, the constraints in Theorems 1 and 2 are BMIs. For solving these optimization problems with BMI
constraints, there are a number of approaches presented in literature, to name a few Reference 27 or 28. In this article,
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F I G U R E 2 Force diagram of a serial flexible joint robot, the
description, and values of each parameter can be seen in Table 1

we use the coordinate descent algorithm (CDA) for solving the problems which is also used and presented in References
21 and 29. The CDA is presented below.

Algorithm 1. Coordinate Descent Algorithm

Input: K𝓁 , 𝛾 , tmax, 𝜙.
Output: 𝔄𝓁 , 𝔅𝓁 , 𝔐𝓁 , ℭ𝓁 .
Initialization:
While: 𝛾

t−1−𝛾 t

𝛾 t−1 ≤ 𝜂 or t ≤ tmax do:
Step 1: Solve the constraint in Theorem 1 or 2 considering ℭ𝓁 as a constant, which can be obtained using18. Obtain the
values of R𝓁 , and Zi for the Theorem 1 or R𝓁 Ti for the Theorem 2.
Step 2: Solve the constraint in Theorem 1 or 2 this time using the values of R𝓁 , and Zi or R𝓁 , and Ti obtained in Step 1 and
ℭ𝓁 as a variable. Obtain the value of 𝛾 .

In the above algorithm, the input 𝜙 is the stop criteria and tmax is the maximum number of interactions allowed.
Remark: The controller used in the CDA can be obtained using any design approach, but it is recommended to use a

controller that is also under the MJLS framework. If the first iteration is feasible, the algorithm will at least keep the same
result obtained, or improve the results.

5 RESULTS

In this section, we provide the simulation and experimental results using a two-degree of freedom SFJR (Quanser
Model:2DSFJ). First, we present the mathematical model of the SFJR, we provide the method used to model a particular
fault in the SFJR, and finally, the results obtained via MATLAB simulation are presented

5.1 SFJR modeling

The SFJR system where the simulations were made is presented in the force diagram in Figure 2
Using the variables as defined in Table 1, we define the state vector of the SFJR system as follows

x′ =
[
𝜎11(t) 𝜎12(t) d

dt
𝜎11(t) d

dt
𝜎12(t)

]
. (49)

Let the control input be the electrical current to the first motor so that u1 = Im1. In this case, the state-space matrices
A and B of the SFJR system (see also Reference 30) are given by

A =

⎡⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−Ks1
J11

Ks1
J11

−B11
J11

0
Ks1
J12

−Ks1
J12

0 −B12
J12

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

0
0

Kt1
J11

0

⎤⎥⎥⎥⎥⎥⎦
. (50)
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T A B L E 1 Value for the SFJR
system System Description

Symbol Description Unit

Im1 First motor armature current A

Kt1 First driver torque constant N.m/A

T1 Torque produced by drive #1, at load shaft N.m

𝜎11 First driving shaft absolute position rad
d
dt
𝜎11(t) First driving shaft absolute angular velocity rad/s

𝜎12 First rigid link absolute position rad
d
dt
𝜎12(t) First rigid absolute angular velocity rad/s

J11 First flexible joint actuated transition equivalent moment of
inertia

kg.m2

B11 First flexible joint actuated transition equivalent viscous
damping coefficient

N.m.s/rad

J12 First flexible joint load transition equivalent moment of inertia
(compounded with stage 2 system)

kg.m2

B12 First flexible joint load transition equivalent viscous damping
coefficient (compounded with stage 2 system)

N.m.s/rad

Ks1 First flexible joint torsional stiffness constant N.m/rad

The matrices were obtained using the parameters provided by the manufacturer and shown in Table 1. The
discretization procedure implemented was a Zero-order Hold with a sampling time of 0.05 second.

Therefore, the matrices that describe the system in the discrete time-domain are:

A1,2 =

⎡⎢⎢⎢⎢⎢⎣

0.91 0.07 0.01 0.00
0.04 0.94 0.00 0.04
−1.79 1.79 −0.00 0.06
1.85 −1.85 0.01 0.92

⎤⎥⎥⎥⎥⎥⎦
, B1,2 =

⎡⎢⎢⎢⎢⎢⎣

0.07
0.00
1.83
0.05

⎤⎥⎥⎥⎥⎥⎦
, J1,2 =

⎡⎢⎢⎢⎢⎢⎣

0.0007
0.0000
0.0183
0.0005

⎤⎥⎥⎥⎥⎥⎦
, F1,2 =

⎡⎢⎢⎢⎢⎢⎣

0
0.1
0

0.016

⎤⎥⎥⎥⎥⎥⎦
. (51)

Observe that the matrix that represents the exogenous input, J, is a ratio of the input matrix B. Another relevant infor-
mation is that matrix F represents a possible fault in the positioning/acceleration on the load or second part of the joint.

Hereafter, we present the MJLS modeling of the system, which will be responsible to model the network communica-
tion loss. This modeling is widely used in the networked control system field and, for the sake of simplicity, we consider
only the sensor communication. The communication loss is modeled using a specific mode of the Markov chain to rep-
resent each of network state. In this case, there are two modes where the first one is the nominal communication and the
second one represents the communication loss, that is,

C1 = In, C2 = 0n, D1,2 = 0n×m.

The transition matrix and the detector matrix used are

P =

[
0.8 0.2
0.6 0.4

]
, 𝛼 =

[
0.7 0.3
0.5 0.5

]
. (52)

Using the above mentioned parameters and according to Theorem 1, the FAC as in (16) is given by

𝔄1 =

⎡⎢⎢⎢⎢⎢⎣

−0.67 0.12 0.11 0.36
0.27 −0.87 0.12 0.28
2.22 −2.21 −0.01 −0.16
−1.42 2.16 0.19 −0.29

⎤⎥⎥⎥⎥⎥⎦
, 𝔄2 =

⎡⎢⎢⎢⎢⎢⎣

−0.30 −0.40 0.03 0.26
−0.31 −0.86 −0.02 −0.23
0.42 −1.16 −0.12 −0.89
0.35 0.63 0.14 0.03

⎤⎥⎥⎥⎥⎥⎦
,
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𝔅1 =

⎡⎢⎢⎢⎢⎢⎣

0.00 0.00 0.00 0.00
0.04 −0.03 0.00 0.00
0.01 −0.00 0.00 0.00
−0.00 0.00 −0.00 −0.00

⎤⎥⎥⎥⎥⎥⎦
, 𝔅2 =

⎡⎢⎢⎢⎢⎢⎣

−0.01 0.00 −0.00 0.00
0.00 −0.00 −0.00 −0.00
0.00 −0.00 0.00 −0.00
−0.00 0.00 −0.00 0.00

⎤⎥⎥⎥⎥⎥⎦
,

𝔐1 =

⎡⎢⎢⎢⎢⎢⎣

−2.43
−2.41
2.37
−4.30

⎤⎥⎥⎥⎥⎥⎦
, 𝔐2 =

⎡⎢⎢⎢⎢⎢⎣

−1.99
1.38
8.15
−7.48

⎤⎥⎥⎥⎥⎥⎦
,

ℭ1 =
[
−0.26 0.20 −0.00 0.00

]
,

ℭ2 =
[
−0.25 0.19 −0.00 0.00

]
,

with the upper bound 𝛾 = 6.29. On the other hand, following the results in Theorem 2, the corresponding FAC is

𝔄1 =

⎡⎢⎢⎢⎢⎢⎣

−0.14 −0.52 0.04 0.52
−0.18 −0.64 −0.00 0.17
−0.26 0.05 −0.03 −0.23
0.09 0.33 0.01 −0.42

⎤⎥⎥⎥⎥⎥⎦
, 𝔄2 =

⎡⎢⎢⎢⎢⎢⎣

−0.17 −0.61 0.05 0.61
−0.21 −0.75 −0.00 0.20
−0.31 0.06 −0.04 −0.27
0.11 0.38 0.02 −0.49

⎤⎥⎥⎥⎥⎥⎦
,

𝔅1 =

⎡⎢⎢⎢⎢⎢⎣

−0.03 0.02 0.02 0.13
−0.07 −0.17 0.01 −0.08
−0.00 −0.03 −0.00 −0.07
0.04 −0.01 0.01 −0.26

⎤⎥⎥⎥⎥⎥⎦
, 𝔅2 =

⎡⎢⎢⎢⎢⎢⎣

−0.04 0.02 0.02 0.16
−0.09 −0.20 0.02 −0.09
−0.00 −0.04 −0.00 −0.08
0.04 −0.02 0.01 −0.30

⎤⎥⎥⎥⎥⎥⎦
,

𝔐1 =

⎡⎢⎢⎢⎢⎢⎣

−5.30
−3.72
−15.89
12.23

⎤⎥⎥⎥⎥⎥⎦
, 𝔐2 =

⎡⎢⎢⎢⎢⎢⎣

−4.60
1.41

16.33
−14.72

⎤⎥⎥⎥⎥⎥⎦
,

ℭ1 =
[

0.20 −0.07 0.01 0.14
]
,

ℭ2 =
[

0.12 −0.05 0.00 0.07
]
,

with the upper bound 𝛿 = 0.3284.

5.2 Fault modeling

For numerical simulation, we simulated the input signal and fault signal as presented in Figure 3, where the black curve
represents the input signal, and the dashed one represents the fault signal, which models an abnormal decrease in the
input signal.

5.3 Simulation results

In this section, we present the results using a Monte Carlo simulation where we compare the performance of
closed-loop system with the ∞ and 2 FAC approaches and without FAC, for example, it only uses the nom-
inal controller c. Each Monte Carlo analysis is based on 200 simulations where the noise and transitions are
randomized. Moreover, we also compare these results with two distinct FACs. The first one does not consider
the eventual asynchronism, which means the controller and FAC depend on the Markov chain mode. The sec-
ond one ignores completely the presence of jumps. The graphics presented each state of the plant in Figures 4
to 7, and the control signal in Figure 8. In Figures 4 to 8, the black curve represents the results obtained using
Theorem 1, the blue curve denotes the results obtained using Theorem 2, the red curve represents FAC approach
that does not consider the asynchronism, the green denotes the results using an FAC approach that does not con-
sider asynchronism nor the loss of communication, and the dashed black curve represents the situation without
any FAC.
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F I G U R E 3 The black curve represents the
input signal, and the dashed gray curve denotes
actuator fault, which describes the actuator loss
of effectiveness

F I G U R E 4 The first state
(𝜎11) signal response for all cases
with and without fault [Colour
figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 The second state (𝜎12) signal response for all cases with and without fault [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 The third state
( 𝜕
𝜕t
𝜎11) signal response for all

cases with and without fault
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 7 The third state
( 𝜕
𝜕t
𝜎12) signal response for all

cases with and without fault
[Colour figure can be viewed at
wileyonlinelibrary.com]

It can be observed from Figure 4 that both FAC approaches are able to accommodate the fault as expected.
The figure shows that while the ∞ case provides a more aggressive behavior and better compensation the
fault that the 2 one, it influences the control signal even though the plant is in its nominal state. The FAC
approaches that do not consider the asynchronism give the worst performance compared to the other ones, which
is expected.

Similar observation can be seen in Figure 5 where both FAC approaches minimize the effect of the fault. It can be seen
in this figure that the black and gray curves reach the nominal value even in the faulty situation in instant 5.5 seconds,
which does not occur for the case without the FAC. Regarding the FACs that do not consider the asynchronism, they once
again presented the worst performance.

Figure 6 shows the system velocity where the ∞ FAC approach gives performance close to the nominal case and the
2 FAC case exhibits noisy behavior. None of the FAC approaches surpasses the performance of nominal controller in
the faultless conditions. For the FACs that do not consider the asynchronism, they give the worst performance and the
presence of chattering is pronounced.

In Figure 7, both situations do not present meaningful differences, but both FAC approaches presented a slightly lower
value in the entire simulation.

As can be observed in Figure 8, the FAC controllers designed using Theorem 2 is more susceptible to noise, which
is expected since this solution is based on 2 norm. However, the maximum values barely surpass the control signal for

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 8 The control
signal (utotal(k)) response for all
cases with and without fault
[Colour figure can be viewed at
wileyonlinelibrary.com]

the system without FAC. For the FACs that do not consider the asynchronism, the presence of chattering is even greater
which is not desirable.

6 CONCLUSION

In the present work, we solve the fault accommodation problem under the MJLSs with partial observation on the Markov
parameter for the discrete-time domain. Our main contributions in Section 4 are the design of ∞ and 2 FAC for MJLS
with partial observation based on BMIs. We present as well the design of the mixed 2/∞ FAC for MJLS with partial
observation also based on BMIs. The assumption on partial observation of the Markov chain imposes some challenges,
which were tackled using hidden Markov chains. We describe the CDA as a tool to solve the proposed BMI formulation.
A possible way to improve this line of research would be to consider control saturation and parallel actuators during the
formulation.
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