207 research outputs found

    Applications of equivalent representations of fractional- and integer-order linear time-invariant systems

    Get PDF
    Nicht-ganzzahlige - fraktionale - Ableitungsoperatoren beschreiben Prozesse mit GedĂ€chtniseffekten, deshalb werden sie zur Modellierung verschiedenster PhĂ€nomene, z.B. viskoelastischen Verhaltens, genutzt. In der Regelungstechnik wird das Konzept vor allem wegen des erhöhten Freiheitsgrades im Frequenzbereich verwendet. Deshalb wurden in den vergangenen Dekaden neben einer Verallgemeinerung des PID-Reglers auch fortgeschrittenere Regelungskonzepte auf nicht-ganzzahlige Operatoren erweitert. Das GedĂ€chtnis der nicht-ganzzahligen Ableitung ist zwar essentiell fĂŒr die Modellbildung, hat jedoch Nachteile, wenn z.B. ZustĂ€nde geschĂ€tzt oder Regler implementiert werden mĂŒssen: Das GedĂ€chtnis fĂŒhrt zu einer langsamen, algebraischen Konvergenz der Transienten und da eine numerische Approximation ist speicherintensiv. Im Zentrum der Arbeit steht die Frage, mit welchen Maßnahmen sich das Konvergenzverhalten dieser nicht ganzzahligen Systeme beeinflussen lĂ€sst. Es wird vorgeschlagen, die Ordnung der nicht ganzzahligen Ableitung zu Ă€ndern. ZunĂ€chst werden Beobachter fĂŒr verschiedene Klassen linearer zeitinvarianter Systeme entworfen. Die Entwurfsmethodik basiert dabei auf einer assoziierten Systemdarstellung, welche einen Differenzialoperator mit höherer Ordnung verwendet. Basierend auf dieser Systembeschreibung können Beobachter entworfen werden, welche das GedĂ€chtnis besser mit einbeziehen und so schneller konvergieren. Anschließend werden ganzzahlige lineare zeitinvariante Systeme mit Hilfe nicht-ganzzahliger Operatoren dargestellt. Dies ermöglicht eine erhöhte Konvergenz im Zeitintervall direkt nach dem Anfangszeitpunkt auf Grund einer unbeschrĂ€nkten ersten Ableitung. Die periodische Löschung des so eingefĂŒhrten GedĂ€chtnisses wird erzielt, indem die nicht ganzzahlige Dynamik periodisch zurĂŒckgesetzt wird. Damit wird der algebraischen Konvergenz entgegen gewirkt und exponentielle StabilitĂ€t erzielt. Der Reset reduziert den Speicherbedarf und induziert eine unterlagerte zeitdiskrete Dynamik. Diese bestimmt die StabilitĂ€t des hybriden nicht-ganzzahligen Systems und kann genutzt werden um den Frequenzgang fĂŒr niedrige Frequenzen zu bestimmen. So lassen sich Beobachter und Regler fĂŒr ganzzahlige System entwerfen. Im Rahmen des Reglerentwurfs können durch den Resets das Verhalten fĂŒr niedrige und hohe Frequenzen in gewissen Grenzen getrennt voneinander entworfen werden.Non-integer, so-called fractional-order derivative operators allow to describe systems with infinite memory. Hence they are attractive to model various phenomena, e.g. viscoelastic deformation. In the field of control theory, both the higher degree of freedom in the frequency domain as well as the easy generalization of PID control have been the main motivation to extend various advanced control concepts to the fractional-order domain. The long term memory of these operators which helps to model real life phenomena, has, however, negative effects regarding the application as controllers or observers. Due to the infinite memory, the transients only decay algebraically and the implementation requires a lot of physical memory. The main focus of this thesis is the question of how to influence the convergence rates of these fractional-order systems by changing the type of convergence. The first part is concerned with the observer design for different classes of linear time-invariant fractional-order systems. We derive associated system representations with an increased order of differentiation. Based on these systems, the observers are designed to take the unknown memory into account and lead to higher convergence rates. The second part explores the representation of integer-order linear time-invariant systems in terms of fractional-order derivatives. The application of the fractional-order operator introduces an unbounded first-order derivative at the initial time. This accelerates the convergence for a short time interval. With periodic deletion of the memory - a reset of the fractional-order dynamics - the slow algebraic decay is avoided and exponential stability can be achieved despite the fractional-order terms. The periodic reset leads to a reduced implementation demand and also induces underlying discrete time dynamics which can be used to prove stability of the hybrid fractional-order system and to give an interpretation of the reset in the frequency domain for the low frequency signals. This concept of memory reset is applied to design an observer and improve fractional-order controllers for integer-order processes. For the controller design this gives us the possibility to design the high-frequency response independently from the behavior at lower frequencies within certain limits

    Hybrid multi-observer for improving estimation performance

    Full text link
    Various methods are nowadays available to design observers for broad classes of systems, where the primary focus is on establishing the convergence of the estimated states. Nevertheless, the question of the tuning of the observer to achieve satisfactory estimation performance remains largely open. In this context, we present a general design framework for the online tuning of the observer gains. Our starting point is a robust nominal observer designed for a general nonlinear system, for which an input-to-state stability property can be established. Our goal is then to improve the performance of this nominal observer. We present for this purpose a new hybrid multi-observer scheme, whose great flexibility can be exploited to enforce various desirable properties, e.g., fast convergence and good sensitivity to measurement noise. We prove that an input-to-state stability property also holds for the proposed scheme and, importantly, we ensure that the estimation performance in terms of a quadratic cost is (strictly) improved. We illustrate the efficiency of the approach in improving the performance of given nominal observers in two numerical examples (Van der Pol oscillator and Lithium-Ion (Li-Ion) battery model).Comment: arXiv admin note: text overlap with arXiv:2209.1013

    Tip- and laser-based 3D nanofabrication in extended macroscopic working areas

    Get PDF
    The field of optical lithography is subject to intense research and has gained enormous improvement. However, the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies. This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable: custom design and solutions for specific applications will dominate future development (Fritze in: Panning EM, Liddle JA (eds) Novel patterning technologies. International society for optics and photonics. SPIE, Bellingham, 2021. https://doi.org/10.1117/12.2593229). For this reason, new aspects arise for future lithography, which is why enormous effort has been directed to the development of alternative fabrication technologies. Yet, the technologies emerging from this process, which are promising for coping with the current resolution and accuracy challenges, are only demonstrated as a proof-of-concept on a lab scale of several square micrometers. Such scale is not adequate for the requirements of modern lithography; therefore, there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies. Similar challenges arise because of the technical progress in various other fields, realizing new and unique functionalities based on nanoscale effects, e.g., in nanophotonics, quantum computing, energy harvesting, and life sciences. Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks, which are available at the Technische UniversitÀt Ilmenau in the form of nanopositioning and nanomeasuring (NPM) machines. With this equipment, the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters

    A Behavioral Approach to Robust Machine Learning

    Get PDF
    Machine learning is revolutionizing almost all fields of science and technology and has been proposed as a pathway to solving many previously intractable problems such as autonomous driving and other complex robotics tasks. While the field has demonstrated impressive results on certain problems, many of these results have not translated to applications in physical systems, partly due to the cost of system fail- ure and partly due to the difficulty of ensuring reliable and robust model behavior. Deep neural networks, for instance, have simultaneously demonstrated both incredible performance in game playing and image processing, and remarkable fragility. This combination of high average performance and a catastrophically bad worst case performance presents a serious danger as deep neural networks are currently being used in safety critical tasks such as assisted driving. In this thesis, we propose a new approach to training models that have built in robustness guarantees. Our approach to ensuring stability and robustness of the models trained is distinct from prior methods; where prior methods learn a model and then attempt to verify robustness/stability, we directly optimize over sets of models where the necessary properties are known to hold. Specifically, we apply methods from robust and nonlinear control to the analysis and synthesis of recurrent neural networks, equilibrium neural networks, and recurrent equilibrium neural networks. The techniques developed allow us to enforce properties such as incremental stability, incremental passivity, and incremental l2 gain bounds / Lipschitz bounds. A central consideration in the development of our model sets is the difficulty of fitting models. All models can be placed in the image of a convex set, or even R^N , allowing useful properties to be easily imposed during the training procedure via simple interior point methods, penalty methods, or unconstrained optimization. In the final chapter, we study the problem of learning networks of interacting models with guarantees that the resulting networked system is stable and/or monotone, i.e., the order relations between states are preserved. While our approach to learning in this chapter is similar to the previous chapters, the model set that we propose has a separable structure that allows for the scalable and distributed identification of large-scale systems via the alternating directions method of multipliers (ADMM)

    Optimal control and approximations

    Get PDF
    • 

    corecore