22,217 research outputs found

    Complexity Hierarchies and Higher-Order Cons-Free Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of constructor terms in the left-hand side; the computational intuition is that rules cannot build new data structures. It is well-known that cons-free programming languages can be used to characterize computational complexity classes, and that cons-free first-order term rewriting can be used to characterize the set of polynomial-time decidable sets. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the order of the types used in the systems. We prove that, for every k \geq 1, left-linear cons-free systems with type order k characterize Ek^kTIME if arbitrary evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about reduction strategy, (ii) results for such term rewriting systems have previously only been obtained for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity. Our results are apparently among the first implicit characterizations of the hierarchy E = E1^1TIME \subseteq E2^2TIME \subseteq .... Our work confirms prior results that having full non-determinism (via overlaps of rules) does not directly allow characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.Comment: Extended version (with appendices) of a paper published in FSCD 201

    String rewriting for Double Coset Systems

    Full text link
    In this paper we show how string rewriting methods can be applied to give a new method of computing double cosets. Previous methods for double cosets were enumerative and thus restricted to finite examples. Our rewriting methods do not suffer this restriction and we present some examples of infinite double coset systems which can now easily be solved using our approach. Even when both enumerative and rewriting techniques are present, our rewriting methods will be competitive because they i) do not require the preliminary calculation of cosets; and ii) as with single coset problems, there are many examples for which rewriting is more effective than enumeration. Automata provide the means for identifying expressions for normal forms in infinite situations and we show how they may be constructed in this setting. Further, related results on logged string rewriting for monoid presentations are exploited to show how witnesses for the computations can be provided and how information about the subgroups and the relations between them can be extracted. Finally, we discuss how the double coset problem is a special case of the problem of computing induced actions of categories which demonstrates that our rewriting methods are applicable to a much wider class of problems than just the double coset problem.Comment: accepted for publication by the Journal of Symbolic Computatio

    Proving Termination of Graph Transformation Systems using Weighted Type Graphs over Semirings

    Full text link
    We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a framework which includes the tropical and arctic type graphs introduced in a previous paper and a new variant of arithmetic type graphs. These type graphs can be used to assign weights to graphs and to show that these weights decrease in every rewriting step in order to prove termination. We present an example involving counters and discuss the implementation in the tool Grez

    Formal Languages in Dynamical Systems

    Get PDF
    We treat here the interrelation between formal languages and those dynamical systems that can be described by cellular automata (CA). There is a well-known injective map which identifies any CA-invariant subshift with a central formal language. However, in the special case of a symbolic dynamics, i.e. where the CA is just the shift map, one gets a stronger result: the identification map can be extended to a functor between the categories of symbolic dynamics and formal languages. This functor additionally maps topological conjugacies between subshifts to empty-string-limited generalized sequential machines between languages. If the periodic points form a dense set, a case which arises in a commonly used notion of chaotic dynamics, then an even more natural map to assign a formal language to a subshift is offered. This map extends to a functor, too. The Chomsky hierarchy measuring the complexity of formal languages can be transferred via either of these functors from formal languages to symbolic dynamics and proves to be a conjugacy invariant there. In this way it acquires a dynamical meaning. After reviewing some results of the complexity of CA-invariant subshifts, special attention is given to a new kind of invariant subshift: the trapped set, which originates from the theory of chaotic scattering and for which one can study complexity transitions.Comment: 23 pages, LaTe

    Combining Insertion and Deletion in RNA-editing Preserves Regularity

    Get PDF
    Inspired by RNA-editing as occurs in transcriptional processes in the living cell, we introduce an abstract notion of string adjustment, called guided rewriting. This formalism allows simultaneously inserting and deleting elements. We prove that guided rewriting preserves regularity: for every regular language its closure under guided rewriting is regular too. This contrasts an earlier abstraction of RNA-editing separating insertion and deletion for which it was proved that regularity is not preserved. The particular automaton construction here relies on an auxiliary notion of slice sequence which enables to sweep from left to right through a completed rewrite sequence.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs
    corecore