3 research outputs found

    Bank of Extended Kalman Filters for Faults Diagnosis in Wind Turbine Doubly Fed Induction Generator

    Get PDF
    In order to increase the efficiency, to ensure availability and to prevent unexpected failures of the doubly fed induction generator (DFIG), widely used in speed variable wind turbine (SVWT), a model based approach is proposed for diagnosing stator and rotor winding and current sensors faults in the generator. In this study, the Extended Kalman Filter (EKF) is used as state and parameter estimation method for this model based diagnosis approach. The generator windings faults and current instruments defects are modelled, detected and isolated with the use of the faults indicators called residuals, which are obtained based on the EKF observer. The mathematical model of DFIG for both healthy and faulty operating conditions is implemented in Matlab/Simulink software. The obtained simulation results demonstrate the effectiveness of the proposed technique for diagnosis and quantification of the faults under study

    Observability-Index-Based Control Strategy for Induction Machine Sensorless Drive at Low Speed

    No full text
    International audienceThis paper focuses on the observer-based methods for induction machine sensorless drive. It is well known that the use of speed observer is limited at a very low stator frequency due to speed unobservability. Some existing methods propose to avoid the zero-stator-frequency working points. These methods are nonetheless limited to high-torque operations. The first contribution of this paper is to analyze finely the speed observability, which leads to the definition of an observability index. The correlation between this index and the observer performance is analyzed and illustrated. The second contribution is to propose a control strategy that maximizes the observability index and improves the observer performance. The proposed strategy is tested first in open loop to evaluate the speed observer performance, and then, in closed loop to illustrate its pertinence for induction machine sensorless drive. All these results are validated by an experiment. The performed experimentation shows that the proposed control strategy gives better results than the existing method that avoid the zero-frequency working points. It offers a new path for induction machine sensorless drives

    Observability-Index-Based Control Strategy for Induction Machine Sensorless Drive at Low Speed

    No full text
    International audienceThis paper focuses on the observer-based methods for induction machine sensorless drive. It is well known that the use of speed observer is limited at a very low stator frequency due to speed unobservability. Some existing methods propose to avoid the zero-stator-frequency working points. These methods are nonetheless limited to high-torque operations. The first contribution of this paper is to analyze finely the speed observability, which leads to the definition of an observability index. The correlation between this index and the observer performance is analyzed and illustrated. The second contribution is to propose a control strategy that maximizes the observability index and improves the observer performance. The proposed strategy is tested first in open loop to evaluate the speed observer performance, and then, in closed loop to illustrate its pertinence for induction machine sensorless drive. All these results are validated by an experiment. The performed experimentation shows that the proposed control strategy gives better results than the existing method that avoid the zero-frequency working points. It offers a new path for induction machine sensorless drives
    corecore