4,029 research outputs found

    Observability and Synchronization of Neuron Models

    Full text link
    Observability is the property that enables to distinguish two different locations in nn-dimensional state space from a reduced number of measured variables, usually just one. In high-dimensional systems it is therefore important to make sure that the variable recorded to perform the analysis conveys good observability of the system dynamics. In the case of networks composed of neuron models, the observability of the network depends nontrivially on the observability of the node dynamics and on the topology of the network. The aim of this paper is twofold. First, a study of observability is conducted using four well-known neuron models by computing three different observability coefficients. This not only clarifies observability properties of the models but also shows the limitations of applicability of each type of coefficients in the context of such models. Second, a multivariate singular spectrum analysis (M-SSA) is performed to detect phase synchronization in networks composed by neuron models. This tool, to the best of the authors' knowledge has not been used in the context of networks of neuron models. It is shown that it is possible to detect phase synchronization i)~without having to measure all the state variables, but only one from each node, and ii)~without having to estimate the phase

    A symbolic network-based nonlinear theory for dynamical systems observability

    Get PDF
    EBM and MSB acknowledge the Engineering and Physical Sciences Research Council (EPSRC), grant Ref. EP/I032608/1. ISN acknowledges partial support from the Ministerio de Economía y Competitividad of Spain under project FIS2013-41057-P and from the Group of Research Excelence URJC-Banco de Santander.Peer reviewedPublisher PD

    Factorability of lossless time-varying filters and filter banks

    Get PDF
    We study the factorability of linear time-varying (LTV) lossless filters and filter banks. We give a complete characterization of all, degree-one lossless LTV systems and show that all degree-one lossless systems can be decomposed into a time-dependent unitary matrix followed by a lossless dyadic-based LTV system. The lossless dyadic-based system has several properties that make it useful in the factorization of lossless LTV systems. The traditional lapped orthogonal transform (LOT) is also generalized to the LTV case. We identify two classes of TVLOTs, namely, the invertible inverse lossless (IIL) and noninvertible inverse lossless (NIL) TVLOTs. The minimum number of delays required to implement a TVLOT is shown to be a nondecreasing function of time, and it is a constant if and only if the TVLOT is IIL. We also show that all IIL TVLOTs can be factorized uniquely into the proposed degree-one lossless building block. The factorization is minimal in terms of the delay elements. For NIL TVLOTs, there are factorable and unfactorable examples. Both necessary and sufficient conditions for the factorability of lossless LTV systems are given. We also introduce the concept of strong eternal reachability (SER) and strong eternal observability (SEO) of LTV systems. The SER and SEO of an implementation of LTV systems imply the minimality of the structure. Using these concepts, we are able to show that the cascade structure for a factorable IIL LTV system is minimal. That implies that if a IIL LTV system is factorable in terms of the lossless dyadic-based building blocks, the factorization is minimal in terms of delays as well as the number of building blocks. We also prove the BIBO stability of the LTV normalized IIR lattice

    Symbolic computations of non-linear observability

    Get PDF
    Date of Acceptance: 22/05/2015 ACKNOWLEDGEMENTS E.B.M. and M.S.B. acknowledge the Engineering and Physical Sciences Research Council (EPSRC), Grant No. EP/I032608/1. This work was done during a stay of E.B.M. at CORIA (Rouen) and a stay of C.L. at ICSMB (Aberdeen).Peer reviewedPublisher PD

    Enhanced LFR-toolbox for MATLAB and LFT-based gain scheduling

    Get PDF
    We describe recent developments and enhancements of the LFR-Toolbox for MATLAB for building LFT-based uncertainty models and for LFT-based gain scheduling. A major development is the new LFT-object definition supporting a large class of uncertainty descriptions: continuous- and discrete-time uncertain models, regular and singular parametric expressions, more general uncertainty blocks (nonlinear, time-varying, etc.). By associating names to uncertainty blocks the reusability of generated LFT-models and the user friendliness of manipulation of LFR-descriptions have been highly increased. Significant enhancements of the computational efficiency and of numerical accuracy have been achieved by employing efficient and numerically robust Fortran implementations of order reduction tools via mex-function interfaces. The new enhancements in conjunction with improved symbolical preprocessing lead generally to a faster generation of LFT-models with significantly lower orders. Scheduled gains can be viewed as LFT-objects. Two techniques for designing such gains are presented. Analysis tools are also considered
    corecore