
ENHANCED LFR-TOOLBOX FOR MATLAB AND LFT-BASED GAIN

SCHEDULING

S. Hecker∗, A. Varga∗, J.F. Magni�

† German Aerospace Center (DLR), Institute of Robotics and Mechatronics
D-82230 Wessling, Germany

� Office National d’Études et de Recherches Aérospatiales (ONERA)
2, av. Edouard Belin, 31055 Toulouse, France

Key words: linear fractional transformation(LFT), scheduled control, MATLAB toolbox

Abstract. We describe recent developments and enhancements of the LFR-Toolbox for MATLAB for building
LFT-based uncertainty models and for LFT-based gain scheduling. A major development is the new LFT-object
definition supporting a large class of uncertainty descriptions: continuous- and discrete-time uncertain models,
regular and singular parametric expressions, more general uncertainty blocks (nonlinear, time-varying, etc.). By
associating names to uncertainty blocks the reusability of generated LFT-models and the user friendliness of
manipulation of LFR-descriptions have been highly increased. Significant enhancements of the computational
efficiency and of numerical accuracy have been achieved by employing efficient and numerically robust Fortran
implementations of order reduction tools via mex-function interfaces. The new enhancements in conjunction with
improved symbolical preprocessing lead generally to a faster generation of LFT-models with significantly lower
orders. Scheduled gains can be viewed as LFT-objects. Two techniques for designing such gains are presented.
Analysis tools are also considered.

1 INTRODUCTION

In modelling uncertainties in linear systems the linear fractional transformation (LFT) plays an important
role. LFT-based representations (see Figure 1) are ready to be used in robust control applications like the
structured singular value (also called µ) [17].

∆

A B

C D

�

-

�� u

w

y

z

Figure 1: LFT-Representation

The LFT system equations are
z = Aw + Bu
y = Cw + Du
w = ∆z.

(1)

For the partitioned matrix

M =

[
A B
C D

]
∈ R(p1+p2)×(m1+m2)

and ∆ ∈ Rm1×p1 , the upper LFT is defined as

Fu(M,∆) = D + C∆(I −A∆)−1B, (2)

which represents the input/output mapping between u and y.
The LFR (Linear Fractional Representation) Toolbox is a MATLAB toolbox for the realization of LFT-

representations for uncertain system models. With this toolbox LFT-representations can be directly obtained
from symbolic expressions or via object oriented manipulation of LFT-objects (addition, multiplication, inversion,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11096958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

column/row concatenation) [9]. The Version 1 of the LFR-toolbox has been implemented by the third author
[10] and supports uncertain real or complex diagonal (scalar) blocks and uncertain rectangular real or complex
full blocks. Elementary LFT-objects are realized with the function lfrs and the different blocks in the feedback
matrix ∆ are distinguished by the order of the initial realization.

The main goal of LFT-based uncertainty modelling is the generation of low order LFT-representations. The
order of an LFT-representation is m1, the row dimension of the m1×p1 block-diagonal matrix ∆. The generation
of low order LFT-realizations is supported by the LFR toolbox in various ways. Version 1 of the LFR-toolbox
offers special functions for symbolic preprocessing techniques as Mortons method [13] for affine uncertainty
representations and the tree decomposition [4] for polynomial matrices to manipulate the symbolic system
equations yielding LFT representations of low order. Furthermore numerical multidimensional order reduction
and approximation methods [5, 9] for LFT-models are available. These algorithms use the MATLAB based
functions minreal and ctrbf for order reduction.

In this paper we present recent developments and enhancements of the LFR-toolbox that are focused to
improve the capabilities for low order LFT-modelling. With the definition of a new LFT-object, supporting
also constant blocks in ∆ [7], we circumvent the problem, that for the object oriented LFT-realization approach
rational expressions like 1/p had to be symbolically normalized before performing the LFT-realization. This
improvement generally leads to LFT-representations of lower orders. Furthermore, the new LFT-object definition
is more transparent, user friendly and supports additional types of uncertainties to be directly compatible to
other MATLAB toolboxes like the µ-Analysis and Synthesis toolbox, the LMI toolbox and the Robust Control
toolbox. Significant enhancements of the computational efficiency and of numerical accuracy have been achieved
by employing efficient and numerically robust FORTRAN implementations of order reduction tools via mex-
function interfaces. The new enhancements in conjunction with improved symbolical preprocessing lead generally
to a faster generation of LFT-models with significantly lower orders.

In parallel to the developments of Version 2 of the LFR-toolbox, Version 1 was improved by introducing control
analysis and synthesis capabilities.

Modelling systems in LFT form is mostly useful when it is intended to use µ-analysis. But, if µ-analysis
is considered for closed-loop properties it becomes necessary to assume that the controllers are independent of
parameter variations or that they are frozen around selected operating points. This limitation is very troublesome
especially in aeronautics where controllers are usually scheduled. In fact, scheduled gains can be viewed as LFTs.
This remark justifies the development of new tools for designing feedback gain directly in LFT form. With
systems and feedback gains in LFT form it was also natural to adapt classical analysis tools and to develop new
specific analysis tools. The new tools for synthesis and analysis are briefly presented respectively in §6 and §71.

2 NEW DEVELOPMENTS

The current version of the LFR-Toolbox, Version 2, relies on a new LFT-object definition. The core function
lfr to create an LFT-object is called inside almost all functions of the toolbox. This function has five input
arguments: the first four input arguments specify the matrices A,B,C,D (see Figure 1) and the fifth argument
describes the structure of ∆. The structure description argument is a structure with two fields: names and desc.
For a given LFT-object L the five arguments can be recovered respectively by: L.a, L.b, L.c, L.d, L.blk.

As an example, the fields names and desc of the structure description argument of an LFT-object with
∆ = diag(p1I2, p2) are given by,

names = { p1name, p2name }

desc =

2 1
2 1
1 1
1 1
1 1
1 1
...

...

← row-dimension
← column-dimension
← real(1)/complex(0)
← scalar(1)/full(0)
← linear(1)/nonlinear(0)
← time-invariant(1)/-varying(0)

← bound-information

where the field names is a cell-array of strings containing the names of all blocks in ∆. The names ’1/s’ and
’1/z’ are reserved for the integrator block I/s (continuous-time systems) and the delay block I/z (discrete-
time systems), respectively. These blocks are included in ∆ with the sole usage to represent standard linear
time-invariant systems (continuous- or discrete-time) as an LFT-object. Furthermore the name ’1’ is reserved
for a constant identity matrix block in ∆. This block plays a major role in representing singular parametric

1Illustrative examples: http://www.cert.fr/dcsd/idco/perso/Magni/example2.html

expressions as standard LFTs. An internal LFT-object reordering (function reorderlfr) is performed after
each LFT-object manipulation where the constant block (if exists) is put on the first diagonal position of ∆, the
integrator/delay block (if exists) is put on the second diagonal position followed by all the uncertainty blocks
in ASCII dictionary order. Each block in ∆ is clearly identified by its name, which makes the manipulation of
LFT-objects flexible and transparent. For example, additional uncertainties can be added in any step of the
LFT-realization and the names can be modified (e.g., by using the function set).

For each name in the field names there exists a corresponding column in the field desc, which describes the
row/column dimensions and properties of this block. The LFT-object supports real or complex diagonal (scalar)
blocks and real or complex full (rectangular) blocks. These blocks can have the properties linear/nonlinear and
time-invariant/time-varying (in the case of nonlinear uncertainties the property time-invariant means memory-
less). Furthermore, the field desc includes bound information for each uncertainty block, which can be described
by min/max-values, a sector bound (for nonlinear uncertainties) or a SISO frequency dependent bound.

Using a standard LFT-representation it is not possible to directly represent parametric expressions like 1/p as
an LFT-object. For such expressions a symbolic normalization of the parameters usually has to be performed
before the LFT-realization. However, symbolic normalization tends to increase the order of the generated LFT-
representations (see [4, 11] for examples). One way to avoid preliminary normalization is to use a general
descriptor type LFT-representation as presented in [7]. In the Version 2 of the LFR-toolbox we support a
so-called generalized LFT-representation which uses a constant identity matrix as the first diagonal block of
∆. With this simple extension it is possible to represent arbitrary rational parametric expressions as LFT
models. The constant block in ∆ can be considered as an additional dimension in a multidimensional system
representation [3] and standard multidimensional order reduction methods [5, 9] can be applied to the generalized
LFT-representation.

The flexibility offered by using the generalized LFT-representation can be easily illustrated when performing
LFT-manipulations involving system inversions (e.g., using functions like mrdivide, rf2lfr and lf2lfr). As
an example, consider the LFT realization of a compound parametric matrix

[N(∆) D(∆)] = Fu(

[
A BN BD

C DN DD

]
,∆),

where D(∆) is p×p and invertible. The function lf2lfr calculates an LFT-representation (Mlf ,∆lf) such that

D−1(∆)N(∆) = Fu(Mlf ,∆lf)

with ∆lf = diag(Ip,∆) and

Mlf =

DD + Ip C DN

BD A BN

−Ip 0 0

 .

By employing a constant block of order p, we can thus avoid the explicit inversion of DD, and more importantly,
we can represent the result even in the case when this matrix is not invertible.

To realize an LFT-representation for a rational parametric matrix, the toolbox supports the object oriented
LFT-realization procedure, which was suggested in [9] and extended in [7] for descriptor-type LFT represen-
tations. This method is based on elementary LFT manipulations like addition/subtraction, multiplication,
inversion, row/column concatenation. Furthermore conversions to LFT-objects of LTI-objects from the Control
Toolbox, PCK-system representations from the µ-Synthesis Toolbox as well as constant matrices, are automat-
ically performed via the core function lfr.

3 NORMALIZATION

To obtain finally a standard LFT-representation (without constant block in ∆) ready to be used in robust
control applications (e.g. µ-Analysis/Synthesis) a normalization of parameters must usually be performed. The
main advantage of using the generalized LFT-representation is that the normalization can be performed as the
last step in the LFT-modelling. Thus there is no need for a preliminary symbolic normalization, which generally
tends to increase the order of the resulting LFT-representation.

Let Fu(M,∆) be an LFT-representation with ∆ having the structure

∆ = diag(Ic, Id/s, δ1Ir1, ..., δkIrk, ∆̂), (3)

where Ic is a c× c identity matrix, Id/s is a d× d integrator block (Id/z for discrete time systems), followed by
k real parametric uncertainty blocks and the block-diagonal e1 × e2 matrix ∆̂, which consists of all uncertainty
blocks that are not real parametric. By normalization each uncertain real parameter δi ∈ [δi,min, δi,max] is

replaced by δi,n + δi,slδi, with δi,n := (δi,min + δi,max)/2 and δi,sl := (δi,max − δi,min)/2 such that |δi| ≤ 1, for
i = 1, ..., k. Thus, the normalization amounts to replace ∆ by ∆n + ∆sl∆ in Fu(M,∆), where

∆n = diag(Ic, 0d, δ1,nIr1, ..., δk,nIrk, 0e1× e2
) (4)

∆sl = diag(0, Id, δ1,slIr1, ..., δk,slIrk, Ie1
) (5)

∆ = diag(0c, Id/s, δ1Ir1, ..., δkIrk, ∆̂), (6)

The following result shows that by normalization the constant block of a generalized LFT-representation can
be eliminated.

Lemma 3.1 Consider Fu(M,∆) with

M =

[
A B
C D

]

and ∆ as given in (3). If ∆n, ∆sl, ∆ have the forms as in (4), (5) and (6) respectively and if (I − A∆n) is
invertible, then

Fu(M,∆) = Fu(M,∆) = Fu(M̃, ∆̃),

where

M =

[
A B

C D

]
=

A11 A12 B1

A21 A22 B2

C1 C2 D

with

A = (I −A∆n)−1A∆sl

B = (I −A∆n)−1B

C = C(∆n(I −A∆n)−1A + I)∆sl

D = C∆n(I −A∆n)−1B + D,

and

M̃ =

[
A22 B2

C2 D

]

∆̃ = diag(Id/s, δ1Ir1, ..., δkIrk, ∆̂).

Proof. The calculation of M is straightforward and due to the particular structure of ∆sl the submatrices A11,
A21 and C1 of M are null.

To perform normalization, the LFR-toolbox offers the function normalizelfr, that allows to perform the
normalization for a single parameter or for a selected set of parameters.

4 ENHANCED ORDER REDUCTION

LFT-models generated using an object oriented approach tend to be of considerable size (e.g., several hundreds)
even for relatively simple practical applications (see Example 1). The high computational efforts resulted due to
these large orders often prevent the applicability of available standard software tools for robust control design
(e.g., convex optimization based approaches). Fortunately, these LFT-models are almost always non-minimal,
and therefore using appropriate numerical tools to perform exact order reduction of LFT-models can alleviate
the situation by producing models of lower order which allow the applicability of robust control methods like
µ-Synthesis/Analysis.

Efficient and numerically reliable tools for order reduction of LFT-models are of primary importance to ease
the usability of such models. To achieve efficiency of computation, numerical robustness and a high accuracy of
results, the toolbox relies on Fortran based robust implementations of algorithms for basic computations related
to order reduction. A language like Fortran allows to easily exploit all structural features of a computational
problems with low additional computational effort and minimum memory usage. Fortran routines can be easily
executed within the user friendly environment MATLAB via external functions, the so called mex -functions.
Several mex -functions based on powerful Fortran routines from the LAPACK-based [1] public domain control
library SLICOT [2] form the order reduction computational kernel of the LFR-Toolbox.

The LFR-Toolbox provides several order reduction tools for exact or approximative reduction of order. The
exact 1-d order reduction technique [9] can be performed using the function minlfr1 which is based on the

efficient (O(n3) complexity) SLICOT-based mex -function ssminr for the calculation of minimal realizations.
Note that a pure MATLAB-based implementation using the MATLAB Control Toolbox function minreal would
have a O(n4) worst-case complexity.

The approximative 1-d order reduction [15] can be performed using redlfr1, which is based on the collection
of model reduction tools available in SLICOT [14], covering the balanced truncation, singular perturbation
approximation and Hankel-norm approximation approaches. All these methods are implemented in a single
mex -function sysred which is called by redlfr1 to reduce 1-d (discrete-time) systems. With an appropriate
scaling of the A matrix of the LFT-model (see Figure 1), this function can be also employed to perform exact
order reduction.

The function minlfr can be used for n-d order reduction [5]. This function has been completely reimplemented
to improve efficiency. The calculation of the n-d controllability/observability staircase forms relies on the O(n3)
complexity SLICOT-based mex -function sscof to compute controllability/observability staircase forms using
orthogonal transformations. Note that a pure MATLAB-based implementation using the MATLAB Control
Toolbox function ctrbf would have a O(n4) worst-case complexity.

The SLICOT-based mex -function balsys is systematically called in all order reduction functions to perform
a system scaling of the LFT-models as a preliminary operation within the order reduction routines. As the
LFT-models resulting from the object oriented realization approach [9] can have matrices with a wide range of
values this operation is essential before computing numerical sensitive controllability staircase forms.

The order reduction functions can be applied manually at any stage of the LFT-realization or can be executed
automatically after each object oriented LFT-manipulation (e.g., multiplication, addition, etc.). To set global
options (e.g., to perform or not automatic order reduction), the function lfropt can be used. This function
basically defines a set of global variables to control the order reduction and to set the associated tolerances.

5 SYMBOLIC PREPROCESSING

The role of symbolic preprocessing of multivariate rational matrices is to convert individual elements, entire
rows/columns or even the whole symbolic matrix to special decomposed forms which allow to immediately
obtain a low order LFT-representation. Symbolic preprocessing oriented towards generating low order LFT-
representations has been considered previously [4, 13, 15]. For the realization of a single multivariate rational
function the Horner evaluation scheme and the ”optimal operation count” based evaluation schemes have been
employed in [15] as basis to generate lower order LFT-realizations. Alternatively, conversions to partial fraction
form or continuous fraction form may be very efficient to obtain low order LFT-realizations. One of the most
promising new techniques is the variable splitting (VS) based factorization technique which allows to express
any scalar polynomial as an inner product of two vectors, each of them containing a disjoint set of parameters
as indeterminates. The factors can be then efficiently realized using matrix oriented preprocessing (see next
paragraph) to obtain low order realizations.

An efficient technique applicable to multivariate polynomial matrices is the tree-decomposition (TD) based
approach proposed in [4]. This approach can be also employed to rational matrices represented in polynomial
fractional forms. The LFR-toolbox includes an enhanced implementation of the TD technique, called ETD,
which directly applies to rational matrices where the elements are polynomials in integer powers (positive or
negative) of the indeterminates. Additionally, further enhancements were obtained by integration of Morton’s
method [13] in the ETD algorithm and by extending the VS method to rows or columns of matrices.

All these methods for decomposition of multivariate rational functions and matrices are supported by the
function sym2lfr of the toolbox. To increase the efficiency of the symbolic preprocessing, many of the core
functions are directly implemented in MAPLE and called via the Extended Symbolic Toolbox of MATLAB.

6 LFT APPROACHES TO GAIN SCHEDULING

In the previous sections, this paper considers input/output LFT representation of dynamic systems. In this
section we shall use the LFT form of state-space representations. First, it is shown how to obtain state-space
models in LFT form from input/output representations. Then, two design techniques are briefly presented.

6.1 LFT-state-space models

The representation of Figure 1 or Equ. (2) is an input/output representation. For introducing the correspond-
ing LFT-state-space model the matrix ∆ of (3) is written

∆ = diag(Id/s, δ1Ir1, ..., δkIrk) = diag(Id/s,∆
′)

here we have removed the constant and full blocks. More precisely, in ∆′ remain only the blocks corresponding
to real parameters that can be measured, so, that can be used for gain scheduling. Partitioning the matrices A,

B, C of (2) in conformity with the above matrix ∆ we obtain

y = Fu

A11 A12 B1

A21 A22 B2

C1 C2 D

 ,

[
Id/s 0

0 ∆′

]
 u (7)

The state-space representation we look for is the transfer from
[

x
u

]
to

[
ẋ
y

]

which is easily identified from (7) as

[
ẋ
y

]
= Fu

A22 A21 B2

A12 A11 B1

C2 C1 D

 ,∆′

[
x
u

]
(8)

This last equation is the LFT form of the state-space representation we look for. For simplifying notations we
shall denote this representation as (A∆, B∆, C∆, D∆) where for example

A∆ =
[

I 0
]
Fu

A22 A21 B2

A12 A11 B1

C2 C1 D

 ,∆′

[
I
0

]

similar for B∆, C∆ and D∆. Two techniques for designing scheduled gains are now briefly presented..

6.2 First gain scheduling technique

This technique was introduced in [12] and illustrated in [6]. It consists of transforming the problem of designing
a scheduled law into a problem of robust control design. First, a polynomial form of the scheduled gain must be
chosen. Then the system (in LFT form) is augmented (function lfr2bsys). A robust control law is designed
(using any design technique, for example multi-objective optimization [8]) relative to the augmented system.
Finally, the augmented gain is transformed to an LFT gain corresponding to the original system (function
bfb2klfr). The following example explains the underlying ideas.

Example of a polynomial form of the scheduled gain:

K∆ = K0 + δ1K1 + δ1δ2K2 (9)

The augmented system corresponding to (A∆, B∆, C∆, D∆) is

A∆, B∆,

C∆

δ1C∆

δ1δ2C∆

 ,

D∆

δ1D∆

δ1δ2D∆

 (10)

Justification: Consider a feedback u = K∆y

u = K∆(C∆x + D∆u) =

[K0 K1 K2]

C∆

δ1C∆

δ1δ2C∆

 x +

D∆

δ1D∆

δ1δ2D∆

 u

so, it is equivalent to apply K∆ to (A∆, B∆, C∆, D∆) or to apply [K0 K1 K2] to the augmented system (10).
Designing [K0 K1 K2] is a robust control problem.

This technique can be applied without the LFR Toolbox (as in [6]), however this toolbox offers some convenient
features:

• for modelling the original system (8) in LFT form,

• for building the augmented system (10),

• for back transformation to the LFT/scheduled gain (9) and order reduction,

• for µ-analysis of the results because the system and its controller are in LFT form,

• the toolbox analysis tools for gridded LFR-objects presented in §7 can also be used.

6.3 Second gain scheduling technique

The second technique that is implemented is based on a very simple idea. Assuming that an algorithm K used
for computing a feedback gain from a fixed state-space representation

(A,B,C,D)→ K = K(A,B,C,D)

only involves matrix operations that exist also for LFT-objects, the same algorithm can be used to design directly
a scheduled gain (in LFT form):

(A∆, B∆, C∆, D∆)→ K(∆) = K(A∆, B∆, C∆, D∆)

Unfortunately, there are not so many standard feedback design algorithms that satisfy the above requirement.
For example all techniques involving eigenvalue / eigenvector computation (the eigenvalues of an LFT object are
not an LFT objects) or involving optimization (e.g. LMI’s) cannot be considered. The eigenvector assignment
technique satisfies the above requirement.

The eigenvector assignment approach to LFT-scheduled gain design has been validated in an industrial setting
considering a military aircraft in all the subsonic flight domain. Theory and toy examples can be found in [11].
It is shown in this reference that for aircraft control, the scheduling parameters can be chosen as being the
aerodynamic coefficients in addition to the speed, Mach number and so on, so, a generic aircraft controller can
be derived. In addition, the poles that are assigned can also be viewed as parameters entering in the ∆ matrix,
which means that the performance of such LFT controllers can be tuned without any re-design.

However, the size of the LFT gain ∆ matrices is usually quite large. This size cannot be efficiently reduced
using the techniques discussed in §4 on account of the fact that these techniques ignore parameter commutativity
(ab − ba cannot be simplified to zero). So, it is necessary to define new techniques specific to LFT gain order
reduction.

The main functions are fb sched (LFT-scheduled feedback gains)and ob sched (LFT-scheduled observers).
These functions have several options, in particular one of these options consists of re-assigning the eigenstructure
assigned by any given standard dynamic controller. In that way, scheduling propagates the nominal performance
of the given controller to other operating points. It is also intended to introduce Q-parametrization in this
framework in order to treat simultaneously scheduling for varying parameters and robustness (by tuning Q) for
uncertain parameters.

7 ANALYSIS OF SYSTEMS IN LFT FORM

The system and its controller being in LFT form, µ-analysis (for example for robust stability and performance
robustness analysis, limit cycles analysis, worst case delay margin computation) can be performed in one shot.

In addition to these natural applications of µ-analysis, two alternative tools also based on µ-analysis but more
or less specific to LFT gains, are proposed:

• Well-posedness radius computation.

• Non-singularity radius computation.

An LFT model has the form of (2) in which there is an inversion of (I − A∆). The well-posedness radius
is the maximum size of the parameter variations for which an LFT can be computed, i.e. (I − A∆) can be
inverted. Considering an LFT-scheduled gain, this is an important issue because it must be computed on-line,
therefore, the inversion must remain feasible for all the relevant values of the scheduling parameters. The well-
posedness radius test is used as follows. After the LFT-scheduled gain is designed, the scheduling parameters are
normalized between −1 and +1 (see §3). Then, the gain can be implemented only if its well-posedness radius is
larger than one. The non-singularity radius is a complementary tool that can be used for example for checking
the controllability / observability of a model in LFT form and also before each inversion in order to be sure that
the inverted objects will be well-posed.

More elementary analysis tools based on LFT parameter gridding are also proposed. The main function is
lfrview based on the standard Matlab function ltiview. This function is used for drawing families of locus
or frequency/time domain responses. By clicking one curve in a family of curves the corresponding model of the
gridding is displayed to the screen.

8 EXAMPLES

8.1 Example 1: Order reduction

To illustrate some enhancements available in the Version 2 of the LFR Toolbox, we generated an LFT model
for the most complicated term a29 of the matrix A of the extended parametric RCAM [16]. The RCAM is

one of the most complicated existing parametric benchmark models in the literature. The RCAM contains four
uncertain parameters: the mass m, two components of the position of the center of gravity Xcg and Zcg and the
trimmed air speed VA. The expression of a29 can be put into the form

a29 = 0.061601
ã29

CwVA

where Cw = mg
1
2ρV 2

A
S

and

ã29 =1.6726XcgC
2
wZcg − 0.17230X2

cgCw

− 3.9324XcgCwZcg − 0.28903X2
cgC

2
wZcg

− 0.070972X2
cgZcg + 0.29652X2

cgCwZcg

+ 4.9667XcgCw − 2.7036XcgC
2
w

+ 0.58292C2
w − 0.25564X2

cg − 1.3439Cw

+ 100.13Xcg − 14.251Zcg − 1.9116C2
wZcg

+ 1.1243XcgZcg + 24.656CwZcg

+ 0.45703X2
cgC

2
w − 46.850.

The uncertain parameters can be normalized as follows

m = 125000 + 25000 δm

Xcg = 0.23 + 0.08 δXcg

Zcg = 0.105 + 0.105 δZcg

VA = 80 + 10 δVA

where δm, δXcg, δZcg, δVA are, respectively, the normalized uncertain parameters.
By performing first the normalization of parameters and then generating an LFT-realization of a29, the re-

sulting block structure for
∆ = diag(δmIn1

, δXcgIn2
, δZcgIn3

, δVAIn4
)

has {n1, n2, n3, n4} = {31, 54, 27, 81}. The total order n∆ of ∆ is n∆ = 193. Note, that the expression of a29 is
”singular” in parameters m and VA, and therefore normalization is obligatory for generation techniques relying
on standard LFT-models. When using the generalized LFT-representation (including a constant block), we can
avoid the preliminary normalization. The generated LFT-model for a29 has the uncertainty block dimensions
{n1, n2, n3, n4} = {19, 18, 9, 69} leading to a total order of n∆ = 85. This illustrated that often a preliminary
normalization has the effect to increase substantially (more then twice in this example) the order of the generated
LFT-realizations.

To illustrate the enhancements in order reduction capabilities of the toolbox, we performed on the 193th order
model 1-d and n-d order reductions, using the pure MATLAB-based implementations (ML) and mex -function
based implementations of the order reduction tools. In Table 1 we give the computational times resulted on a
PC with a 1.2 GHz AMD ATHLON processor running under MATLAB 6.5 under Windows NT.

Reduction Time [s] {n1, n2, n3, n4} n∆

1-d (ML) 9.61 {5, 2, 9, 28} 44
1-d (mex) 0.1 {5, 2, 4, 7} 18
n-d (ML) 0.54 {5, 2, 3, 7} 17
n-d (mex) 0.13 {5, 2, 3, 7} 17

Table 1: Order reduction results for RCAM element a29

In Table 1 we can see a significant reduction of computational time for the 1-d reduction (almost 100 times
faster) and also for the n-d reduction (more than four times faster). Note also that the 1-d reduction implementa-
tions generated using the mex-file based implementation has a much smaller order than the pure MATLAB-based
implementation.

8.2 Example 2: Symbolic Preprocessing

The effectiveness of symbolic preprocessing can be seen from the following table, where we put the resulting
orders of the LFT-realizations of the whole (not only element a29) extended parametric RCAM [16]. For each
specific run consisting of different symbolic preprocessing computations we list in the columns the resulting
corresponding orders without and with additional numerical n-D order reduction [5].

Symbolic Preprocessing without reduction with reduction
None 400 262
Single element enhancements 260 158
TD 156 97
VS+ETD 77 65

Table 2: Orders of LFT-realizations for the extended RCAM example.

The parametric matrices of the RCAM have only elements as polynomials with positive and/or negative powers
in the indeterminates (see element a29 in Example 1). Thus, this model perfectly fits to the proposed ETD
algorithm. Without symbolic preprocessing, an order of 262 can be achieved by using numerical order reduction.
Using various symbolic techniques on single rational matrix elements followed by application of numerical n-
D order reduction, an LFT representation of order 158 has been computed in [15]. The TD algorithm for
a polynomially factorized representation as proposed in [4] yields an LFT-model of order 156, which can be
reduced to order 97. With the proposed symbolic preprocessing tools (VS+ETD) implemented in the LFR-
toolbox, we obtained an LFT-representation of the aircraft model with order 77 and we could exactly reduce
this model to order 65, which is very close to the theoretical lower bound of 56. Note, using symbolic tools we
obtained an LFT-representation of order 11 for the element a29. Compared to order 17 (see example 1) with
numerical order reduction, one can clearly see the capabilities of symbolic preprocessing.

9 CONCLUSION

We presented the new developments and enhancements available in Version 2 of the LFR-Toolbox. The
introduction of a generalized LFT-object allows to realize arbitrary rational parametric matrices as LFTs. No
preliminary normalization of parameters is necessary, which generally yields LFT-representations of lower order
than expected with using standard LFT-realization approaches. In the new LFT-object each block in the
feedback matrix ∆ is clearly identified by a name, which improves the flexibility and user-friendliness of the
toolbox. To be directly compatible with other MATLAB toolboxes (e.g. µ-Analysis/Synthesis) the uncertainty
properties nonlinear and time-varying are now supported. The calculation of reduced order LFT-realizations
relies on efficient and numerically reliable mex -functions for basic system order reductions (minimal realization,
staircase controllability/observability forms, model reduction). Version 2 of the LFR-Toolbox offers improved
symbolic preprocessing capabilities, which are very efficient for low order LFT-realization. By means of the
RCAM example we illustrated some of the main enhancements.

We also presented the new control analysis and synthesis capabilities of version 1 of the toolbox. These
tools will be ported to version 2 after validation. The tools for LFT-scheduled gain design proposed in §6 are
intended to permit the designer to apply µ-analysis for non-fixed gains. However, the problem of LFT-gain order
reduction must be addressed because it cannot be treated with the classical reduction tools presented in §4. The
feasibility of on-line computation of LFT-scheduled gain is also considered, this is an important issue because
the computation of an LFT involves the inversion of a matrix depending on scheduling parameters.

References

[1] E. Anderson, Z. Bai, J. Bishop, J. Demmel, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide, Second Edition. SIAM, Philadelphia, France,
1995.

[2] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - A Subroutine Library in
Systems and Control Theory. In B. N. Datta, Ed., Applied and Computational Control, Signals and
Circuits. Birkhäuser, 1998.

[3] N. K. Bose. Applied Multidimensional Systems Theory. Van Nostrand Reinhold Company, 1982.

[4] J.C. Cockburn and B.G. Morton. Linear fractional representation of uncertain systems. Automatica,
33(7):1263–1271, 1997.

[5] R. D’Andrea and S. Khatri. Kalman decomposition of linear fractional transformation representations and
minimality. In Proc. of the American Control Conference, pages 3557–3561, Albulquerque, New Mexico,
1997.

[6] C. Döll, Y. Le Gorrec, G. Ferreres, and J.F. Magni. Design of a robust self-scheduled missile autopilot by
multi-model eigenstructure assignment. Control Engineering and Practice, Special Issue on Defense, 2001.

[7] S. Hecker and A. Varga. Generalized LFT-based representation of parametric uncertain models. European
Journal of Control (accepted), 2004.

[8] H.D. Joos. A methodology for multi-objective design assessment and flight control synthesis tuning.
Aerospace Science and Technology, 3(3):161–176, 1999.

[9] P. Lambrechts, J. Terlouw, S. Bennani, and M. Steinbuch. Parametric uncertainty modeling using LFTs.
In Proc. American Control Conference, pages 267–272, San Francisco, CA, 1993.

[10] J. F. Magni. Presentation of the Linear Fractional Representation Toolbox (LFRT). In Proc. CACSD’2002
Symposium, Glasgow, Scotland, 2002.

[11] J. F. Magni. Linear Fractional Representations with a Toolbox: Modelling, order reduction, gain scheduling.
Version 1.1. Departement of Systems Control and Flight Dynamics, ONERA–CERT, Toulouse, France,
January 2004.

[12] J.F. Magni. Multimodel eigenstructure assignment in flight-control design. Aerospace Science and Technol-
ogy, 3(3):141–151, 1999.

[13] B. Morton. New applications of mu to real.parameter variation problems. In Proc. Conference on Decision
and Control, pages 233–238, Fort Lauderdale, Florida, 1985.

[14] A. Varga. Model reduction software in the SLICOT library. In B. N. Datta, editor, Applied and Compu-
tational Control, Signals and Circuits, volume 629 of The Kluwer International Series in Engineering and
Computer Science, pages 239–282. Kluwer Academic Publishers, Boston, 2001.

[15] A. Varga and G. Looye. Symbolic and numerical software tools for LFT-based low order uncertainty
modeling. In Proc. CACSD’99 Symposium, Kohala Coast, Hawaii, 1999.

[16] A. Varga, G. Looye, D. Moormann, and G. Grübel. Automated generation of LFT-based parametric
uncertainty descriptions from generic aircraft models. Mathematical and Computer Modelling of Dynamical
Systems, 4:249–274, 1998.

[17] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1996.

