657 research outputs found

    Location and Shape Reconstruction of 2D Dielectric Objects by Means of a Closed-Form Method: Preliminary Experimental Results

    Get PDF
    An analytical approach to location and shape reconstruction of dielectric scatterers, that was recently proposed, is tested against experimental data. Since the cross-sections of the scatterers do not depend on the z coordinate, a 2D problem can be formulated. A closed-form singular value decomposition of the scattering integral operator is derived and is used to determine the radiating components of the equivalent source density. This is a preliminary step toward a more complete solution, which will take into account the incident field inside the investigation domain in order to provide the dielectric features of the scatterer and also the nonradiating sources. Reconstructions of the equivalent sources, performed on some scattering data belonging to the Fresnel database, show the capabilities of the method and, thanks to the closed-form solution, results are obtained in a very short computation time

    3D Holoscopic Imaging for Cultural Heritage Digitalisation

    Get PDF
    The growing interest in archaeology has enabled the discovery of an immense number of cultural heritage assets and historical sites. Hence, preservation of CH through digitalisation is becoming a primordial requirement for many countries as a part of national cultural programs. However, CH digitalisation is still posing serious challenges such as cost and time-consumption. In this manuscript, 3D holoscopic (H3D) technology is applied to capture small sized CH assets. The H3D camera utilises micro lens array within a single aperture lens and typical 2D sensor to acquire 3D information. This technology allows 3D autostereoscopic visualisation with full motion parallax if convenient Microlens Array (MLA)is used on the display side. Experimental works have shown easiness and simplicity of H3D acquisition compared to existing technologies. In fact, H3D capture process took an equal time of shooting a standard 2D image. These advantages qualify H3D technology to be cost effective and time-saving technology for cultural heritage 3D digitisation

    EyeGaze:Enabling eye contact over video

    Get PDF

    Touch and Go: Learning from Human-Collected Vision and Touch

    Full text link
    The ability to associate touch with sight is essential for tasks that require physically interacting with objects in the world. We propose a dataset with paired visual and tactile data called Touch and Go, in which human data collectors probe objects in natural environments using tactile sensors, while simultaneously recording egocentric video. In contrast to previous efforts, which have largely been confined to lab settings or simulated environments, our dataset spans a large number of "in the wild" objects and scenes. To demonstrate our dataset's effectiveness, we successfully apply it to a variety of tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven image stylization, i.e., making the visual appearance of an object more consistent with a given tactile signal, and 3) predicting future frames of a tactile signal from visuo-tactile inputs.Comment: Accepted by NeurIPS 2022 Track of Datasets and Benchmark

    INTERMEDIATE VIEW RECONSTRUCTION FOR MULTISCOPIC 3D DISPLAY

    Get PDF
    This thesis focuses on Intermediate View Reconstruction (IVR) which generates additional images from the available stereo images. The main application of IVR is to generate the content of multiscopic 3D displays, and it can be applied to generate different viewpoints to Free-viewpoint TV (FTV). Although IVR is considered a good approach to generate additional images, there are some problems with the reconstruction process, such as detecting and handling the occlusion areas, preserving the discontinuity at edges, and reducing image artifices through formation of the texture of the intermediate image. The occlusion area is defined as the visibility of such an area in one image and its disappearance in the other one. Solving IVR problems is considered a significant challenge for researchers. In this thesis, several novel algorithms have been specifically designed to solve IVR challenges by employing them in a highly robust intermediate view reconstruction algorithm. Computer simulation and experimental results confirm the importance of occluded areas in IVR. Therefore, we propose a novel occlusion detection algorithm and another novel algorithm to Inpaint those areas. Then, these proposed algorithms are employed in a novel occlusion-aware intermediate view reconstruction that finds an intermediate image with a given disparity between two input images. This novelty is addressed by adding occlusion awareness to the reconstruction algorithm and proposing three quality improvement techniques to reduce image artifices: filling the re-sampling holes, removing ghost contours, and handling the disocclusion area. We compared the proposed algorithms to the previously well-known algorithms on each field qualitatively and quantitatively. The obtained results show that our algorithms are superior to the previous well-known algorithms. The performance of the proposed reconstruction algorithm is tested under 13 real images and 13 synthetic images. Moreover, analysis of a human-trial experiment conducted with 21 participants confirmed that the reconstructed images from our proposed algorithm have very high quality compared with the reconstructed images from the other existing algorithms

    Motion parallax for 360° RGBD video

    Get PDF
    We present a method for adding parallax and real-time playback of 360° videos in Virtual Reality headsets. In current video players, the playback does not respond to translational head movement, which reduces the feeling of immersion, and causes motion sickness for some viewers. Given a 360° video and its corresponding depth (provided by current stereo 360° stitching algorithms), a naive image-based rendering approach would use the depth to generate a 3D mesh around the viewer, then translate it appropriately as the viewer moves their head. However, this approach breaks at depth discontinuities, showing visible distortions, whereas cutting the mesh at such discontinuities leads to ragged silhouettes and holes at disocclusions. We address these issues by improving the given initial depth map to yield cleaner, more natural silhouettes. We rely on a three-layer scene representation, made up of a foreground layer and two static background layers, to handle disocclusions by propagating information from multiple frames for the first background layer, and then inpainting for the second one. Our system works with input from many of today''s most popular 360° stereo capture devices (e.g., Yi Halo or GoPro Odyssey), and works well even if the original video does not provide depth information. Our user studies confirm that our method provides a more compelling viewing experience than without parallax, increasing immersion while reducing discomfort and nausea
    • …
    corecore