2 research outputs found

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation

    Objective and Subjective Evaluation of Virtual Relighting from Reflectance Transformation Imaging Data

    Get PDF
    Reflectance Transformation Imaging (RTI) is widely used to produce relightable models from multi-light image collections. These models are used for a variety of tasks in the Cultural Heritage field. In this work, we carry out an objective and subjective evaluation of RTI data visualization. We start from the acquisition of a series of objects with different geometry and appearance characteristics using a common dome-based configuration. We then transform the acquired data into relightable representations using different approaches: PTM, HSH, and RBF. We then perform an objective error estimation by comparing ground truth images with relighted ones in a leave-one-out framework using PSNR and SSIM error metrics. Moreover, we carry out a subjective investigation through perceptual experiments involving end users with a variety of backgrounds. Objective and subjective tests are shown to behave consistently, and significant differences are found between the various methods. While the proposed analysis has been performed on three common and state-of-the-art RTI visualization methods, our approach is general enough to be extended and applied in the future to new developed multi-light processing pipelines and rendering solutions, to assess their numerical precision and accuracy, and their perceptual visual quality
    corecore