3,438 research outputs found

    An open and extensible framework for spatially explicit land use change modelling in R: the lulccR package (0.1.0)

    Get PDF
    Land use change has important consequences for biodiversity and the sustainability of ecosystem services, as well as for global environmental change. Spatially explicit land use change models improve our understanding of the processes driving change and make predictions about the quantity and location of future and past change. Here we present the lulccR package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of different models; (3) different aspects of the modelling procedure must be performed in different environments because existing applications usually only perform the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the widely used CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a dataset included with the package. It is envisaged that lulccR will enable future model development and comparison within an open environment

    PIM: Video Coding using Perceptual Importance Maps

    Full text link
    Human perception is at the core of lossy video compression, with numerous approaches developed for perceptual quality assessment and improvement over the past two decades. In the determination of perceptual quality, different spatio-temporal regions of the video differ in their relative importance to the human viewer. However, since it is challenging to infer or even collect such fine-grained information, it is often not used during compression beyond low-level heuristics. We present a framework which facilitates research into fine-grained subjective importance in compressed videos, which we then utilize to improve the rate-distortion performance of an existing video codec (x264). The contributions of this work are threefold: (1) we introduce a web-tool which allows scalable collection of fine-grained perceptual importance, by having users interactively paint spatio-temporal maps over encoded videos; (2) we use this tool to collect a dataset with 178 videos with a total of 14443 frames of human annotated spatio-temporal importance maps over the videos; and (3) we use our curated dataset to train a lightweight machine learning model which can predict these spatio-temporal importance regions. We demonstrate via a subjective study that encoding the videos in our dataset while taking into account the importance maps leads to higher perceptual quality at the same bitrate, with the videos encoded with importance maps preferred 1.8×1.8 \times over the baseline videos. Similarly, we show that for the 18 videos in test set, the importance maps predicted by our model lead to higher perceptual quality videos, 2×2 \times preferred over the baseline at the same bitrate

    On human motion prediction using recurrent neural networks

    Full text link
    Human motion modelling is a classical problem at the intersection of graphics and computer vision, with applications spanning human-computer interaction, motion synthesis, and motion prediction for virtual and augmented reality. Following the success of deep learning methods in several computer vision tasks, recent work has focused on using deep recurrent neural networks (RNNs) to model human motion, with the goal of learning time-dependent representations that perform tasks such as short-term motion prediction and long-term human motion synthesis. We examine recent work, with a focus on the evaluation methodologies commonly used in the literature, and show that, surprisingly, state-of-the-art performance can be achieved by a simple baseline that does not attempt to model motion at all. We investigate this result, and analyze recent RNN methods by looking at the architectures, loss functions, and training procedures used in state-of-the-art approaches. We propose three changes to the standard RNN models typically used for human motion, which result in a simple and scalable RNN architecture that obtains state-of-the-art performance on human motion prediction.Comment: Accepted at CVPR 1

    IPA: Inference Pipeline Adaptation to Achieve High Accuracy and Cost-Efficiency

    Full text link
    Efficiently optimizing multi-model inference pipelines for fast, accurate, and cost-effective inference is a crucial challenge in ML production systems, given their tight end-to-end latency requirements. To simplify the exploration of the vast and intricate trade-off space of accuracy and cost in inference pipelines, providers frequently opt to consider one of them. However, the challenge lies in reconciling accuracy and cost trade-offs. To address this challenge and propose a solution to efficiently manage model variants in inference pipelines, we present IPA, an online deep-learning Inference Pipeline Adaptation system that efficiently leverages model variants for each deep learning task. Model variants are different versions of pre-trained models for the same deep learning task with variations in resource requirements, latency, and accuracy. IPA dynamically configures batch size, replication, and model variants to optimize accuracy, minimize costs, and meet user-defined latency SLAs using Integer Programming. It supports multi-objective settings for achieving different trade-offs between accuracy and cost objectives while remaining adaptable to varying workloads and dynamic traffic patterns. Extensive experiments on a Kubernetes implementation with five real-world inference pipelines demonstrate that IPA improves normalized accuracy by up to 35% with a minimal cost increase of less than 5%

    Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon

    Get PDF
    [1] This study explored biotic and abiotic causes for spatio-temporal variation in soil respiration from surface litter, roots, and soil organic matter over one year at four rain forest sites with different vegetation structures and soil types in the eastern Amazon, Brazil. Estimated mean annual soil respiration varied between 13-17 t C ha(-1) yr(-1), which was partitioned into 0-2 t C ha(-1) yr(-1) from litter, 6-9 t C ha(-1) yr(-1) from roots, and 5-6 t C ha(-1) yr(-1) from soil organic matter. Litter contribution showed no clear seasonal change, though experimental precipitation exclusion over a one-hectare area was associated with a ten-fold reduction in litter respiration relative to unmodified sites. The estimated mean contribution of soil organic matter respiration fell from 49% during the wet season to 32% in the dry season, while root respiration contribution increased from 42% in the wet season to 61% during the dry season. Spatial variation in respiration from soil, litter, roots, and soil organic matter was not explained by volumetric soil moisture or temperature. Instead, spatial heterogeneity in litter and root mass accounted for 44% of observed spatial variation in soil respiration (p < 0.001). In particular, variation in litter respiration per unit mass and root mass accounted for much of the observed variation in respiration from litter and roots, respectively, and hence total soil respiration. This information about patterns of, and underlying controls on, respiration from different soil components should assist attempts to accurately model soil carbon dioxide fluxes over space and time

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt &amp; Hlavacs, 2011; Buchinger, Kriglstein &amp; Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Spatial Dynamic Modeling and Urban Land Use Transformation:

    Get PDF
    Assessing the economic impacts of urban land use transformation has become complex and acrimonious. Although community planners are beginning to comprehend the economic trade-offs inherent in transforming the urban fringe, they find it increasingly difficult to analyze and assess the trade-offs expediently and in ways that can influence local decisionmaking. New and sophisticated spatial modeling techniques are now being applied to urban systems that can quickly assess the probable spatial outcomes of given communal policies. Applying an economic impact assessment to the probable spatial patterns can provide to planners the tools needed to quickly assess scenarios for policy formation that will ultimately help inform decision makers. This paper focuses on the theoretical underpinnings and practical application of an economic impact analysis submodel developed within the Land use Evolution and Impact Assessment Modeling (LEAM) environment. The conceptual framework of LEAM is described, followed by an application of the model to the assessment of the cost of urban sprawl in Kane County, Illinois. The results show the effectiveness of spatially explicit modeling from a theoretical and a practical point of view. The agent-based approach of spatial dynamic modeling with a high spatial resolution allows for discerning the macro-level implications of micro-level behaviors. These phenomena are highlighted in the economic submodel in the discussion of the implications of land use change decisions on individual and communal costs; low-density development patterns favoring individual behaviors at the expense of the broader community.
    corecore