Land use change has important consequences for biodiversity and the
sustainability of ecosystem services, as well as for global
environmental change. Spatially explicit land use change models
improve our understanding of the processes driving change and make
predictions about the quantity and location of future and past
change. Here we present the lulccR package, an object-oriented
framework for land use change modelling written in the R programming
language. The contribution of the work is to resolve the following
limitations associated with the current land use change modelling
paradigm: (1) the source code for model implementations is
frequently unavailable, severely compromising the reproducibility of
scientific results and making it impossible for members of the
community to improve or adapt models for their own purposes; (2)
ensemble experiments to capture model structural uncertainty are
difficult because of fundamental differences between implementations
of different models; (3) different aspects of the modelling
procedure must be performed in different environments because
existing applications usually only perform the spatial allocation of
change. The package includes a stochastic ordered allocation
procedure as well as an implementation of the widely used CLUE-S
algorithm. We demonstrate its functionality by simulating land use
change at the Plum Island Ecosystems site, using a dataset included
with the package. It is envisaged that lulccR will enable future
model development and comparison within an open environment