
D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Model Dev. Discuss., 8, 3359–3402, 2015
www.geosci-model-dev-discuss.net/8/3359/2015/
doi:10.5194/gmdd-8-3359-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

An open and extensible framework for
spatially explicit land use change
modelling in R: the lulccR package (0.1.0)

S. Moulds1,2, W. Buytaert1,2, and A. Mijic1

1Department of Civil and Environmental Engineering, Imperial College London, London, UK
2Grantham Institute for Climate Change, Imperial College London, London, UK

Received: 12 March 2015 – Accepted: 23 March 2015 – Published: 29 April 2015

Correspondence to: S. Moulds (simon.moulds10@imperial.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

3359

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|

Abstract

Land use change has important consequences for biodiversity and the sustainability of
ecosystem services, as well as for global environmental change. Spatially explicit land
use change models improve our understanding of the processes driving change and
make predictions about the quantity and location of future and past change. Here we5

present the lulccR package, an object-oriented framework for land use change mod-
elling written in the R programming language. The contribution of the work is to re-
solve the following limitations associated with the current land use change modelling
paradigm: (1) the source code for model implementations is frequently unavailable,
severely compromising the reproducibility of scientific results and making it impossible10

for members of the community to improve or adapt models for their own purposes; (2)
ensemble experiments to capture model structural uncertainty are difficult because of
fundamental differences between implementations of different models; (3) different as-
pects of the modelling procedure must be performed in different environments because
existing applications usually only perform the spatial allocation of change. The package15

includes a stochastic ordered allocation procedure as well as an implementation of the
widely used CLUE-S algorithm. We demonstrate its functionality by simulating land use
change at the Plum Island Ecosystems site, using a dataset included with the package.
It is envisaged that lulccR will enable future model development and comparison within
an open environment.20

1 Introduction

Land use and land cover change is degrading biodiversity worldwide and threaten-
ing the sustainability of ecosystem services upon which individuals and communities
depend (Turner et al., 2007). Cumulatively, it is a major driver of global and regional
environmental change (Foley, 2005). For example, as a result of extensive deforesta-25

tion in Central and South America and Southeast Asia land use and land cover change
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is the second largest anthropogenic source of carbon dioxide (Le Quéré et al., 2009),
while the conversion of rainfed agriculture and natural land cover to intensively man-
aged agricultural systems in northwest India is now putting severe pressure on regional
water resources (Rodell et al., 2009; Shankar et al., 2011; Wada et al., 2012). In addi-
tion, land use and land cover change may influence local and regional climate through5

its impact on the surface energy and water balance (Pitman et al., 2009; Seneviratne
et al., 2010; Boysen et al., 2014). Land use change models are widely used to un-
derstand and quantify key processes that affect land use and land cover change and
simulate past and future change under different scenarios and at different spatial scales
(Veldkamp and Lambin, 2001; Mas et al., 2014). The output of these models may be10

used to support decisions about local and regional land use planning and environmen-
tal management (e.g. Couclelis, 2005; Verburg and Overmars, 2009) or investigate the
impact of change on biodiversity (e.g. Nelson et al., 2010; Rosa et al., 2013), water re-
sources (e.g. Li et al., 2007; Lin et al., 2008; Rodríguez Eraso et al., 2013) and climate
variability (e.g. Sohl et al., 2007, 2012).15

Land use and land cover change is the result of complex interactions between dif-
ferent biophysical and socioeconomic conditions that vary across space and time (Ver-
burg et al., 2002; Overmars et al., 2007). Several different model structures have been
devised to capture this complexity and meet different objectives. Some models operate
at the global or regional scale to estimate the quantity of land use change at national or20

subnational levels based on economic considerations (e.g. Souty et al., 2012), whereas
spatially explicit models, the focus of the present study, operate over a spatial grid to
predict the location of land use change (Mas et al., 2014). Inductive spatially explicit
models are based on predictive models that predict the suitability of each model grid
cell as a function of spatially explicit predictor variables, while deductive models pre-25

dict the location of change according to specific theories about the processes driving
change (Overmars et al., 2007; Magliocca and Ellis, 2013). Inductive and deductive
models operating at different spatial scales may be combined to better represent the
complexity of a system (e.g. Castella and Verburg, 2007; Moreira et al., 2009). The
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main output of land use change models is a set of land use maps depicting the location
of change over time. Detailed reviews of different models and modelling approaches
are available in Verburg et al. (2004), Brown et al. (2013) and Mas et al. (2014).

Spatially explicit land use change models are commonly written in compiled lan-
guages such as C/C++ and Fortran and distributed as software packages or exten-5

sions to proprietary geographic information systems such as ArcGIS or IDRISI. As
Rosa et al. (2014) points out, it is uncommon for the source code of model imple-
mentations to be made available (e.g. Verburg et al., 2002; Soares-Filho et al., 2002;
Verburg and Overmars, 2009; Schaldach et al., 2011). While it is true that the concepts
and algorithms implemented by the software are normally described in scientific journal10

articles, this fails to ensure the reproducibility of scientific results (Peng, 2011; Morin
et al., 2012), even in the hypothetical case of a perfectly described model (Ince et al.,
2012). In addition, running binary versions of software makes it difficult to detect silent
faults (faults that change the model output without obvious signals), whereas these are
more likely to be identified if the source code is open (Cai et al., 2012). Moreover, it15

forces duplication of work and makes it difficult for members of the scientific community
to improve the code or adapt it for their own purposes (Morin et al., 2012; Pebesma
et al., 2012; Steiniger and Hunter, 2013).

Current software packages usually exist as specialised applications that implement
one algorithm. Indeed, it is common for applications to perform only one part of the20

modelling process. For example, the Change in Land Use and it Effects at Small re-
gional extent (CLUE-S) software only performs spatial allocation, requiring the user
to prepare model input and conduct the statistical analysis upon which the allocation
procedure depends elsewhere (Verburg et al., 2002). This is time consuming and in-
creases the likelihood of user errors because inputs to the various modelling stages25

must be transferred manually between applications. Furthermore, very few programs
include methods to validate model output, which could be one reason for the lack of
proper validation of models in the literature, as noted by Rosa et al. (2014). The lack
of a common interface amongst land use change models is problematic for the com-
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munity because there is widespread uncertainty about the appropriate model form and
structure for different applications (Verburg et al., 2013). Under these circumstances it
is useful to experiment with different models to identify the model that performs best
in terms of calibration and validation (Schmitz et al., 2009). Alternatatively, ensemble
modelling may be used to understand the impact of structural uncertainty on model5

outcomes (Knutti and Sedláček, 2012). This approach has been used successfully in
the CMIP5 experiments (Taylor et al., 2012; Knutti and Sedláček, 2012), global and
regional drought prediction (Tallaksen and Stahl, 2014; Prudhomme et al., 2014) and
species distribution modelling (Grenouillet et al., 2011), for example. However, while
some land use change model comparison studies have been carried out (e.g Pérez-10

Vega et al., 2012; Mas et al., 2014; Rosa et al., 2014), fundamental differences be-
tween models in terms of scale, resolution and model inputs prevent the widespread
use of ensemble land use change predictions (Rosa et al., 2014). As a result, the un-
certainty associated with model outcomes are rarely communicated in a formal way,
raising questions about the utility of such models (Pontius and Spencer, 2005).15

An alternative approach is to develop frameworks that allow several different mod-
elling approaches to be implemented within the same environment. One such appli-
cation is the PCRaster software, a free and open source GIS that includes additional
capabilities for spatially explicit dynamic modelling (Schmitz et al., 2009). The PCRcalc
scripting language and development environment allows users to build models with20

native PCRaster operations such as map algebra and neighbourhood functions. Alter-
natively, the PCRaster application programming interface (API) allows users to extend
the functionality of PCRaster in different programming languages using native and ex-
ternal data types (Schmitz et al., 2009). For example, the current version of FALLOW
(van Noordwijk, 2002; Mulia et al., 2014), a deductive model that simulates farmer de-25

cisions about agricultural land use in response to biophysical and socioeconomic driv-
ing factors, is built using the PCRaster framework. TerraME (Carneiro et al., 2013) is
a platform to develop models for simulating interactions between society and the envi-
ronment. It provides more flexibility than PCRaster because models can be composed
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of coupled sub-models with different temporal and spatial resolutions (Moreira et al.,
2009; Carneiro et al., 2013). The platform is built on the open source TerraLib geospa-
tial library (Câmara et al., 2008) which handles different spatio-temporal data types,
includes an API for coupling the library with R (R Core Team, 2014) to perform spatial
statistics, and supports dynamic modelling with cellular automata. The LuccME exten-5

sion to TerraME includes current implementations of CLUE and CLUE-S (Veldkamp
and Fresco, 1996; Verburg et al., 1999), an earlier version of CLUE-S that operates at
larger spatial scales, written in Lua.

The R environment is a free and open source implementation of the S program-
ming language, a language designed for programming with data (Chambers, 2008).10

Although the development of R is strongly rooted in statistical software and data anal-
ysis, it is increasingly used for dynamic simulation modelling in diverse fields (Petzoldt
and Rinke, 2007). Additionally, in the last decade it has become widely used by the spa-
tial analysis community, largely due to the sp package (Pebesma and Bivand, 2005;
Bivand et al., 2013) which unified many different approaches for dealing with spatial15

data in R and allowed subsequent package developers to use a common framework
for spatial analysis. The rgdal package (Bivand et al., 2014) allows R to read and write
formats supported by the Geospatial Data Abstraction Library (GDAL) and OGR library.
Through the raster package (Hijmans, 2014), R now includes most functions for raster
data manipulation commonly associated with GIS software. Building on these capabil-20

ities, several R packages have been created for dynamic, spatially explicit ecological
modelling (e.g. Petzoldt and Rinke, 2007; Fiske and Chandler, 2011). In addition, two
recent land use change models have been written for the R environment. StocModLCC
(Rosa et al., 2013) is a stochastic inductive land use change model for tropical defor-
estation while SIMLANDER (Hewitt et al., 2013) is a stochastic cellular automata model25

to simulate urbanisation. Thus, R is well suited for spatially explicit land use change
modelling. To date, however, R has not been used to develop a framework for land
use change model development and comparison. In this paper we describe the lulccR
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package, a free and open source software package for land use change modelling in
the R environment.

2 Design goals

The first design goal of lulccR is to provide a framework that allows users to perform
every stage of the modelling process, shown by Fig. 1, within the same environment. It5

therefore includes methods to process and explore model input, fit and evaluate predic-
tive models, estimate the fraction of the study area belonging to each land use type at
different timesteps, allocate land use change spatially, validate the model and visualise
model outputs. This provides many advantages over specialised software applications.
Firstly, it improves efficiency and reduces the likelihood of user errors because inter-10

mediate inputs and outputs exist in the same environment (Fiske and Chandler, 2011;
Pebesma et al., 2012). Secondly, it encourages interactive model building because dif-
ferent aspects of the procedure can easily be revisited. Thirdly, it means it is straightfor-
ward to investigate the effect of different inputs and model setups on model outcomes.
Finally, and perhaps most importantly, it improves the reproducibility of scientific results15

because the entire modelling process can be expressed programmatically (Pebesma
et al., 2012).

lulccR is intended as an alternative to current paradigm of closed-source, specialised
software packages which, in our view, disrupt the scientific process. Thus, the second
design goal is to create an open and extensible framework allowing users to exam-20

ine the source code, modify it for their own purposes and freely distribute changes to
the wider community. The package exploits the openness of the R system, particu-
larly with respect to the package system, which allows developers to contribute code,
documentation and data sets in a standardised format to repositories such as the Com-
prehensive R Archive Network (CRAN) (Pebesma et al., 2012; Claes et al., 2014). As25

a result of this philosophy R users have access to a wide range of sophisticated tools for
data management, spatial analysis and plotting and visualisation. Significantly, given
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the importance of predictive models to land use change modelling, R has become the
standard development platform for statistical software.

One of the consequences of providing a modelling framework in R is that users of
the software must become programmers (Chambers, 2000). We recognise that this
represents a different approach to the current practice of providing land use change5

software packages with graphical user interfaces (GUIs), and acknowledge that for
users unfamiliar with programming it could present a steep learning curve. Therefore,
the third design goal is to provide software that is easy to use and accessible for a users
with different levels of programming experience. The package includes complete work-
ing examples to allow beginners to start using the package immediately from the R10

command shell, while more advanced users should be able to develop modelling ap-
plications as scripts. Furthermore, the package is designed to be extensible so that
users can contribute new or existing methods. Similarly, the source code of lulccR
is accessible so that users can locate the methods in use and understand algorithm
implementations. Acknowledging that many scientists lack any formal training in pro-15

gramming (Joppa et al., 2013; Wilson et al., 2014), we hope this final goal will ensure
the software is useful for educational purposes as well as scientific research.

3 Software description

To achieve the design goals we adopted an object-oriented approach. This provides
a formal structure for the modelling framework which allows the different stages of land20

use change modelling applications to be handled efficiently. Furthermore, it encour-
ages the reuse of code because objects can be used multiple times within the same
application or across different applications. It is extensible because it is straightforward
to extend existing classes using the concept of inheritance or create new methods for
existing classes. In lulccR we use the S4 class system (Chambers, 1998, 2008), which25

requires classes and methods to be formally defined. This system is more rigorous
than the alternative S3 system because objects are validated against the class defini-
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tion when they are created, ensuring that objects behave consistently when they are
passed to functions and methods. Figure 2 shows the class diagram for lulccR together
with a list of the most important functions. Here we describe the main components of
lulccR integrated with an example application for the Plum Island Ecosystems dataset
to demonstrate its functionality.5

3.1 Data

The failure to provide driving data for land use change modelling exercises alongside
published literature is identified by Rosa et al. (2014) as a major weakness of the
discipline. The lulccR package includes two datasets that have been widely used in
the land use change community, allowing users to quickly start exploring the modelling10

framework.

3.1.1 Plum Island Ecosystems

The Plum Island Ecosystems Long Term Ecological Research site is located in north-
east Massachusetts and includes the watersheds of the Ipswich River, Parker River
and Rowley River (http://pie-lter.ecosystems.mbl.edu/). Research at the site aims to15

understand the response of coastal ecosystems to changes in land use, climate and
sea level (Hobbie et al., 2003; Alber et al., 2013). In recent decades the area, which
is located approximately 50 km from the Boston, has undergone extensive land use
change from forest to residential use (Aldwaik and Pontius, 2012). This has altered the
hydrological behaviour of the three watersheds with negative impacts on downstream20

ecosystems (Morse and Wollheim, 2014). The dataset included in lulccR was originally
developed as part of the MassGIS program (MassGIS, 2015) but has been processed
by Pontius and Parmentier (2014). Land use maps depicting forest, residential and
other uses are available for 1985, 1991 and 1999. Although MassGIS provides a fourth
land use map for 2005 this was produced using a different classification methodology25

and cannot be used for change detection (Morse and Wollheim, 2014). Three predictor
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variables are included: elevation, slope and distance to built land in 1985. Land use for
the site in 1985 is shown by Fig. 3.

3.1.2 Sibuyan

Sibuyan is a small island with a total area of 456 km2 belonging to Romblon province
in the Phillipines. The central region is mountainous and heavily forested while the sur-5

rounding area is used for natural land cover, plantations, agriculture and other uses
(Verburg et al., 2002). The island is relevant for land use change studies because its
rich biodiversity is threatened by illegal logging and unsustainable farming practices
(Villamor and Lasco, 2009). The dataset included in lulccR is an adapted version of the
dataset distributed with the CLUE-S model, and includes includes an observed land10

use map for 1997, a number of predictor variables, a map of the Mount Guiting-Guiting
Natural Park, a protected area in the centre of the island, and four demand scenarios
for the period 1997 to 2011. In addition, we include the simulated map for 2011 from
the original CLUE-S software, corresponding to the first demand scenario, for bench-
marking purposes. The naming convention of this map follows that of the observed15

land use map for 1997. Further information about Sibuyan island in the context of land
use change is provided elsewhere in Verburg et al. (2002, 2004), for example.

3.2 Data processing

One of the most challenging aspects of land use change modelling is to obtain and
process the correct input data. In lulccR all spatially explicit input data must be stored20

in one of the file types supported by rgdal or exist in the R workspace as a raster object
belonging to the raster package (RasterLayer, RasterStack or RasterBrick). The most
fundamental input required by land use change models is an initial map of observed
land use, which is typically obtained from classified remotely sensed data. This map
represents the initial condition for model simulations and, for inductive modelling, it is25

used to fit predictive models. Sometimes it is more useful to consider observed land
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use transitions: in this case an additional map for an earlier timestep is required, as
shown by Fig. 1. Ideally, two more observed land use maps for subsequent timesteps
should be obtained for calibrating and validating the land use change model (Pontius
et al., 2004a).

In lulccR observed land use data are represented by the ObsLulcMaps class. In5

the following code snippet we install the lulccR package from github and create an
ObsLulcMaps object for the Plum Island Ecosystem dataset:

> library(devtools)
> install_github("simonmoulds/r_lulccR", subdir="lulccR")
> library("lulccR")10

> obs <- ObsLulcMaps(x=pie,
pattern="lu",
categories=c(1,2,3),
labels=c("Forest","Built","Other"),
t=c(0,6,14))15

The ObsLulcMaps object is important to land use change studies because it defines
the spatial and temporal domain of subsequent operations. Thus, additional spatial
data to be included in the model input should have the same characteristics as the
maps contained in the corresponding ObsLulcMaps object (however, some helper
functions are available to resample maps to the correct spatial resolution). The t argu-20

ment in the constructor function specifies the timesteps associated with the observed
land use maps. The first timestep must always be zero; if additional maps are present
they should have timesteps greater than zero, even in backcast models. In most land
use change modelling applications a timestep represents one year but there is no re-
quirement for this to be the case.25

A useful starting point in land use change modelling is to obtain a transition matrix for
two observed land use maps from different times to identify the main historical transi-
tions in the study region (Pontius et al., 2004b), which can be used as the basis for fur-
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ther research into the processes driving change. In lulccR we use the crossTabulate
function for this purpose:

> crossTabulate(x=obs, index=c(1,2))

The output of this command reveals that for the Plum Island Ecosystems site the dom-
inant change between 1985 and 1999 was the conversion of forest to built areas.5

Inductive and deductive land use change models predict the location of change
based on spatially explicit biophysical and socioeconomic explanatory variables. These
may be static, such as elevation or geology, or dynamic, such as maps of population
density or road networks. In lulccR these two types of explanatory variable are sep-
arated by a simple naming convention, which is explained in detail in the package10

documentation (see Supplement). Collectively, they are represented by an object of
class ExpVarMaps, which can be created as follows:

> ef <- ExpVarMaps(x=pie, pattern="ef")

Apart from observed land use maps and predictor variables other input maps may be
required. The two allocation routines currently included with lulccR accept a mask file,15

which is used to prevent change within a certain geographic area such as a national
park or other protected area, and a land use history file, which is used as the basis for
certain decision rules. These are handled by lulccR as standard RasterLayer objects.

3.3 Predictive modelling

Inductive land use change models are based on predictive models which relate the pat-20

tern of observed land use to spatially explicit explanatory variables. Logistic regression
is the most widely used model type (e.g. Pontius and Schneider, 2001; Verburg et al.,
2002), however, there is growing interest in the application of local and non-parametric
models to inductive land use change modelling (e.g. Tayyebi et al., 2014). Currently lul-
ccR supports binary logistic regression, available in base R, recursive partitioning and25

regression trees, provided by the rpart package (Therneau et al., 2014), and random
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forests, provided by the randomForest package (Liaw and Wiener, 2002). In all cases
a separate model must be obtained for each land use type in the study region. lulccR
does not provide additional functionality to fit predictive models to the observed data
since R is already optimised for this purpose.

Parametric models such as logistic regression models assume the input data to be5

independent and identically distributed (Overmars et al., 2003; Wu et al., 2009). In
spatial analysis this assumption is often violated because of spatial autocorrelation,
which reduces the information content of an observation because its value can to some
extent be predicted by the value of its neighbours (Beale et al., 2010). While non-
parametric models such as regression trees and random forest make no assumption of10

independence, a recent study by Mascaro et al. (2014) showed that these models may
nevertheless be affected by spatial autocorrelation. Dormann et al. (2007) discusses
several ways to account for spatial autocorrelation, however, the simplest, and most
widely used, approach is to fit the models to a random subset of the data (e.g. Verburg
et al., 2002; Wassenaar et al., 2007; Echeverria et al., 2008). This method is provided15

in lulccR using the createDataPartition function of the caret package (Kuhn et al.,
2012) to perform a stratified random sample of the data. The data partition is obtained
as follows:

> part <- partition(x=obs@maps[[1]], size=0.5, spatial=FALSE)

returning a named list object with the index of cells in the three partitions (training,20

testing, all cells). To fit models in R it is necessary to supply a formula and a data
frame (the main data structure in R) containing the response and explanatory variables.
The predictive models we use aim to predict the presence or abscence of each land
use type; thus, it is first necessary to convert the observed land use maps to binary
response variables before fitting a model to each land use. A typical workflow is shown25

here:

> br <- raster::layerize(obs@maps[[1]])
> names(br) <- obs@labels
> train.df <- raster::extract(x=br, y=part$train, df=TRUE)
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> train.df <- cbind(train.df, as.data.frame(x=ef, cells=part$train))
> built.glm <- glm(Built~ef_001+ef\_002+ef_003,

family=binomial,
data=train.df)

where the final command fits a binary logistic regression model to predict the occurrence of5

built based on three explanatory variables (elevation, slope and distance to 1971 built area).
This procedure is repeated for each land use in the study area, which, for the Plum Island
Ecosystems dataset, includes forest and other land uses in addition to built. For forest we
employ a null model (a model with no explanatory factors) because the transition from forest to
built is determined by the location suitability of built rather than that of forest. Of the predictive10

models supported by lulccR only binary logistic regression permits a null model to be fitted.
Predictive models for each land use are represented by an object of class PredModels:

> glm.models <- PredModels(list(forest.glm, built.glm, other.glm),
obs=obs)

The resulting object makes it straightforward to plot the suitability of each land use over the15

study region using the calcProb function in combination with some additional functionality
from the raster package (see Supplement). The resulting plot is shown by Fig. 4.

Methods to evaluate statistical models are provided by the ROCR package (Sing
et al., 2005), allowing the user to assess model performance using several methods
including the receiver operator characteristic (ROC), which is widely used to measure20

the performance of models predicting the presence or abscence of a phenomenon.
This method uses a threshold to transform an index variable, in our case the output
of the predictive models which varies between zero and one, to a boolean variable
where values above the threshold are true (1) and values below the threshold are
false (0). The transformed variable is compared to reference information to generate25

a contingency table with entries for true positives, false positives, true negatives and
false negatives. The ROC considers multiple thresholds in order to plot a curve of
true positive rate against false positive rate (Pontius and Parmentier, 2014). It is often
summarised by the area under the curve (AUC), where one indicates a perfect fit and
0.5 indicates a purely random model.30
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In lulccR we extend the native ROCR classes to better suit our purposes. The
prediction method of ROCR is extended by Prediction to handle one or more
PredModels objects to enable comparison of different types of predictive model. The
resulting object is then used to create a Performance object, for which a plot method
exists. The procedure to evaluate several PredModels objects is as follows:5

> glm.pred <- Prediction(models=glm.models,
obs=obs,
ef=ef,
partition=part$test)

> glm.perf <- Performance(pred=glm.pred, measure="rch")10

# not shown: create rpart.perf and rf.perf in the same way
> p <- Performance.plot(list(glm=glm.perf,

rpart=rpart.perf,
rf=rf.perf))15

> print(p) # ROC plots

Figure 5 shows the ROC plots for each land use type and for each type of predictive
model supported by lulccR. The plots show that binary logistic regression and ran-
dom forest models perform similarly for built and other land uses, while regression tree
models perform least well in both cases.20

3.4 Demand

Spatially explicit land use change models are normally driven by non-spatial estimates
of the total area occupied by each land use type at every timestep. This means regional
drivers of land use change, such as population growth and technology, are considered
implicitly (Fuchs et al., 2013). While some models calculate demand at each timestep25

based on the spatial configuration of the landscape at the previous timestep (e.g. Rosa
et al., 2013), it is more common to supply land use area for every timestep at the
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beginning of the simulation (e.g. Pontius and Schneider, 2001; Verburg et al., 2002;
Sohl et al., 2007). This is the approach currently supported in lulccR. Land use area
may be estimated using non-spatial land use models or, if the study aims to reconstruct
historic land use change, national and subnational land use statistics may be used (e.g.
Ray and Pijanowski, 2010; Fuchs et al., 2013). lulccR includes a function to interpolate5

or extrapolate land use area based on two or more observed land use maps: this
approach is often used to predict the quantity of land use change in the near-term
(Mas et al., 2014). For the current example we obtain land use demand for each year
between 1985 and 1999 by linear interpolation, as follows:

> dmd <- approxExtrapDemand(obs=obs, tout=0:14)10

In reality we are not usually interested in simulating land use change between two
known points. However, doing so is useful for model validation: we test the ability of the
model to predict the location of change given the exact quantity of change.

3.5 Allocation

The allocation component of land use change models estimates the location of change15

in the study region at each timestep (Verburg et al., 2002). Currently lulccR includes
two inductive allocation routines: an implementation of the CLUE-S algorithm and
a stochastic ordered procedure based on the algorithm described by Fuchs et al.
(2013). Before running either allocation procedure lulccR implements a number of de-
cision rules to identify the specific land use transitions that are allowed at each location.20

While the set of rules included in lulccR could be used as the basis of a simple agent-
based model of the type employed by Castella and Verburg (2007), their main purpose
is to allow the modeller to include additional knowledge about the system while still
relying on an inductive allocation procedure. The container class ModelInput rep-
resents the different inputs to the allocation function and checks that the objects are25

compatible with each other:
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> input <- ModelInput(obs=obs,
ef=ef,
models=glm.models,
time=0:14,
demand=dmd)5

These objects are supplied as the main input to objects inheriting from the virtual class
Model, which represents standard information required by the two allocation routines
currently implemented in lulccR and, indeed, most allocation routines described in the
literature. Subclasses of Model are associated with a particular allocation method.
These classes inherit general information held in Model and include specific informa-10

tion such as parameters and additional spatial input such as mask and land use his-
tory files. A generic allocate function receives objects inheriting from class Model
and performs the relevant allocation routine. All methods belonging to the generic
allocate function update the Model object with the allocation results. This design
ensures that it is easy to add additional allocation routines to lulccR: developers simply15

need to define a new subclass of Model and write a new allocate method. Here we
describe the decision rules and allocation routines currently available in lulccR.

3.5.1 Decision rules

The first decision rule included in lulccR is used to prohibit certain land use transi-
tions. For example, in most situations it is unlikely that urban areas will be converted to20

agricultural land because the initial cost of urban development is high (Verburg et al.,
2002). The second rule specifies a minimum number of timesteps before a certain tran-
sition is allowed, while the third rule specifies a maximum number of timesteps after
which change is not allowed. These rules are used to control land use transitions that
are time-dependent. For example, the transition from shrubland to closed forest is slow25

and cannot occur after only one year (Verburg and Overmars, 2009), whereas for some
types of agriculture a location is only suitable for a certain number of growing seasons
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because of declining soil quality. The fourth rule prohibits transitions to a certain land
use in cells that are not within a user-defined neighbourhood of cells already belong-
ing to the same land use. This rule is particularly relevant to cases of deforestation or
urbanisation because this sort of change usually occurs at the boundaries of existing
forests or cities, respectively.5

Within the allocate function the first four decision rules are implemented by the
allow function while the fifth decision rule is performed by the allowNeighb function.
To apply neighbourhood rules it is necessary to supply corresponding neighbourhood
maps to the allocation routine. In lulccR these are represented by the NeighbMaps
class. Objects of this class are created with the following command:10

> nb <- NeighbMaps(x=obs@maps[[1]],
categories=2,
weights=3)

Essentially, the allow and allowNeighb functions identify disallowed transitions ac-
cording to the decision rules and set the suitability of these cells to NA. These transi-15

tions are ignored by the allocation routine. Care should be taken to ensure that after
any decision rules are taken into account there are sufficient cells eligible to change in
order to meet the specified demand at each timestep.

3.5.2 CLUE-S allocation method

The CLUE-S model implements an iterative procedure to meet the specified demand20

at each timestep. The model is summarised briefly here: for a full description see Ver-
burg et al. (2002) and Castella and Verburg (2007). In the first instance each cell is
allocated to the land use with the highest suitability as determined by the predictive
models. Whereas the original CLUE-S model is based on binary logistic regression,
lulccR allows any predictive model supported by PredModels to be used. After this25

step the suitability is increased for land uses where the allocated area is less than
demand and decreased for land uses where it is greater than demand. The extent to
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which the suitability is increased or decreased is a function of the difference between
allocated change and demand. This procedure is repeated until the demand is met.
The original model perturbs the location suitability to limit the influence of nominal dif-
ferences in land use suitability on the final model solution. This is replicated in lulccR
except the user has greater control over the degree of perturbation. In effect, therefore,5

this parameter can be used to make the procedure more or less stochastic. In the fol-
lowing code snippet we first set the decision rules to allow all possible transitions and
then define some parameter values. Then, we create an object of class CluesModel
and pass this to the allocate function:

> clues.rules <- matrix(data=c(1,1,1,1,1,1,1,1,1),10

nrow=3, ncol=3, byrow=TRUE)
> clues.parms <- list(jitter.f=0.0002,

scale.f=0.000001,
max.iter=1000,
max.diff=50,15

ave.diff=50)
> clues.model <- CluesModel(x=input,

elas=c(0.2,0.2,0.2),
rules=clues.rules,
params=clues.parms)20

> clues.model <- allocate(clues.model)

As an iterative procedure the CLUE-S algorithm employs for-loops, which are slow in
R. To overcome this limitation we have written the CLUE-S procedure as a C extension
using the .Call interface. To benchmark our version of CLUE-S we compared our sim-
ulated land use map for Sibuyan Island for 1997 with that of the original model using25

comparable model inputs. The results of the comparison, shown by Fig. 6, demon-
strate that, while the model versions do not perform identically, the model results are
certainly comparable. Due to limitations of the original model interface we couldn’t use
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this model to simulate land use change for the Plum Island Ecosystems dataset and
therefore further verification was not possible.

3.5.3 Ordered method

The ordered allocation method is based on the algorithm described by Fuchs et al.
(2013). The approach is less computationally expensive and more stable than the5

CLUE-S implementation because it does not simulate competition between different
land use types. Instead, land allocation is performed in a hierarchical way according
to the perceived socioeconomic value of each land use type. For land uses with in-
creasing demand only cells belonging to land uses with lower socioeconomic value are
considered for conversion. In this case, n cells with the highest location suitability for10

the current land use are selected for change, where n equals the number of transitions
required to meet the demand. The converted cells, as well as the cells that remain
under the current land use, are masked from subsequent operations. For land uses
with decreasing demand only cells belonging to the current land use are allowed to
change. Here, n cells with the lowest location suitability are converted to a temporary15

class which can be allocated to subsequent land uses. The land use with lowest so-
cioeconomic value is a special case because it is considered last and, therefore, the
number of cells that have not been assigned to other land uses must equal the demand
for this land use. In practice, this means that the location suitability for this class has
no influence on the result. We modify the algorithm described by (Fuchs et al., 2013)20

to allow stochastic transitions. If this option is selected, the location suitability of each
cell allowed to change is compared to a random number between zero and one drawn
from a uniform distribution. If demand for the land use is increasing only cells where the
location suitability is greater than the random number are allowed to change, whereas
for decreasing demand only cells where it is less than the random number are allowed25

to change.
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In lulccR the ordered model is represented by the OrderedModel class. In the fol-
lowing code we create an OrderedModel object, supplying the order in which to allo-
cate change (built, forest, other), and pass this to the generic allocate function:

> ordered.model <- OrderedModel(x=input,
order=c(3,1,2))5

> ordered.model <- allocate(ordered.model)

3.6 Validation

Spatially explicit land use change models are validated by comparing the initial ob-
served map with an observed and simulated map for a subsequent timestep (Pon-
tius et al., 2011). Previous studies have extracted useful information from the three10

possible two-map comparisons (e.g. Pontius et al., 2007), however, recently Pontius
et al. (2011) devised the concept of a three-dimensional contingency table to com-
pare the three maps simulataneously. Not only is this approach more parsimonious, it
also yields more information about allocation performance (Pontius et al., 2011). For
example, from the table it is straightforward to identify different sources of agreement15

and disagreement considering all land use transitions, all transitions from one land
use or a specific transition from one land use to another. In addition, it is possible to
separate agreement between maps due to persistence from agreement due to cor-
rectly simulated change. This is important because in most applications the quantity
of change is small compared to the overall study area (Pontius et al., 2004b; van Vliet20

et al., 2011), giving a high rate of total agreement which can misrepresent the actual
model performance. It is common to perform the validation procedure at multiple reso-
lutions because comparison at the native resolution of the three maps fails to separate
minor allocation disagreement, which refers to allocation disagreement at the native
resolution that is counted as agreement at a coarser resolution, and major allocation25

disagreement, which refers to allocation disagreement at the native resolution and the
coarse resolution (Pontius et al., 2011).
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In lulccR, three-dimensional contingency tables at different resolutions
are represented by the ThreeMapComparison class. Two subclasses of
ThreeMapComparison represent different types of information that can be ex-
tracted from the tables: the AgreementBudget class represents sources of
agreement and disagreement between the three maps at different resolutions while5

the FigureOfMerit class represents figure of merit scores. This measure, which is
useful to summarise model performance, is defined as the intersection of observed
and simulated change divided by the union of these (Pontius et al., 2011), such
that a score of one indicates perfect agreement and a score of zero indicates no
agreement. Plotting functions for AgreementBudget and FigureOfMerit objects10

allow the user to visualise model performance at different resolutions. The ordered
model output for Plum Island Ecosystems is validated in the following way:

> ordered.tabs <- ThreeMapComparison(x=ordered.model,
timestep=14,
factors=2^(1:10))15

> ordered.agr <- AgreementBudget(x=ordered.tabs)
> ordered.agr.p <- AgreementBudget.plot(ordered.agr, from=1, to=2)
> ordered.fom <- FigureOfMerit(x=ordered.tabs)
> ordered.fom.p <- FigureOfMerit.plot(ordered.fom, from=1, to=2)

This procedure was repeated for the CLUE-S model output. The agreement budgets for the20

transition from forest to built for the two model outputs are shown by Fig. 7, while Fig. 8 shows
the corresponding figure of merit scores.

4 Discussion

The example application for Plum Island Ecosystems demonstrates the key strengths
of the lulccR package. Firstly, it allows the entire modelling procedure to be carried out25

in the same environment, reducing the likelihood of mistakes that commonly arise when
data and models are transferred between different software packages. A framework in
R specifically allows users to take advantage of a wide range of statistical and machine
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learning techniques for predictive modelling, and, because R is widely regarded as the
de facto standard for statistical model development, users of the package will have
access to the most recent developments in these fields. The framework allows users
to experiment with different model structures interactively and provides methods to
quickly compare different model outputs. The example also highlights the advantages5

of an object-oriented approach: land use change modelling involves several stages and
without dedicated classes for the associated data it would be difficult to keep track of
the intermediate model inputs and outputs.

lulccR is substantially different from alternative environmental modelling frameworks.
Most significantly, lulccR is designed for land use change modelling only, whereas10

frameworks such as PCRaster and TerraME provide general tools that can be applied
to different spatial analysis problems such as land use change, hydrology and ecol-
ogy. As a result, these tools are targeted towards the model developer rather than the
end user. In contrast, existing land use change models are designed with the user in
mind, with very few models providing any way for developers to improve or even un-15

derstand the model implementation. With lulccR we have attempted to reduce the gap
between user and developer. The R system is well suited for this task, as Pebesma
et al. (2012) notes “the step from being a user to becoming a developer is small with
R”. The package system ensures that lulccR will work across Windows, Mac OS X and
Unix platforms, whereas many existing applications are platform dependent. Compre-20

hensive documentation of the functions, classes and methods of lulccR, together with
complete working examples, enable the user to immediately start using the software,
while the object-oriented design ensures that developers can easily write extensions to
the package.

Despite its manifest advantages, there remain some drawbacks to land use change25

modelling in R. Firstly, the lack of a spatio-temporal database backend to support larger
datasets (Gebbert and Pebesma, 2014) restricts the amount of data that can be used
in a given application because R loads all data into memory. The raster package over-
comes this limitation by storing raster files on disk and processing data in chunks (Hij-
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mans, 2014). lulccR has been designed to make use of this facility where possible,
however, during allocation it is necessary to load the values of several maps into the
R workspace at once because the allocation procedure must consider every cell eligi-
ble for change simultaneously. The generic predict function belonging to the raster
package provides one possible solution to this problem, allowing users to make predic-5

tions with predictive models in a memory-safe way. In effect, this would mean spatially
explicit input data including observed land use maps and predictor variables could be
handled in chunks and only the resulting probability surface would have to be loaded
into the R workspace. However, this is not currently implemented in lulccR because it is
excessively time consuming compared to the current approach. Despite this limitation,10

since most applications involve a relatively small geographic extent or, in the case of
regional studies (e.g. Verburg and Overmars, 2009; Fuchs et al., 2015), use a coarser
map resolution, memory should not normally cause lulccR applications to fail.

The software presented here is still in its infancy and there are several areas for im-
provement. The present allocation routines receive the quantity of land use change for15

each timestep before the allocation procedure begins. However, some recent models
do not impose the quantity of change but instead allow change to occur stochastically
based on land use suitability. For example, StocModLcc (Rosa et al., 2013) deforests
a cell if the probability of deforestation is less than a random number from a uniform
distribution. The quantity of change is simply the number of cells deforested after each20

cell in the study region is considered for deforestation twice, with the probability of
change, which depends on the location of previous deforestation events, updated after
the first round. One advantage of this approach is that it accounts for uncertainty in the
quantity and location of change simultaneously, whereas the current routines in lulccR
only consider the location of change as a stochastic process. Other models such as25

LandSHIFT (Schaldach et al., 2011) receive demand at the national or regional level
from integrated assessment models such as IMAGE (Stehfast et al., 2014) or Nexus
Land-Use (Souty et al., 2012). Coupling lulccR with this class of model would be a valu-
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able addition to the software because land use change is increasingly recognised as
a regional and global issue that occurs over multiple scales.

One of the main strengths of lulccR is that multiple model structures can be explored
within the same environment. Thus, the more allocation routines available in the pack-
age the more useful it becomes. Two existing land use change models, StocModLCC5

and SIMLANDER, are written in R and available as open source software. Future work
could integrate these routines with lulccR to broaden the different model structures
and, therefore, improve the ability of lulccR to capture model structural uncertainty.
The methods in the current version of lulccR only permit an inductive approach to land
use change modelling. Deductive models are fundamentally different because they at-10

tempt to model explicitly the processes that drive land use change (Pérez-Vega et al.,
2012). The main advantage of these models is that they are able to establish causality
because they allow modellers to test specific theories about the location of change and
predictor variables whereas inductive models simply associate land use change with
explanatory variables through predictive models (Overmars et al., 2007). For example,15

the application for Plum Island Ecosystems shows that the presence of urban land is
related to elevation, slope and distance to built land in 1971, however, the allocation
models require no specific theory as to why this may be the case. Providing this class
of model would permit multiscale studies whereby inductive and deductive land use
change models operating at different spatial resolutions are dynamically coupled in20

order to better capture the complexity of the land use system (Moreira et al., 2009).
Free and open source software encourages the reproducibility of scientific results

and allows users to adapt and extend code for their own purposes. Thus, we encour-
age the land use change community to participate in the future development of lulccR.
Perhaps one of the simplest ways to improve the package is to experiment with the25

example datasets to identify bugs and areas for improvement. Those with more pro-
gramming experience may wish to extend the functionality of the package themselves
and contribute these changes upstream. In addition, existing land use change mod-
els can easily be included in the package by wrapping the original source code in R;
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a straightforward task for commonly used compiled languages (C/C++, Fortran). Of
course, users may also develop their own R packages that depend on lulccR for some
functionality: this is one of the strengths of the R package system. Finally, we invite land
use change modellers to submit land use change datasets (observed and, if possible,
modelled land use maps and spatially explicit predictor variables) for inclusion in the5

package.

5 Conclusions

Land use change models are useful for several tasks, from supporting local planning
decisions to studies of regional and global environmental change. However, currently
available software for land use change modelling is generally closed-source and usu-10

ally implements only one land use change model. In this paper we have presented
lulccR, a free and open source software package providing an object-oriented frame-
work for land use change modelling in R. lulccR allows the entire modelling process
to be performed within the same environment, supports three different types of predic-
tive model and includes two allocation routines. Releasing the software under an open15

source licence (GPL) means that users have access to the algorithms they implement
when they run a particular model. As a result, they are able to identify improvements to
the code and, under the terms of the licence, are free to redistribute these changes to
the wider community. We view lulccR as an initial step towards an open paradigm for
land use change modelling and hope, therefore, that the community will participate in20

its development.

Code availability

The lulccR source code currently resides on GitHub: https://github.com/simonmoulds/
r_lulccR.
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The Supplement related to this article is available online at
doi:10.5194/gmdd-8-3359-2015-supplement.
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Figure 1. Diagram showing the general methodology used for inductive land use change mod-
elling applications, adapted from Mas et al. (2014).
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Figure 2. Class diagram in the Unified Modeling Language (UML) for lulccR, showing the main
classes and core functions included in the package.
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Figure 3. Plum Island Ecosystems site land use map for 1985. In recent years the site has
undergone extensive land use change from forest to built areas.

3397

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|

Figure 4. Land use suitability maps for Plum Islands Ecosystems study area. The “forest” land
use class has uniform suitability because we employ a null model. Occurrence of “built” is
related to elevation, slope and distance to 1971 built area, while “other” is related to elevation
and slope only.
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Figure 5. ROC curves for each statistical model for each land use. Note that because the forest
class employs a null model only the logistic regression model is calculated.
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Figure 6. Overall agreement budget comparing the lulccR CLUE-S algorithm with the original
model output for 2011. This shows a good level of agreement between the two maps: the pro-
portion of persistence and change simulated correctly is high compared to incorrectly simulated
persistence or change.
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Figure 7. Agreement budget for the transition from “Forest” to “Built” for the two model outputs
considering reference maps at 1985 and 1999 and simulated map for 1999. The plot shows the
amount of correctly allocated change increases as the map resolution decreases.
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Figure 8. Figure of merit scores corresponding to the agreement budgets depicted in Fig. 7.
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