63 research outputs found

    Visualizing Robot Intent for Object Handovers with Augmented Reality

    Full text link
    Humans are very skillful in communicating their intent for when and where a handover would occur. On the other hand, even the state-of-the-art robotic implementations for handovers display a general lack of communication skills. We propose visualizing the internal state and intent of robots for Human-to-Robot Handovers using Augmented Reality. Specifically, we visualize 3D models of the object and the robotic gripper to communicate the robot's estimation of where the object is and the pose that the robot intends to grasp the object. We conduct a user study with 16 participants, in which each participant handed over a cube-shaped object to the robot 12 times. Results show that visualizing robot intent using augmented reality substantially improves the subjective experience of the users for handovers and decreases the time to transfer the object. Results also indicate that the benefits of augmented reality are still present even when the robot makes errors in localizing the object.Comment: 6 pages, 4 Figures, 2 Table

    Object Handovers: a Review for Robotics

    Full text link
    This article surveys the literature on human-robot object handovers. A handover is a collaborative joint action where an agent, the giver, gives an object to another agent, the receiver. The physical exchange starts when the receiver first contacts the object held by the giver and ends when the giver fully releases the object to the receiver. However, important cognitive and physical processes begin before the physical exchange, including initiating implicit agreement with respect to the location and timing of the exchange. From this perspective, we structure our review into the two main phases delimited by the aforementioned events: 1) a pre-handover phase, and 2) the physical exchange. We focus our analysis on the two actors (giver and receiver) and report the state of the art of robotic givers (robot-to-human handovers) and the robotic receivers (human-to-robot handovers). We report a comprehensive list of qualitative and quantitative metrics commonly used to assess the interaction. While focusing our review on the cognitive level (e.g., prediction, perception, motion planning, learning) and the physical level (e.g., motion, grasping, grip release) of the handover, we briefly discuss also the concepts of safety, social context, and ergonomics. We compare the behaviours displayed during human-to-human handovers to the state of the art of robotic assistants, and identify the major areas of improvement for robotic assistants to reach performance comparable to human interactions. Finally, we propose a minimal set of metrics that should be used in order to enable a fair comparison among the approaches.Comment: Review paper, 19 page

    A Multimodal Data Set of Human Handovers with Design Implications for Human-Robot Handovers

    Full text link
    Handovers are basic yet sophisticated motor tasks performed seamlessly by humans. They are among the most common activities in our daily lives and social environments. This makes mastering the art of handovers critical for a social and collaborative robot. In this work, we present an experimental study that involved human-human handovers by 13 pairs, i.e., 26 participants. We record and explore multiple features of handovers amongst humans aimed at inspiring handovers amongst humans and robots. With this work, we further create and publish a novel data set of 8672 handovers, bringing together human motion and the forces involved. We further analyze the effect of object weight and the role of visual sensory input in human-human handovers, as well as possible design implications for robots. As a proof of concept, the data set was used for creating a human-inspired data-driven strategy for robotic grip release in handovers, which was demonstrated to result in better robot to human handovers.Comment: The data set of human-human handovers can be found at: https://github.com/paragkhanna1/datase

    Crafting with a Robot Assistant: Use Social Cues to Inform Adaptive Handovers in Human-Robot Collaboration

    Full text link
    We study human-robot handovers in a naturalistic collaboration scenario, where a mobile manipulator robot assists a person during a crafting session by providing and retrieving objects used for wooden piece assembly (functional activities) and painting (creative activities). We collect quantitative and qualitative data from 20 participants in a Wizard-of-Oz study, generating the Functional And Creative Tasks Human-Robot Collaboration dataset (the FACT HRC dataset), available to the research community. This work illustrates how social cues and task context inform the temporal-spatial coordination in human-robot handovers, and how human-robot collaboration is shaped by and in turn influences people's functional and creative activities.Comment: accepted at HRI 202

    Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision

    Full text link
    We present an approach for safe and object-independent human-to-robot handovers using real time robotic vision and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.Comment: IEEE Robotics and Automation Letters (RA-L). Preprint Version. Accepted September, 2020. The code and videos can be found at https://patrosat.github.io/h2r_handovers

    Optometrist's Algorithm for Personalizing Robot-Human Handovers

    Full text link
    With an increasing interest in human-robot collaboration, there is a need to develop robot behavior while keeping the human user's preferences in mind. Highly skilled human users doing delicate tasks require their robot partners to behave according to their work habits and task constraints. To achieve this, we present the use of the Optometrist's Algorithm (OA) to interactively and intuitively personalize robot-human handovers. Using this algorithm, we tune controller parameters for speed, location, and effort. We study the differences in the fluency of the handovers before and after tuning and the subjective perception of this process in a study of N=30N=30 non-expert users of mixed background -- evaluating the OA. The users evaluate the interaction on trust, safety, and workload scales, amongst other measures. They assess our tuning process to be engaging and easy to use. Personalization leads to an increase in the fluency of the interaction. Our participants utilize the wide range of parameters ending up with their unique personalized handover.Comment: 7 pages, 5 figures. Accepted at IEEE-ROMAN 2023. For more information visit: https://github.com/vivekgupte07/optometrist-algorithm-handover

    Towards safe human-to-robot handovers of unknown containers

    Get PDF
    Safe human-to-robot handovers of unknown objects require accurate estimation of hand poses and object properties, such as shape, trajectory, and weight. Accurately estimating these properties requires the use of scanned 3D object models or expensive equipment, such as motion capture systems and markers, or both. However, testing handover algorithms with robots may be dangerous for the human and, when the object is an open container with liquids, for the robot. In this paper, we propose a real-to-simulation framework to develop safe human-to-robot handovers with estimations of the physical properties of unknown cups or drinking glasses and estimations of the human hands from videos of a human manipulating the container. We complete the handover in simulation, and we estimate a region that is not occluded by the hand of the human holding the container. We also quantify the safeness of the human and object in simulation. We validate the framework using public recordings of containers manipulated before a handover and show the safeness of the handover when using noisy estimates from a range of perceptual algorithms

    GoferBot: A Visual Guided Human-Robot Collaborative Assembly System

    Full text link
    The current transformation towards smart manufacturing has led to a growing demand for human-robot collaboration (HRC) in the manufacturing process. Perceiving and understanding the human co-worker's behaviour introduces challenges for collaborative robots to efficiently and effectively perform tasks in unstructured and dynamic environments. Integrating recent data-driven machine vision capabilities into HRC systems is a logical next step in addressing these challenges. However, in these cases, off-the-shelf components struggle due to generalisation limitations. Real-world evaluation is required in order to fully appreciate the maturity and robustness of these approaches. Furthermore, understanding the pure-vision aspects is a crucial first step before combining multiple modalities in order to understand the limitations. In this paper, we propose GoferBot, a novel vision-based semantic HRC system for a real-world assembly task. It is composed of a visual servoing module that reaches and grasps assembly parts in an unstructured multi-instance and dynamic environment, an action recognition module that performs human action prediction for implicit communication, and a visual handover module that uses the perceptual understanding of human behaviour to produce an intuitive and efficient collaborative assembly experience. GoferBot is a novel assembly system that seamlessly integrates all sub-modules by utilising implicit semantic information purely from visual perception

    Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction

    Get PDF
    Meyer zu Borgsen S. Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction. Bielefeld: Universität Bielefeld; 2020.This doctoral thesis investigates the influence of nonverbal communication on human-robot object handover. Handing objects to one another is an everyday activity where two individuals cooperatively interact. Such close interactions incorporate a lot of nonverbal communication in order to create alignment in space and time. Understanding and transferring communication cues to robots becomes more and more important as e.g. service robots are expected to closely interact with humans in the near future. Their tasks often include delivering and taking objects. Thus, handover scenarios play an important role in human-robot interaction. A lot of work in this field of research focuses on speed, accuracy, and predictability of the robot’s movement during object handover. Still, robots need to be enabled to closely interact with naive users and not only experts. In this work I present how nonverbal communication can be implemented in robots to facilitate smooth handovers. I conducted a study on people with different levels of experience exchanging objects with a humanoid robot. It became clear that especially users with only little experience in regard to interaction with robots rely heavily on the communication cues they are used to on the basis of former interactions with humans. I added different gestures with the second arm, not directly involved in the transfer, to analyze the influence on synchronization, predictability, and human acceptance. Handing an object has a special movement trajectory itself which has not only the purpose of bringing the object or hand to the position of exchange but also of socially signalizing the intention to exchange an object. Another common type of nonverbal communication is gaze. It allows guessing the focus of attention of an interaction partner and thus helps to predict the next action. In order to evaluate handover interaction performance between human and robot, I applied the developed concepts to the humanoid robot Meka M1. By adding the humanoid robot head named Floka Head to the system, I created the Floka humanoid, to implement gaze strategies that aim to increase predictability and user comfort. This thesis contributes to the field of human-robot object handover by presenting study outcomes and concepts along with an implementation of improved software modules resulting in a fully functional object handing humanoid robot from perception and prediction capabilities to behaviors enhanced and improved by features of nonverbal communication
    corecore