3,323 research outputs found

    Rectification from Radially-Distorted Scales

    Full text link
    This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from repetitions of rigidly transformed coplanar local features. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle images that contain nearly any type of coplanar repeated content. We demonstrate a principled approach to generating stable minimal solvers by the Grobner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the solvers give accurate rectifications from noisy measurements when used in a RANSAC-based estimator. The proposed solvers demonstrate superior robustness to noise compared to the state-of-the-art. The solvers work on scenes without straight lines and, in general, relax the strong assumptions on scene content made by the state-of-the-art. Accurate rectifications on imagery that was taken with narrow focal length to near fish-eye lenses demonstrate the wide applicability of the proposed method. The method is fully automated, and the code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin

    A comparative evaluation of interest point detectors and local descriptors for visual SLAM

    Get PDF
    Abstract In this paper we compare the behavior of different interest points detectors and descriptors under the conditions needed to be used as landmarks in vision-based simultaneous localization and mapping (SLAM). We evaluate the repeatability of the detectors, as well as the invariance and distinctiveness of the descriptors, under different perceptual conditions using sequences of images representing planar objects as well as 3D scenes. We believe that this information will be useful when selecting an appropriat

    Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery

    Get PDF
    Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion. This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the tracking performance. Several works address this problem using ego-motion compensation strategies. They use a deterministic approach to compensate the camera motion assuming a specific model of geometric transformation. However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations: Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter using the appearance information. This approach is able to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR dataset, showing a high efficiency in the tracking of different types of targets in real working conditions

    Taking the bite out of automated naming of characters in TV video

    No full text
    We investigate the problem of automatically labelling appearances of characters in TV or film material with their names. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking. In addition, we incorporate complementary cues of face matching and clothing matching to propose common annotations for face tracks, and consider choices of classifier which can potentially correct errors made in the automatic extraction of training data from the weak textual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”

    Radially-Distorted Conjugate Translations

    Full text link
    This paper introduces the first minimal solvers that jointly solve for affine-rectification and radial lens distortion from coplanar repeated patterns. Even with imagery from moderately distorted lenses, plane rectification using the pinhole camera model is inaccurate or invalid. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle imagery, which is now common from consumer cameras. The solvers are derived from constraints induced by the conjugate translations of an imaged scene plane, which are integrated with the division model for radial lens distortion. The hidden-variable trick with ideal saturation is used to reformulate the constraints so that the solvers generated by the Grobner-basis method are stable, small and fast. Rectification and lens distortion are recovered from either one conjugately translated affine-covariant feature or two independently translated similarity-covariant features. The proposed solvers are used in a \RANSAC-based estimator, which gives accurate rectifications after few iterations. The proposed solvers are evaluated against the state-of-the-art and demonstrate significantly better rectifications on noisy measurements. Qualitative results on diverse imagery demonstrate high-accuracy undistortions and rectifications. The source code is publicly available at https://github.com/prittjam/repeats

    Do-It-Yourself Single Camera 3D Pointer Input Device

    Full text link
    We present a new algorithm for single camera 3D reconstruction, or 3D input for human-computer interfaces, based on precise tracking of an elongated object, such as a pen, having a pattern of colored bands. To configure the system, the user provides no more than one labelled image of a handmade pointer, measurements of its colored bands, and the camera's pinhole projection matrix. Other systems are of much higher cost and complexity, requiring combinations of multiple cameras, stereocameras, and pointers with sensors and lights. Instead of relying on information from multiple devices, we examine our single view more closely, integrating geometric and appearance constraints to robustly track the pointer in the presence of occlusion and distractor objects. By probing objects of known geometry with the pointer, we demonstrate acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201
    corecore