4,275 research outputs found

    Stochastic Dynamic Cache Partitioning for Encrypted Content Delivery

    Full text link
    In-network caching is an appealing solution to cope with the increasing bandwidth demand of video, audio and data transfer over the Internet. Nonetheless, an increasing share of content delivery services adopt encryption through HTTPS, which is not compatible with traditional ISP-managed approaches like transparent and proxy caching. This raises the need for solutions involving both Internet Service Providers (ISP) and Content Providers (CP): by design, the solution should preserve business-critical CP information (e.g., content popularity, user preferences) on the one hand, while allowing for a deeper integration of caches in the ISP architecture (e.g., in 5G femto-cells) on the other hand. In this paper we address this issue by considering a content-oblivious ISP-operated cache. The ISP allocates the cache storage to various content providers so as to maximize the bandwidth savings provided by the cache: the main novelty lies in the fact that, to protect business-critical information, ISPs only need to measure the aggregated miss rates of the individual CPs and do not need to be aware of the objects that are requested, as in classic caching. We propose a cache allocation algorithm based on a perturbed stochastic subgradient method, and prove that the algorithm converges close to the allocation that maximizes the overall cache hit rate. We use extensive simulations to validate the algorithm and to assess its convergence rate under stationary and non-stationary content popularity. Our results (i) testify the feasibility of content-oblivious caches and (ii) show that the proposed algorithm can achieve within 10\% from the global optimum in our evaluation

    From isovists to visibility graphs: a methodology for the analysis of architectural space

    Get PDF
    An isovist, or viewshed, is the area in a spatial environment directly visible from a location within the space. Here we show how a set of isovists can be used to generate a graph of mutual visibility between locations. We demonstrate that this graph can also be constructed without reference to isovists and that we are in fact invoking the more general concept of a visibility graph. Using the visibility graph, we can extend both isovist and current graph-based analyses of architectural space to form a new methodology for the investigation of configurational relationships. The measurement of local and global characteristics of the graph, for each vertex or for the system as a whole, is of interest from an architectural perspective, allowing us to describe a configuration with reference to accessibility and visibility, to compare from location to location within a system, and to compare systems with different geometries. Finally we show that visibility graph properties may be closely related to manifestations of spatial perception, such as way-finding, movement, and space use

    Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices

    Full text link
    In this paper, an automatic method is proposed to perform image registration in visible and infrared pair of video sequences for multiple targets. In multimodal image analysis like image fusion systems, color and IR sensors are placed close to each other and capture a same scene simultaneously, but the videos are not properly aligned by default because of different fields of view, image capturing information, working principle and other camera specifications. Because the scenes are usually not planar, alignment needs to be performed continuously by extracting relevant common information. In this paper, we approximate the shape of the targets by polygons and use affine transformation for aligning the two video sequences. After background subtraction, keypoints on the contour of the foreground blobs are detected using DCE (Discrete Curve Evolution)technique. These keypoints are then described by the local shape at each point of the obtained polygon. The keypoints are matched based on the convexity of polygon's vertices and Euclidean distance between them. Only good matches for each local shape polygon in a frame, are kept. To achieve a global affine transformation that maximises the overlapping of infrared and visible foreground pixels, the matched keypoints of each local shape polygon are stored temporally in a buffer for a few number of frames. The matrix is evaluated at each frame using the temporal buffer and the best matrix is selected, based on an overlapping ratio criterion. Our experimental results demonstrate that this method can provide highly accurate registered images and that we outperform a previous related method

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    A Computational Model of the Short-Cut Rule for 2D Shape Decomposition

    Full text link
    We propose a new 2D shape decomposition method based on the short-cut rule. The short-cut rule originates from cognition research, and states that the human visual system prefers to partition an object into parts using the shortest possible cuts. We propose and implement a computational model for the short-cut rule and apply it to the problem of shape decomposition. The model we proposed generates a set of cut hypotheses passing through the points on the silhouette which represent the negative minima of curvature. We then show that most part-cut hypotheses can be eliminated by analysis of local properties of each. Finally, the remaining hypotheses are evaluated in ascending length order, which guarantees that of any pair of conflicting cuts only the shortest will be accepted. We demonstrate that, compared with state-of-the-art shape decomposition methods, the proposed approach achieves decomposition results which better correspond to human intuition as revealed in psychological experiments.Comment: 11 page
    • …
    corecore