7 research outputs found

    Weak functional dependencies on trees with restructuring

    Get PDF
    We present an axiomatisation for weak functional dependencies, i.e. disjunctions of functional dependencies, in the presence of several constructors for complex values. The investigated constructors capture records, sets, multisets, lists, disjoint union and optionality, i.e. the complex values are indeed trees. The constructors cover the gist of all complex value data models including object oriented databases and XML. Functional and weak functional dependencies are expressed on a lattice of subattributes, which even carries the structure of a Brouwer algebra as long as the union-constructor is absent. Its presence, however, complicates all results and proofs significantly. The reason for this is that the union-constructor causes non-trivial restructuring rules to hold. In particular, if either the set- or the the union-constructor is absent, a subset of the rules is complete for the implication of ordinary functional dependencies, while in the general case no finite axiomatisation for functional dependencies exists

    Database Integration: the Key to Data Interoperability

    Get PDF
    Most of new databases are no more built from scratch, but re-use existing data from several autonomous data stores. To facilitate application development, the data to be re-used should preferably be redefined as a virtual database, providing for the logical unification of the underlying data sets. This unification process is called database integration. This chapter provides a global picture of the issues raised and the approaches that have been proposed to tackle the problem

    Acta Cybernetica : Volume 20. Number 2.

    Get PDF

    A new formal and analytical process to product modeling (PPM) method and its application to the precast concrete industry

    Get PDF
    The current standard product (data) modeling process relies on the experience and subjectivity of data modelers who use their experience to eliminate redundancies and identify omissions. As a result, product modeling becomes a social activity that involves iterative review processes of committees. This study aims to develop a new, formal method for deriving product models from data collected in process models of companies within an industry sector. The theoretical goals of this study are to provide a scientific foundation to bridge the requirements collection phase and the logical modeling phase of product modeling and to formalize the derivation and normalization of a product model from the processes it supports. To achieve these goals, a new and formal method, Georgia Tech Process to Product Modeling (GTPPM), has been proposed. GTPPM consists of two modules. The first module is called the Requirements Collection and Modeling (RCM) module. It provides semantics and a mechanism to define a process model, information items used by each activity, and information flow between activities. The logic to dynamically check the consistency of information flow within a process also has been developed. The second module is called the Logical Product Modeling (LPM) module. It integrates, decomposes, and normalizes information constructs collected from a process model into a preliminary product model. Nine design patterns are defined to resolve conflicts between information constructs (ICs) and to normalize the resultant model. These two modules have been implemented as a Microsoft Visio ™ add-on. The tool has been registered and is also called GTPPM ™. The method has been tested and evaluated in the precast concrete sector of the construction industry through several GTPPM modeling efforts. By using GTPPM, a complete set of information items required for product modeling for a medium or a large industry can be collected without generalizing each company's unique process into one unified high-level model. However, the use of GTPPM is not limited to product modeling. It can be deployed in several other areas including: workflow management system or MIS (Management Information System) development software specification development business process re-engineering.Ph.D.Committee Chair: Eastman, Charles M.; Committee Co-Chair: Augenbroe, Godfried; Committee Co-Chair: Navathe, Shamkant B.; Committee Member: Hardwick, Martin; Committee Member: Sacks, Rafae
    corecore