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SUMMARY 

A product (data) model is a formally structured schema of some subset of the 

information that is generated, modified and deleted throughout a product’s lifecycle. 

Product models are being developed in many manufacturing, construction and industrial 

domains to facilitate automation of activities, electronic communication and re-

engineering of engineering processes. The current standard product (data) modeling 

process relies on the experience and subjectivity of data modelers who use their 

experience to eliminate redundancies and identify omissions. In order to ensure 

correctness, their decisions are validated via a time-consuming process of national and 

international voting, e-mail and face to face meetings.  As a result, product modeling 

becomes a social activity that involves iterative review processes of committees.  

This study aims to develop a new, formal method for deriving product models 

from data collected in process models of companies within an industry sector. The 

theoretical goals of this study are to provide a scientific foundation to bridge the 

requirements collection phase and the logical modeling phase of product modeling and to 

formalize the derivation and normalization of a product model from the processes it 

supports. The long term practical goal is to greatly reduce the time and cost of producing 

a product model from the current 5 to 10 years to 1.5 years or less. Another practical 

benefit will be to allow companies to better plan and integrate their operations using the 

resulting product model. To achieve these goals, a new and formal method, Georgia Tech 

Process to Product Modeling (GTPPM), has been proposed. The basic approach is to 
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bind process and product data modeling together and to develop a product data model 

that is sensitive to its various applications (processes).  

This method eventually intends to support the ISO STEP effort. ISO STEP 

(STandard for Exchanging Product data) is an international effort to develop standard 

product models. The equivalent concepts to process and product models of ISO STEP are 

respectively Application Activity Models (AAMs) and Application 

Reference/Requirements Models (ARMs). Currently EXPRESS is the standard ISO 

STEP data modeling language and IDEF0 is the standard AAM language. However, an 

AAM and an ARM are linked implicitly and abstractly. In order to provide a mechanism 

to tightly bind them together, several research questions should be answered. The 

research questions are:  

1) What is the process semantics that is required to elicit processes and 

information necessary and sufficient to derive a product model?  

2) How to specify required information in a machine-readable format 

3) How to resolve the naming issues (a.k.a. the ‘nym’ issues: e.g., synonyms and 

homonyms) and the conflicts between company-specific vernacular terms and 

a consistent machine-readable terms 

4) How to validate the consistency of information captured in a process 

5) How to derive a product model from the collected process information 

6) How to validate the well-formedness of the derived product model and 

normalize the derived product model  
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7) How to integrate (or harmonize) product models into one unified model when 

several different product models are derived from different processes about 

the same product. 

GTPPM consists of two modules. The first module is called the Requirements 

Collection & Modeling (RCM) module. It provides semantics and a mechanism to define 

a process model, information items used by each activity, and information flow between 

activities. Thirteen process-modeling components have been defined for capturing 

process semantics and information flow. In order to specify information items used by 

each activity, a mechanism, called an information menu, has been developed. It structures 

and restricts a way to specify information constructs (ICs) based on rules defined using a 

context-free grammar (CFG). Information constructs (ICs) are formally defined 

information items and represents domain semantics. The logic to dynamically check the 

consistency of information flow within a process also has been developed. 

The second module is called the Logical Product Modeling (LPM) module. It 

integrates, decomposes, and normalizes information constructs collected from a process 

model into a preliminary product model. Nine design patterns are defined to resolve 

conflicts between information constructs (ICs) and to normalize the resultant model.  

These two modules have been implemented as a Microsoft Visio® add-on. The 

tool has been registered and is also called GTPPM®. The method has been tested and 

evaluated in the precast concrete sector of the construction industry through several 

GTPPM modeling efforts. The GTPPM was first deployed by fourteen precast producers 

in the North America in analyzing the sales, design, engineering, production, and 

shipping processes and information flow in the precast concrete industry. Based on the 
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analysis results of the first attempt, three more test case models were developed. Three 

product models and one integrated product model were automatically derived from the 

three GTPPM models. One product model of a company was compared with the existing 

Enterprise Resource Planning (ERP) system of the same company. The integrated model 

was evaluated using the precast concrete extension of an existing standard product model 

(i.e., PCC-IFC) as a benchmark.  

A product model generated by the current GTPPM method is by no means 

complete. An automatically generated product model will not include roles, data type, 

cardinality, and the WHERE, DERIVE, and RULE clauses. Those should be added and 

modified manually. The logic for automating those processes can be developed further in 

the near future.  

By using GTPPM, a complete set of information items required for product 

modeling for a medium or a large industry can be collected without generalizing each 

company’s unique process into one unified high-level model. However, the use of 

GTPPM is not limited to product modeling. It can be deployed in several other areas 

including:   

• workflow management system or MIS (Management Information System) 

development: Information required for processing an activity, passed to 

succeeding activities, and fed back to previous activities can be defined.  

• software specification development: A detailed definition of engineering 

functions and processes can be developed, which will allow further 

development of software in the engineering and design areas. 
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• business process re-engineering: A process model with specific information 

items can be used for reengineering of an organization like other process 

models. 

Also any form of a data model defined in EXPRESS can be read into GTPPM as 

an information menu. Using this function, GTPPM can be used to update or validate an 

existing product model by reading in an existing product model as an information menu. 

It can be also used to develop conformance classes (i.e., valid subset models) of an 

existing model.  

We hope that this work will impact American and international standardization 

activities (e.g., ISO efforts) to develop product models. By developing new formalisms 

for product modeling, the proposed method is intended to build a formal and scientific 

foundation for work in a field that is currently a craft, allowing systematic improvement. 
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CHAPTER 1  

INTRODUCTION 

1.1 WHAT IS A PRODUCT MODEL 

The information involved in design, engineering and manufacturing of each 

product class involves many specialized entities, various types of aggregation, attributes 

with specialized meaning and functional relations. A product (data) model1 is a formally 

structured schema of such product information that is generated, modified, and deleted 

throughout a product’s lifecycle. Defined as an integration and exchange standard, it is an 

electronic medium to share and exchange product information among heterogeneous 

systems within an organization, or more widely within/across industries. A product model 

has distinctive characteristics from other data models:  

1) It includes complex geometric information, defining the shape of each 

component of the product, and also the shapes of different levels of component 

composition. 

2) The geometry is partially derived by the product’s intended functions. These 

functions of the product are represented along with the topologies that enable 

them, as well as the behavioral analysis results used to determine properties of 

the product, partially capturing the product’s intent and rationale.  

3) A product is manufactured or constructed. The information required to 

fabricate, assemble, test, and manage the product are also included.  

                                                 
1 In this thesis, the terms a ‘product model’ and a ‘product data model’ are used interchangeably. Also a ‘data model’ and 

a ‘(data) schema’ are used interchangeably.  
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To date, over 30 product data models have been developed within the International 

Standards Organization - Standard for Product Data Exchange (ISO-STEP 10303) 

standards (ISO TC 184/SC 4 1994) and there are a growing number of industry-based 

product models developed outside of the ISO organization, but using the same technology, 

tools and procedures (CIMSteel Integration Standards Release 2 2002; IAI).  

Product model schemas are large and multifaceted, reflecting multiple complex 

semantic domains. For example, the CIMsteel product model used in the structural steel 

industry (Crowley & Watson, 1999) has 731 entity types and a scope covering the design, 

analysis, shop detailing and fabrication of steel structures for buildings. Currently, it is 

supported by twelve applications. Other example domains for which product models have 

been developed include NC tooling (ISO TC 184/SC 4 1996), sheet metal design processes 

(ISO TC 184/SC 4 1999; Jurrens 1991), piping (ISO TC 184/SC 4; Palmer and Reed 1990), 

process plant spatial layout (ISO TC 184/SC 4 2001), electronic assembly and packaging 

design (ISO TC 184/SC 4 2001) etc. While significant effort has already been applied to 

the development of product models, many engineering and production domains are still 

evolving their IT infrastructure and have not yet developed corresponding product models. 

Also, product models are live, not static, and require updating as new technologies and 

concepts are integrated into a manufacturing or design domain. Thus the benefits of 

improving the methods used in product modeling would have significant impact. 

1.2 A STANDARD METHOD FOR PRODUCT MODELING AND ITS DRAWBACKS 

The current method employed in all current product modeling efforts is based on 

the ISO-10303 STEP languages and methods (NIST 1993, 1993). The STEP name for a 

product model of each domain is an Application Protocol (AP). The STEP includes 
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standard procedures that correspond to the ANSI/SPARC three-level database architecture: 

i.e., a view, a logical model, and a physical model. The procedures begin by defining the 

scope and processes to be supported, by defining a process model of the domain of 

discourse, (called an Applications Activity Model (AAM)).  STEP uses IDEF0 (Integration 

Definition of Function Modeling) to define the AAM.  It shows “the engineering process 

context in which an AP will be used (VTT Building and Transport 2002)”.  From the AAM, 

a view of the information domain (called an Application Requirements Model (ARM)) is 

defined using one of a set of conceptual modeling tools. (ISO STEP currently endorses 

NIAM (Nijssen and Halpin 1989), IDEF1x (NIST 1993) and EXPRESS-G (ISO TC 

184/SC 4 1994).) An Application Requirements Model is then refined and elaborated into 

an Application Interpreted Model (AIM, which is a logical model of the information 

domain). EXPRESS is the product modeling language universally used in such efforts 

(ISO TC 184/SC 4 1994; Schenk and Wilson 1994; VTT Building and Transport 2002). 

The initial AIM is then refined to integrate standard data model resources for representing 

standard, cross-discipline concepts, such as geometry, units and measurements, 

organizations, and so forth. The product model must support a variety of uses, centered 

around queries, access, and management. These often require data about the data, or 

metadata, needed for data management uses. Later, AIM can be implemented as a physical 

model through the Standard Data Access Interface (SDAI) (ISO 10303 Part23, 2000). 

Table 1.1 on the next page maps the STEP models and the ANSI/SPAC three-level data 

structure based on Andrew Crowley’s five-level structure on p. 40 of (Crowley 1998) and 

other references (Eastman 1999; Elmasri and Navathe 2000; ISO TC 184/SC 4 1994; NIST 

2002). 
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Product models are currently developed as a joint undertaking of domain experts 

and product model experts, relying on committee reviews and convergence. The domain 

experts rely on natural language to describe their requirements. The product model experts 

first use process modeling languages and tools to define the scope of the domain (the 

AAM) and then conceptual modeling tools to define the concepts in the domain and their 

structure (the ARM). These two representations are separate and unrelated. They are 

initially based on subjective and ad hoc interpretations of the expert’s knowledge. Because 

the representations are new and complex to the domain experts, they are not easily checked 

and require many cycles of iteration to converge to a meaningful result. Later the ARM is 

elaborated and translated by the modeling experts to a full product model (or AIM) based 

on the ISO STEP integrated generic resources (IRs)2. The IRs define “a generic ontology 

for product data and provide the context of the AP domain ontology (Danner 1997).”  The 

product modeling process is iterative and converging between the modeling and domain 

experts. It typically takes at least five years to complete the specialization and approval of 

a product model. Some efforts have taken more than ten years. Throughout later stages, 

application developers within the domain are engaged and translators to/from the product 

model are developed. A product model specification is implementation-free; it can be 

mapped into a text file format, an XML Document Object Model (DOM) or an XML 

schema, a relational or object-oriented database schema, or object model direct mapping 

interfaces. Initial interfaces typically involve file-based exchange, with database 

implementations following. The STEP method using IDEF0 has been adopted by many 

organizations such as US Air Force, IAI, and a number of projects carried out under the 

                                                 
2 ISO STEP Parts 41 to 56 define IRs.  
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auspices of the European Union (CIMSteel Integration Standards Release 2 2002; Karstila 

2001). 

Table 1.1 Mapping between the STEP models and the three-level database architecture 

Layer Model Languages STEP Model 

External or view 
level 

External Schema or View  IDEF0 
IDEF1x 
NIAM 
EXPRESS-G 
EXPRESS 

AAM*, ARM 
*An AAM is primarily an activity 
/ process model, but also 
represents information flow in a 
process at a high level (e.g., 
IDEF0 ICOM). 

Conceptual Level Conceptual or Logical Schema EXPRESS AIM 

Internal Level Internal or Physical Schema 
(Examples include internal data 
models of CAx3 and other applications 
as well as database management 
systems.) 

C++ 
Java 
XML 
(SQL) 

STEP only provides an interface 
(i.e, SDAI) to the physical 
schema. 

 

While the ISO-STEP methodology has been a significant step forward and has 

allowed integration to be realized that could not have been achieved by earlier file-format 

technologies, it suffers from a number of drawbacks: 

1) The ISO-STEP product modeling process is a social process that involves 

iterative review processes, rather than a rigorous collecting and processing of 

strategic information (Eastman, Lee, and Sacks 2002). It relies on intuition, 

tacit expertise and craftsmanship of the product modeling committee. Product 

modeling needs to be put on a more rigorous scientific foundation, based on a 

more formal and thus a systematically improvable process.  

2) Current methods rely exclusively on human review for validation. While human 

review is necessary for capturing semantic fallacies, consistency conditions 

regarding information use within a process and product model can be identified 

                                                 
3 Application types starting with the phrase “Computer-Aided (CA)”: e.g., Computer-Aided Design (CAD), Computer-

Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE)  
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(Lee et al, 2002). These define logical propositions supporting automatic 

validation checking, reducing the range of manual checking required. 

3) In almost all industry-wide product modeling efforts, IDEF0 models are built as 

single unified models to represent idealized industry-wide processes, defined by 

consensus among multiple stakeholders (Katranuschkov et al. 2002; NIST 

1993). In this approach, any company level interest in planning its integration 

with the product model must be carried out separately from the communal 

activities. There is no means to include these variations in the modeling effort 

or to validate that the product model developed supports current or anticipated 

individual corporate processes. 

4) Current product data models are defined as static structures, defined more as 

archives of data rather than as support for strategic workflow processes. The 

developmental and evolutionary aspects of product development and 

production planning are not well supported (Eastman and Fereshetian 1994). If 

product models are to truly support process re-engineering and integration, 

closer linkage with the workflow characterization of a product domain is 

required, to explicitly incorporate the developmental aspects of engineering and 

design. 

1.3 A BASIC APPROACH AND PRIMARY GOALS 

Process modeling and product modeling are currently two different modeling 

methods with different purposes for representing a domain. A process is a series of 

activities that are “a piece of work that forms one logical step within a process” (WFMC 

1999).  On the other hand, a product model describes the definition, structure, and relation 
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of information required to design, engineer, produce, and manage a product. Product 

modeling serves information structure analysis, software development, database design, 

and also organizational knowledge management and learning (Bernstein, Pal, and Shutt 

2000). These two different modeling methods are related to each other by information. 

Even though information used in a process is not directly depicted in most process 

modeling methods, conceptually all the activities require input information to perform their 

tasks and produce output information. The activity–specific information is closely allied to 

the task-specific software applications developed to support an industry, so there is a 

strong correspondence between the activity flows and application-specific data exchange 

requirements. Since the exchange requirements are precisely the purpose of a product data 

model, the process model can serve as an excellent source to identify many of the semantic 

constraints applied in developing a product model.  

The primary goal of this study is to develop the logic and procedures supporting a 

formal method for product modeling, based on process-model-derived data. The basic 

approach is to interweave (or to map) process modeling with product modeling. It aims to 

provide a scientific foundation to elicit and collect information and domain knowledge 

through process modeling that is sufficient to replace more traditional modes of conceptual 

modeling and to (semi-) automatically derive and normalize a product data model from the 

collected information (Figure 1.2, b). Some requirements collection and modeling methods 

such as IDEF0 and DFDs allow users to define input and output information at a high level 

as shown in Figure 1.1 (ISO TC 184/SC 4 1999) or even at a detail level4. However, there 

                                                 
4 In DFDs (Data Flow Diagrams), detailed information transferred between systems can be specified in a separate data 

dictionary. 
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is no logic or procedures yet to automatically derive a product model from the specified 

input and output information without human intervention.     

 

Figure 1.1 A partial IDEF0 model of ISO STEP Part 225 

Another goal of this study is to provide the logic to integrate information 

requirements collected from multiple AAMs into an ARM (Figure 1.2). As discussed 

earlier, most standard product models today are developed based on a single 

unified/integrated process model (AAM). And the single unified AAM is used only as a 

means to define the scope and the context of a product model at a high level. It is not 

because an AAM method is prohibiting multiple AAM generation or encouraging a single 

unified AAM development. It is because there has not been a rigorous theory to integrate 

information requirements specified in multiple AAMs into an ARM and, thus, it is only 

time-consuming to produce multiple AAMs.  

The theoretical goal of this work is to provide a formal structure to the information 

collection, mapping, and structuring activities that are now used in an ad hoc way in 

product modeling activities so that product modeling has a more scientific basis, rather 

than only a social, information standardization basis. 

The practical far-reaching goal of this work will be in reducing development time 

of product models from the current 5 to 10 years to 1.5 years or less by minimizing the 

committee review cycles, automating the product-modeling processes, and providing a 
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logical foundation to check the validity. Reducing the development time is essential if 

product modeling is to facilitate future re-engineering and automation in various industries. 

It will become more critical as more standard product models are developed to support data 

sharing between heterogeneous business and application environments. In the future, if a 

product model cannot satisfy rapidly changing business and software environments, it will 

become a restriction on design and manufacturing innovation.  
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Figure 1.2 Traditional & proposed product data modeling methods5  

                                                 
5 The diagrams in grey are outside of the scope of this study. 
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1.4 RESEARCH QUESTIONS AND THE SCOPE 

Derivation of a product model from process information is not just a simple process 

of adding information items to each activity and aggregating them back. First, process 

information must be constructed as machine-readable information items having a 

corresponding semantic representation in a product model. And the semantic concepts 

identified in the process model should be mapped to product data model constructs. 

Theoretically, the mapping from the captured process information to product data model 

constructs is similar to the mappings from a data dictionary (a collection of data) to a 

logical model, and eventually into a physical model. The information items arbitrarily 

defined in natural language are not adequate for automating the mapping process. Formal 

methods to define information constructs in a machine-readable format and to 

incrementally structure the information constructs into a targeted data schema should be 

provided. In this process, a resultant data schema should be normalized (decomposed and 

restructured) in a logical form. Also appropriate schema integration methods to compose 

the mapped product model constructs into an overall schema consistent with all the 

constructs should be developed. While workflow systems6 have been able to achieve this 

kind of synthesis for business data, it has not been possible for complex engineering data. 

These research questions can be summarized as follows: 

                                                 
6 See Appendix E for a short review on workflow management systems.  
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Figure 1.3 Research questions 

1) What is the process semantics that is required to elicit processes and 

information necessary and sufficient to derive a product model?  

2) How to specify required information in a machine-readable format 

3) How to resolve the ‘nym’ issues (e.g., synonyms and homonyms) and the 

conflicts between company-specific vernacular terms and a consistent machine-

readable terms 

4) How to validate the consistency of information captured in a process 

5) How to derive a product model from the collected process information 

6) How to validate the well-formedness of the derived product model and 

normalize the derived product model  

7) How to integrate (or harmonize) product models into one unified model when 

several different product models are derived from different processes about the 

same product. 
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The scope of this study is limited to the development of an integrated ARM. A 

theoretical foundation for automating the mapping between an ARM and an AIM is 

outside of the scope of this study. 

Chapter 2 briefly reviews the history of product modeling and the existing product 

models in the Architecture, Engineering, and Construction (AEC) domain7.   

Chapter 3 provides formal definitions of two product modeling approaches: i.e., the 

application-centric approach and the process-centric approach. It also formally defines the 

relationship between a process model and a product model. 

Chapter 4 introduces the Requirements Collection & Modeling (RCM) phase of the 

proposed method. It discusses process semantics required for deriving a product model 

from collected information requirements and describes a grammar for product information 

using a Context-Free Grammar (CFG). Also it describes the logic for checking the 

consistency of information flow within a process.   

Chapter 5 discusses the Logical Product Modeling (LPM) phase of the proposed 

method and proposes nine design patterns to integrate and normalize collected information 

requirements into an ARM. 

Chapter 6 explains how the proposed method has been implemented based on an 

assumed product modeling process. 

Chapter 7 reviews and evaluates the method. The proposed method were 

experimented with fourteen precast producer members in the US and Canada. Three 

product models and an integrated product model have been automatically generated from 

collected information requirements through the proposed product modeling process. The 

                                                 
7 The facility management (FM), real estate, infrastructure industries are often treated as separate industries from the 

AEC industry. However, this paper uses “the AEC industry” as a term, which also includes all other relevant industries.  
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results were compared with a data schema of an existing ERP system and with the precast 

concrete extension of an existing standard product model (i.e., PCC-IFC). 

1.5 GLOSSARY 

• activity: a logical step within a process (WFMC 1999) (Section 1.3) From a 

product-modeling point of view, an activity of a process can be defined as an 

act of processing information items (Section 3.4) 

• application activity model (AAM): 1) the engineering process context in which 

an AP will be used (VTT Building and Transport 2002)” (Section 1.2); 2) a 

model that describes an application in terms of its processes and information 

flow (ISO JTC 1/SC 32 2003) 

• application context: the intended use of product data within an application (ISO 

JTC 1/SC 32 2003) 

• application interpreted model (AIM): 1) a logical model of the information 

domain (Section 1.2); 2) an information model that uses the integrated 

resources necessary to satisfy the information requirements and constraints of 

an application reference model (ISO JTC 1/SC 32 2003) 

• application protocol (AP): 1) The STEP name for a product model of each 

domain is an Application Protocol (AP) (Section 1.2); 2) a part of the ISO 

STEP standard that describes the use of integrated resources satisfying the 

scope and information requirements for a specific application context. (ISO 

JTC 1/SC 32 2003) 

• application reference model (ARM): 1) a view of the information domain 

(called an Application Requirements Model (ARM)) (Section 1.2); 2) an 
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information model that describes the information requirements and constraints 

of a specific application (ISO JTC 1/SC 32 2003) 

• application: a group of one or more processes creating or using product data 

(ISO JTC 1/SC 32 2003) 

• flow: relation (e.g., transition) between activities. (Section 3.4) 

• Georgia Tech process to product modeling (GTPPM): the process-centric 

product modeling approach, which consists of the Requirements Collection and 

Modeling (RCM) module and the Logical Product Modeling (LPM) module  

(Section 3.5)  

• information construct (IC): 1) a formally defined information item used within 

a process. (Section 3.5); 2) a concatenation of tokens, which conforms to the 

product information specification (PIS) grammar (Section 4.6.1) 

• information item: a minimum expression of product information. (Section 3.4) 

• information menu (IM): 1) a collection of tokens possibly used in a UoD with a 

classification structure. It restricts the ways in which tokens can be strung 

together in constructing information item. (Section 3.5); 2) a collection of 

tokens that forms a minimum expression (or phrase) of product information 

(Section 4.6.1) 

• information unit: a grouping of relating constructs (entity data types, attributes 

and relationships) that together represent one of the high level concepts of the 

STEP data architecture (Fowler 1996) 

• integrated resource: a part of the ISO STEP standard that defines a group of 

resource constructs used as the basis for product data (ISO JTC 1/SC 32 2003) 



 

 15

• logical product modeling (LPM): an algorithmic process to derive a product 

model from collected information constructs (Section 3.5) 

• model: an abstract representation or description (ISO JTC 1/SC 32 2003) 

• normalization: 1) an activity of using the known semantics of data in the form 

of dependencies that may be a cause for potential “update anomalies” requiring 

unnecessary duplicate work as well as causing potential inconsistencies in a 

database. (Section 5.2); 2) decomposition and restructuring of a data structure 

to a normal form (Section 5.4) 

• production information specification (PIS) method/mechanism: a method to 

specify product information in a consistent, extensible, generative, analyzable, 

and accessible manner (Section 4.6) 

• process model: a model that describes how activities within a process are 

connected, ordered, and structured, and represents a use case of information. 

(Section 3.3) 

• process: a series of activities 

• product data: a representation of facts concepts, or instructions about a product 

or set of products in a formal manner suitable for communication, interpretation, 

or processing by human beings or by automatic means (ISO JTC 1/SC 32 2003) 

• product information: 1) the information generated, used, and maintained 

throughout a product's lifecycle. (Section 4.6) 2) facts, concepts, or instructions 

about a product or set of products (ISO JTC 1/SC 32 2003) 

• product model (or product data model): 1) a formally structured schema of such 

product information that is generated, modified, and deleted throughout a 
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product’s lifecycle (Section 1.1); 2) a model that describes the definition, 

structure, and relation of information required to design, engineer, produce, and 

manage a product. (Section 1.3) 

• product: 1) a thing or substance produced by a natural or artificial process (ISO 

JTC 1/SC 32 2003); 2) the identification and description, in an application 

context, of a physically realizable object that is produced by a process (Fowler 

1996) 

• requirement collection & modeling (RCM): a graphical Requirements-

Collection-and-Modeling language for capturing information in the context of 

its use (Section 3.5)  

• resource construct: the collection of EXPRESS language entities, types, 

functions, rules, and references that together define a valid description of 

product data (ISO JTC 1/SC 32 2003) 

• semantic intersection: a set of information items in two different data sets that is 

semantically equivalent. (Section 3.2) 

• state: A state (S) is a mode of a project. The state of a project is changed by a 

set of activities (A). A project cannot autonomously change its state. (Section 

3.4) 

• supertype: a set of least common attributes of its subtypes  (Section 4.6.1) 

• token: a non-decomposable meaningful lexical element  (ISO TC 184/SC 4 

1994) (Section 3.5) (Section 4.6.1) 
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• vernacular data dictionary (VDD): a data dictionary of vernacular information 

items (VIIs), which includes VII names, definitions, data type, examples, 

references, and synonyms (Section 6.2) 

• vernacular information item (VII): a company-specific local nomenclature and 

definition for product information (Section 3.5) 

• view: a semantic subset of its superset similar to the concept of semantic 

intersection; a derivable subset from its superset. (Section 3.5) 
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CHAPTER 2  

BACKGROUND 

2.1 OVERVIEW 

This chapter discusses why a standard product models is required and briefly 

reviews the early product modeling efforts and product models in Architecture, 

engineering, and construction (AEC). 

2.2 NEEDS FOR STANDARD PRODUCT MODELS 

1970 1980 1990 2000

VDA (1982): German Automobile Industry

AECMA: European Aerospace Industry

ICAM: IDEF

IGES (1979-1981): First practical solution

CAM-I (1973-1984): BRep

ANSI Y14.26(1970-1981): ANSI committee for standardization of a product model

ANSI/X3/SPARC: Three-level data model architecture

SET(1983): FrenchStandardd’Echangeet de Transfert (GOSET)

PDDI (1982-1987): ANSI Product Definition Data Interface

STEP (1984):STandard for ExchangingProduct (data) model

PDES (1984-1985): IGES, PDDI, STEP

HPS: (1989) Harmonization of Product Data
Standards Organization

The merger of PDES into ISO STEP(1991)

 

Figure 2.1 A timeline of product modeling efforts 

The (standard) product modeling efforts first began as an effort to exchange a set of 

geometric data between different CAD systems in the 1970s. Even at that time, when there 

were only a few CAD systems with any significant market penetration, the demands for 

standard geometry and topology to exchange data between different CAD systems were 
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very well recognized (Goldstein, Kemmerer, and Parks 1998). Over the time, the scope of 

product information, which can be managed electronically, has been broadened and so 

does that of product models and the number and types of software applications. Figure 2.1 

is a timeline of those product modeling efforts. A brief summary of each project is 

provided in Appendix A. Detailed and good descriptions on each project are available in 

(Bloor and Owen 1995; Eastman 1999; Goldstein, Kemmerer, and Parks 1998).  

Figure 2.2 is a well known diagram that illustrates the needs of a standard product 

model in terms of the number of translators required for exchanging data between n 

numbers of software applications with and without a standard product model. Figure 2.2 

(a) illustrates a case where there are n numbers of applications but without a standard 

product model and Figure 2.2 (b) a case where there is a standard product model. 

 

Figure 2.2. Data exchange between different applications 

Each application needs at least two translators to import and export data to another 

application in both cases. The number of translators required for exchanging data between 

applications in Case (a) is 2 * n * (n - 1) or 2n2 – 2n and in Case (b) 2n. The difference 

increases exponentially as the number of applications increases. Since more and more 

: a standard product model 

(a) Direct data exchange 
between applications 

(b) Data exchange 
through a single standard 

data model 
: software application 

: data exchange (information flow) 
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software applications with various functions and formats are released to the market every 

year, the standard data model approach seems very cost-effective and time-saving 

compared to the direct data exchange approach. However, this comparison has been 

criticized for being too idealistic. Some of the criticisms8 are as follows: (See Figure 2.3 

for an example) 

• A company or a project does not use all the software applications available in the 

market (Figure 2.3), but only a small subset of the software applications available 

in the market (Figure 2.3).  

• Not all the software applications used by a company need to talk to each other. For 

example, usually there is no data exchange between a CNC machine and a 

structural analysis system (Figure 2.3). 

• Through the last twenty or thirty years, software applications became versatile. One 

application or a bundle of applications by one software vendor can support the 

broad range of product design, engineering, and production activities.  

• Some applications have embedded direct links between themselves and different 

applications developed through Application Programming Interfaces (APIs) (e.g., a 

CAD system and a structural analysis system in Figure 2.3). Some relevant 

technologies are the middleware (e.g., ODBC), the Dynamic Link Library (DLL), 

and the Component Object Model (COM) technologies. 

                                                 
8 This criticism is based on a survey on the use of software applications in the precast concrete industry, interviews with 

architects, discussions with software developers, Fried Augenbroe’s presentation at ECPPM 2002 (Augenbroe 2002).  
Another set of discussions on a standard product model can be found in (Amor 2001). Rober Amor discussed twelve 
common misconceptions (or misbelieves) about standard product models and integrated project databases. Those are: 
1) OO provides the complete solution; 2) The single data model will appear; 3) We represent reality; 4) User views are 
reconcilable; 5) Mapping is easy; 6) The Internet solves the communication problem; 7) XML solves the 
representation problem; 8) Documents will disappear; 9) CAD is the center of an integrated project database (IPDB); 
10) IPDB solves information ownership problems; 11) IPDBs guarantee coordinated and consistent information; and 
12) The industry is ready for IPDBs. 
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• Some applications are dominant in a certain domain (e.g., AutoCAD in AEC). And 

their data formats are often used as de facto standard data models for certain types 

of applications (e.g., DWG or DXF). They are limited in many ways, but still 

usable.   

• Even if there is a standard data model, only a selected set of data can be exported or 

imported between different types of applications. For example, usually an 

Enterprise Resource Planning (ERP) system may not read in all the geometric data 

from a Computer Aided Design (CAD) system and a CAD system will not read in 

managerial data from an ERP system.  

• Sometimes unidirectional data exchange is preferred by companies. For example, 

many architectural firms are very reluctant to give electronic copies of their 

projects to third parties unless they have a strong business relationship or are forced 

to share information by building codes because 1) they do not want reveal their 

business secrets and design esoterics; 2) there are always potential legal issues; and 

3) technology is not there yet: e.g., the exchange process often loses or alters data. 

And there is no rigorous method to keep track of changes or to validate an 

exchanged model yet. For this reason, many AEC companies today do not read in 

an electronic model from another party as it is, but rather incorporate changes into 

their own model one by one manually. 

• Also many software vendors are not willing to make their applications 

interoperable because they believe that they will lose competitiveness in the market 

by supporting data exchange between theirs and other applications (Szykman et al. 

2001).  
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Figure 2.3. Internal and external data exchange in practice 

Although the benefits of a standard product model are not as great as they are in an 

ideal situation, there are still several reasons to develop standard product models:  

• First, different projects or companies use different sets of software applications. 

Thus, software vendors need to support not one set of applications as shown in 

Figure 2.3, but multiple sets of data exchange scenarios. Not all the applications 

need to talk to each other as shown in Figure 2.2, but the exchange scenario can 

still be pretty complex as reported in (Fischer and Kam 2002).  

• The above argument is more true to the AEC industry than to the manufacturing 

industries (including the automobile and the aerospace industries) because, unlike 

them, companies in the AEC industry work like a temporary consortium a project 

by a project (more like the movie industry) or a region by a region. There can be a 

fixed set of software applications within a company, but not across companies in 

the AEC industry.   
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• Each application has a proprietary internal data structure. Even though many 

software applications provide an open Application Programming Interface (API) 

today, it is still not an easy job to understand the internal data structures of all the 

targeted applications and develop and update translators between them.  

• Software applications and their internal data structures are usually updated every 

year or two. Even if a software application supports data import/export functions 

only for a small number of applications, it will be time-consuming and expensive to 

update translators every year. 

• Some software vendors do not want to reveal the internal data structure of their 

applications. In such cases, the translator development entails code-hacking and can 

possibly lead to a legal dispute as a result.  

• As the interest in the concept of a central product model repository (PMR)9 as a 

means of product/project lifecycle management (PLM) and as a substitute for file-

based data exchange issues (You 2003) increases, the importance of a standard 

product model especially in a collaborative work environment has further 

emphasized by many studies (Adachi 2002; Amor 2001; Augenbroe 2002; 

Hardwick et al. 2000; You, Yang, and Eastman 2004). 

 
Industries, in fact, squander billions of dollars due to poor interoperability between 

software applications (Szykman et al. 2001). A standard product model is an open public 

data schema and can eliminate or reduce most of the issues described above. However, 

there will be still many other technical and cultural issues in interoperability (e.g., the 

                                                 
9 a.k.a. an Integrated Project DataBase (IPDB,(Amor 2001)) and a Virtual Enterprise Product data Repository (VEPR, 

(Hardwick et al. 2000)) . 
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concurrent engineering issues; the change propagation and management issues) that a 

standard product model cannot resolve. In any case, if a standard product model cannot be 

delivered to the software developers in time, all these discussions are meaningless even in 

the first place. An efficient and scientific product modeling method, which can generate a 

rigorous and practical product model in a short period of time, is critical in the success of 

the standard product modeling effort. This study aims to develop such a product modeling 

method.   

2.3 EARLY BUILDING PRODUCT MODELS 

There have been many efforts to develop building product models. Early building 

product models include Jim Turner’s Building System Model (BSM) (Turner 1988, 1988), 

Gielingh’s General AEC Reference Model (GARM) (Gielingh 1988, 1988), the Finnish 

RATAS project (Bjork 1989), and the Construction Integrated Manufacturing for Steel 

Structures (CIMsteel or CIS)(AISC 2002; EUREKA 1987-1997).  

Wim Gielingh was the chairman of the ISO-STEP AEC committee at that time and 

both the BSM and the GARM were working STEP documents. The subcommittee was 

called TC184/SC4 WG110.  The BSM decomposed a building project into a single site, a 

building, and a collection of (sub-) systems (Turner 1988). It used NIAM as a modeling 

language. An interesting aspect of the BSM is that it initially proposed, so called, a 

“shotgun” approach: i.e., exchanging data through generic OBJECT, ATTRIBUTE, and 

VALUE objects (Figure 2.411) (Turner 1988) instead of exchanging data through building-

industry specific objects and attributes (e.g., an object DOOR has attributes MATERIAL, 

                                                 
10 TC: Technical Committee, SC: Sub-Committee, WG: Working-Group 

11  A model in NIAM is provided in Appendix B. 
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COLOR, STYLE).  In a sense, this approach is similar to the late binding approach in 

computer programming. But this approach does not work especially for exchanging data 

between object-based CAx systems because there is no guideline to determine what 

information means what: e.g., ‘tread_width’ in one system can mean ‘tread_length’ or 

‘tread_depth’ in other systems. In order to avoid any misinterpretation, there should be a 

separate standard data model to define the domain-specific objects and attributes.     

 

Figure 2.4 The attribute properties model of the Building System Model in EXPRESS 

GARM was initially proposed as a generic data model to integrate various models 

developed within AEC and other models in STEP/PDES (Gielingh 1988). It included the 

Product Definition Unit (PDU) entity and several subtypes (e.g., the Functional Unit (FU) 

entity and the Technical Solution (TS) entity) (Figure 2.5).  PDUs in AEC are Building, 

Plants, Ships, and Civil Engineering. GARM does not predefine what a PDU is: it can be a 

system, a sub-system, a component, a part, a feature, a space, or a joint. A Function Unit 

(FU) represents a requirement for a PDU. A Technical Solution (TS) is an answer to the 
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requirement. Such relations between FUs and TSs are described in, so called, a hamburger 

diagram. Figure 2.6 illustrates an example of the hamburger diagram.   

 

Figure 2.5 The PDU entity and its subtypes in the GARM 

The GARM and the BSM were followed by the Building Construction Core Model 

(BCCM) ISO STEP Part 106 by Jeffrey Wix in 1994. The BCCM was regarded as a 

framework model and lacked detailed definitions of objects (Eastman 1999). It was later 

withdrawn from the ISO STEP Integrated-application Resources (IR) list.  

The RATAS project was led by Bo-Christer Bjork at VTT in Finland (Bjork 1989). 

RATAS categorized a building into five levels: building, system, sub-assembly, part, and 

detail. One of interesting aspects of the RATAS model is that it categorizes SPACE and 

JOINT as an individual entity, not as an attribute or a relation (Figure 2.7) (Eastman 1999).    
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TS TS TS 

FU 
Car 

TS Volvo 340 

FU FU FU 
Motor Car Body Electric System 

TS TS TS Renault B14.3E 340/84 
Body 
Design 

340/84 
Electric 
System 
Layout 

FU FU FU Carburetor Starter Motor 
Block 

 

Figure 2.6 A hamburger diagram 

 

 

Figure 2.7 The RATAS building kernel model, defined as an abstraction hierarchy 

These models were framework models and have not been broadly accepted by 

software vendors. On the other hand, the CIMsteel (CIS in short)(Crowley 2000; Crowley 

and Ward 1999) and the Industry Foundation Classes (IFC) (IAI) models are the only two 
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models that are practically and widely deployed by the AEC industry for exchanging data 

today. These two models are compared and reviewed in the next section. 

2.4 CIS AND IFC 

The CIS (CIMsteel) model was initially developed by Andrew Crowley and 

Alastair Watson at the University of Leeds (Crowley 1998) as part of the EU EUREKA 

project (EUREKA 1987-1997). The current version of the CIS model is CIS/2 LPM6 and 

is still maintained by Andrew Crowley supported by the American Institute of Steel 

Construction (AISC).  

The IFC model has been developed and maintained by the International Alliance 

for Interoperability (IAI) since 1994. The current version of IFC is IFC2x2. And there are 

thirteen completed extension projects and seven ongoing extension projects as of March 30, 

2004. A short history of the IAI and the IFC is available at (IAI 2004). 

The commonality between the CIS and IFC models is in that both of them are 

industry-driven efforts even though the CIS project was initially an academe-led project 

with support from a large industry team. The success of both models may be attributed by 

this industry-level support. Currently there are nineteen software companies including 

AutoDesk, Bentley, and Graphisoft that are involved in the IFC projects (IAI) in the North 

America. And twelve software companies including Tekla, Intergraph, and Bentley are 

involved in the CIS project (Yang et al.). Nevertheless, while IFC2x2 is adapted still in a 

limited manner in real projects, the American Institute of Steel Construction (AISC) 

informally reported that over 50% of the AISC steel fabricators is exchanging data using 

CIS/2. A clear reason that IFC2x2 is deployed only in the limited scope of a project is that 

it still lacks detailed object definitions, which are essential for exchanging information of 
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real construction projects. This difference is due to IFC’s and CIS’ different goals, scopes, 

modeling approaches, and styles. First, the goal of IFC is to develop a core high-level 

model to which AEC-specific extensions can be added later (IAI 2000). IAI explains that, 

if there is a huge model that contains all the information in the AEC, the model would be 

“high complex and difficult to understand and virtually impossible implement.” The 

domain-specific definitions are assumed to be added as a “leaf node (extension)” to the 

core IFC model. Currently IAI is supporting many extension modeling efforts. The current 

and completed IFC extension projects are listed in Table 2.1 as of March 30, 2004. 

Thus, the structure of the IFC model is conceptual and generic. The backbone 

entities of IFC2x2 stems from the IfcRoot entity. IfcRoot is subcategorized into three 

conceptual entities: IfcObject, IfcPropertyDefinition, and IfcRelationship similar to the 

basic three components of the Relational database approach: i.e., Entity, Property 

(Attribute), and Relation: 

ENTITY IfcRoot 

 ABSTRACT SUPERTYPE OF (ONEOF 

 (IfcObject 

 ,IfcPropertyDefinition 

 ,IfcRelationship)); 

 GlobalId : IfcGloballyUniqueId; 

 OwnerHistory : IfcOwnerHistory; 

 Name : OPTIONAL IfcLabel; 

 Description : OPTIONAL IfcText; 

 UNIQUE 

 UR1 : GlobalId; 

END_ENTITY; 

 

On the other hand, the CIS model targeted a very specific domain (i.e., the steel 

construction industry) and is structured according to four high-level processes in the 
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construction steel industry12: Design, Analyze, Return Analysis Results, Modify Design, 

and Manufacture. This process is described in detail in (Crowley and Ward 1999) as an 

IDEF0 model. Information used in the four processes are modeled as four subset models 

called the analysis model, the analysis result model, the design model, and the 

manufacturing model accordingly. The distinction between these subset models has been 

blurred while the conflicts between models were resolved through updates. However, the 

initial modeling philosophy is still well integrated into the current model.  

Beyond the overall structure, the CIS and the IFC models have minor differences. 

In terms of a modeling style, the CIS model uses the ANDOR constraint, which causes 

many problems in implementation, while the IFC model excludes the ANDOR constraint 

(IAI). Entities in the IFC model are all named starting with “Ifc”, which makes reading and 

sorting of entity names difficult.  

Table 2.1 IFC extension projects  

Completed Projects Ongoing Projects 

1) HVAC Performance Validation [BS-7*]  
2) HVAC Modeling and Simulation [BS-8]  
3) Network IFC: IFC for Cable Networks in Buildings 

[BS-9]  
4) Code Compliance Support [CS-4]  
5) Electrical Installations in Buildings [EL-1]  
6) Engineering Maintenance [FM-1]  
7) Costs, Accounts and Financial Elements [FM-8]  
8) Material Selection, Specification and Procurement 

[PM-3]  
9) Steel Frame Constructions [ST-1]  
10) Reinforced concrete structures and foundation 

structures [ST-2]  
11) Precast Concrete Construction (PCC)** [ST-3]  
12) Structural Analysis Model and Steel Constructions 

[ST-4]  
13) IFC drafting extension [XM-4] 

1) Early Design [AR-5]  
2) Bridge [CI-2]  
3) Industry Foundation Classes for GIS (IFG) [CI-3]  
4) Electrical Installations in Buildings (EL-2) [EL-2]  
5) Portfolio and Asset Management - Performance 

Requirements (PAMPeR) [FM-9]  
6) Structural Timber Model [ST-5]  
7) Harmonization of ISO 12006 Part 3 with IFC [XM-

7] 

* The numbers in parenthesis are extension identifier numbers 

** The ST-3 project is also known as the PCC-IFC project.  

                                                 
12 It is also possible to say that the CIS model is modeled depending on four different application functions. 
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Every model has a different style depending on its purpose and assumptions. IFC 

and CIS also have different styles based on their different goals. Thus, it might not be valid 

to judge which one is better over another. However, the method, which this study aims to 

develop, should be able to allow various data modeling style. This issue is discussed in 

detail in Section 4.6.4. 

2.5 OTHER BUILDING PRODUCT MODELS & RELEVANT PROJECTS  

Figure 2.8 summarizes major product modeling efforts in AEC. As shown in Table 

2.1, IFC recently added the cast-in place (CIP) concrete extension (ST-2), the precast 

concrete extension (ST-3) (Karstila et al. 2002) and the construction steel extensions (ST-1 

and ST-4). Since these were all driven by the European Union, the resultant models do not 

satisfy some of the demands of the North American AEC industries. In parallel to these 

efforts, Chuck Eastman at Georgia Tech is leading a project to develop a product model for 

the North American precast concrete industry for the last three years. The model is 

tentatively called a Precast Concrete Product Model (PCPM).  It is clear that the mapping 

and harmonization between product models will be a critical issue in the near future. And 

there is already a movement to respond to such issues. 

Other building product models and relevant projects include: 

• Building Elements (1994) Wolfgang Haas, STEP Part 225; 

• BSAB (Ekholm 1996; Ekholm and Fridquist 1996);  

• Building Lifecycle Interoperable Software (BLIS, http://www.blis-

project.org);  
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• Architecture, Methodology and Tools for Computer-Integrated Large-Scale 

Engineering (ATLAS) (Tolman and Poyet 1995);  

• Virtual Enterprise using Groupware tools and distributed Architecture 

(VEGA); VERA at VTT (1997-2002);  

• Computer Models for the Building Industry in Europe (COMBINE I & 

II)(Augenbroe 1993, 1995);  

• the Engineering Database Model (EDM) project (Eastman, Chase, and 

Assal 1993);  

• the Intelligent Services and Tools for Concurrent Engineering (ISTforCE) 

project (Wix and Liebich 2000);  

• OSMOS IST-1999-10491 (Wilson et al. 2001);  

• Electronic Business in the Building and Construction IST-1999-10303 (E-

Construct).  

 

Figure 2.8 A timeline of major product modeling efforts in AEC 

Summaries and reviews on some of these models and projects are available in 

(Christiansson and Karlsson 1988; CSTB 2004; Eastman 1999; Ronneblad 2003). Among 
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these, the EDM project (Eastman and Jeng 1999) was unique in that it attempted to 

develop an evolvable product model through the lifecycle of a product instead of defining a 

static product model that can only support the predefined scope of product information.  

Many advanced engineering database issues such as incremental schema evolution, 

concurrent engineering, selective updates, and integrity maintenance were identified and 

discussed through the project. As a result, a data model and implementation language 

EDM-2 has been developed and a small case has been implemented on top of UniSQL®. 

However, the project has been discontinued and the approach has not been rigorously 

evaluated yet.   

2.6 OTHER STUDIES ON PRODUCT MODELING 

Much of the literature in product models involves case studies on their application 

and expected benefits (Giannini et al. 2002; Smith 2002; Szykman et al. 2001). Others 

focus on new developments of product models that extend their use and support new 

engineering applications, such as the development of product catalogs (Peak, 2001), 

support for feature-based design (Dereli and Filiz 2002), and made-to-order products data 

exchange using parametric models (ISO TC 184/SC 4 2001). In addition, there have been 

some efforts to define a common set of abstract concepts and relations for product models 

(Bjork 1989; Eckholm and Fridquist 1996), especially based on function-structure-

behavior trichotomy (Fenves 2001). Work has begun to address the prescriptive definition 

of a product model with linkages to a process model, so that the interactive effects of 

design changes on processes can be better identified (Feng and Song 2000). Other work 

has used STEP-models to identify product groups (El-Mehalawi and Miller 2001). 
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Work has also focused on development of extensions to the basic STEP methods. 

These include languages for mapping between EXPRESS models (Spooner and Hardwick 

1997) and the development of incremental evolution of EXPRESS models (Kahn et al. 

2001) and analysis of abstraction level (Mannisto et al, 2001). An effort somewhat related 

to this study was to develop an EXPRESS product specification  schema (McKay, de 

Pennington, and Baxter 2001). This work builds upon product specification concepts of 

(Pahl and Bietz 1998) to capture the requirements for made-to-order products. The 

requirements are for the product, however, not a product model. 
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CHAPTER 3  

A NEW AND FORMAL PROCESS-CENTRIC PRODUCT MODELING 
APPROACH 

3.1 TWO APPROACHES TO DEVELOP A PRODUCT MODEL FOR DATA 

EXCHANGE 

All product models are developed through a conceptual thinking process. Modeling 

by decomposition is a good example of conceptual modeling: e.g., A BUILIDNG consists 

of SUBSYTEMs. A SUBSYSTEM consists of building PARTs. A PART consists of 

SUBPARTs and so on.  But, if a product model is to be developed only depending on a 

conceptual thinking process, there will be no constraint or reference to determine the scope 

of a product model. Also, there might be a gap between the resultant product model and 

actual user requirements. Thus, a product model should be defined in a certain context or 

within a specific scope.    

The scope or context of a product model for data exchange can be defined generally 

by two ways: i.e., by native data structures of software applications of interests or by 

activities and processes of interests. These approaches can be respectively called an 

application-centric approach and a process-centric approach. Since applications also 

operate to support a process, these two approaches are not mutually exclusive. However, 

these two approaches are taking theoretically different approaches to automate/rationalize 

data modeling processes. The following two subsections formally define and compare 

these two approaches introducing new semantic set operations. The last section of this 
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chapter introduces and overviews the architecture of a new and formal process-centric 

product modeling approach proposed in this thesis. 

3.2 THE APPLICATION-CENTRIC MODELING APPROACH 

Not all the data in two applications can be exchanged. But more than a 

mathematical intersection of the two native data sets can be exchanged. We call the set of 

data, which can be exchanged between two data models, a semantic intersection. A 

semantic intersection is a set of information items in two different data sets that is 

semantically equivalent. For example, let’s assume that A is a set of information required 

by a delivery management system or corresponding process, and that B is a set of 

information required by a structural analysis system or corresponding process.  

A ≡ {project_name, load, driver} 

B ≡ {strucutre_name, load, frame} 

 

The results of regular set operations13 of these two sets will be:  

BA + ≡{project_name, structure_name, load, load, driver, frame }    

BA∩ ≡{load}   

BA∪ ≡{project_name, load, driver, structure_name, frame } 

 

However, it is very unlikely that data models of two different applications use the 

same terms or the same data structure to define their native data structure. Thus, let us 

assume that project_name in Set A is a synonym of structure_name in Set B and that load 

                                                 
13 The regular set operations assume that there is no homonym and synonym in any set.   
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(“truck load”) in Set A is a homonym of load (“structural load”) in Set B. In such a case, the 

results of the semantic set operations of these two sets will be: 

Let  +∩ :  a set (or aggregation) of semantically equivalent entities  

*∩ : semantic intersection 

fsi(x, y): a function, which returns either one of semantically equivalent 

information items x or y; x and y can be also expressed in terms of 

functions: e.g., f(x) and f(y) 

 

BA +∩ ≡{project_name, structure_name}  

BA *∩ ≡{ fsi(project_name, structure_name)}  

 

If fsi(project_name, structure_name) = project_name,  

BA *∩ ≡{project_name}  

 

(The definition and an example of the semantic union ( *∪ ) are provided in 

Appendix B.)  

 

In this case, only project_name and structure_name can be exchanged between two 

systems. Others will be lost in the data exchange process. The definition of semantically 

equivalent items is not limited to synonyms. The entities in driving and driven relations 

can be also regarded as semantically equivalent items. For example, a CAD system usually 

does not carry “surface_area” in a native data model because the surface area of a shape 

can be calculated based on other geometric information. On the other hand, an estimation 
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system often includes “product_surface_area”, but does not manage detailed geometric 

information of a product. For example, let’s assume that we are interested in 

“wall_surface_area”. Let A be a set of information in a CAD model. Let B be a set of 

information in an estimation system. “�” denotes a functional dependency. A�B 14 

denotes “if A then B” or “B is derived from A”.  

A ≡ {wall_width, wall_height} 

B ≡ {wall_surface_area} 

(wall_width, wall_height) � (wall_surface_area)  

BA *∩ ≡{ fsi(wall_width × wall_height, wall_surface_area)} 

≡{ fsi(wall_surface_area, wall_surface_area)}  

 

In general, if there are driving and driven items, driven items should be regarded as 

a semantic intersection of driving and driven items because it is usually possible to derive 

driven items from driving items, but not vice versa. Therefore, the semantic intersection of 

Applications A and B in the above example is: 

 BA *∩ ≡{wall_surface_area} 

 

However, if the relationship between items is bidirectional (i.e., an item can be both 

a driving and a driven item of the other item at the same time), all the items should be 

included. 

If a∈A, b∈B, a�b, b�a, then 

BA *∩ ≡{a, b} 

                                                 
14 The same symbol is used in a later section to show a rewrite rule in the Context-Free Grammar. 
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e.g., 

A ≡ {wall_width, wall_height} 

B ≡ {wall_height, wall_surface_area} 

BA *∩ ≡{wall_height, fsi(wall_width × wall_height, wall_surface_area),  

    fsi(wall_width, wall_surface_area ÷ wall_height)} 

≡ {wall_height, wall_surface_area, wall_width} 

 

In many cases these relations are not apparent and are difficult to define. (Stouffs, 

Krishnamurti, and Eastman 1996) is a good example of showing the complexity of 

mapping different solid representations. 

 This definition implies two apparent, yet important facts about data exchange 

between two systems: 

1) Theoretically as well as practically, there cannot be lossless data exchange 

between two applications. 

2) The more similar two application types are, the more information they can 

exchange.  

 

If there are more than two applications, a product model will be the grand union of 

all the semantic intersection of all the applications: 

Let Ai and Aj : an application 

n: the number of applications   

Product Model D ≡ )*(
11
∑∑

==

∩
n

j
j

n

i
i AAU   
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This definition is important because it provides an algorithmic definition of a 

product model and opens up a possibility of automating the development of a translator or 

a data model: i.e., theoretically, if a semantic intersection of all the native data models of 

interest can be identified, a product model to support data exchange between the native 

data models can be automatically derived from the identified semantic intersection. 

Identification of a semantic intersection of two data models basically undertakes the same 

process as schema mapping. As Robert Amor pointed out (Amor 2001), mapping is not 

easy and there is much work to be done to make automated translator or product model 

development possible. 

However, the application-centric product modeling approach also has several 

drawbacks. A product model often includes non-existing software applications that users 

wish to include in their data exchange scenario in the near future. But, based on the above 

definition, a product model cannot be defined if the data structures of targeted software 

applications are not predetermined. Also a product model can be used as a standard data 

schema not only for data exchange between different applications, but also for a central 

project/product management system (PMS) to support a collaborative work environment. 

The application-centric approach is not suitable for developing a data schema for a central 

project/product management system (PMS) because it cannot capture additional 

information that is required for managing project/product information (which are usually 

not included in application data structures). On the other hand, the process-centric 

modeling approach has the strength over the application-centric approach in this regard.  
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3.3 THE PROCESS-CENTRIC MODELING APPROACH 

Process models aim to describe a process in terms of (who-) what-when: e.g., what 

are the tasks?; what first?; what next?; what are the precedences among activities?; what 

if?; and sometimes who did what? A process model describes how activities within a 

process are connected, ordered, and structured, and represents a use case of information. A 

process-centric data modeling method is a data modeling method that uses a process model 

as a means to collect user requirements. Many modern data modeling methods are taking 

the process-centric approach including the IDEF (NIST 1993) and the UML (Booch, 

Rumbaugh, and Jacobson 1999), and some ER data modeling15 methods. (See Appendix 

C and Appendix D for more review on requirements collection methods.)  

The advantages of a process-centric and use-case-driven data modeling approaches 

have been discussed by many studies (Augenbroe 2002; Elmasri and Navathe 2000, 2004; 

Garg and Jazayeri 1996; Rosenberg and Scott 1999, 1999). Some of them are as follow: 

• It represents complex and specific user requirements in a visible and formal 

description.  

• It provides a means to formally review, validate, and improve the requirements. 

• It clearly defines the scope of a product data model. 

• These capabilities are crucial especially for a large-scale development project. 

• The captured requirements can be reused in the update or in similar projects. 

 

                                                 
15 In ER data modeling, Data flow Diagrams (DFDs) are often employed rather than a process model. Strictly speaking 

the DFD method is not a process modeling method because it represents data flow between systems, not between 
activities.   
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In addition, if a product data model can be derived directly from collected process 

information, theoretically the completeness of a product model can be guaranteed. The 

next section formally defines the relationship between a process model and a product 

model.  

3.4 THE COMPLETENESS OF A PRODUCT MODEL 

The basic process-modeling elements include states, activities (tasks or functions), 

and flows (relations or transitions).  

• An activity (A) is a logical step within a process. An activity processes 

information. 

• A state (S) is a mode of a project. The state of a project or information 

processing is changed by a set of activities (A). A project cannot autonomously 

change its state.  

{A0, A1, A2 …}(Si) � Si+1  

where Si is the current state of a project or information processing  and Si+1 is 

the next state 

• Flows define relations (e.g., transitions) between activities.  

The relation between a process model and a product model can be formally defined. 

All the activities in a process require input information to perform their tasks and yield 

output information. From a product-modeling point of view, an activity of a process can be 

defined as an act of processing information items (Eastman 1996). An information item is 

a minimum expression of product information. An activity can be formally defined as 

follows:   

Def. 1: A ≡ {(i, f) | i∈I ∧ f∈F ∧ ∃J(J⊆I ∧  J=f(i))}          
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where A is an activity, I is a set of information of a Universe of Discourse (UoD), J 

is a subset of I, and F is a set of non-decomposable functions or acts of processing 

information. F produces a new set of information J and receives, generates, updates, 

deletes, or distributes an information item. 

Def. 1a: F = {receive, generate, update, delete, distribute}   

Similarly, in this perspective, a process is a set of activities, states, and their 

relations. A relation (i.e., flow) can only connect either an activity and another activity, or 

an activity and a state at a time.  

Def. 2: P ≡ {(a, s, r) | a∈A ∧ s∈S∧ r∈R ∧ ∃b∃t(b∈A ∧ t∈R ∧ (r(a, b) ∨ t(a, s)))}     

where P is a process, R is a set of relations (or flows) between an activity and an 

activity or between an activity and an activity, A is a set of activity, and S is a set of states 

By replacing activities in Def. 2 with sets of information in Def. 1, a process can be 

characterized by the collection of information processed by its activities. 

P ≡ {((i, f), s, r) | i∈I ∧ f∈F ∧ s∈S ∧ r∈R}     

A product data model is a set of information items and their relations. Note that 

information items of a product model have different relations (or a structure) from those of 

a process model. However, if they are describing the same UoD, then the collection of 

information items should be the same.  

Def. 3: D ≡ {(i, q) | i∈I ∧ j∈I ∧ q∈Q ∧ ∃j(q(i, j))} 

where D is a product data model, I is a set of information in a Universe of 

Discourse (UoD), Q is a set of relations between information items in a product model. 

If the UoD includes multiple processes, information items in a product model will 

be equal to the union of every information item in each process.  
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Id ≡ {i | i∈P0 ∨ i∈P1 ∨ … i∈Pn} 

where Id: = a set of information in a product model D, Pn is a process 

By restructuring (or normalizing) the information collected from each process of 

the UoD, theoretically a product model can be derived. When one can capture all the 

activities within a process and information items processed by each activity, a product 

model derived from the collected information can be said to be complete. Thus, if a certain 

set of information is not included in a product model, it is either because the process model 

is not properly defined or because the information required by each activity has not been 

properly specified.     

3.5 THE ARCHITECTURE OF GTPPM  

This study takes the process-centric product modeling approach because it has 

many advantages as described earlier and also because it is a standard approach. The new 

process-centric product modeling method proposed in this thesis is called Georgia Tech 

Process to Product Modeling (GTPPM). GTPPM consists of two modules: the 

Requirements Collection and Modeling (RCM) module and the Logical Product Modeling 

(LPM) module (Figure 3.1). 

RCM is a graphical Requirements-Collection-and-Modeling method for capturing 

information in the context of its use. A RCM model consists of three parts:  

• process modeling: Different users (or companies, applications) may use 

information in different ways. GTPPM (RCM) encourages domain experts 

to generate a process model based on their current or envisioned work 

process without compromising other processes.  
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• vernacular information items (VII) specification: Domain experts may 

specify information used by each activity in their local terms. This task is 

optional. 

• information constructs (IC) specification: Information constructs (ICs) are 

formally defined information items used within a process. Modelers can 

specify information used by each activity in a formal and standardized 

(machine-readable) way using ICs. Or they can define VIIs first and then 

map VIIs to the equivalent ICs. Whatever the case, information items 

should be defined as ICs in the final collection of information items to 

support automation of the analysis process. 

 

Figure 3.1 The architecture of GTPPM 

An information menu is a collection of tokens possibly used in a UoD with a 

classification structure. It restricts the ways in which tokens can be strung together in 
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constructing information item. A token is a “non-decomposable meaningful lexical 

element (ISO TC 184/SC 4 1994)”. Tokens in an information menu should be defined 

following the ‘nym’ principle: ‘no synonyms, no homonyms’ (Schenk and Wilson 1994). 

A set of rules for developing an information menu has been proposed in Section 4.6.  

An information menu and a traditional data dictionary are similar in that both 

define tokens and their definitions and relations. However, an information menu is 

different from a data dictionary in several ways. While a traditional data dictionary is a 

collection of definitions of an existing data model, an information menu is not. An 

information menu carries only tokens and all the logically possible relations between them 

where as traditional data dictionaries carry details of entities in a final data model and, 

sometimes, fixed relations between them. For example, a token “door” can be defined as an 

attribute as well as an entity in an information menu as far as it means the same thing. Also 

the relationship between tokens is not predefined. The token “door” and another token can 

be defined as the association relation and also as the specialization relation. Conflicts 

between the relations and the data types should be resolved in the LPM phase. Another 

difference between an information menu and a data dictionary is that only a subset of 

tokens defined in an information menu is included in a product model whereas the set of 

tokens in a data dictionary is equal to the set of tokens in its data model. 

A collection of information constructs or vernacular information items is a view, 

not a subset of a final product model (Figure 3.1). The definition of a view is consistent 

with that of a view in data modeling. A view can be formally defined as a semantic subset 

of its superset similar to the concept of semantic intersection: i.e., a view is a derivable 

subset from its superset.  
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For example, 

Let S be a set of information. 

T be a subset of S 

V be a view of S 

If S ≡ {product_id, product_name, product_volume, product_density},  

and T ≡ {product_id, product_volume} 

then,  

V≡ {product_id, job_name, total_number_of_product, product_weight} 

where job_name is product_name, 

total_number_of_product is the total count of product instances,  

prouct_weight = product_volume × product_density 

 

ICs collected through the RCM phase will be analyzed, integrated, and converted 

into a product model through the Logical Product Modeling (LPM) phase. LPM is an 

algorithmic process to derive a product model from collected information constructs. This 

process is often hidden from users. It’s composed of several steps: 

• Integration of information constructs (ICs) from several RCM models 

• Normalization of collected information constructs into a formal product 

data model 

 The next two sections provide detailed descriptions on the RCM and the LPM 

modules. 
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CHAPTER 4  

REQUIREMENTS COLLECTION AND MODELING (RCM) 

4.1 INTRODUCTION 

Without clear definition of the required information collected in requirements 

analysis, a data model cannot be designed to perform its targeted functions. For this reason, 

in order to facilitate the participation of end-users at an early stage of data model 

development, techniques such as Joint Application Design (JAD) and Contextual Design 

(Beyer et al., 1997) have been proposed. Also, several data collecting methods, including a 

Use Case Driven Approach (Jacobson, Jonsson, and Overgaard 1992), Data flow Diagrams 

(DFDs), and Upper Case tools are often deployed. However, it is still very difficult to 

capture a complete set of required information for a model for the following reasons: 

• As error-prone human beings, modelers are apt to miss certain requirements. 

• Natural language is ambiguous. In a large modeling effort, it is not rare to 

see one modeler use a term in one way, and another modeler use it in a 

different way.  

• Specific methods to check the consistency and completeness of collected 

information at an information-level have rarely been introduced. Some 

methods, including Jacobson’s Robustness Analysis (Rosenberg & Scott, 

1999), include consistency checking of a model, but they are mostly based 

on the logic and syntax of diagrams – e.g., a certain shape can be connected 
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to a shape, but not to the others - rather than on the captured information 

itself.  

Methods that can improve the quality of information generated in the requirements 

stage can result in higher quality software development. The author proposes a new 

Requirements Collection and Modeling (RCM) method. The RCM aims to achieve the 

following goals: 

• to model the functional and procedural requirements of a domain for 

enterprise reengineering and software engineering, using process modeling, 

• to systematically collect the rich set of information required for a product 

model in the context of its use-case scenarios, i.e., a process (Eastman, Lee, 

and Sacks 2002). The rich set of information should help product-modelers 

gain in-depth understanding of an industry by: 

o providing accurate definitions of terms  

o providing a complete set of information required for product 

modeling. By the completeness of a product model, we mean full 

support and coverage of the Universe of Discourse (UoD) 

o making the semantic differences between terms used in different 

companies explicit 

o identifying groupings of information used  

o exposing differences in the business practices of different companies 

o supplying various information-use scenarios of each company 

• to automatically validate the consistency of the information collected 
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• to capture the heterogeneous processes of multiple companies within an 

industry domain 

• and to generate a standard product model without losing the unique features 

of each company’s process. 

4.2 THE GTPPM RCM LANGUAGE 

Like any other graphical modeling language, the RCM has semantics, syntax, and 

shapes (symbols). Process semantics dictate the ‘meaning of process-modeling 

components’ while process syntax dictates the ‘structure of process-modeling components’. 

A shape is the ‘geometric configuration of process modeling concept’. RCM’s notation, 

syntax, and semantics are based on those of current process-modeling-language 

conventions so that users can minimize their learning curve and errors. They are basically 

similar to the definition of traditional workflow (ANSI - IEEE standard 5807-1985, ANSI, 

1991) and UML Activity Diagrams. However, the RCM has some unique concepts and 

syntactic rules in order to allow users to explicitly (and sometimes implicitly) specify 

information items used in a process.  

As defined in Def. 2 of Section 3.4, a process model is composed of activities, 

states, and relations between them: 

P ≡ {(a, s, r) | a∈A ∧ s∈S∧ r∈R ∧ ∃b∃t(b∈A ∧ t∈R ∧ (r(a, b) ∨ t(a, s)))} 

 

RCM has four types of activities (A), three types of flows (R), and two types of 

states (S). In order to enrich the process semantics, two variations of an activity (i.e., static 

information source and dynamic information repository) that represent information storage 

and two information flow controls (i.e., decision, continue) are added. The following 
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sections describe RCM components, their syntactic rules, and relations with information in 

detail.  

4.3 ACTIVITIES 

An activity represents a discrete task. In RCM, activities are categorized by two 

axes. Activities can be distinguished first as internal activities or as external activities. 

Internal activities represent activities that are within a UoD while external activities 

represent activities that are outside of a UoD. Many requirement engineering methods 

focus only on internal activities and often ignore external activities. However, in order to 

check the consistency of information flow between external and internal activities as well 

as between internal activities, external activities that are interfacing with internal activities 

and their information items should also be specified. (See Section 4.8 for details on the 

consistency checking of information flow.) Thus, external activities are explicitly defined 

separately from internal activities in GTPPM. 

In addition to the external and internal concept, activities can be categorized as 

high-level activities or as detailed activities. High-level activities are a relative concept to 

detailed activities. High-level activities are aggregations of other high-level activities 

and/or of detailed activities. The hierarchical structure of activities provides a context of 

the overall model and helps modelers to elaborate a process step-by-step from high-level 

activities to detailed activities without missing any critical aspects of a model. Among 

high-level activities, the highest activities are called top-level activities (Figure 4.1). A top-

level model, composed of top-level activities, is similar to a context diagram in a DFD 

(Data flow Diagram) and a top-level context diagram in IDEF0. Note that there is no 
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separate notation for a top-level activity because top-level activities are merely a type of 

high-level activity and behave in the same way (Figure 4.1).  

Detailed level

(middle level)

Top-level

…
…

…
…High level

(highest level)

(lowest

level)   

Figure 4.1. The hierarchy of activities 

The notation for the combinations of the two distinctions (external/internal and 

high-level/detailed) is presented in Figure 4.2: 

A ≡ {internal highlevel activity, internal detail activity, external highlevel activity, 

internal detail activity } 

 

Figure 4.2 Activities 

Figure 4.3 illustrates the basic mapping concept between activities and information 

items. Each activity uses a certain set of information items. Some information items may 

be used repeatedly, but some may not be used at all. Information items in detailed activities 

are explicitly defined, but no information items are specified for high-level activities 

Figure 4.11 for details). This avoids redundancy and potential conflict between the 
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information recorded in a high-level activity and that detailed in its constituent detailed 

activities. Instead, the information used in high-level activities can be derived by 

aggregating the information of their constituent detailed activities.  

 

Figure 4.3. A basic mapping concept between process models and an information items 

4.4 FLOWS, TRANSITIONS, AND DEPENDENCIES 

A flow represents the movement of information and objects between activities. In 

RCM, flows are categorized into information, material, and dummy flows by the 

information type that they transfer and into forward and feedback flows by the direction of 

information flow.  

A material flow represents a flow of physical objects and information that describes 

them. An example is a product marked with a bar code carrying encoded data from a plant 

to storage. Other flows that carry information are information flows. Information flows that 

do not carry explicitly-specified information items are called dummy flows. Information 

Generic Top-level Activities 

Detailed Activities 

(Middle-level Activities) 

Process Models 

A Set of Information 

Company A 
Company B 

Information Items: 

Interface 
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flows between external activities or between activities at different levels of detail are 

dummy flows: 

 

 

Figure 4.4 Flows 

Most modeling methods allow feedback, but they do not generally distinguish 

feedback from forward flows. However, if workflows are defined at an information level, it 

is important to distinguish feedback from forward flows because they imply cyclical 

repetition of activities.  

The following four syntactic rules apply to all types of flows:      

Rule 1: A flow can link any shapes except for flows.  

Rule 2: A flow must be from one shape to another; it must link exactly two 

different shapes. 

Rule 3: A flow must have two distinctive ends to indicate a direction.   

Rule 4: Flow arrows can connect activities at any level of detail. However, a flow 

between activities at different levels is by definition a dummy flow. In order to 

explicitly describe an information flow between an internal detail activity and 

any type of high-level activity, a flow must exist between the detailed activity 

and a constituent detailed activity of the high-level activity in addition to the 

original dummy flow between activities at two different levels (Figure 4.9).  

Feedback flows must conform to the following syntactic rule: 
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Rule 5: Feedback flows must always participate in the formation of a cycle within a 

process.  

4.5 OTHER PROCESS-MODELING COMPONENTS AND NOTATION 

The concepts of the remaining RCM process-modeling components (Figure 8.1) are 

summarized in the subsections below. 

4.5.1 Initial and Final States 

 

Figure 4.5 Initial and final states 

Initial and final states represent the starting and ending points of a process. A 

process embedded in a complex context may have multiple starting and ending conditions, 

with multiple initial and final states. The state of a process or project is regarded as “in 

process” if the state of project is omitted between activities. (See Section 3.4 for a formal 

definition of the relationship between activities and states.) 

4.5.2 Static Information Sources 

 

Figure 4.6 Static information source 

Static information sources are sets of predefined information of an organization 

outside of a project. Examples are regional codes, regulations, standards, manuals, etc.  A 
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static information source does not receive, update, delete, or generate information within 

the context of a project, but only distributes information to descendent activities:  

Fs = {distribute} 

where Fs is a function of Static information sources  

 

cf. Def. 1a: F = {receive, generate, update, delete, distribute}   

where F is a function of Activities. 

4.5.3 Dynamic Information Repositories 

Dynamic Information Source  

Figure 4.7 Dynamic information source 

Dynamic information repositories represent information reservoirs such as project-

specific database management system (DBMS) or a schedule board that allow dynamic 

storage and retrieval of information within a project. Note that only a portion of the 

information generated and used in a process, is stored in a database and managed. A 

dynamic information repository only receives, updates, deletes, or distributes information, 

but does not generate information:  

Fd = {receive, update, delete, distribute} 

where Fd is a set of functions of Dynamic information sources (cf. Def 1a) 
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4.5.4 Continue 

102

102

Continue  

Figure 4.8 A pair of continues 

A continue represents the continuity of flow. The main function of a continue shape 

is to increase readability by interrupting an information flow between two activities, to 

allow reference across pages or across areas of a model that contains dense graphics. The 

software aids the user in ensuring that:  

• Continue shapes exist in pairs; an “out” and an “in” continue shape. There 

cannot be multiple flows in or out of a continue shape. 

• Each pair of continues must have a unique identifier. And an “in” and “out” 

pair of continues must use the same identifier. 

• Pairs of continue shapes transfer information only between detailed 

activities.  

• When a flow connects an internal detail activity and any type of high-level 

activity, a continue shape must be placed between two activities to redirect 

the flow from a dummy flow to an information flow (See Rule 4 for flows 

and Figure 4.9). In Figure 4.9, an information flow is represented as a thick 

line to help readers to better understand the diagram 
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Figure 4.9. A continue shape and a dummy flow between activities at different levels 

4.5.5 Decision 

A decision (control) defines a condition (C) of flows (R: relations) between 

activities and/or states. Semantically, decisions represent an (exclusive) OR-transition and 

support what-if scenarios (e.g., “if approved” or “if x > 1”). An OR-transition in RCM 

includes a decision component, which represents the conditions of the transition.  

 

Figure 4.10 Decision 

4.5.6 The Process Components and Their Attributes 

Each process-modeling component carries certain information. The process components 

and their attributes are illustrated in Figure 4.11 on the next page using EXPRESS-G. Note 

that only detail activities, information repositories, and information flows explicitly carry 

product information. Examples of RCM models are presented in Section 5 Implementation 

and Examples.  
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Figure 4.11 Process-modeling components of RCM and their attributes16  

4.6 A GRAMMAR FOR PRODUCT INFORMATION  

The ultimate goal of RCM is to capture “information” requirements for product 

modeling through process modeling. Product information is the information generated, 

used, and maintained in the processes of design, engineering, manufacturing, delivery, and 

                                                 
16 Refer to the GT PPM (Lee, Sacks, and Eastman 2002b) for details. The same component names (without underbars or 

abbreviation) as those in the texts have been used to help readers to better map them) 
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maintenance. Examples of product information in the building industry are building type, 

building identifier, owner first name, and so on. When product information is formally 

structured, the structured schema of product information is called a product data model (or 

a product model). (Note that we use two terms a product data model and a product model 

interchangeably in this paper.) A product model consists of attributes with specialized 

meaning, special entities and features with technical functions, and aggregations across 

specialized classes. 

This section describes a method to allow domain experts to capture and specify 

product information in a consistent and analyzable format. We call the proposed method 

the Product Information Specification (PIS) method or mechanism. A long-term goal is to 

(semi-)automatically derive a data model out of the product information specified by 

domain experts, who know the domain best. However, product information is difficult to 

capture because of the following reasons: 

a) Tacitness: Product information is tacit. Even domain experts, who use product 

information everyday, cannot easily articulate product information required 

without a specific context.  

b) Enormousness: Product information has an enormous volume. It not only 

includes direct geometric and material descriptions, but also all kinds of other 

information such as that on their design, engineering, manufacturing, and 

management processes. (For example, the CIMsteel product data model used in 

the structural steel industry has over 731 entity types covering the design, 

analysis, shop detailing and fabrication of steel structures for buildings (AISC 
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2002)). Such a huge amount of product information is very difficult not only to 

capture, but also to depict in an unambiguous, consistent, and analyzable form.   

c) Informality: Information can be managed and learned with great ease and 

efficiency when it is well structured. However, it is not easy to categorize 

information in an easily recognizable and universally applicable structure when 

it relies on a grammar of a natural language. 

d) Ambiguities: When information items are described in a natural language, the 

collected information will yield lexical and structural ambiguities. Examples of 

the lexical and structural ambiguities in product information are: 

• Lexical ambiguity: Even within an industry that produces the same products, 

different terms are often used by different people to refer to the same 

concept or object.  For example, in the precast concrete industry, ‘control 

number’ is used differently in different companies. In some, it refers to a 

‘product number’, ‘production serial number’, ‘serial number’ and so on, 

which is assigned to a piece after it is fabricated. In others, it is used quite 

differently, as an ‘assembly location number’ or ‘erection control number’, 

which is used to schedule detailing, production and erection sequences. The 

lexical ambiguity is also called the ‘nym’ problems (i.e., homonyms and 

synonyms) (Schenk and Wilson 1994).  

• Structural ambiguity: Often product information is not a single word, but a 

combination of several words like a phrase in natural language. Information 

items can be constructed in various ways. However, often the richer the 

expressions are, the subtler the differences between the expressions. 
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Sometimes subtle differences in the order of terms can make a significant 

semantic difference. For example, ‘concrete finish’ signifies ‘finishing 

applied to a concrete surface’ while ‘finish concrete’ signifies ‘a special 

concrete used as a type of finish for a piece.’  

In order to overcome these difficulties, many formal knowledge specification 

methods and languages have been proposed and developed, especially in knowledge 

representation (KR) and data modeling.  Examples of the formal specification languages 

for knowledge-based systems (KBS) include DESIRE, FORKADS, KbsSF, (ML)2, 

MODEL/KADS, MoMo, OMOS, QUL, and KARL. Some formal approaches for data 

modeling are the Relational Model (Codd 1970), the Entity-Relationship Model (Chen 

1976), the Functional Data Model DAPLEX (Shipman 1981), the SDM (Hammer and 

McLeod 1981), the Object-Oriented Model (Banerjee et al. 1987) and other semantic 

models. These methods gave birth to several (standard) data modeling languages such as 

SQL (ISO JTC 1/SC 32 2003), IDEF1x (NIST 1993), XSD/XML (Berners-Lee 1994; 

Cover 1999), and a standard product data modeling language EXPRESS (ISO TC 184/SC 

4 1994; Schenk and Wilson 1994). The data modeling languages listed above have been 

refined over decades and have their strong adherents. Nevertheless, we found that existing 

former data modeling and KR methods are not suitable for our purpose (i.e., specifying 

product information in a simple, yet consistent and analyzable form) because of the 

following reasons:   

• Specialized product information is often carried as implicit knowledge in 

natural language through everyday conversation by domain experts. We 

believe that domain experts are the best persons to describe product 
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information required for their tasks. But many formal modeling languages 

are not generally accessible by domain experts. Some modeling languages 

are even close to mathematical descriptions. 

• Modeling languages such as XSD or XML may be simple enough to be 

used by domain experts even in the very early data modeling phase: i.e., the 

requirements collection phase. However, they still do not provide a 

mechanism to maintain the consistency (i.e., the lexical clarity) of an 

enormous amount of terms used in a UoD. (The limitation of XSD and 

XML in expressing the semantics of the specialization (inheritance) relation 

is another issue here.) 

Note that the PIS method, we are proposing in this paper, is not to develop a 

generic structure of product models such as ISO STEP Part 41 (ISO TC 184/SC 4 2000) 

and the Generic Core Representation of product information (Szykman et al. 2001). Also 

its goal is not to define a data dictionary for product information such as the STEP Library 

(Renssen 1997) or to propose another data modeling language, which can replace XSD or 

SQL. The proposed protocol is independent of data modeling languages and can be 

implemented in XSD (XML), SQL, EXPRESS, or any other data modeling languages later 

albeit we chose EXPRESS as a main target because EXPRESS is an international standard 

product data modeling language by the ISO – International Organization for 

Standardization (ISO TC 184/SC 4 1994). Rather, it aims to develop a high-level product 

information categorization and a grammar that can allow domain experts to easily, 

efficiently, and clearly specify product information in an analyzable form  so that the 
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collected information can be analyzed and transformed into a product data model in the 

later stage. The criteria for the PIS method can be summarized as follows:  

1) consistency between terms: There should not be the ‘nym (homonyms and 

synonyms)’ problems and ambiguities in the definitions of terms.  

2) generativity & extensibility: The list of product information should be 

extensible and editable, and not fixed. Domain experts should be able to 

generate and add new information constructs as many as possible.  

3) analyzability: Information constructs built from an information menu 

should be analyzable and transformable to a form of a product model. 

4) accessibility: An information menu should be structured in a way that 

domain experts (non-data-modeling experts) can easily navigate and 

maintain a large amount of product information. 

The following sections describe the concept of the PIS mechanism in more detail. 

And they also discuss how to construct a system of rules that both analyze and generate 

structured product information.   

Product information is basically a concatenation of tokens (or words). A token is a 

“non-decomposable meaningful lexical element (ISO TC 184/SC 4 1994)” of a UoD. 

Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’.  A token per se (e.g., ‘type’) 

has a certain meaning, but often is insufficient to represent product information. On the 

other hand, if several tokens are concatenated in a logical way, the chain of tokens can 

represent meaningful product information (e.g., ‘finish-material-type’, ‘engine-type’). This 

paper explores and defines grammatical rules for specifying product information by 

concatenating tokens in a consistent and analyzable form, similar to grammatical rules for 
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generating syntactically and, sometimes, semantically meaningful sentences (or phrases) in 

a natural language. The following sections describe the concept of the PIS mechanism in 

more detail. And they discuss a system of rules that both analyzes and generates structured 

product information.   

This study takes a linguistic approach in defining the structure and the syntactic 

rules for defining product information. A linguistic approach (i.e., the context-free 

grammar (CFG)) is taken because (1) a data model is essentially a representation of the 

universe of discourse (UoD) based on a language; and (2) even 40 years after the CFG was 

first introduced by Chomsky, it is still an effective and efficient means to analyze and 

define grammatical rules for generating meaningful expressions. The proposed system will 

be a duplex <B, R> consisting of a set B of basic elements and a set R of context-free 

rewrite rules each of which defines a minimal hierarchical structure, called a local tree 

(Chomsky 1965, Ch 1-2; Smith and Wilson 1979). Appendix E provides a brief summary 

of notation of a context free grammar (CFG).  Some notational rules are revised or added 

to suit the characteristics of product information and the purpose of this study.   

4.6.1 Product Information Structure and Grammar  

The RCM PIS method categorizes product information at three levels, namely 

tokens, information items and information sets and provides a grammar for defining 

product information.  

As stated earlier, a token is a “non-decomposable meaningful lexical element (ISO 

TC 184/SC 4 1994)” of a UoD. Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’.  

A token per se (e.g., ‘type’) has a certain meaning, but often is insufficient to represent 

product information. On the other hand, if several tokens are concatenated in a logical way, 
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the chain of tokens can represent meaningful product information (e.g., ‘finish-material-

type’, ‘engine-type’). We call the concatenation of tokens an information construct (IC). 

The definition and the structure of tokens are recorded in an information menu. An 

information menu is a collection of tokens that forms a minimum expression (or phrase) of 

product information. The differences between an information menu and a traditional data 

dictionary are discussed in Section 3.5. Figure 4.12 illustrates how product information can 

be defined using tokens in an information menu. Let us assume an information item “an 

identifier of a beam, which is a kind of (precast concrete) piece” is required by an activity 

“Prepare Initial Quotation”. It can be defined as piece*beam{id} using three tokens piece, 

beam, and id in an information menu. 

  

Figure 4.12 An information menu and information constructs 

As briefly described earlier, it is assumed that RCM will include two groups of 

experts, which have expertise in different domains. The two groups are domain experts 

(representatives of an industry of a company) and modeling experts (or mediators; process 

and product modeling experts). Information is classified in a way that can help each group 

to contribute what it knows best. The product information can be expressed in two ways: 

either as vernacular information items (VIIs) or as information constructs (ICs). Domain 
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experts, who may not be familiar with the structure of an information menu and ICs, can 

define product information as vernacular information items (VIIs) as far as they provide a 

definition of the VIIs in their own data dictionary. Later, modeling experts can map ICs 

and VIIs based on the definitions of VIIs specified by domain experts. Table 4.1 lists 

examples of mapping between VIIs and ICs. Company A may call an identifier of a 

(precast concrete) piece “Piece Mark.” Company B may call the same thing “Mark 

Number.” The VIIs are synonyms and can be mapped to an IC “PIECE{id}”, which is a 

concatenation of two tokens, i.e., piece and id. 

Table 4.1. Mapping between vernacular information items and information constructs 

Company A VIIs Company B VIIs ICs 

Site name Construction site name SITE{name} 

Site address Construction site location SITE{address} 

Estimated weight Load PIECE+LOADS{weight, unit} 

Piece mark Mark number PIECE{id} 

Serial number Control number PIECE{control_id} 

 

The specified information items (both VIIs and ICs) can be grouped as an 

information set. An information set is a user-defined grouping of information items that 

flow from one activity to another. Examples are forms, work order, bills of materials, and 

specific drawings. Information sets play the following roles in RCM:  

1) In everyday life, domain experts do not deal with their work at an information-

item level but at an information-set level (e.g., forms, work orders). Grouping 

information items in sets provides a cognitive bridge between what they 

actually deal with (information sets) and what they unconsciously process 

(information items). 
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2) Information sets can be considered as milestones of information production in a 

process. An information set implies that its subsumed information items are 

required in order to proceed to the next activities.  

Tokens are further categorized into types and entities. A type and an entity in this 

paper are the same as those defined in EXPRESS. A type is a “representation of a domain 

of valid values (International Organization for Standardization 1994)” and an entity is a 

“type which represents a collection of conceptual or real-world physical objects which 

have common properties (International Organization for Standardization 1994).” A set of 

entities that describes the main physical objects of a domain forms the backbone of an 

information grammar. For example, structures, assemblies, pieces, reinforcement and 

embeds are the main products or parts of the Precast Concrete Industry.  

The structures and relations of different types of tokens are defined in an 

information menu. Modelers are restricted to select information from the limited number of 

possible tokens that can be linked in an information menu based on context-free rewrite 

rules (Chomsky 1965; Jurafsky and Martin 2000) defined for product information.  

The approach in this study defines tokens used in a universe of discourse (UoD) by 

four general abstraction mechanisms of knowledge representation (KR): i.e., classification 

& instantiation, aggregation & decomposition, generalization & specialization, and 

association (Eastman 1999; Elmasri and Navathe 2000; Smith and Smith 1977; Smith and 

Smith 1997).  

Some early papers (Codd 1979; Smith and Smith 1977) categorize both 

instantiation and subtype as a form of specialization, but this paper uses the term 

specialization only to represent the subtype-supertype relationship. For example, ‘bolt’ and 
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‘weld’ are specialized types of ‘fastener.’ Generalization is the inverse of specialization. 

Instantiation represents the is-an-instance-of relationship. If twelve ‘C8’ chairs are placed 

in an office, each individual chair is an instance of the chair type ‘C8.’ Note that an 

instance of a class (i.e., the twelve ‘C8’ chairs) can be either a class or a value of an 

attribute depending on a modeler’s intention. Classification is the inverse of instantiation. 

Decomposition represents the is-a-part-of relationship. The inverse is aggregation and 

represents the has relationship. A ‘table’ has four ‘legs’ and a ‘tabletop.’ Association 

represents other attributive and referential properties. For example, ‘color’ and ‘width’ can 

be properties of a ‘tabletop.’  The difference between aggregation and association is that 

when an instance of a higher-level entity in an aggregation relationship is deleted, in some 

cases its lower-level instances are also deleted: i.e., an aggregation relationship often 

represents a semantic dependency between two entities.  For example, if an instance of a 

‘table’ is deleted, the instances of its ‘legs’ and its ‘tabletop’ should also be deleted. 

Entities in an association relationship, on the other hand, do not need to be deleted even 

when their associated entities are deleted. Identification, “the abstraction process to define 

whereby classes and objects are made uniquely identifiable by means of some identifier” 

(Elmasri and Navathe 2004) can also be added to these four abstraction concepts. 

Currently EXPRESS is a standard language for specifying a product data model 

(ISO TC 184/SC 4 1994). Since the eventual goal of GTPPM is to develop a product 

model in EXPRESS, the RCM PIS method should comply with the structure of EXPRESS. 

EXPRESS supports the three abstraction mechanisms (i.e., instantiation, specialization, 

and association). EXPRESS does not distinguish the aggregation & decomposition relation 

from the association relation. EXPREES takes an object-oriented approach. Naturally, the 
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classification & instantiation relation is embedded in EXPRESS. However, in EXPRESS, 

the term instantiation is used generally to represent data population similar to the 

instantiation concept in object-oriented programming language. EXPRESS does not 

distinguish the instantiation relation between classes from subtyping. Both the instantiation 

relation between classes and subtyping are regarded as a type of specialization. The 

generalization & specialization relationship is defined by the SUBTYPE OF and 

SUPERTYPE OF constraints in EXPRESS. And the classes and their instances are defined 

as the ENTITY and ATTRIBUTE constructs and their values. The association relation 

includes all other relations between ENTITIES and ATTTRIBUTES. Although EXPRESS 

does not distinguish the decomposition relation from the association relation, the proposed 

method classifies entities in the decomposition relation differently from those in the 

association relation.  

EXPRESS has four existence constraints: BAG, LIST, SET, and ARRAY and the 

cardinality ratio (or arity): e.g., LIST [0:?] OF and SET [1:?] OF. These can be imposed 

between ENTITIES with the association relationship. In data modeling, the existence 

constraints (esp. cardinality ratio) and other types of constraints (e.g., RULES) are often 

defined in the late phase of logical data modeling. This PIS method focuses on the early 

requirement collection phase of data modeling and, is therefore relatively unconcerned 

with detailed level constraints (e.g., the existence constraints) between information items.  

4.6.2 Categorization of product information 

We first categorized product information in a fashion similar to categorization of 

parts of speech such as nouns, objects, and adjectives in natural language before 

establishing rules for specifying consistent and analyzable product information.  
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By the definition of product model, constituents of any product model well 

accepted today (e.g., ISO STEP (ISO TC 184/SC 4 2004) and IFC (IAI 2003)) can be 

categorized into information that directly represent products and information that qualifies 

products. We call the former product entities (P) and the latter modifiers (M). Based on 

this distinction, tokens, which compose a product information item, are first categorized 

into two major abstract constituents: product entities (P) and modifiers (M). The definition 

of entity in ‘product entities’ is compliant to that of ISO 10303 (International Organization 

for Standardization 1994): an entity is a “type which represents a collection of conceptual 

or real-world physical objects which have common properties” and a type is a 

“representation of a domain of valid values.” An entity without properties is called an 

empty entity. The definition of empty is identical to that in mathematical set theory: i.e., a 

set without an element. An entity cannot be empty and must have a property: 

Rule 1: Unless an entity inherits properties from its higher-level entities, an entity 

must not be empty. 

Product entities (P) literally represent entities describing the products of an industry. 

A modifier (M) is either an entity or an attribute that “qualifies” product entities (P) or 

other entities. The “qualification” relation between a Product entity (P) and a modifier (M) 

is often represented as the association relation, but sometimes can be represented as the 

specialization relation. (An example is provided in the next section.) An attribute is a trait 

or property of an entity. Modifiers (M) describe the design, engineering, manufacturing, 

and management information of products. Modifiers are subcategorized into Modifier 

Entities (ME, an entity-type modifier) and Modifier Attributes (MA, an attribute-type 
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modifier) by their type. An example of a product entity and a modifier is 'CAR' (a product 

entity) and 'DESIGNER' (a modifier).  

The definition of a product entity is relative. It depends on the universe of discourse. 

'CAR' is a product of the automobile industry, but 'BUILDING' is not. 'BUILDING' is a 

product of the building industry, but 'CAR' is not. 'DESIGNER' is not a product of the 

automobile industry, but it provides additional information on a product 'CAR'. Whether 

'DESIGNER' is defined as an attribute of 'CAR' or not, 'DESIGNER' still semantically 

qualifies a product entity 'CAR' and is, therefore, a modifier of 'CAR'. 

The product entities (P) and modifiers (M) are further subcategorized by the three 

major abstraction concepts (Eastman 1999; Elmasri and Navathe 2004): i.e., a) 

generalization & specialization; b) classification & instantiation; c) aggregation & 

decomposition; and d) association. Applying these abstraction concepts, product entities 

(P) are further subcategorized into decomposed products (DP) and specialized products 

(SP). Decomposed products (DP) represent products in the aggregation relationship. Many 

researchers (Codd 1979; Smith and Smith 1977) and modeling language including 

EXPRESS, as described earlier, do not distinguish the specialization (supertype - subtype) 

relation from the instantiation relationship at a conceptual. Specialized products (SP) 

represent products in both the specialization relation and the instantiation relationship.  

By the same logic, modifier entities (ME) are further subcategorized into 

specialized modifier entities (SME). Figure 4.13 illustrates a hierarchical structure of PIS 

information structure in EXPRESS-G. Note that this structure is different from a 

constituent structure tree and does not imply any syntactic rules.  
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Figure 4.13. A hierarchical structure of RCM product information in EXPRESS-G 

4.6.3 Syntactic rules for product information 

This section describes syntactic rules for constructing product information by 

combining product-information constituents categorized in the previous section. We call a 

product information item composed of several tokens an information constructs (IC). Each 

information construct (IC) corresponds only to one product information item.  Figure 4.14 

illustrates two simple ways of composing information constructs.  
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[
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M

[
MA

[id ]]]
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Figure 4.14. The basic constituent structures of an information construct 

Rule 2: An information construct (IC) ends with a modifier attribute (MA) (because 

there cannot be an empty entity). 
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Rule 3: An information construct (IC) must not end with a modifier entity (ME).  

Rule 4: Product entities (P) work as main access points to other information types. 

If any type of product entity (P, SP, or DP) exists in an information construct, 

the information construct (IC) always begins with a product entity. If not, the 

information construct (IC) begins with a modifier entity (ME).  

The rules for Figure 4.14 can be summarized by the CFG notation as follows: 

 IC � P – M | M 

 P � DP 

 M � MA | ME – MA 

(NB: A vertical bar |  denotes “OR”. ) 

As stated earlier in Rule 4, the PIS method defines product information types (i.e., 

P, DP, and SP) as a kind of index for modelers to access other types of product information. 

It is because product information is the focus of product modeling (thus, any product 

model includes product information) and also because domain experts are generally very 

familiar with a hierarchical structure of their product information. In other words, even if 

non-product information types were used as an access point to product information, it 

would not make much difference in terms of representing a structure of an information 

construct. For example, an information item “the delivery date for a column, which is a 

kind of product” can be represented in two ways: (a) one starting from product information 

and (b) the other starting from the delivery schedule.   

(a) product*column+delivery_schedule{delivery_date} 

(b) delivery_schedule{delivery_date}+product*column 
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They may require slightly different syntactic rules. But when they are represented 

as information constructs, they eventually represent the equivalent structure (Figure 4.15 

(a) and (b)).  

 

Figure 4.15 Product information as an access point to other information types 

Yet  the PIS method defines product types (i.e., P, DP, and SP) as a kind of index 

for modelers to access other types of product information for two reasons. It is because a 

product and its components are the main focus of product modeling and also because 

domain experts are generally very familiar with a hierarchical structure of their product 

information.  

 

Figure 4.16. Abbreviation of specialized products 

Figure 4.16 illustrates abbreviation rules for specialized products. The purpose of 

abbreviation rules is to remove redundant expressions in an information construct so that 
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the information construct can be expressed in a succinct manner that users of the 

information can comprehend quickly and easily.  

Rule 5: (abbreviation rules for specialized products) A specialized product (SP) 

inherits all the properties of its higher-level entities (i.e., supertypes). 

Therefore, semantically and logically, a specialized product (SP) alone can 

represent a product. As exemplified earlier, ‘car-sedan’ means the same thing 

as ‘sedan’. Thus, we can abbreviate ‘car-sedan’ to ‘sedan’ without diluting its 

meaning.  

The applied abbreviation rules can be analyzed as follows: ‘car’ can be categorized 

as a main product (P) and ‘sedan’ can be categorized as a specialized product (SP). A 

specialized product (SP) can be regarded as a replacement of a decomposed product (DP). 

Figure 4.16 a) illustrates the first case. The rule applied here can be defined as follows: 

Rule 5.1:  

 P � SP, iff SP is a specialized product of P.  

The same logic can be applied to the abbreviation of a chain of decomposed and 

specialized products in Figure 4.16 b) and c). ‘engine (DP)’ is a  part of ‘car (P)’. ‘V6 

engine (SP)’ is a type of ‘engine (DP)’. ‘engine-V6 engine’ can be abbreviated to ‘V6 

engine’ without losing its meaning. The rules applied here can be analyzed in two ways. 

First the abbreviation phenomena can be analyzed as the replacement of DP by SP as 

illustrated in Figure 4.16 b). The rules can be described as follows: 

Rule 5.2:  

P � DP  

DP � SP, iff SP is a specialized product of DP.  
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Alternatively, the abbreviation phenomena can be analyzed as the replacement of 

DP by NULL as illustrated in Figure 4.16 b). The rules can be described as follows: 

Rule 5.3:  

 P � DP – SP  

 DP � NULL   

 SP � V6 engine 

Both approaches are logically valid and yield the same result: i.e., P � SP. 

However, the second approach leaves the possibility of having a non-abbreviated form of 

the information item (e.g., engine-V6engine) while the first approach does not allow any 

non-abbreviated form of the information item. Thus, the second approach has been taken. 

By the same token, a specialized product (SP′) of a certain specialized product (SP) 

can replace its antecedent specialized product (SP) (i.e., supertype). Applying these rules, a 

series of specializations can be replaced by the last specialization. 

Rule 5.4:  

 SP � SP – SP′, iff SP′ is a specialized product of SP 

 SP � NULL, iff SP is followed by SP′. 
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Figure 4.17. Concatenation of specialized products (SP) from different decomposed products (DP) 

If the order of tokens is changed, the meaning of an information construct differs. 

An example is ‘hatchback – V6 engine – material – name’ and ‘V6 engine – hatchback  – 

material – name’. The former depicts ‘the material name of a V6 engine in a hatchback-

style car’ while the latter would depict ‘the material name of a hatchback-style V6 engine’ 

if there were such a thing. Therefore, we set up a rule that says:  

Rule 6: In a concatenation of DP – DP′, the DP′ should always be a component of 

DP. 

The rule can be formalized as follows:  

 DP � DP – DP′, iff DP′ is a component of a decomposed product DP 

    Similarly, 

Rule 7.1: 

 P � DP – DP′, iff DP′ is a component of a decomposed product DP 

By these rules, ‘hatchback – V6 engine’ should always be interpreted as “a V6 

engine in/of a hatchback-style car”.  

Figure 4.18 shows an example of abbreviation rules for decomposed entities:  

Rule 7: (abbreviation rules for decomposed entities) When a series of decomposed 

products (DP) are concatenated, the last decomposed product represents the 

whole concatenation.  

A formal descriptions of the additional rule is: 

 DP � NULL, when DP is followed by its decomposed product, DP′ 

In Figure 4.18, since it is apparent that ‘structure’ belongs to a ‘site’ and a ‘project,’ 

‘project – site – structure’ can be replaced by ‘structure.’ 
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Figure 4.18 Abbreviation of decomposed products (DP) 

The same logic for abbreviation rules can be applied to specialized modifier entities 

(SME). Abbreviation rules for specialized modifier entities are:  

Rule 7.1: 

 SME � SME – SME′, iff SME′ is a subtype of SME 

 SME � NULL, iff SME is followed by its subtype SME′. 

 ME � NULL, iff ME is followed by its SME.  

For example, if we want to describe the ‘date when a beam was cast,’ it can be 

expressed as: 

      IC[P[DP[piece]SP[SP[flexural piece]SP[beam]]]M[ME[ME[production]SME[cast]]MA[date]]] 

Applying the abbreviation rules, the information construct can be simplified as:  

      IC[P[DP[NULL]SP[SP[NULL]SP[beam]]]M[ME[ME[NULL]MAE[cast]]MA[date]]] 

 ≡  IC[SP[beam]M[MAE[cast]MA[date]]] 

The constituent structure tree of the ‘date when a beam was cast’ is illustrated in 

Figure 4.19. 
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Figure 4.19. Abbreviation of specialized modifier entities (SME) 

Not that, in any case, the abbreviation of information constructs is optional, but not 

mandatory. The main purpose of the abbreviation rules is to recognize semantically 

equivalent information constructs. Therefore, the use of abbreviation should be minimized. 

Otherwise, it can yield other ambiguous cases as in natural language. 

In GT PPM, the specialization relation has been distinguished from the association 

relation by using a separate concatenation symbol: An asterisk (*) denotes the 

specialization relation; A plus sign (+) denotes the association relation. The decomposition 

relation has not been distinguished from the association relation because the target 

language EXPRESS does not distinguish between them. (See Section 2 for details.) 

However, this is an implementation-level decision; if necessary, it is possible to use 

different concatenation symbols for different abstractions. An example of the ‘date when a 

beam was cast’ in Figure 4.19 can be represented as: 

piece*beam+production*cast{date}  

≡ piece*beam+cast{date}  

≡ beam+cast{date} 

 

A full definition of this grammar and its use is being prepared.  
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4.6.4 Styles of Product Models 

Each product model has a style, which is also called a modeling philosophy, 

intention, or concept. Depending on a modeling style, a different generic structure of a 

model (a.k.a. a core representation, a framework, or a skeleton of a model) is created. As 

stated earlier, the PIS method aims to support any product model defined in EXPRESS. 

Since the PIS method categorizes product information by generic knowledge 

representation concepts and by the structure of EXPRESS, the structure of product 

information defined by the PIS method should be transferable to a product model defined 

in EXPRESS and also vice versa. However, the PIS method itself only defines the rules to 

structure product information, not what the structure of a final product model should be. 

The structure of a final product model is defined by how a modeler categories tokens. A 

structure and a style of product information specified by a modeler through the PIS method 

will be kept through the GTPPM process and will form the core structure17 of the final 

product model. This section shows how various styles of existing product models can be 

supported by the PIS method in the early requirements collection phase of product 

modeling. The first example is the IFC 2x2 model. It adopted the top-down modeling 

approach. As described in Section 2.4, the IfcRoot is at the top of the IFC model. IfcRoot 

has three subtypes: i.e., IfcObject, IfcPropertyDefinition, and IfcRelationship. 

ENTITY IfcRoot   

 ABSTRACT SUPERTYPE OF(ONEOF(IfcObject, IfcPropertyDefinition,IfcRelationship));   

 GlobalId   :   IfcGloballyUniqueId;   

 OwnerHistory   :   IfcOwnerHistory;   

 Name   :   OPTIONAL IfcLabel;   

                                                 
17 The structure of information constructs may not exactly the same as that of the final product model because, if there are 

conflicting definitions (structures) of product information, those have to be resolved. Also through a normalization 
process, the structure may vary.  
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 Description   :   OPTIONAL IfcText;   

UNIQUE   

 UR1   :   GlobalId;    

END_ENTITY;   

 

And IfcProduct is defined as a subtype of IfcObject.  

ENTITY IfcObject   

 ABSTRACT SUPERTYPE OF(ONEOF(IfcActor, IfcControl, IfcGroup, IfcProcess, IfcProduct, 

IfcProject, IfcResource))   

SUBTYPE OF (IfcRoot);   

 ObjectType   :   OPTIONAL IfcLabel;   

  

INVERSE   

 IsDefinedBy   :   SET OF IfcRelDefines FOR RelatedObjects;   

HasAssociations   :   SET OF IfcRelAssociates FOR RelatedObjects;   

HasAssignments   :   SET OF IfcRelAssigns FOR RelatedObjects;   

Decomposes   :   SET [0:1] OF IfcRelDecomposes FOR RelatedObjects;   

IsDecomposedBy   :   SET OF IfcRelDecomposes FOR RelatingObject;   

  

WHERE   

 WR1   :   SIZEOF(QUERY(temp <* IsDefinedBy | 'IFCKERNEL.IFCRELDEFINESBYTYPE' IN 

TYPEOF(temp))) <= 1;   

  

END_ENTITY;   

 

In the case of the IFC 2.2x model, IfcRoot, IfcObject, IfcProduct, and other 

subtypes of IfcProduct can be defined as Product Entities (P).  And all other entities and 

attributes including IfcPropertyDefinition, IfcRelationship, IfcActor, IfcControl, IfcGroup, 

IfcProcess, IfcProject, and IfcResource can be defined as Modifiers (M). 

The IfcRoot and IfcObject entities will be “shared” as supertypes of both Product 

entities (P) and Modifiers (M). Semantically, IfcRoot and IfcObject are ABSTRACT SUPERTYPEs 
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of Product entities (P) and Modifiers (M). Technically IfcRoot and IfcObject will be treated 

as Product entities (P) and also be an access point to other information types.  
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Figure 4.20 A partial EXPRESS-G diagram of ISO STEP Part 41 

The second example is ISO STEP Part 41 (ISO TC 184/SC 4 2000). It defines the 

Generic Product Data Resources (GPDR): i.e., the “information units” for a product model 

and their interrelated relations. An information unit is “a grouping of relating constructs 

(entity data types, attributes and relationships) that together represent one of the high level 
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concepts of the STEP data architecture (Fowler 1996)". In Part 41, the product information 

is represented as the product and product_context entity types at the top level. The product 

entity type defines a product as being of interest. The product_context is defined from three 

points of views: 1) the classification view: how the product is classified or categorized; 2) 

the marketing view: how the product is presented to the market; and 3) the technical view: 

how the product is defined at a particular life-cycle phase (Fowler 1996). 

Figure 4.20 illustrates a partial EXPRESS-G model of ISO STEP Part 41 focusing 

on the product entity type. The product_category information unit, the product_concept 

information unit, and the the product_definition information unit in Figure 4.20 

respectively represent the classification view, the marketing view, and the technical view.  

The mapping between the structure of ISO STEP Part 41 and the PIS method is 

fairly straightforward. product and its subtypes and subsystems can be categorized as 

Product entities (P) and the others including product_context, product_category, and 

product_definition can be categorized as Modifiers (M). 

Szykman et al. (Szykman et al. 2001) proposed another generic structure for 

product information. The proposed data structure is called the core representation. The 

core representation is categorized into DRP_Object and DRP_Relationship at the top level. The 

DRP_Objects is specialized as Aritifact, Restricted_DRP_Object, Behavior, and Specification 

(Figure 4.21). And the Restricted_DRP_Object is specialized as Flow, Form, Function, Geometry, 

and Material by the function, form (structure), and behavior concept (Chandrasekaran 

1994). In this structure, the DRP_Object and Arifact entities can be categorized Product 

entities (P) and the others as Modifiers (M). However, the entities can be categorized 

differently depending on a modeler’s intention. 
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Figure 4.21 The DRP_Object structure of the core representation  

Figure 4.22 provides another example of constructing product information created 

by the author as a proposal for a generic product model structure. The main concept is to 

structure product information by phase of a product’s life-cycle. Figure 4.22 depicts a 

breakdown structure of main product entities. The vertical axis represents the aggregation 

relationship and the horizontal axis represents the specialization and instantiation 

relationship. The specialized products in this paper are structured based on the incremental 

product design and engineering processes.  

As noted earlier, a product (P) can be classified differently depending on its use. 

Also the depth of layers and the strata can differ depending on the design intention/scope 

of a data model and the characteristics of products.  
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Figure 4.22. An example of constructing product information 

4.7 RELATIONS BETWEEN INFORMATION CATEGORIES IN GTPPM 

In order to understand the LPM process, readers should understand the relations 

between GTPPM information types first.   

First, a Vernacular Information Item (VII) is semantically equivalent to an 

Information Construct (IC). This rule is a basis for mapping between a VII and an IC. 

Second, an aggregation of information items used in a process is a view of a 

product model. For example, an IC, PIECE+MATERIAL*CONCRETE{strength} may look like Table 

4.2 in a final product model in EXPRESS: 

Third, by definition, entities and attributes in a product model are a subset of tokens 

defined in an information menu. An information menu defines tokens, which can be later 

translated into entities and attributes of a final product model, and the semantic relations 

between them. Tokens, which are not defined in an information menu won’t appear as an 

entity or as an attribute in a product model unless a product modeler intentionally add new 
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entities or attributes in a process of refining the final product model. Some tokens in an 

information menu may be never used to form information constructs. Nevertheless, a 

product model as a whole is not a subset of an information menu because additional 

constraints can be added to a product model later.   

Forth, some of the semantic relations between tokens defined in an information 

menu will be inherited to a product model, but not all. If there are conflicts between the 

semantic relations, only the selected ones will remain. Also the relations can be changed 

through a normalization process.   

Fifth, an aggregation of information constructs used in a process is not a view of an 

information menu. Since an information construct is a concatenation of tokens, it is 

obvious that an aggregation of ICs is not a subset of an information menu. However, it is 

open to further discussion whether an aggregation of ICs is a semantic derivation from 

tokens or not.  

Table 4.2 Information constructs and entities in a product model 

Information Constructs Entities in a Product Model 

PIECE+MATERIAL*CONCRETE{strength} 

 

ENTITY piece 

   material: material;   

END ENTITY; 

ENTITY material 

   SUPERTYPE OF (concrete); 

   strength: REAL;   

END ENTITY; 

ENTITY concrete 

   SUBTYPE OF (material); 

END ENTITY; 
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The structure and the relations between information categories of RCM are 

summarized in Figure 4.23. 

An information set is a set of information items. Information items are categorized 

into two types: information constructs (ICs) and vernacular information items (VIIs). ICs 

and VIIs have a mapping relationship.  Information constructs is composed of several 

tokens. Tokens are categorized by general knowledge representation (KR) concepts and 

also by the entity/attribute distinction. 

STRING

information_items S[1:?]

Information

Construct (IC)

Information Set

1

(ABS)Product

(ABS)Token
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Product (DP)
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Figure 4.23. Information structure of RCM 
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VIIs are local terms of a company or a certain group of people. Each IC and VII 

should be unique. VIIs can have many synonyms.  Examples, references, descriptions, and 

data types of VIIs should be provided for later mapping between ICs and VIIs. The 

following shows an example of a VII “delivered date” and its attributes: 

Name: delivered date 

Date Type: date 

Description: date when a piece is delivered to a site, NB: 

It may be different from shipped date. 

Synonyms: (empty) 

Example: Oct 5, 2001 

Reference: Packing slip 

4.8 DYNAMIC CONSISTENCY CHECKING 

The quality of information generated by domain experts in the requirements 

collection phase is an important determinant of the quality of the resulting data model 

because RCM is based on process model information. Thus, a rigorous method to validate 

a model and its information flows is a key to its success. This section introduces the logic 

of consistency checking using information flows, and describes how it helps modelers to 

automatically and dynamically validate their models in real-time. 

Any process-modeling method must rely on semantic validation and syntactic 

validation methods. In semantic validation, the only way in which modelers can confirm 

the consistency of a model is by considering what information is necessary for an activity 

or in what order activities should be laid out. Semantic validation methods are difficult to 

automate because the judgment often relies on domain-specific (sometimes case-specific) 
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experience and knowledge, which are difficult to generalize and transform into logic. 

Automated syntactic validation is available in most graphical modeling languages 

including the UML (Rosenberg and Scott 1999) and Petri-Nets (Eastman 1999). They 

check the consistency of a model subject to the syntax of their graphic symbols. What 

distinguishes RCM from other methods is that it incorporates the logic of checking the 

consistency of information flow, based on the interaction and interdependence of the 

activities with regard to the availability or unavailability of information: i.e., information 

used by an activity must be provided by its precedent activities, otherwise the activity 

cannot be performed and the model is inconsistent.  

4.8.1 Notation of Dynamic Information Consistency Check 

As described earlier, GT PPM has functions to collect, store, edit, and analyze 

information used in each activity in a process. These allow modelers to input information 

used for each activity as they build a process model.  Among GTPPM symbols, this section 

focuses on two types of process semantics at a high level, i.e., the activity and the 

information flow (Figure 4.24). The information flow will be simply called a flow in this 

section for convenience. 

 

Figure 4.24 A source activity, a target activity, and a flow 
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The information used in each activity and flow is assumed to be collected and 

stored in each activity and each flow. Each flow has a single source activity and a single 

target activity (Figure 4.24).  

 

Figure 4.25 Upstream and downstream activities 

Neighboring activities of an activity can be categorized ad hoc into upstream and 

downstream activities (Figure 4.25). A set of activities that provides information to an 

activity in a modeler’s current focus is called a set of upstream activities. On the other 

hand, a set of activities that are fed with information by an activity in a modeler’s current 

focus is called a set of downstream activities. In Figure 4.25, U1 and U2 are upstream 

information source of an activity A, and D1 and D2 are downstream activities of an activity 

A. Clearly, the definition of upstream and downstream activities is relative. D2 can be 

called a downstream of P1 and P2, and P1 and P2 can be called upstream of D2. 

4.8.2 Basic Logic of Dynamic Information Consistency Check 

The fundamental level of information consistency checking in GT PPM is an act of 

selecting and inputting information for a certain activity in a manner similar to the DFD 

method. If there is an activity ‘Calculate the strength of a tire’, a modeler may easily tell 

what information is necessary and what is not. We call this semantic validation of 
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information consistency. Still, there is no way to guarantee that information collected is 

complete or logically valid. Semantic validation is subjective because it is solely based on 

modelers’ knowledge and judgment. For example, if ‘engine volume’ is an input 

information item for an activity ‘Calculate the strength of a tire’, a reader can guess that 

this is not right, but can only validate it by consulting a tire expert. Also, he/she cannot 

check if a critical variable is missing in the collected information. While semantic 

validation will always be partly a human responsibility, information consistency and 

robustness can be enhanced through logical checking. 

The core concept developed here is called validation by information dependency: 

i.e., unless certain information is provided, other information cannot be generated. In the 

previous tire example (Figure 4.26), if ‘engine volume’ is provided as input to ‘Calculate 

tire strength’, we can infer that there is a certain dependency between ‘the strength of a 

tire’ and ‘engine volume.’ Conversely, if ‘tire materials’ is provided as output, ‘tire 

materials’ must be either input to or generated by ‘Calculate tire strength.’  By using this 

concept we can infer what information and Activities are missing.  

 

Figure 4.26 An example of "Calculate tire strength" 
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The first set of rules we initially implemented for checking information consistency 

was to compare the information set of an activity with the flows that stream into/out of the 

activity. The basic logic was that, by definition of information dependency, the information 

set of an activity must be an aggregation of information flowing into the Activity from 

source activities and the information generated in the activity itself. Therefore, a set of 

inflow information (Fu) must be a subset of information (I) of an activity (Figure 4.27 (1)). 

Conversely, any outflow information (Fd) must be a subset of its source activity (A) 

(Figure 4.27 (2)).  

 

I F
d

F
u

φ≠∩ IFu
IFd ⊆

 

Figure 4.27 The basic logic 

Expanding this logic, several rules are defined as follows (Figure 4.27): 

Rule 8: Intersection of information (Fu) in any upstream flow that streams into a 

target activity and information (I) of the target activity (A) must not be an 

empty set:  

φ≠∩ IFu  

Rule 9: A set of information (Fd) in any downstream flow that streams out of a 

source activity must be a subset of information (I) of the source activity (A):  

IFd ⊆  
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Rule 10: By definition of a flow, a new information item (Ig) can only be generated 

in an activity (A) but not on any information flow (F). An information flow 

simply carries a set of information between activities:  

)}()(|{ Fggg IiIii ∉∧∈
 

where I: activity information; IF: information of a flow 

 

Figure 4.28 The first interface for checking the information consistency 

The logic was initially implemented in GT PPM (Figure 4.28). This version was 

used for process modeling by the PCSC, which included 23 precast producers in the USA, 

Canada, and Mexico. Fourteen detailed models were collected and analyzed (Sacks et al., 

2002). Even though the logic of this first approach was straightforward to understand, the 

information collected showed some inconsistency. It was found that, since it was very 

time-consuming and difficult for modelers to identify and report information for both 
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activities and flows, some modelers simply copied information from a flow to an activity 

without seriously considering the actual use of information. Moreover, since this logic was 

defined based on relations between information of an activity and its connected flow, 

relations between information in activities, which were our actual interests, could not be 

clearly shown. Therefore, I sought more rigorous definitions that could define relations of 

information between activities and that could validate information consistency between 

activities directly. 

4.8.3 Extended Logic of Dynamic Information Consistency Check 

The second approach focuses on relations of information within and between 

activities. In order to define information and its relationship more specifically, an 

information set of an activity is categorized into information input (Ii) and information 

output (Io).  The Information output is further subcategorized into passed through (without 

modification, Ipt), modified (Im), and generated information (Ig) (Figure 4.29). 

RCM categorizes information types into input and output information and 

subcategorizes them into five types. They are defined as:  

• Input (Information, Ii): Information required by this activity. Input is subdivided 

into: 

o Remaining Information (Ir), which is purely referenced and is not 

transferred to the downstream activities and remains in an activity.  

o The rest of the Input Information:= Input (Ii) – Remaining Information 

(Ir) 

• Output (Information, Io): Information available from this activity.  

o Information Modified (Im), whose values are potentially changed or 

modified in this activity.  

o Information Passed-Through (Ipt), which is not modified by the activity, 

but transferred to the downstream activities as output.  
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o Information Generated (Ig), i.e. newly generated in this activity. 

 

Figure 4.29 Types of activity information 

Figure 4.29 illustrates the information types of an activity in RCM. Note that input 

information excludes information items returning through feedback flows in consistency 

checking. In addition to input and output information, references for checking information 

consistency are defined: i.e., unavailable, unused, and not-provided information. The 

relationships between information items imply functional dependency: i.e., input 

determines output and output is dependent on input. The rules that define the relationships 

between information types are: 

Rule 11: Activity information set is the union of input information set and output 

information set:  

oi III ∪≡  

Rule 12: Output is the union of passed through, modified, and generated 

information:  

},,{ gmpto IIII U≡  

Rule 13: Input is the union of passed through, remaining, and modified 

information:  
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},,{ mrpti IIII U≡  

Rule 14: The intersection of remaining, passed through, modified, and generated 

information is an empty set:  

φ≡},,,{ gmptr IIIII  

Rule 15: By Rule 12 and Rule 13, remaining information is the subtraction of 

output information from input:  

oi II −  

},,{},,{ gmptrmpt IIIIII UU −≡  

rI≡  

Rule 16: A set of Activity information is the union of input and generated 

information: 

oi III ∪≡  (from Rule 11) 

)( gmpti IIIII ∪∪∪≡  (by Rule 12)  

gi III ∪≡∴ (by Rule 13) 

Rule 17: Intersection of input (Ii) and generated information (Ig) is an empty set: 

φ≡},,,{ gmptr IIIII  (from Rule 14) 

φ≡∪ gi II  (by Rule 13) 

Thus far, we defined internal information types of an activity and their relationship. 

The relations of information between activities are redefined according to these new 
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information types and in-/out- flow information. The basic assumption is that the input 

information can receive information only from upstream activities, and the output 

information can provide information only to downstream activities. The relations are 

defined as follows (See Figure 4.25 and Figure 4.29 for reference):  

Where  

dn(A): downstream activities of an activity A;  

up(A): upstream activities of an activity A;  

output(A, x): output information of an activity A;  

input(A, x): input information of an activity A  

Rule 18: The input (Ii) of an activity (A) must be a subset of the unionized output 

(Io
U1, Io

U2 Io
U3 … , Io

Un) of its upstream activities (U1, U2, U3…Un):   

ia II ⊇ , where Available Information Ia 

)}),(up(output|{ xAxU≡  

Rule 19: The output (Io) of an activity (A) must contain the set of unionized input 

(Ii
D1, Ii

D2, Ii
D3 … , Ii

Dn) of downstream activities (D1, D2, D3…Dn) of A less 

the set of aggregated output (Io
P1, Io

P2, Io
P3 … , Io

Pn) of their upstream activities 

(P1, P2, P3 … Pn), excluding the activity A:  

roo II ⊇ , where Required Output Information Iro 

)}),(dn(input|{ xAxU≡  

)})),(up(dn(output|{( yAyU−  
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These ruless can be used for checking the consistency of information flows in 

complete models. However, in order to practically help modelers to build more robust 

models, we subcategorized the check results into several additional information sets, which 

could support real-time consistency checking as models are composed. These are called 

references. The references include (See Figure 4.29 and Figure 4.30):  

 

 

Figure 4.30 The second interface for checking the information consistency 

Rule 20: A set of information that does not conform to Rule 18 is called 

unavailable information. In other words, input information that does not exist 

in available information is unavailable information: 

Unavailable Information aiua III −≡  

Rule 21: A set of information that is a subset of available information, but does not 

exist in input is unused information:  

Iu 

Iuu 

Iua 

Ii 

Ir 

Ipt 

Im 

Ig 

Ip 

Inp 
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Unused Information iauu III −≡  

Rule 22: Conversely, a set of information that is a subset of available information 

and also that of input is used information:  

Used Information iau III ∩≡  

Rule 23: A set of information that does not conform to ia II ⊇ , where Available 

Information Ia 

)}),(up(output|{ xAxU≡  

Rule 19 is not-provided information Inp:  

Not-provided Information oronp III −≡  

Rule 24: A subtraction of not-provided information from required output 

information is provided information Ip:  

Provided Information nprop III −≡  

The logical propositions are implemented in a user interface that automatically and 

dynamically checks the consistency of information as modelers edit a required output 

information list. Only input, passed through, modified and generated information are saved 

– the other categories are dynamically calculated based on these rules. As modelers update 

information, all the relations among relevant information sets are automatically rechecked 

and the check results are updated. In actual implementation, the derived rules such as Rule 

15, Rule 16, and Rule 17 reduced the extent of source codes.  
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4.8.4 Practical Refinement of the Extended Logic 

In this section, a practical refinement is introduced. While the extended logic of 

checking information consistency is theoretically robust, the interface shown in Figure 7 

suffers the following drawbacks: 

Selecting information items requires much work. In order to achieve a complete set 

of information for an activity, users must carefully and thoroughly think out what 

information is needed for four categories; i.e., for input, passed through, modified, and 

generated information.  

• A process model of a medium-size organization usually includes hundreds of 

Activities for which information must be selected from a data dictionary (Sacks 

et al., 2002). In the case of the PCSC, a data dictionary with over 30,000 

possible combinations of information is provided. Selecting the correct 

information from them for each Activity is not trivial. Modelers are apt to lose 

concentration and that can lead to an imprecise model. Thus, selecting and 

editing information from a data dictionary should be reduced as much as 

possible  

• These drawbacks can be reduced by implementing the extended consistency 

checking logic as follows:  

• Passed through, modified, and generated information lists are merged into an 

output information list. In the extended logic, the author distinguishes passed 

through, modified, and generated information explicitly. However, generated 

information does not denote the information item that is first generated in the 

whole sequence, but locally generated information within an activity. That is, if 
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a user wants to keep track of the first activity in which an information item is 

generated, then information items should be considered in the context of the 

whole sequence, not that of an individual activity. An information item that 

does not appear in any previous activities is true newly-generated information, 

while an item that exists in the previous activities, is true modified or passed 

through information.  

• In all cases, input information is drawn directly from the output of the upstream 

activities. Conversely, output information should provide any downstream 

information that is not fed by other activities. It would therefore be preferable 

to drag the information from that available or required rather than select it from 

a large data dictionary. This approach allows users to select and copy 

information from available information (Ia) and also from required output 

information (Iro) based on Rule 18 and Rule 19. In this case, the information 

copied will be deleted from its source information list based on Rule 20 and 

Rule 24. For example, if a user selects information from an unused information 

list and add it to an input list, the added information will be removed from the 

unused information list automatically. 

• Output information shares passed through and modified information with input 

information (Rule 12 & Rule 13). Therefore, information items in the lists of 

input and output information can be copied from/to each other. In this case, the 

copied information will remain in both input and output information lists. 

• The lists of used and provided information are omitted so as to reduce the 

complexity of the user interface and to increase the viewing space for the 
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remaining other lists. Available, used, provided, and required output 

information types are hidden.  

• Unavailable information (Iua) can be derived by Rule 20. Any information that 

falls into the unavailable information list must be provided by the upstream 

activities. If no activity exists that can provide the unavailable information, a 

new activity (or activities) must be added and connected with an information 

flow symbol/shape. 

• Required and not-provided information can be derived by Rule 19 and Rule 23.  

• Not-provided information must either be added in the output information list, or 

it must be provided to the downstream activities from other activities. 

 

Figure 4.31 A practical approach to checking the information consistency 

Since this new interface allows users to use selected information over and over 

through activities, it provides a degree of semantic consistency as well as reducing the 

Io 

Ii 

Iuu 

Inp 

Ina Ir 
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effort required of users in selecting information and maintaining the logical consistency 

between information collected.   

4.8.5 Application & Limitations of the Dynamic Consistency Checking Method 

It has been described how the consistency of information flows in a process model 

can be checked using logic based on information dependence between activities. A system 

can automatically check consistency of information flows according to this logic and can 

display inconsistent information items as unavailable- or not-provided-information lists. 

Modelers can maintain the consistency of a process model and its information flows by 

revising a model in any or all of three ways:  

1) editing the information lists of relevant activities 

2) adding or removing activities 

3) creating, removing, or diverting information flows.  

However, modelers should be aware of the limitations of this method as a 

consistency checker for process models:  

• This consistency checking is not aimed at finding the most efficient form of 

information exchange (cf. DFD). Rather it reflects business practices and 

policy and, therefore, allows redundancy of information. 

• It can guarantee a certain degree of completeness and robustness, but cannot 

guarantee absolute completeness of collected information because of the 

nature of modeling efforts. For example, even as a model is compiled, 

requirements may change. 
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4.8.6 Comparing RCM with Other Requirements Collection methods 

Requirements of a UoD can be captured in a variety of formalisms. Common 

methods include Flowcharts, UML Activity Diagrams, Use Case diagrams, Data flow 

Diagrams (DFDs) (Osborne and Nakamura 2000), and IDEF0 (NIST 1993) schemas. Both 

Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999) 

are limited only to capturing sequences of activities and are not able to describe the 

information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard 

1992), which are a part of the UML methodology, define a set of sequences in which each 

sequence represents the interaction of the things outside the system (its actors) with the 

system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). They do 

not explicitly bring out the “information” hidden in the use-case notation.  Data flow 

Diagrams (DFDs) (Osborne and Nakamura 2000) represent flows of information in a 

system using information flow symbols, processes, external entities (a.k.a. 

source/destination, sink), and internal data storages (often files). The whole set of DFDs 

consists of several levels of diagrams. The top-level DFD is called a context diagram. 

Details of information that is transferred between processes and data storages is described 

separately and called a data dictionary. However, DFDs do not show workflows, i.e., 

decisions or sequences of activities. DFDs capture information required for ‘system’ 

design, but do not describe information flows in a sequence of activities. It is important to 

capture information in a context of its use because information is often aggregated and 

decomposed in a data model depending on its use-cases (i.e., in what process it’s used and 

stored) not on its system configuration (i.e., in what machine it’s used and stored).  

IDEF0 (Integration Definition of Function Modeling (International Organization 

for Standardization 1994)) is a Federal Information Processing Standard (FIPS) supported 
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by ISO It is based on SADT (Structural Analysis and Design Techniques) and is designed 

to define the “functions of a system or subject area with graphics, text and glossary (NIST 

1993)”. As in DFD modeling, IDEF0 models have a hierarchical structure and take a top-

down approach. A unique feature of IDEF0 is its ICOM codes (Input, Control, Output, and 

Mechanism arrows). Input and Output arrows indicate the data and object flows into and 

out of a function. Control arrows denote the “required conditions for a function,” and 

Mechanism arrows represent the “means of performing a function”. Arrow types (or flows) 

are categorized in terms of use, but individual information items are not carried by the 

arrows between functions. Detailed information can be defined separately in IDEF1x (or 

IDEF1), but there is no direct link between the two modeling techniques.  These modeling 

methods are available in commercial tools (e.g., BPR®, Arena®, Rose®, Visio®, and 

SmartDraw®).  

Table 4.3. RCM and other modeling methods. 

RCM Components UML Activity 
Diagrams 

IDEF0 Flowchart DFDs 

Internal/External Activity or 
Function 

× × × � 

Hierarchical Structure × � × � 

Information Flow � � � � (Data flow) 

Feedback Flow × × × × 

Material Flow � (Object Flow) × × × 

Continue Shape × × × × 

Decision Shape � × � × 

Static Info Source × × � (Storage) � 
(Source/Sink) 

Dynamic Info Repository × × � (Storage) � (Files) 

Information Menu  
(Data Dictionary) 

× × × � 

�: available; ×: not available; �: similar 
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The differences in modeling concepts between the RCM and other modeling 

methods with similar purposes are summarized in Table 4.3. (Use-Case diagrams are not 

included in Table 4.3 because they do not have conceptual commonality with the RCM 

except for the fact that both methods focus on use cases). In Table 4.3, the data dictionary 

of DFDs is marked with a triangle because it simply has the form of a collection of word-

cards and does not have any structure or any method to deal with the large number of 

information items that can occur in a data model. Object flows in the UML are also marked 

with a triangle. They are somewhat similar to material flows in RCM; however they differ 

from material flows in that material flows are only restricted to physical materials while 

object flows include also non-physical objects and forms such as orders and bills (Booch, 

Rumbaugh, and Jacobson 1999).  

Some commercial CASE (Computer-Aided Software Engineering) tools for 

database design (such as Visio®, AllFusion® (a.k.a ERWin®, BPWin®), and Corporate 

Modeler®) are capable of coupling DBMSs mostly only with ARMs (e.g., IDEF1x, 

EXPRESS-G, the UML as a modeling package, and ER diagrams) and sometimes with 

process models (AAMs). Several other methods have been researched and developed: e.g., 

PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS (Wilson et al. 2001), GPP 

(Wix and katranuschkov 2002), ISTforCE (Wix and Liebich 2000), ATLAS (Tolman and 

Poyet 1995), VEGA (Bakkeren et al. 1996), ICCI (Katranuschkov et al. 2002), 

PISA(Bakkeren et al. 1996)). Among these, PISA directly interrelates process and product 

modeling by assigning additional symbols to each ICOM (Input, Control, Output, 

Mechanism) code of IDEF0. Table 4.4 compares PISA and RCM. The others are mostly 

focused on workflow management methods. Including PISA, the author is not aware of 
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any formal method that can elicit discrete information items from heterogeneous business 

environments step by step, validate collected information items, and integrate them into an 

industry-level product model.  

Table 4.4. Comparison of PISA and RCM 

 PISA RCM 

Basis for process modeling IDEF0 N/A 

Basis for product modeling NIAM (graphical) 
EXPRESS (textual) 

Information Menu 
EXPRESS (final result) 

Integration of process and product 
modeling 

Yes Yes 
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CHAPTER 5  

LOGICAL PRODUCT MODELING (LPM) 

5.1 INTRODUCTION 

The goal of LPM is to (semi-)automatically derive a product model from collected 

information constructs. The LPM is a combinatorial process of integrating and normalizing 

(i.e., decomposing and restructuring) information constructs into a formal product model. 

The targeted data modeling language, in this thesis, is EXPRESS. This chapter first 

discusses the data integration method and then the normalization method in LPM. 

Nevertheless, the integration and normalization processes are reciprocal and cannot be 

treated separately. The integration and normalization rules are also defined as design 

patterns18. A product model developed through GTPPM is by no means complete. Much of 

the information that provides the semantics (i.e., roles, rules, cardinalities, data types) still 

has to be added manually and the resultant model should be modified. The limitations are 

discussed at the end of this chapter. 

5.2 SCHEMAS MAPPING, INTEGRATION, DESIGN PATTERNS, AND 

NORMALIZATION  

Sometimes different work processes use the same set of data. Sometimes two 

equivalent processes may use the different sets of data. But different work processes 

usually require (and use) different sets of data.  In order to make a product data model 

                                                 
18 See the next section for more information on design patterns. 
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support various work processes, a product model should be an integration of different sets 

of data, which are required by different processes. We regard integration to be different 

from simple aggregation. While aggregation is a simple consolidation of data, integration 

is a semantic union19 of different sets of data. In an integration process, semantic relations 

between different sets of data should be defined and mapped. Conflicts 20  between 

information constructs should be resolved.  

There are several ways of mapping and integrating (sub-) schemas. A brief and 

general introduction to the EXPRESS integration method is available in Section 6.3 of 

(Schenk and Wilson 1994). Schenk and Wilson defines integration as a process of 

combining Topical Information Models (TIMs), which are domain-specific information 

models developed by several modeling teams, into a minimally redundant, non-ambiguous 

and complete Integrated Information Model (IIM). The TIM and the IIM are conceptually 

similar to the ARM and the AIM of the STEP method except for the fact that an IIM does 

not have predefined integrated generic resources (IRs). Schenk and Wilson categorize 

model integration into six forms:  

1) cosmetic integration: modeling and documentation in a consistent style  

2) editorial integration: elimination of synonyms and homonyms 

3) continuity integration: elimination of redundancies and identification of gaps  

4) structural integration: generalization of underlying concepts in TIMs and 

interfacing of an IIM with other IIMs 

5) core-based integration: integration of TIMs into a high-level, abstract, and 

generic core information model 

                                                 
19 See Appendix E for a formal definition of the semantic union. 

20 See the design patterns in the following sections for examples. 
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6) evolution-based integration: development of an IIM by integrating a TIM and 

another TIM until all the TIMs are integrated.  

However, these descriptions provide only general guidelines and strategies for 

model integration and do not deal with the integration problems in detail.  

Another effort worthy of discussing, is EXPRESS X. EXPRESS X is the ISO STEP 

schema mapping language that provides a formal description method to map two different 

schemas and their entities using Rule Declaration and Type Map Declaration (ISO TC 

184/SC 4 1999). However, EXPRESS X is a mapping mechanism between two schemas, 

not an integration method. 

For some reasons, many people misconceive that XML can automatically integrate 

two or more different schemas. XML has Include, Import, and Redefine mechanisms to 

reuse or to integrate different schemas into a new one (Wyke and Watt 2002). But they are 

not very different from the concept of the schema interfacing (or referencing) mechanism 

in EXPRESS. Both XML and EXPRESS provide tools for model integration, but the work 

still has to be done by humans. There is still no logic to automatically integrate two 

schemas in XML and EXPRESS, which the author is aware of.   

Another approach to mapping and integrating (sub-) schemas is to use design 

patterns in object oriented programming. Design Patterns originated from Christopher 

Alexander’s Pattern Language for buildings and towns (Alexander et al. 1997). The design 

pattern for object oriented programming has grown as a new field through years of efforts 

by design pattern groups and conferences (e.g., Ward Cunningham and Kent Beck 

(Coplien 1999), Erich Gamma and his colleagues (Gamma et al. 1994), Pattern Languages 

of Programming conference (PLoP),  and Object Oriented Programming conference 
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(OOPSLA), and Object Management Group (OMG)). Each design pattern describes a 

particular object-oriented design problem; the core of the solution; and the constraints, 

consequences, and trade-offs of its use. Gamma et al. categorized design patterns into 

three: Creational, Structural, and Behavioral Patterns in their book (Gamma et al. 1994). 

The first two categories deal with instantiation and composition/decomposition of objects. 

The last category deals with encapsulation of algorithms.  

The design pattern approach can be also applied to normalization of a data model. 

Normalization is an activity of using the known semantics of data in the form of 

dependencies that may be a cause for potential “update anomalies” requiring unnecessary 

duplicate work as well as causing potential inconsistencies in a database. Normalization of 

data was first proposed by Codd (Codd 1972) in the context of the relational model. The 

process of normalization can be defined by constraints or conditions that must be satisfied 

progressively to achieve a higher “quality” or “goodness” of design (Elmasri & Navathe, 

2004). The process successively decomposes the relations so that, after each 

decomposition, a higher normal form is met; yet, the decomposition must be “non-

additive” – in that it does not produce any spurious data after joining the component 

relations. The relational normalization theory is well accepted and defines the well-known 

first through fifth normal forms considering functional, multi-valued and join dependencies. 

However, in practice, the higher normal forms like the fourth and fifth normal forms are 

rarely used because their dependencies are hard to detect or for performance reasons, so as 

to avoid joins. It is difficult to apply the conventional normalization criteria and 

dependencies to several application domains: e.g., the human genome databases (Kogelnik 

et al. 1998)).   
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However, in object-oriented data models, redundancy of data is less of a concern 

because of their efficiency of representing the specialization relationship and other 

relations using "pointers" compared to the relational data model, which relies on foreign 

key - primary key relationships. There have been several efforts to explore and develop 

different normal forms for object-oriented data models from relational normal forms (Beeri, 

Bernstein, and Goodman 1978; Tari, Stokes, and Spaccapietra 1997). They illustrate that 

object-oriented models can be decomposed and integrated relatively freely depending on 

the given normalization criteria. However, unlike relational normalization, the goals (or 

criteria) of normalization are not clearly set in object-oriented data modeling languages. 

For example, (Tari, Stokes, and Spaccapietra 1997) proposed user-interpretation-based 

normalization. Three functional dependencies (i.e., path dependency, local dependency, 

and global dependency) were provided to support the method. Even though their method 

supports normalization (restructuring) of objects by user-defined constraints, the method is 

weak in terms of providing a standard or generic normalization method because any user-

defined constraints can be a “norm.”  

The following sections describe a method to integrate collected information 

constructs into an Application Requirements Model (ARM) and define design patterns to 

resolve conflicts between different information constructs in the collected information 

requirements and to normalize an integrated model.   

5.3 INTEGRATION OF COLLECTED INFORMATION IN GTPPM 

In GTPPM, there are four possible integration approaches. Figure 5.1 illustrates the 

four options. The bold line indicates a point of integration. The double-lined circle 

indicates an integrated model or an aggregated model. 
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Figure 5.1 Four possible information integration methods in GTPPM 

a) Integration of process models: Different process models can be integrated into 

one process model. Information requirements will be defined based only on a 

single unified process model. This is the most common approach that is taken 

today by STEP and IFC modeling efforts. 

b) Integration of vernacular information items: Information items required by 

each process can be specified in each company’s local terms. Specified 

vernacular information items (VIIs) can be aggregated and mapped to 

information constructs. Then the semantic conflicts can be resolved in the 

normalization process of information constructs (ICs) into a product model. 

c) Integration of information constructs: Lists of information constructs can be 

aggregated into one large list. The aggregated ICs can be normalized into an 

integrated product model. The semantic conflicts should be resolved in the 

normalization process.  
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d) Integration of data models: A product model can be derived from each RCM 

model. And the generated product models can be integrated into a final product 

model.  

 

Among these, this study takes the second and third approaches. In the first 

approach, if the process models can be integrated “losslessly”, an integrated product model, 

which can support various processes, can be developed from the integrated process model. 

It will not be easy to integrate processes without losing any semantics. However, even if 

process models can be integrated losslessly, it will be difficult for modelers to specify 

information requirements based on an integrated process model because an integrated 

process model may not be able to represent the real contexts of information use.  

The fourth approach is not very different from general schema integration. Each 

product model will have additional constraints (e.g., arities, rules) to the preliminary 

product models directly derived from RCM models. And the more detailed and complex 

constraints will be, the more difficult to resolve the conflicts between them. Thus, it is 

better to integrate information constructs when they are as little structured as possible.  

In this regard, the second and third approaches are most feasible among the four 

possible integration approaches. The two approaches are interchangeable because a data 

structure is not sensitive to the order of aggregation (albeit it may be sensitive to the order 

of integration).  

5.4 NORMALIZATION IN GTPPM 

The definition of normalization in GTPPM is not very different from most existing 

ones (i.e., decomposition and restructuring of a data structure to a normal form), but the 
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scope and goals are not the same. Unlike traditional relational database normalization 

theories, the goal is not to eliminate redundancies or anomalies at an instance level (e.g., 

null value, lossless joint, multi-valued dependencies (Elmasri and Navathe 2004), but at an 

entity level. Since GTPPM is a schema generation method, the instance-level 

normalization issues are out of its scope. Also it does not deal with optimization issues that 

can make database transaction and query more efficient and faster. In any case, traditional 

database normalization and optimization methods can be applied when the final product 

model is implemented as a physical model. 

The main goals of normalization in GTPPM are (1) resolving conflicts between 

information constructs with different data structures; and (2) eliminating redundant entities 

and attributes at a schema level.   

5.5 LOGICAL PRODUCT MODELING IN GTPPM 

As noted earlier, the integration and normalization processes are separated. 

Conflicts occurring in the integration process will be resolved during the normalization 

process. The current LPM is composed of eight steps. 

Step 1: Union information constructs  

Step 2: Decompose information constructs into entities by the association and 

decomposition relations. 

Step 3: Detect and merge semantically equivalent entities. 

Step 4: Detect and merge semantically equivalent attributes within entities. 

Step 5: Resolve conflicts between attributes of a supertype and its inherited 

attributes. 
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Step 6: Generalize the data structure: Extract supertypes and their attributes from 

information constructs 

 Step 7: Resolve conflicts between attributes, supertypes, and subtypes.  

Step 8: Refine the automatically derived product model 

 
The LPM process is described in detail according to these eight steps in the 

following sections with examples and nine design patterns. The nine design patterns were 

defined to resolve the conflicts detected by MS SQL Server 2000® and EDM® through the 

evaluation process of three test cases described in Sections 7.3 through 7.5. Syntactically 

sound three test case models and an integrated model of the three test case models could be 

generated through the nine design patterns. We believe that these patterns are adequate for 

the normalization process as described. However, additional design patterns may be 

required and defined in the future.  

5.6 STEP 1: UNIONIZING INFORMATION CONSTRUCTS 

LPM first collects and unionizes the properties of all the information constructs in 

the RCM models. In this process, information constructs are unionized without any 

normalization or conflict resolution. Since the tokens of an information menu, on which 

information constructs are based, are defined based on the ‘nym’ principles (i.e., no 

homonym, no synonym), tokens with the same spelling should be regarded as identical. 

For example, if we have two information constructs of PROJECT, A and B, as shown 

below,  

A: PROJECT ≡ {name, id, site} 
B: PROJECT ≡ {name, manager, schedule, client}  
 
the union of A and B will be: 
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A ∪ B: PROJECT ≡ {name, id, site, manager, schedule, client} 

 
The properties can be either a simple attribute or an entity in EXPRESS. This rule 

can be generalized as a design pattern. Note that the LPM process assumes that data types 

of attributes will be manually defined in the last of step of LPM in order to reduce the 

conflicts between attribute types. During the LPM normalization process, the data types of 

simple attribute types will be temporarily defined as STRING. And data types of entity-

type attributes will be temporarily defined as the same as their roles (Figure 5.2) until 

manual modification. Also in the EXPRESS-G diagrams used for describing design 

patterns, roles will be omitted assuming that they are unique or the same as associated 

entities unless specified otherwise. 

 

Figure 5.2 Roles of properties in GTPPM 

In any case, if there are conflicts between data types, those should be resolved in 

the normalization process. (See Design Pattern 4 and Design Pattern 5 for examples and 

details on this issue.)  

Design Pattern 1: Unionization of Information Constructs 
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Problem: Different information constructs denote that an entity has different (sets of) attributes 

(Figure 5.3) NB: Conflicting entities are in peach (or in grey in black and white print). 

 

Figure 5.3 Conflicting attributes 
Solution: Each relation has a specific meaning in structuring a data model. Thus, the general 

principle of model integration is to preserve semantics of information constructs as much as possible in an 

integrated model. Thus, the attributes of an entity should be the union of attributes of the entity defined in 

information constructs. 

 

Figure 5.4 Unionization of Information Constructs 

Notes: If there is a case that different attributes of an entity are associated with one entity type as 

shown in Figure 5.5 (a), there is no conflict in the information construct. An example is when A: schedule; 

Role_1: start_date; Role_2: end_date; and C: date. On the other hand, this should not occur if tokens are 

defined following the ‘nym’ principle, but if one attribute (name) is associated with two entities as shown in 

Figure 5.5 (b), one of the Role names should be changed unless there is a mechanism to integrate or merge 

the two attributes, namely, C and D in the example. An example is when A: product; Role_1: id; Role_2: id; 

C: unique_id; and D: design_model_id. In this case, either Role_1 or Role_2 should be renamed. Role_2 may 

be renamed to design_type. 
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Figure 5.5 Conflicting attribute (role) names 
 

Design Pattern 1 defines a situation when a property is shared by two “different” 

entities. It is also possible that a property is shared by two “different” entities. In such 

cases, the property should be regarded as a property of both entities. 

Design Pattern 2: A Shared Entity Type 

Problem: A property of Entity A (in Figure 5.6) is associated with Entity B. A property of another 

entity (Entity C), which is associated with a property of Entity A, is also associated with Entity B.  

 

Figure 5.6 Properties associated with the same entity 

Solution: Two different entities can have properties that are pointed to the same 

entity. Entities A and C in Figure 5.6 are two different entities. Therefore, there is no conflict in this case. 
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Figure 5.7 An example of two different properties associated with the same entity 

5.7 STEP 2: DECOMPOSITION OF INFORMATION CONSTRUCTS 

Information constructs are a concatenation of tokens linked by the decomposition 

relation and/or the specialization relation. Through the LPM process, the collected 

information constructs will be broken down either into entities or into attributes. LPM Step 

2 is the first step to break down information constructs into smaller chunks by the 

association and decomposition relations. The decomposition procedure in Step 2 is as 

follows:  

a) As described in Section 4.6.3, the decomposition/association relation is 

represented as “+” in GTPPM. If entities in an IC are concatenated by “+”, then 

decompose ICs into separate entities. For example, an IC 

PIECE+GEOMETRY+DIMENSIONS{length} will be decomposed into three 

entities PIECE, GEOMETRY, and DIMENSIONS{length} in this process. 

b) If an entity already exists, do not create a new one, but merge the attributes of 

the entity into the existing one following the Design Pattern 1. This is to avoid 

redundancy of entities. 

c) If there is a concatenation of “A+B”, the entity B should be added as an 

attribute of A. For example, GEOMETRY in the PIECE+GEOMETRY 



 

 122

concatenation should be added as an attribute of the PIECE entity. See Table 

5.1 for more examples. 

d) Step 2 should also conform to Design Pattern 1 and Design Pattern 2.  

 

Table 5.1 illustrates an example of decomposing ICs in EXPRESS. *: denotes the 

specialization relation as described in Section 4.6.3. 

Table 5.1 Decomposition of ICs with the decomposition/association relations 

Information Constructs 

PIECE+GEOMETRY+DIMENSIONS{length} 

PIECE+GEOMETRY*GEOMETRY_3D{volume} 

Decomposition in EXPRESS 

ENTITY piece 

   geometry: geometry; 

   geometry*geometry_3d: geometry*geometry_3d; 

END ENTITY; 

 

ENTITY geometry 

   dimensions: dimensions; 

END ENTITY; 

 

ENTITY dimensions 

   length: REAL;  

END ENTITY; 

 

ENTITY geometry*geometry_3d 

   volume: REAL; 

END ENTITY; 
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5.8 STEP 3: MERGER OF SEMANTICALLY EQUIVALENT ICS 

Some information constructs are in different structures, but semantically represent 

the same thing. Step 3 identifies the semantically equivalent information constructs based 

on the abbreviation rule defined in Section 4.6.3. Examples are: 

 

STAIRCASE{piece_mark, length, height, width} 

ASSEMBLY*STAIRCASE{piece_mark, component_list } 

PIECE*ASSEMBLY*STAIRCASE{assm_mark, num_of_steps} 

STAIRCASE{piece_mark, num_of_steps, balusters} 

 

PIECE*ASSEMBLY*STAIRCASE  

≡ ASSEMBLY*STAIRCASE  

≡ STAIRCASE   (by the abbreviation rule) 

 

ASSEMBLY*STAIRCASE represents the relationship between ASSEMBLY and STAIRCASE, but 

STAIRCASE alone cannot. Thus, the semantically equivalent entities should be merged into an 

unabbreviated form to capture as much semantics as possible. In the above example, the 

entities and attributes should be merged into PIECE*ASSEMBLY*STAIRCASE.  

 

PIECE*ASSEMBLY*STAIRCASE {piece_mark, assm_mark, length, height,  

width, component_list, num_of_steps, balusters} 

 

This process can be generalized as Design Pattern 3. 

Design Pattern 3 Merger of semantically equivalent entities 

Problem: The specialization relation between two entities is represented in an information construct, 

but not in other information constructs. 
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Figure 5.8 Semantically equivalent information constructs 

Solution: Integrate the information constructs to the most semantically rich hierarchical structure. 

 

 

Figure 5.9 Merged entities in the specialization relation 

A pseudo-code for detecting semantically equivalent ICs is provided in Appendix F.  

5.9 STEP 4: RESOLVING CONFLICTS BETWEEN ATTRIBUTE TYPES 

There can be a conflict between property (attribute) types. A property of an entity 

can be defined as an entity type in one information construct, but as an attribute type in 
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another. It can be also defined as STRING in one information construct and  as an 

INTEGER in another. Design Pattern 4 and Design Pattern 5 deal with such conflicts 

between attribute types. Since the LPM process defines all the data types as STRING in 

the beginning, the second case does not occur. However, Design Pattern 5 provides a 

solution for such a case. 

Design Pattern 4 A conflict between an entity type and an attribute type 

Problem: A property may be defined as an entity type by one information construct and as an 

attribute type by another. 

 

 

Figure 5.10 A conflict between an entity type and a simple type 

Solution: An entity carries much richer information than an attribute type. Thus, the property 

should be defined as an entity. The order of selection should be:  

 

Entity > User-defined types > Simple (attribute) types 

 

 

Figure 5.11 A resolution for the attribute data type conflict 

Design Pattern 5 A conflict between simple attribute types 
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Problem: Different information constructs define the data type of an attribute as different simple 

types.   

 

A

B

A
STRING

B

(a) (b)

INTEGER

 

Figure 5.12 A conflict between simple types 

 
Solution: The order of selection of simple types should be dependent on the inclusiveness of data 

types. For example, REAL can be expressed by STRING, but REAL cannot express STRING. LOGICAL 

can be expressed as 1, 0, -1 in INTEGER, but LOGICAL cannot express INTEGER. Thus, STRING is more 

inclusive than REAL. And INTEGER is more inclusive than LOGICAL. The order of inclusiveness of 

simple data types are: 

 

BINARY > STRING > NUMBER > REAL > INTEGER > LOGICAL > BOOLEAN  

 

Figure 5.13 A resolution for the simple attribute data type conflict 

5.10 STEP 5: RESOLVING CONFLICTS BETWEEN ATTRIBUTES  OF A SUPERTYPE 

AND ITS INHERITED ATTRIBUTES 

Design Pattern 6 Conflicts between attributes of a supertype and its inherited attributes 

Problem: Attributes of a supertype are defined as attributes of its subtypes in different information 

constructs.  
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Figure 5.14 A conflict between attributes of a supertype and inherited attribute 

Solution: Since all the attributes of a supertype will be inherited to its subtypes, it is redundant to 

define the attributes of a supertype again as attributes of its subtypes. The redundant attributes of subtypes 

should be deleted. 

A

C
B

L

K D

K

L

 

Figure 5.15 Deletion of inherited attributes 

5.11 STEP 6: GENERALIZATION/SPECIALIZATION IN GTPPM  

The goal of Step 6 is to restructure the entities by the specialization relation. The 

specialization relation is denoted as “*” in GTPPM as described in Section 4.6.3. Unlike 

tokens in the association/decomposition relation, tokens in the specialization relation 

cannot be simply decomposed and added incrementally because of the inheritance 

mechanism of the specialization relation. For example, if two subtypes B and C of a 
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supertype A have a common attribute D, the attribute D should be an attribute of the 

supertype A and should be removed from the subtypes B and C (Design Pattern 7).   

Design Pattern 7: Generalization 

NB: Design pattern 6 deals with a conflict between attributes of subtypes and attributes of their 

supertype whereas Design Pattern 7 defines a pattern for creating new attributes of a supertype by extracting 

least common attributes of its subtypes.   

 

Problem: If subtypes of a supertype have common attribute(s), 

A

C
B

D

D

 

Figure 5.16 Common attributes of subtypes 

 
Solution: the common attribute(s) should be deleted from the subtypes and added to the supertype.  

A

C
B

D

 

Figure 5.17 Generalization in GTPPM 



 

 129

Based on Design Pattern 7, a supertype can be formally defined as a set of least 

common attributes of its subtypes:   

Supertype T ≡ { x: attribute; S: subtype of T | ∃x∀S(x ∈ S)} 

 

Step 6 identifies and extracts least common attributes of subtypes from the 

collected information constructs and add them to their supertype. The extraction process 

must start with the top-level supertype because the top-level supertype is a set of the most 

common attributes of all the subtypes. For example, after Step 5, ICs may look like the 

examples below. At this point, there should not be any entities in the 

decomposition/association relation and any semantically equivalent items, which should 

have been resolved in the previous step. 

 

piece*beam{piece_mark, length} 

piece*wall{piece_mark, length, wythe} 

piece*assembly*staircase{piece_mark, assm_mark, num_of_steps} 

piece*assembly*facade{piece_mark, assm_mark, window} 

 
First iteration: In the above example, PIECE is the top-level supertype. The most 

common attribute ‘piece_mark’ among the subtypes becomes an attribute of PIECE. 

PIECE and ‘piece_mark’ will be removed from the list. WALL, BEAM, ASSEMBLY will 

be marked as subtypes of PIECE.  

 

piece*beam{piece_mark, length} 

piece*wall{piece_mark, length, wythe} 

piece*assembly*staircase{piece_mark, assm_mark, num_of_steps} 

piece*assembly*facade{piece_mark, assm_mark, window} 
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The PIECE entity in EXPRESS can be defined as follows: 

 

ENTITY piece 

SUPERTYPE OF (beam, wall, assembly*staircase, assembly*facade); 

 piece_mark: id; 

END_ENTITY; 

beam wall assembly*staircase

piece_mark
length

piece_mark
length
wythe

piece_mark
assm_mark

num_of_steps

assembly*facade

piece_mark
assm_mark

window

piece

piece_mark
beam
wall

assembly*staircase
assembly*facade

 

Figure 5.18. The first iteration of specialization  

Second iteration: After removing PIECE from ICs in the first iteration, 

ASSEMBLY becomes the top-level supertype of STAIRCASE and FACADE. 

‘assm_mark’ is the common attribute between them. A new entity ASSEMBLY is created, 

and ASSEMBLY and assm_mark are deleted from the list.  

 

beam{length} 

wall{length, wythe} 

assembly*staircase{assm_mark, num_of_steps} 

assembly*facade{assm_mark, window} 
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At this step, PIECE and ASSEMBLY can be described in EXPRESS as follows. 

Since ASSEMBLY*STAIRCASE and ASSEMBLY*FAÇADE have been decomposed, 

the two entities should be removed from the subtype list of PIECE. And ASSEMBLY 

should be added as a new subtype. Figure 5.19 is an illustration of the second iteration.  

beam wall staircase

piece_mark
length

piece_mark
length
wythe

piece_mark
assm_mark

num_of_steps

facade

piece_mark
assm_mark

window

piece

piece_mark
beam
wall

assembly*staircase
assembly*facade

assembly

Assembly

assm_mark
staircase
facade

 

Figure 5.19. The second iteration of specialization 

ENTITY piece 

SUPERTYPE OF (beam, wall, assembly*staircase, assembly*façade, assembly); 

 piece_mark: id; 

END ENTITY; 

 

ENTITY assembly  

SUPERTYPE OF (staircase, facade); 

 assm_mark: id; 

END ENTITY; 
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The generalization process in LPM can be formally defined as a pseudo code and a 

design pattern as follows: 

  
DIM supertype as ENTITY 

DIM supertypes as SET_OF_SUPERTYPES 

DIM subtype as ENTITY 

DIM subtypes as SET_OF_SUBTYPES  

DIM attr as ATTRIBUTE 

DIM attrs as SET_OF_ATTRIBUTES 

DIM name as ENTITY_NAME 

 

SUB specialization 

DO WHILE exists(the_least_common_attrs) 

 attrs = get_common_attr(subtypes) 

 create_supertype(name)  

add_attr(attrs)  

 add_FK(supertypes) 

 delete_obsolete_FK(supertypes)  

delete_added_attrs(subtypes); 

LOOP 

END SUB 

5.12 STEP 7: RESOLVING CONFLICTS BETWEEN ATTRIBUTES, SUPERTYPES, 

AND SUBTYPES.  

Design Pattern 8 Conflicts between a subtype and a property 

Problem: An entity B may be defined as a property of another entity A in one information construct, 

but also as a subtype of the entity A in the other information construct.   
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Figure 5.20 A conflict between an attribute and a subtype 

Solution: An entity carries more information when it is defined as a subtype of the other entity than 

when it is defined as a property of the same entity because a subtype inherits attributes from its supertype. 

Thus, the entity should be defined as a subtype rather than as a property.  

 

  

Figure 5.21 A resolution for the subtype and attribute conflict 

If two additional information constructs in the specialization relation are added to 

the above example as shown in Figure 5.22, Entity C will be defined as a subtype of both 

Entities A and B, but Entity B will be also defined as a subtype of Entity A. Design Pattern 

9 deals with such cases.  

 

Figure 5.22 An additional IC 
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Design Pattern 9 A duplicate subtype relation 

Problem: An entity is defined as a subtype of another entity twice: once directly from its supertype, 

the second time indirectly through another supertype. 

 

Figure 5.23 A duplicate subtype relation 

Solution: Since all the attributes of a supertype will be inherited to a subtype through a hierarchical 

structure, it is redundant to define an inheritance relationship between a supertype and a subtype when the 

subtype is already linked to the supertype through a hierarchical structure. 

 

Figure 5.24 A resolution for a duplicate subtype relation 

5.13 STEP 8: LIMITATIONS OF GTPPM & REFINEMENT OF A MODEL 

Through steps 1 through 7, a syntactically sound EXPRESS model can be derived 

from collected information constructs. The following EXPRESS code is an example of 

automatically derived definition of exterior_pc_column through Steps 1 through 7: 

ENTITY exterior_pc_column 

SUBTYPE OF ( 

pc_column 
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); 

surface_treatment: surface_treatment; 

clearance: string; 

hardware_list: hardware_list; 

rebar: rebar; 

rebar_cage: rebar_cage; 

pocket: pocket; 

corbel: corbel; 

geometry_3d: geometry_3d; 

foundation_drawing: foundation_drawing; 

elevation_drawing: elevation_drawing; 

detail_drawing: detail_drawing; 

geometry_2d: geometry_2d; 

plan_drawing: plan_drawing; 

END_ENTITY; 

 

By no means, the automatically derived product model is complete. For example, 

the current PIS system does not define roles and cardinalities defined in the beginning. For 

example, let’s assume that the BOM (bill of material) entity in a final product model has an 

attribute piece_list, which is a list of pieces: 

ENTITY BOM; 

 piece_list: LIST [0:?] OF piece; 

END_ENTITY; 

 

Such semantics can be captured, but in a limited format using the current Product 

Information Specification (PIS) method: 

BOM{piece list;} 

 

And the automatically derived definition of BOM will be: 

ENTITY BOM; 

 piece list: piece_list; 
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END_ENTITY; 

 

Thus, the automatically derived definition of BOM will not include any cardinality 

and role information. Such information should be added manually afterwards. In addition 

to the cardinality and role definitions, other data modeling semantics that cannot be 

captured by GTPPM and should be added after the LPM phase at this point are as follows. 

The distinction between mandatory vs. optional relations has not been made. Also the 

RULE, WHERE, DERIVE, and UNIQUE clauses have not been added. A product modeler 

may even remove or add entities or restructure some of the relations in. Also, simple (data) 

types (e.g., REAL or NUMBER) have to be redefined from the current STRING type. 

Other user-defined attribute types may need to be defined. 

If a resultant product model is far from the expectation, the product modeler should 

re-examine the scope and activities defined in the RCM process models, the structure of 

the information menu, and information constructs defined within each activity.  
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CHAPTER 6    

IMPLEMENTATION 

6.1 AN ASSUMED MODELING PROCEDURE AND IMPLEMENTATION 

 

Figure 6.1 An assumed GTPPM modeling procedure 

GT PPM has been implemented as a MS Visio® add-on. The tool is designed to 

support several modeling approaches illustrated in Figure 6.1. This chapter describes the 

modeling approaches and GT PPM interfaces to support each step in detail. GTPPM is a 

collaborative work process between domain experts and product modeling experts 

(mediators). Possible roles of domain experts and product modeling experts in each step 

are also described.  
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6.2 THE REQUIREMENTS COLLECTION AND MODELING (RCM) PROCESS 

First, domain experts model a process without information such as examples shown 

in Figure 6.2. The GTPPM tool includes several functions to comply with the syntactic 

rules of process components defined in Sections 4.3 though 4.5. It can check disconnected 

flows, the direction (in/out) of flows, and the relations between high-level activities and 

their subsidiary detailed activities. It automatically generates identifiers for a pair of 

continue shapes and hyperlinks between them.  Feedback flows in Figure 6.2 create loops 

through dynamic information repository (i.e., “Production Facilities”) to other activities 

 

Figure 6.2. A part of a GT PPM model prepared by a precast concrete company  

In parallel or in advance, product modeling experts (mediators) prepare an 

information menu (IM) in an Excel® file Figure 6.3. An IM includes a list of main products 

(PD) and the definitions of entities. Each entity definition specifies its specialized products 

(SPs or subtypes), decomposed products (DPs) and modifier entities (MEs), modifier 
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attributes (MA), and synonyms. Since GTPPM aims to derive an EXPRESS model, the 

specialization and the instantiation relations and the decomposition and the association 

relations are not distinguished. The SUPERTYPE field on the far right side of Figure 6.3 

can be automatically filled using an IM (information menu) Macro. There are several other 

IM Macros developed to check the consistency of items defined in an information menu by 

checking misspelled entities and dangling entities (entities that are not associated with any 

other entities). 

 

Figure 6.3 Entity PIECE defined in an Information Menu (IM) 
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Figure 6.4. A GT PPM Information Menu Interface (the IC Editor) 

Figure 6.4 illustrates the IC Editor. In a large project that includes heterogeneous 

business practices and domain experts with various experiences, expert modelers can 

create one or two GT PPM models as pilot models by visiting companies and generate an 

information menu. Most standard terms of an industry can be captured in this preparation 

phase. When an information menu is ready, other domain experts can join a modeling 

effort. Domain experts should map all their VIIs to corresponding information constructs 

(ICs) (Figure 6.12). GT PPM reads in an information menu from an MS Excel® file in real-

time. Users can select, compose, and add information items (i.e., ICs) from the information 

menu to each activity. The left window of Figure 6.4 shows a hierarchical structure of 

tokens that represents aggregation, specialization, and classification (see Section 4.6). The 

right window shows ICs that are composed of tokens available from the left window.  
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While modeling a process, domain experts create a vernacular data dictionary 

(VDD). The vernacular data dictionary (VDD) includes information on information sets 

(Figure 6.5) and vernacular information items (VIIs) (Figure 6.6). It includes VII names, 

definitions, data type, examples, references, and synonyms.  

 

Figure 6.5 Information Sets defined in a Vernacular Data Dictionary (VDD) 

Figure 6.8 illustrates the VII/VDD editor. A VDD is stored in a separate Excel® 

file21 from an IM file. The VII name should be unique. If domain experts add a new item 

with the same name as an existing VII, it alerts users. The list of VIIs can get very long 

after a while. Domain experts can search for a term they defined by typing in part of the 

term. For example, if a domain expert types an unfinished word, e.g., “proj”, and executes 

“Search”, the VII editor search through VII names and synonyms and returns any terms 

with “proj” in their name and homonyms (Figure 6.8). Another core function of the VII 

editor is that, if domain experts want to update a term for some reasons (e.g., typos, a 

                                                 
21 VDDs and an IM are stored in separate Excel® files because a VDD is only of interest of a certain modeler (team), but 

not of interest of the whole modeler teams. Only the IM will be shared by different modelers (or teams) and VDDs will 
be kept by each modeler (team).  
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conflicting name), it updates not only the term in the VDD, but also all the terms with the 

same name in the model (Figure 6.7).  

 

Figure 6.6 Vernacular information items (VIIs) defined in a VDD 

 

Figure 6.7 The VII Updater 
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Figure 6.8 The Vernacular Information Item (VII) (or VDD) editor 

 

Figure 6.9. A part of a GT PPM model with information sets 

Domain experts can define and add information sets and subsumed VIIs where they 

are necessary prior to defining information items required by each activity. DAILY 

SCHEDULE and SHIPPING SCHEDULE in Figure 6.11 are examples of information sets. 

Specific descriptions of new VIIs must be added to a vernacular data dictionary (VDD). 
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Information sets can be specified using the Information Set Editor (Figure 6.10). Users can 

add, remove, and update information items of information sets. Tags, which show a list of 

information sets in a flow, automatically appear when information sets are defined. Once 

information sets are defined, they can be used over and over.  

After adding information sets, domain experts fill in input and output information 

of each activity, checking the consistency of a model using information sets as targets for 

information generation using the Activity Information Editor (Figure 6.11). The Activity 

Information Editor lists input and output information of an activity (see Section 4.8 for 

details).  Inconsistent information items appear highlighted in the unused-, unavailable- or 

the not-provided-information lists. 

 

Figure 6.10 The Information Set Editor 
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Figure 6.11. The GT PPM Activity Information Editor 

If a project is simple in terms of the size of information and domain experts are 

comfortable with using information constructs (ICs), the VII modeling process can be 

skipped and information items can be specified using ICs from the beginning. However, if 

information items are defined in VIIs, the VIIs should be mapped to corresponding ICs 

using the Information Item Mapper illustrated in Figure 6.12. Currently one VII can be 

mapped to one or to many ICs. Sometimes one vernacular information item includes 

several pieces of information. But, in a non-computerized format, the subsidiary 

information items are not explicitly defined as individual information items. In such cases, 

the VII with several pieces of information can be mapped to several ICs. Or the VII can be 

decomposed into several VIIs. And each VII can be mapped to one IC. Conversely several 

VIIs should be mapped to one IC when VIIs are synonyms.  
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The structure and the contents of an information menu should be revised if ICs, 

which are meant to correspond with VIIs, cannot be composed from the information menu. 

The upper right corner window of the Information Item Mapper (Figure 6.12) shows 

mapped pairs of information items. The mapped VIIs can be automatically replaced by ICs. 

If there are any VIIs that are not mapped to ICs, a system automatically checks and lists 

them as ‘unmapped information items’ in the replacement procedure. 

The Activity Information Editor (Figure 6.11) has the VII mode and the IC mode. 

Domain experts can switch freely from one information item mode to another. The 

consistency checking module works in both the VII mode and the IC mode. Domain 

experts fill in missing information or revise a model using the three methods described in 

Section 4.8.5 until a model becomes consistent.  

 

Figure 6.12. The GT PPM Information Mapper 
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GT PPM will automatically translate information items from one mode to another 

based on the mapping relations defined in the Information Item Mapper (Figure 6.12). The 

mapping rules are: 

• From VIIs to ICs: If there are any newly defined VIIs, they will be translated as 

unmapped user-defined items. The unmapped VIIs can be mapped to ICs at this 

stage or at the next stage using the Information Mapper (Figure 6.12).  

• Mediators collect GT PPM models from each domain expert. If there are still 

any unmapped VIIs, they should be mapped ICs at this stage by mediators in 

cooperation with domain experts.  

• From ICs to VIIs: If there are no corresponding VIIs to ICs in a mapping table 

(Figure 6.12), the VIIs will be automatically named using corresponding ICs. 

Users can modify the VII names later. 

6.3 THE LOGICAL PRODUCT MODELING (LPM) PROCESS 

When the RCM process is completed, mediators extract ICs from collected RCM 

models. GT PPM automatically exports ICs of each activity to a new Excel® file (Figure 

6.13). The extracted data can be further analyzed for various analyses. 
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Figure 6.13. Exported Information Items 

Even though the targeted data modeling language is EXPRESS, since many 

commercial database management systems (DBMS) are relational database management 

systems, the GTPPM tool also supports automated SQL code generation. SQL code can be 

generated by first creating EXPRESS code and then converting the EXPRRESS code to an 

SQL code using the GT EXPRESS2SQL (Figure 6.15) built on top of the CIS2SQL® 

schema converter. The CIS2SQL® schema converter is developed by Seok-Joon You at 

Georgia Tech (You, Yang, and Eastman 2004).  

In EXPRESS, the specialization relation can be either ONEOF or ANDOR. 

Currently GTPPM is not allowing the ANDOR relation in order to reduce the complexity 

of a model. Each number on the command button in the EXPRESS Code Generator 

corresponds to each step of LPM (Figure 6.14).  
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Figure 6.14 The EXPRESS Code Generator 

 

Figure 6.15 GT EXPRESS2SQL 
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CHAPTER 7  

APPLICATION & EVALUATION 

7.1 OVERVIEW 

This chapter reports on the results of application and evaluation of GTPPM. The 

GTPPM has been deployed in the Precast Concrete Software Consortium (PCSC) project 

for several times for the last three years, and modified based on the results. The PCSC is a 

consortium of major precast concrete producers in Canada and the US22 formed in 2001. 

The goals are to fully automate and integrate engineering, production, and construction 

operations, to gain productivity, and ultimately to increase the market share. As the means 

to achieve the goals, the PCSC chose to develop an intelligent 3D parametric CAD system 

and a Precast Concrete Product Model (PCPM) to enable data exchange between diverse 

systems used during the sales, design, engineering, production, and construction operations 

processes. 

The following sections describe several GTPPM efforts. The PCSC member 

companies modeled their own management and engineering processes using GTPPM. As a 

                                                 
22 Initially ITISA, a Mexican precast producer, was also a member of the PCSC. However, some of members have 

withdrawn and new members have joined the PCSC. The initial 23 member companies were Blakeslee Prestress, 
Cheyenne Concrete Co., Concrete Impression of Florida, Inc., Concrete Technology Inc., Con-Force Structures Ltd., 
Coreslab International Inc., Finfrock, High Concrete Structures, ITISA, IPC Inc., Lafarge Canada Inc., Meridian 
Precast & Granite, Metromont Prestress Company, New Enterprise Stone & Lime Co, Inc., Oldcaste Precast Inc., Pre-
Con Inc., Rinker Precast, Rocky Mountain Prestress, Strescon Ltd., the Shockey Precast Group, the Spancrete Group 
Inc., Unistress Corp., and Wells Concrete Products Company. The current 15 member companies (as of March 29, 
2004) are Blakeslee Prestress, Concrete Technology Inc., Con-Force Structures Ltd., Coreslab International Inc., High 
Concrete Structures Inc., IPC Inc., Lafarge Canada/Precon, Metromont Prestress Company, New Enterprise Stone & 
Lime Co. Inc., the Shockey Precast Group, Strescon Ltd., Tindall Corp., Unistress Corp., and Wells Concrete Products 
Company. The Georgia Tech team led by Prof. Charles Eastman and consisting of Rafael Sacks and Ghang Lee are 
technical advisors of the PCSC. 
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result, fourteen GTPPM models were developed. Among the fourteen GTPPM models, 

three models were elaborated based on on-site interviews.  Information constructs collected 

from the three elaborated models were integrated and normalized into a single integrated 

product model. The integrated product model was compared to the PCC-IFC model, the 

IFC model extension for precast concrete (Karstila et al. 2002; Karstila and Suikka 2001; 

VTT 2004).   

7.2 PROCESS MODEL PERSPECTIVES ON MANAGEMENT AND ENGINEERING 

PROCEDURES23 

 

complete 
project 

abandon 
project 

Acquire Project Do Detail Design Fabricate 

Check Quality 
Assurance 

Prepare Molds Check Quality 
No.2 

Move to Yard 

Schedule Engr. 
Staff 

Material Cost 
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Labor Cost 
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Prepare Project 
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Billing for Project 

Deliver to Site Erect Structure 

Yard Layout 
Planning 

Prepare Reinf. & 
Hardware 

Prepare/track bill 
of Material Prepare Batch 

Instructions 

 

Figure 7.1 Generic top-level process model 

From June 2001 to November 2001, GTPPM was deployed by fourteen PCSC 

members in analyzing the sales, design, engineering, and production processes of the 

precast concrete industry five years in the future. The goal was to understand and capture 

requirements for a next-generation precast concrete CAD system. The results were 

                                                 
23  This section is a summary/excerpt from (Sacks, Eastman, and Lee 2004) with modification. 
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incorporated into a Request for Proposal (RFP) to CAD vendors. Typical processes began 

with a standard contract bid followed by the full range of precast concrete activities: cost 

estimating, bidding, contract award, assembly layout design, structural analysis, detailed 

piece design, production, handling, shipping, erection, scheduling and project control. The 

modelers’ view was that of precast designers and producers, which defines the scope of the 

models. Client activities such as conceptual programming, overall project costing, and life 

cycle issues such as design for demolition and recycling, do not appear in any of them. 

The collected models were categorized into three types: design build models, 

subcontract models, and design only models. Three models described a design-build 

process, and so covered the conceptual design phase in greater detail than the more 

traditional bidding process models. Two models were prepared by precast design 

consultants and so cover the design phase alone. Each model underwent a number of 

cycles of review by the research team and improvement by their authors before being 

approved for inclusion in the analysis and further development work. One model was 

rejected due to lack of detail, leaving thirteen models to work with.  

All of the models use the generic top-level model as their starting point. Although 

modelers added additional intermediate layers of aggregate activities, every detailed 

activity can be traced to one common top-level activity. Using this as a starting point for 

analysis across companies, a list of middle-level activity groups was compiled for each 

top-level activity.  

The degree of information dependence between activities was determined by the 

ratio of the number of information flow (nF) to the number of detailed activities (nA). Table 

7.1 shows the degree of information dependence between activities by three model types.  
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The analysis results indicated that the degree of dependence between activities was 

relatively unvarying by model type. But, since the number of samples was small, we were 

reluctant to generalize the finding.    

Table 7.1 The degree of information dependence between activities by model type 

Model Type 
(1) 

Feature* 
(2) 

Average 
(3) 

Largest 
(4) 

  nA 269 323 

  nF 476 572 

Design Build Models 

    nF / nA     1.77     1.77 

  nA 154 275 

  nF 232 520 

Subcontract Models 

    nF / nA     1.50     1.89 

  nA 57 81 

  nF 89 130 

Design Only 

    nF / nA     1.56     1.60 

*: nA = number of activities; and nF = number of information flows 

 

While analyzing the collected information constructs, inconsistency in information 

flows was found. This motivated the development of a more rigorous method to validate 

the consistency of information flow as described in Section 4.8.2.  

7.3 PRODUCT MODELS FOR MANAGING ESTIMATION, SCHEDULING, AND 

SHIPPING INFORMATION 

In December 2002, GTPPM was deployed for the second time in a project to 

capture the current management processes (i.e., estimation, bidding, production, and 

shipping) of two precast producers, High Concrete (Denver, PA) and CTI (Springboro, 

OH) after major modification. Unlike the first attempt, the models were generated by the 

author based on the interviews with the manager-level personnel of each company (Figure 

7.2).  
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Figure 7.2 A round table discussion at High Concrete before one-on-one interviews 

Later, the generated models were reviewed again by domain experts. The two 

companies were chosen because they were two of a few companies, which had a database 

management system for managing estimation, production, and shipping information. The 

goals were to capture their current processes and information flow as they were, and to 

compare automatically generated (preliminary) data models and their actual database 

schemas. 
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Figure 7.3 Acquire Project 
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First, process models were generated with domain experts at each department. 

Figure 7.3 illustrates a process of “Acquire Project” with information sets required by a 

project acquisition process. During this process, takeoff (i.e., the quantity of products and 

subcomponents), rough estimation and production schedule, and bidding information were 

generated.  

Then, information sets were defined based on standard company reports required 

by the end of certain activities (e.g., job summary sheet, turnover meeting check list, piece 

tag, and packet slip). The information sets were defined with vernacular information items 

(VIIs). Examples of specified information sets and their items are as follows:  

PROJECT INFORMATION SHEET {;project name;location;report 

date;purchaser;address;city_state_zip;project size;job#;contract 

value;taxes;status;type;sold as;detailed project requirements;Sales Rep;estimator;} 

 

PIECE DRAWING {;piece mark;piece qty;piece volume;piece weight;hardware/reinforcing 

item;hardware/reinforcing quantity;mix #;revision date;revision by;revision 

no;drawn date;drawn by;dwg ckd;eng chk;dwg ckd date;eng ckd date;project 

name;drawing nbr;job#;dimension;piece shape;material pattern;note;received 

date;issued date;concrete strength;dwg destroy date;rebar schedule;} 

 

PACKING SLIP {;address;city_state_zip;job#;truck number;trailer number;truck 

driver;payment method;po#;piece mark;piece qty;piece description;comments;contents 

packaged by;contents checked by;contents received by;delivered date;} 

 

PIECE TAG {;bar code;piece weight;piece mark;} 

 

BOM FOR PIECE {;project name;job#;project phase;piece mark;drawing nbr;note;report 

date;bom created by;bom checked by;revision date;revision no;piece finish;piece 

qty;piece description;} 

 

SCHEDULE{;Contract Date;engieering date;review by architect;production end 

date;erection start date;erection end date;} 
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JOB COST REPORT {;project name;location;project type;job#;estimate no;product type 

id;product element id;operation;product size;product u/m;product qty;operation 

cost;total operation cost;} 

 

TAKEOFF LIST {;project name;location;job#;product type id;product element 

id;product name;product qty;product size;product u/m;estimator;estimate no;area 

code;distance between the project site and the plant;piece mark;piece depth;piece 

width;piece unit length;piece weight;load name;total loads;total # of pieces;piece 

qty;} 

 

JOB SUMMARY SHEET {;project name;location;estimate no;rev no;job#;product 

name;product type id;product qty;product size;product u/m;product $/unit;product 

amount;total production cost;total yard costs;total shipping cost;total erection 

cost;taxes;total markup;gross margin without markup;gross margin;total bid 

price;scope of work;} 

 

Some other examples of information sets without detailed items include:  

 

PROJECT DIRECTORY 

SITE LOCATION 

FINANCIAL INFORMATION 

ENGINEERING/DRAFTING REQUIREMENTS 

MATERIALS REQUIREMENTS 

MIX/FINISH/SAMPLE INFORMATION 

FIELD RELATED SERVICES 

BOM FOR HARDWARE 

PROJECT REVIEW CRITERIA 

ESTIMATE DETAIL 

ERECTION DRAWING 

STRAND SUMMARY 

SPECIAL PRODUCTION REQUIREMENTS 

DETAILED POUR SCHEDULE 

DAILY CONCRETE POUR SCHEDULE 

TURNOVER MEETING CHECK LIST 
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DAILY PRODUCTION SCHEDULE 

4 WEEK SCHEDULE 

PRODUCTION SCHEDULE 

FORM DRAWING SCHEDULE 

PRE-TENSION REPORT 

 

The specified VIIs were mapped to ICs using the Information Item Mapper (Figure 

7.4). VIIs and ICs were generally mapped one to one. However, several VIIs and ICs were 

mapped many to many. Some VIIs, which were synonyms, were mapped to an IC. Some 

VIIs, which were defined as one information item, but actually included several pieces of 

information, were mapped to several ICs. An example of the latter is galvanized embed order 

status.  In order to keep track of the order status of a product or a part in terms of a data 

management, we need to specifically know which item has been ordered, what is the 

purchase order identifier, and so on. However, when such information is maintained in a 

paper format, it is recorded informally and freely as one long note. Based on the data 

recorded in galvanized embed order status, the galvanized embed order status was mapped to 

several ICs as follows: 

 

PIECE+MATERIAL*HARDWARE{;type;}; 

PIECE+MATERIAL*HARDWARE{;id;}; 

PIECE+MATERIAL*HARDWARE+PURCHASE_ORDER{;status;}; 

PIECE+MATERIAL*HARDWARE+PURCHASE_ORDER{;id;} 

 

Some VIIs had a different meaning than what they seemed to mean. A VII rebar 

schedule is a good example. rebar schedule is not a type of regular time-based schedule, but 

is a common term in AEC that denotes a 2D abstract representation of bent rebar. In the 

mapping process, some of ambiguous VIIs such as rebar schedule were mapped to ICs 
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based on the definitions, data types, examples, references, and synonyms of the VIIs (the 

right side of Figure 7.4).  

The specified VIIs in information sets were automatically converted to ICs 

according to the mapped relations between VIIs and ICs. Input and output information of 

activities were specified using information sets as a target of information production. The 

consistency of information flow was checked. As a result of these two modeling processes, 

135 and 231 distinctive information constructs were collected respectively from the High 

and the CTI models.  

 

Figure 7.4 Mapping ambiguous terms based on the descriptions 

In the beginning, there were some concerns about the possibility of the GTPPM 

modeling process being too tedious and time-consuming because it requires very detailed 

process and information flow modeling. It was important to measure the modeling hours 
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because GTPPM would not be an appropriate substitute for the current modeling method 

and process if it takes relatively too much time.  

Table 7.2 The statistics of the High model 

 Modeling Hours Statistics  

Process modeling   3 days (24 hours) 
11/25-27, 2002 

Internal Detail: 98 
External Detail: 13 
Internal Highlevel: 9 
External Highlevel: 13 
Information Flow: 210 
Feedback Flow: 14 
Material Flow: 70 
Dynamic Repository: 10 
Static Information Source: 6 
Continue: 84 

VIIs modeling 12.5 hours Information Sets: 24 
VDDs: 192 (non-distinctive) 

Mapping VIIs to ICs, Revision of an IM 7.5 hours ICs: 135 (distinctive) 

Total 44 hours  

Table 7.3 The statistics of the CTI model 

 Modeling Hours Statistics  

Process modeling   3 days (24 hours) 
12/18-20, 2002 

Internal Detail: 96 
External Detail: 29 
Internal Highlevel: 7 
External Highlevel: 29 
Information Flow: 179 
Feedback Flow: 9 
Material Flow: 64 
Dynamic Repository: 14 
Static Information Source: 10 
Continue: 42 

VIIs modeling 3 hours Information Sets: 6 
VDDs: 186 (non-distinctive) 

Mapping VIIs to ICs 2 hours ICs: 231 (distinctive) 

Total 29 hours  

 

The modeling hours for the High and CTI models were recorded. Table 7.2 and 

Table 7.3 show statistical data of the High and the CTI models. The whole RCM modeling 

process took about 37 hours in average. 97 internal detail activities, 195 information flows, 

and 15 information sets were defined in average. There was no significant difference 
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between two models in terms of the number of process components or the number of 

information constructs. 37-hour work is about 5-day (a week) work. It seemed pretty 

reasonable if one could develop a product model within a week or even a month 

considering some preparation and revision time before and after GTPPM modeling.   

The automatically collected High’s and CTI’s information constructs were 

normalized into two separate preliminary product models in EXPRESS. In order to 

compare the results with the data structures of High’s current database management system, 

the information constructs collected from High’s model were also normalized into a SQL 

schema. In this process, a new SQL generation module was developed and used to show 

referential relationships between TABLEs because the EXPRESS2SQL module does not 

generate referential relations between TABLEs.  

 

Figure 7.5 A SQL table structure of the High model with referential relations 

Figure 7.5 graphically shows a SQL table structure of the High model with 

referential relations. This diagram was sent to the information system (IS) manager of 
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High with SQL code for review. The author visited High for the second time to interview 

High’s IS manager.   

Currently High’s ERP system is a federated database management system, which is 

composed of several commercial and custom-built database management systems. High 

was using an MS Access®-based estimation system, two Oracle®-based production 

scheduling, shipping, inventory, purchase management systems, a legacy 

accounting/costing system, an engineering/drawing management system, and a human 

resource/payroll system. However, only limited sets of information can be exchanged 

between different database management systems today. Currently High is developing a 

central database that can integrate the dispersed databases and also that can acquire 

geometric information and bills of materials (BOMs) directly from an advanced 3D CAD 

system.  

A one-to-one comparison between the automatically generated data model and 

High’s data schemas was not possible for several reasons. First, the automatically 

generated model was designed as one large schema, but High’s system was a federated 

databases. Second, the automatically generated data model was based on an object-oriented 

modeling approach (i.e., EXPRESS) whereas High’s systems were relational databases 

using SQL. Conceptually SQL TABLEs are correspondent to Entities in EXPRESS. 

However, because of lack of the inheritance mechanism in relational database and several 

practical implementational reasons, data modelers in field (i.e., IT managers) tend to put as 

many number of attributes in one TABLE as possible rather than to break down an entity 

into an atomic level (i.e., a semantically indecomposable level). It is to achieve the 

efficiency in table management and also to reduce the complexity of the JOIN operation in 
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query. Third, the terms used to define TABLEs and attributes in High’s systems were 

different from those used to define entities and attributes in the automatically generated 

schema. Thus, it was very difficult to automatically or quantitatively compare the two 

schemas. The evaluation had to rely on qualitative and subjective evaluation of the author 

and the IS manager at High.  

The automatically generated SQL model included thirty-nine TABLEs. Each 

TABLE and its attributes were reviewed. After reviewing the TABLEs, High’s IS manager 

and the author categorized TABLEs into three groups:  

1) Over-defined: TABLEs that include more information than High’s current data 

models  

2) Adequate: TABLEs that define information about the same level as the current 

High’s data models   

3) Under-defined: TABLEs that lack necessary information 

In overall, the automatically generated product model included more information 

than what was maintained by the current database management systems. Currently only 

little geometry, shipping, loading, constraints, and engineering information is managed by 

database management systems. Also (concrete) mold information is not maintained 

because mold design varies project by project and they thought that it was unnecessary to 

keep track of mold information. The automatically generated model included quite a few 

“over-defined” information items because the initial process model was developed based 

on an assumption that High would adopt a new advanced 3D modeling system, which 

would be equipped with many automated engineering and constraint checking functions.  
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Table 7.4 Evaluation of the High Model 

Over-defined Adequate Under-defined 

ASSEMBLY 
BIDDING 
BOM 
BUILDING_CODE 
CONSTRAINTS 
DIMENSTIONS 
ENGINEERING 
EQUIPMENT 
ERECTION 
GEOMETRY (2D, 3D) 
MOLD 
QC_CHECK 
SHIPPING 
SURFACE_TREATMENT 
TRUCK_LOADS 

DESIGN REQUIREMENTS 
DOCUMENTAION 
DRAWING 
ERECTION_DRAWING 
ESTIMATION 
HARDWARE 
HARDWARE_LIST 
LABOR 
MATERIAL 
PIECE 
PIECE_DRAWING 
PIECE_LIST 
PRODUCTION_AND_HANDLING 
POUR 
PRESTRESSING 
PROJECT 
REINFORCEMENT  
SCHEDULE 
SITE 

BATCH (mix recipe) 
CONCRETE (mix recipe) 
 
 

 

On the other hand, the automatically generated model lacked the batch and concrete 

information, especially the concrete mix design (a.k.a. “mix recipe”) information. In the 

actual ERP system, the concrete mix design information was managed through a couple of 

large TABLEs while the automatically generated model defined concrete mix information 

simply as mix_specification.  

ENTITY concrete 

SUBTYPE OF ( 

material 

); 

mix_specification: string; 

strength: string; 

END_ENTITY; 

 

It is because the mix design information is inputted directly from the field (i.e., a 

batch plant) and the domain expert and the author, who modeled the process and 
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information flow, had not had a chance to interview anybody related to the concrete mix 

design. As a result, the concrete mix design information was only captured as a simplistic 

form. This reconfirmed the fact that GTPPM can derive a product model only from the 

specified scope and information requirements. 

High’s IS manager evaluated that the automatically generated product model 

generally reflected High’s information requirements well. According to the comparison 

results, the RCM models and the LPM process have been modified. Currently GTPPM can 

selectively collect information items that are actually stored and managed by a database 

management system by using the Dynamic Repository shape. 

7.4 PRODUCT MODELS FOR DESIGNING/DRAFTING 

GTPPM was deployed for the third time to capture a precast concrete 

“designing/drafting” process. Engineering and designing/drafting processes are not easy to 

capture because of the domain expertise included in them and also because of the 

complexity of the processes. Even for domain experts with more than 10 years of 

experience, it is still not easy to describe engineering and modeling processes in a 

systematic way unless they sit down and spend some time on thinking about them. 

Fortunately, Unistress, a precast producer in Pittsfield, MA, provided detailed guidelines 

for designing precast concrete pieces. Based on the guidelines, the designing/drafting 

processes for double tees (Figure 7.6) and exterior columns were modeled.  

Unlike the previous modeling processes, information items of each activity were 

directly defined without using information sets. They were first defined as vernacular 

information items (VIIs) and then mapped to information constructs (ICs) later. 

 



 

 165

 

Figure 7.6 A stack of double tees 

The major difference between a business management process and a 

designing/drafting process in terms of information flow is that information flow in the 

designing/drafting process is accumulative: i.e., a model of a precast concrete structure 

behaves as a data repository. As soon as a designer adds one shape or texts to a precast 

concrete model or to a drawing, they represent certain information. But such design 

information does not only affect only the next activities, but also many other activities that 

appear later in the process. Thus, a model of a precast concrete piece in this case study was 

represented as a dynamic repository as shown in Figure 7.7.  

 

Figure 7.7 A part of a double tee modeling process 
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Even though “Drawings from Clients” cannot be changed by precast concrete 

designers, they are also represented as a dynamic repository in Figure 7.7 because they can 

updated by clients many times during a project.  Figure 7.8 illustrates a process of 

receiving drawings from clients.  

 

Figure 7.8 Drawings from clients 

Table 7.5 The difference in the PIECE definitions 

The High model The Unistress model 

ENTITY piece; 

estimation: estimation; 

piece_drawing: piece_drawing; 

material: material; 

mold: mold; 

reinforcement: reinforcement; 

geometry: geometry; 

piece_mark: string; 

product_unit_measurement: string; 

product_size: string; 

product_amount: string; 

product_name: string; 

product_code: string; 

label: string; 

surface_treatment:  

hardware_list: hardware_list; 

production_and_handling:  

shipping: shipping; 

END_ENTITY; 

ENTITY piece 

SUPERTYPE OF (ONEOF( 

spandrel, 

pc_column, 

floor_piece) 

); 

piece_mark: string; 

reinforcement: reinforcement; 

blockout: blockout; 

hardware_list: hardware_list; 

connection: connection; 

location_details: location_details; 

production_and_handling:  

drawing: drawing; 

END_ENTITY; 

 

 

Another difference between the previous High and CTI models and the Unistress 

model is that the Unistress model includes specific types of products. For example, Table 

7.5 shows the definitions of the piece entity, a main product of the precast concrete 
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industry, in the High and the Unistress models. Since the High model focuses on the 

management process, types of pieces are defined by generic information such as product 

name or piece_mark whereas, in the Unistress designing/drafting model, types of pieces are 

defined specifically as spandrel, pc_column, or as floor_piece. It is because, in order to design 

a piece, designers need to know specifically which type of piece is connected to which type 

of piece. By the same reason, even though we only focused on the processes of 

designing/drafting double tees, the definitions of adjacent pieces and connections, whose 

information is required to design a double tee, were also captured in the derived product 

model. (See Figure 7.11 in the next section for an EXPRESS-G diagram of the expanded 

piece and connection definitions.)   

Table 7.6 The statistics of the Unistress model 

 Modeling Hours Statistics 

Process and VIIs modeling 
for a double tee modeling 
process   

6 hours Internal Detail: 55 
External Detail: 7 
Internal Highlevel: 4 
External Highlevel: 7 
Information Flow: 160 
Feedback Flow: 3 
Material Flow: 0 
Dynamic Repository: 21 
Static Information Source: 2 
Continue: 18 

Process and VIIs modeling 
for a column modeling 
process 

2 hours Information Set: 0 

Mapping VIIs to ICs  2 hours IC: 85 (distinctive) 

Total 10 hours  

 

The Unistress model was about half size of previous models in terms of both the 

number of process components and the number of distinctive information items because it 

only dealt with a small portion of the design and engineering process. It took 10 hours to 
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model the Unistress model. The Unistress model included 73 activities, 163 flows, and 85 

information constructs. The automatically generated product model included 58 entities.  

7.5 THE INTEGRATION AND EVALUATION OF AUTOMATICALLY GENERATED 

PRODUCT MODELS 

Information constructs collected from three models were integrated as one model 

through the LPM process. The integrated model included 129 entities and modeling of the 

three companies’ processes took 73 hours in total. For readers’ reference, CIS/2 LPM 6 has 

731 entities and PCC-IFC Version 0.9 has 413 entities. The automatically generated 

integrated models are provided in Appendix G. 

The syntax of automatically generated integrated product models has been 

validated using the syntax checkers embedded in a commercial tool EXPRESS Data 

Management (EDM®) Supervisor Version 4.5 (Figure 7.9) and a shareware Expresso 

Version 3.1.4. The automatically generated schemas could be successfully implemented as 

physical data models both on MS SQL Server 2000® and EDM® as they were without 

further refinement and modification.  

In the integrated model, we could observe several problems. Figure 7.10 is a 

hierarchy (called, an entity graph in Expresso) of MATERIAL generated by the Expresso Entity 

Grapher. The entity graph shows a specialization hierarchy of entities. Even though we 

were extremely careful to avoid the ‘nym’ issues, we can observe from Figure 7.10  that 

reinforcement in the model was used in two meaning: reinforcement as an activity and also 

as a material (object). It is because the information menu was initially defined violating the 

‘nym’ principle. This problem was fixed later.   
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Figure 7.9 EXPRESS code validation by EDM® 

 

Figure 7.10 A hierarchy of MATERIAL generated by the Expresso Entity Grapher 

On the other hand, the level of detail of the automatically derived model is 

generally satisfactory. The model defined information at the level of detail that is required 

for the targeted purposes: i.e., managing and designing pieces. Figure 7.11 illustrates an 



 

 170

EXPRESS-G model of the integrated piece and connection definitions from the High, CTI, 

and Unistress models. dt in the model represents the double tee entity. The direct 

association relations between dt and two connection types dap and chord in Figure 7.11 can 

be refined by the WHERE clauses in the manual modification process.  

dt

floor_piece

piece

1

spandrel

xx_type 

STRING

pc_column

exterior_pc_column

clearance 

STRING

pocket 

pocket

connection

1

cip_haunch

tieback
id 

STRING

corbel

chord

dap

requirement 
STRING

spacing 
STRING

xx_type 
STRING

id 

STRINGcorbel 

piece_mark 
STRING

product_unit_measurement 
STRING

product_size 
STRING

product_amount 
STRING

product_name 
STRING

product_code 
STRING

label 
STRING

mobilization 
STRING

connection 

chord 

dap 
stem_spacing 

STRING

 

Figure 7.11 Automatically generated PIECE and CONNECTION definitions 

Figure 7.12 shows several other examples of entity hierarchies in the integrated 

model. 
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Figure 7.12 Several entity graphs of entities in the integrated model 

A good benchmark of the integrated model might be the PCC-IFC model, a precast 

concrete extension to an existing IFC model. As described earlier, IFC models are built 

based on a conceptually modeling approach. As a result, they have a weak connection with 

real use cases and are defined at a relatively high level. For example, Figure 7.13 shows an 

entity graph of IFC Building Elements. The IFC entities that are corresponding to spandrels, 

columns, and double tees in the integrated model (Figure 7.11) are ifcbeam, ifccolumn, and 

ifcslab in (Figure 7.13).  

 

Figure 7.13 An entity graph of IFC Building Elements 
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Figure 7.14 is a partial EXPRESS-G model of these three IFC building elements. 

As shown in Figure 7.14 and the following EXPRESS code, the PCC-IFC model only 

defines the object names and do not have any attribute. It assumes that all the attributes 

will be inherited from supertypes. 

ifcslabtypeenum

(ABS)
ifcbuildingelement

1

ifcbeam ifccolumn*ifcslab

predefinedtype 

 

Figure 7.14 A partial EXPRES-G model of IFC Building Elements 

ENTITY IfcBuildingElement 

    ABSTRACT SUPERTYPE OF (ONEOF( 

      IfcBuildingElementProxy 

     ,IfcBeam 

     ,IfcColumn 

     ,IfcCovering 

     ,IfcCurtainWall 

     ,IfcDoor 

     ,IfcRailing 

     ,IfcRamp 

     ,IfcRampFlight 

     ,IfcRoof 

     ,IfcSlab 

     ,IfcStair 

     ,IfcStairFlight 

     ,IfcWall 
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     ,IfcWindow 

-- Additional subtypes defined by ST-3 

     ,IfcBuildingElementAssembly 

     ,IfcFooting 

     ,IfcPile 

    )) 

    SUBTYPE OF(IfcElement); 

    INVERSE 

      ProvidesBoundaries : SET OF IfcRelSpaceBoundary FOR RelatedBuildingElement; 

      HasOpenings        : SET OF IfcRelVoidsElement FOR RelatingBuildingElement; 

      FillsVoids         : SET [0:1] OF IfcRelFillsElement FOR 

RelatedBuildingElement; 

  END_ENTITY; 

 

ENTITY IfcColumn 

    SUBTYPE OF(IfcBuildingElement); 

END_ENTITY; 

 

ENTITY IfcBeam 

    SUBTYPE OF(IfcBuildingElement); 

END_ENTITY; 

 

ENTITY IfcSlab 

    SUBTYPE OF(IfcBuildingElement); 

      PredefinedType : IfcSlabTypeEnum; 

    WHERE 

      WR2 : (PredefinedType <> IfcSlabTypeEnum.USERDEFINED) OR 

            ((PredefinedType = IfcSlabTypeEnum.USERDEFINED) AND 

EXISTS(SELF\IfcObject.ObjectType)); 

END_ENTITY; 

 

TYPE IfcSlabTypeEnum = ENUMERATION OF 

    (FLOOR, 

     ROOF, 

     LANDING, 

     USERDEFINED, 
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     NOTDEFINED); 

END_TYPE; 

 

Since the IFC model is still growing, it will not be valid to argue the goodness or 

the badness of the model based on its level of details. And the intention of the comparison 

is not to judge the goodness of the model. This comparison shows the level of details that 

GTPPM can capture and the possibility of GTPPM to capture a more practical and realistic 

set of data, which is sensitive to its use cases. 
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CHAPTER 8    

Conclusion 

Product modeling is not art that depends only on intuition and subjectivity, but 

science that depends on logical thinking and explicit procedures with clear objectives that 

can be tested and improved upon. However, existing requirements collection methods of 

product modeling rely solely on human review and suffer from a logical gap between their 

Application Activity Model (AAM) and Application Requirement Model (ARM). The 

existing methods have more significant problems when applied to large and heterogeneous 

business environments.  Any review process will get slower and collected information will 

get more difficult to check because the number of information items will grow large. There 

have been several research and development efforts to overcome these drawbacks, but 

none provides any formal method and procedure to elicit and validate information items of 

a domain and to (semi-)automatically derive a product model from collected information 

requirements.  

The author proposed a formal Requirements Collection and Modeling method 

(RCM) and Logical Product Modeling (LPM). RCM enables modeling and domain experts 

to capture the contents, scope, granularity, and semantics of information used in the 

activities of a process. LPM provides the logic of integrating and normalizing information 

constructs collected from RCM models into a preliminary product model.  
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Figure 8.1. RCM Notation 

The characteristics of RCM are that it 1) is information-specific so that it can 

capture the information items used in the activities making up the process; 2) guarantees 

the completeness of the product model data in relation to the process models defining the 

UoD; 3) provides rigorous syntax and checking methods that can help modelers maintain 

consistency (i.e., logical coherence) in their models; 4) allows modelers to express 

heterogeneous business environments how each company deploys and uses information in 

its business process. (The goal of the requirements collection method is to collect and 

integrate information items within an industry-wide product model. However, this does not 

necessarily require the definition of a unified process model); and 5) supports a step-by-

step modeling procedure that can guide domain and modeling experts to elicit 

requirements and information and to transform them into a process and information-flow 

model in a step-by-step manner.  More generally, by making the process explicit, the 

results from each step can be analyzed and criteria for success of each of the steps 

developed, allowing a science of process-to-product modeling to be developed.  

By allowing modelers to specify information in a process (in the context of its use) 

step-by-step and providing a logical and dynamic consistency checking method, RCM 

helps modelers to capture complete and realistic information.  
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LPM defines nine design patterns to automatically integrate and normalize 

information constructs. It decomposes, generalizes, and restructures a set of information 

constructs into a preliminary product data model. We expect that the number of these 

design patterns will grow in the future similar to the normal forms in database.  

However, the GTPPM method is by no means complete. An automatically 

generated product model will not include roles, data type, cardinality, and the WHERE, 

DERIVE, and RULE clauses. Those should be added and modified manually. In the future, 

the logic of further automating those processes can be provided. For example, it might be 

possible to define the DERIVE relations between attributes using the functional 

dependencies between input and output information defined in an RCM model.   

GTPPM has been experimented with the precast concrete producers in the North 

America. Through the application and evaluation of GTPPM, several drawbacks as well as 

advantages are identified. GTPPM has been modified based on the findings. However, 

some of those were left as the topics of future work.  

By using GTPPM, a complete set of information items required for product 

modeling for a medium or a large industry can be collected without generalizing each 

company’s unique process into one unified high-level model. However, the use of GTPPM 

is not limited to product modeling. It can be deployed in several other areas including:   

• workflow management system (Jablonski and Bussler 1996; P. Lawrence (Ed.) 

1997; WFMC 1999) or MIS (Management Information System) development: 

Information required for processing an activity, passed to succeeding activities, 

and returned back to previous activities for feedback can be defined. (See 

Appendix H for details on workflow management systems.) 
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• software specification development: A detailed definition of engineering 

functions and processes can be developed, which will allow further 

development of software in the engineering and design areas. 

• business process re-engineering: A process model with specific information 

items can be used for reengineering of an organization like other process 

models. 

Also any form of a data model defined in EXPRESS can be read into GTPPM as an 

information menu. Using this function, GTPPM can be used to update or validate an 

existing product model by reading in an existing product model as an information menu. It 

can be also used to develop conformance classes (i.e., valid subset models) of an existing 

model.  

GT PPM has been implemented as a Microsoft Visio® Add-on. The tool has been 

applied to fourteen companies of the North American Precast Concrete Software 

Consortium (PCSC) and is being applied to three IT-related research projects at Purdue, 

Carnegie Mellon, and Teeside University (UK). Experience to date indicates that GT PPM 

holds the potential to improve and expedite product model development.  

The author believes that a newly proposed process to product modeling method and 

its supporting procedures provide the logic and a promising means to (semi-)automatically 

derive a product model from collected process information. 
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APPENDIX A 

EARLY STANDARD PRODUCT MODELING EFFORTS 

This appendix summarizes early standard product modeling efforts (Goldstein, 

Kemmerer, and Parks 1998) (Bloor and Owen 1995):  

Table 8.1 Chronology of development in product data 
STEP     STEP�    DPI Initial 

parts 
   11.31 

approved 
Initial 

release 

US     PDDI  PDES 
Initiation 

 PDES 
Inc� 

      

IGES IGES 
1.0 

  IGES 
2.0 

  IGES 3.0  IGES 
4.0 

 IGES 
5.0 

IGES 
5.1 

 IGES 5.2  

Subsets        MIL-
D-

28000 

    MIL-D-
28000A 

  

       VDA-
IS 1.0 

 VDA-IS 
2.0 

     Germany 

    VDA-FS 
1.0 

 DIN VDA-
FS 2.0

       

France     SET 1.1 afnor    afnor      

 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 

Europe     ESPRIT�     ESPRIT 
II � 

   ESPRIT 
III� 

 

Testing  Autofact 
� 

   CTS� NAVFAC   CTS-
2� 

     

NEDO     NEDO1  NEDO2         

Graphics      GKS  CGM GKS-
3D 

PHIGS  CGI PHIGS-
PLUS 
CGRM 

  

EDIF      EDIF 
100 

 EDIF 
200 

     EDIF 300  

Modeling  IDEF0-
2 

NIAM   IDEF1x       IDEF3-
4 

  

(Source: (Bloor and Owen 1995)) 

• the ANSI/X3/SPARC methodology: The X3/SPARC Committee of the American 

National Standards Institute (ANSI) developed the three-layer (conceptual, internal, 

external layers) architecture of information modeling.  

• ANSI Y14.26 (Digital Representation for Communication of Product Definition 

Data, 1970-1981): is an ANSI committee for standardization of a product model. 

• CAM-I (1973-1984): the Computer-Aided Manufacturing – International Inc. 

(CAM-I) organization significantly contributed to the formal description of 

Boundary Representation (BRep). 
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• IGES (1979-1981): IGES (Initial Graphics Exchange Specification) provided the 

first practical solution for CAD data exchange with an exchange file format.  

• the ICAM Program: The Integrated Computer Aided Manufacturing (ICAM) 

program, funded by the U.S. Air Force, developed the IDEF method for process 

and information modeling.   

• AECMA Report of geometry data exchange study group: The European 

Association of Aerospace Industries (AECMA) developed a standard data format 

for exchanging surface geometry.   

• the VDA in 1982: Flachenschnittstelle Des Verbandes Der Deutschen 

Automobilindustrie (VDA-FS and VDA-IS) is German efforts to develop a 

standard data model for exchanging drawing information, two- and three-

dimensional geometry, analytic and free form surfaces/curves required for the 

automotive industry.  

• the SET project in 1983: Pure geometric data models such as IGES has been 

criticized for not being able to describe the full lifecycle of a product. The French 

Standard d’Echange et de Transfert (SET) project has been continued by 

Association GOSET, which became contributors to ISO 10303 and STEP 

conformance testing services.  

• the Product Definition Data Interface (PDDI, 1982-1987): The PDDI was a 

research projected funded by the ICAM program to develop a method to exchange 

and share geometric data among computer applications without human intervention 

based on an thorough evaluation of IGES (ANSI: Product Definition Data Interface 

1983).   
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• NBS: National Bureau of Standards (NBS, currently NIST), sponsored by the U.S. 

Department of Defense Computer-Aided Acquisition and Lifecycle Support 

(CALS) program, led the development of IGES subsets. STEP’s concept of 

application protocols (APs) and Conformance Classes grew from this and other 

early work.  

• ISO TC 184/SC4 Meeting (1984): International Organization for Standardization 

(ISO) STEP (STandard for Exchanging Product (data) model) began in 1984. 

• CTS (since 1985): The Conformance Test Suite (CTS) project is a project to 

develop conformance-testing methods and to establish testing services ((Bloor and 

Owen 1995) p.141).  

• the Product Data Exchange Specification (PDES, 1984-1985): In 1984, the PDES 

has been proposed as the next generation of IGES and as a response to the PDDI 

and other European standardization efforts to support the full lifecycle of products 

and more complex products and software environment.  

• MIL-D specifications (1987): the subsets developed by the US Department of 

Defense (DoD) 

• ESPRIT: the EU information technologies program  

(http://www.cordis.lu/esprit/home.html) 

• US Harmonization of Product Data Standards Organization (1989): NIST was the 

leader of the Harmonization of Product Data Standards (HPS) organization under 

the Industrial Automation Planning Panel (IAPP) of ANSI. The intent of HPS was 

to derive a harmonized Application Reference Model (ARM) from several U.S. 

standards (e.g., IPC, IGES/PDES, IEEE, EIA) and to integrate them with STEP.   
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APPENDIX B 

THE FORMAL DEFINITION OF THE SEMANTIC UNION  

A semantic union is different from a simple aggregation of data sets or a general 

union. It can be formally defined as: 

BA *∪  )]*()[()( BABABA ∩−∩−+= +  

*∪ : semantic union 

+∩ :  a set (or aggregation) of semantically equivalent entities  

*∩ : semantic intersection 

where A and B are respectively a set of data required by an application or a work 

process.  

If we use the same example from Section 3.1,  

A ≡ {project_name, load, driver} 

B ≡ {strucutre_name, load, frame} 

BA + ≡{project_name, structure_name, load, load, driver, frame}    

BA ∩ ≡{load}   

BA ∪ ≡{project_name, load, driver, structure_name, frame} 

 

Let project_name in Set A be a synonym of structure_name in Set B 

load (truck load) in Set A is a homonym of load (structural load) in Set B  

 

In such a case, the results of the semantic set operations of these two sets will be: 
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BA + ≡{project_name, structure_name, load, load, driver, frame}    

BA +∩ ≡{project_name, structure_name}  

BA *∩ ≡{ Fsi(project_name, structure_name)}  

where Fsi(x, y): returns an semantic intersection of elements x and y 

 

Let fsi(project_name, structure_name) = project_name 

BA *∩ ≡{ project_name} 

)*()( BABA ∩−∩+ ≡{structure_name}  

∴ BA *∪ ≡{project_name, load, load, driver, frame} 

 

The definition of the semantic union can be simplified by introducing complement 

intersection c∩ . The complement intersection c∩  can be defined as the subtraction of 

semantic intersection from a set of semantically equivalent entities similar to the 

complement set24: 

BA c∩ = )*()( BABA ∩−∩+  or }*,|{ BAxBAxxBA c ∩∉∩∈≡∩ +  

 

 Using the complement intersection, the semantic union can be redefined as a 

subtraction of a complement intersection of semantic intersection of different native data 

models from an aggregation of the data sets, similar to the definition of a general union25. 

BA *∪ )()( BABA c∩−+=  

                                                 
24 Complement Set of C, },,|{ SCCxSxxC c ⊆∉∈≡  

25 Union Set )()( BABABA ∩−+=∪  



 

 184

 

Since it is not possible that a software application can automatically recognize 

homonyms or synonyms without any additional information, it is obvious that two 

instances of ‘load’ in the above example should be replaced by distinguishable terms in a 

practical model. For example, 

D ≡{project_name, truck_load, structural_load, driver, frame} 
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APPENDIX C 

RESOURCES FOR PROCESS MODELING METHODS 

A.1 OVERVIEW 

This appendix summarizes resources for major process modeling techniques today.  

A.2 A BRIEF HISTORY OF PROCESS MODELING 

Even though some literatures claims that process management has existed since 

prehistoric times, it is a general view to regard Frederick Taylor (1919) as a father of the 

modern process management (Eastman and Shirley 1994; Osborne and Nakamura 2000). 

The historic evolution of process modeling methods -from early Gantt charts (1955) and 

PERT/CPM to modern structured analysis by Tome DeMacro (the 1980s) - are well 

reviewed by Osborne (Osborne and Nakamura 2000, Ch 2). In the early 1990s, data-

centered, scenario-based, structural methods were synthesized into one modeling language, 

which became the current United Modeling Language (UML).  

A.3 RESOURCES FOR MODELING METHODS AND EXCERPTS FROM THEM  

This section lists electronic resources for major process modeling methods and 

provides a short excerpt on the modeling method from the webpage. Excerpts are in italic. 

 
• IDEFØ:  

http://www.IDEF.com 
 

IDEFØ is a method designed to model the decisions, actions, and activities of an 

organization or system. IDEFØ was derived from a well-established graphical language, 

the Structured Analysis and Design Technique (SADT). The United States Air Force 

commissioned the developers of SADT to develop a function modeling method for 
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analyzing and communicating the functional perspective of a system. Effective IDEFØ 

models help to organize the analysis of a system and to promote good communication 

between the analyst and the customer. IDEFØ is useful in establishing the scope of an 

analysis, especially for a functional analysis. As a communication tool, IDEFØ enhances 

domain expert involvement and consensus decision-making through simplified graphical 

devices. As an analysis tool, IDEFØ assists the modeler in identifying what functions are 

performed, what is needed to perform those functions, what the current system does right, 

and what the current system does wrong. Thus, IDEFØ models are often created as one of 

the first tasks of a system development effort.  

In December 1993, the Computer Systems Laboratory of the National Institute of 

Standards and Technology (NIST) released IDEFØ as a standard for Function Modeling 

in FIPS Publication 183.  

 
• Petri Net 

o Tutorial: http://worldserver.oleane.com/adv/elstech/petrinet.htm 

o Petri Net World: http://www.daimi.au.dk/PetriNets/ 

o Tools: http://www.daimi.au.dk/PetriNets/tools/quick.html 

o CPN: http://www.daimi.au.dk/CPnets/ 

o Dr. Carl Adam Petri:  

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html 

 
(Excerpt from http://worldserver.oleane.com/adv/elstech/petrinet.htm) 

Petri nets were introduced by C.A.Petri in the early 1960s as a mathematical tool 

for modeling distributed systems and, in particular, notions of concurrency, non-

determinism, communication and synchronization. Their further development was 
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facilitated by the fact that Petri Nets easy model process synchronization, asynchronous 

events, concurrent operations, and conflicts or resource sharing. Petri Nets have been 

successfully used for concurrent and parallel systems modeling and analysis, 

communication protocols, performance evaluation and fault-tolerant systems.  

 
• DFD 

(a.k.a Yourdon) 
o http://spot.colorado.edu/~kozar/DFD.html 

o http://www.doc.mmu.ac.uk/online/SAD/T04/dfds.htm 

o http://www.aisintl.com/case/drd.html 

 
(Excerpts from http://spot.colorado.edu/~kozar/DFD.html) 

Data flow diagrams are a network representation of a system. They are the 

cornerstone for structured systems analysis and design. The diagrams use four symbols to 

represent any system at any level of detail. The four entities that must be represented are:  

o data flows - movement of data in the system  

o data stores - data repositories for data that is not moving  

o processes - transforms of incoming data flow(s) to outgoing data flow(s)  

o external entities - sources or destinations outside the specified system boundary  

Data flow diagrams do not show decisions or timing of events. Their function is to 

illustrate data sources, destinations, flows, stores, and transformations. The capabilities of 

data flow diagramming align directly with general definitions of systems. Data flow 

diagrams are an implementation of a method for representing systems concepts including 

boundaries, input/outputs, processes/subprocesses, etc.  
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The data flow diagram is analogous to a road map. It is a network model of all 

possibilities with different detail shown on different hierarchical levels. The process of 

representing different detail levels is called "leveling" or "partitioning" by some data flow 

diagram advocates.  

 

• SSADM (Structured Systems Analysis and Design Methodology) Diagrams 

 http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html 
SSADM (in common with other structured methodologies) adopts a prescriptive 

approach to information systems development in that it specifies in advance the modules, 

stages and tasks which have to be carried out, the deliverables to be produced and 

furthermore the techniques used to produce the deliverables. SSADM adopts the Waterfall 

model of systems development, where each phase has to be completed and signed off 

before subsequent phases can begin.  

• STRADIS: (Structured Analysis, Design and Implementation of Information Systems) 

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html 

A methodology developed by Gane and Sarson (1979). The methodology is based 

on the philosophy of top down functional decomposition and relies on the use of Data Flow 

Diagrams. 

• YSM: (Yourdon Systems Method,Yourdon, 1993) 

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html 

YSM is similar to STRADIS in its use of functional decomposition, however a 

middle-out approach is dopted and slightly more emphasis is placed on the importance of 

data structures. 
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• MERISE: (Quang and Chartier-Kastler, 1991) 

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html 

The methodology is widely used in ISE in France, Spain and Switzerland. MERISE 

consists of three ‘cycles’, the decision cycle, the life cycle and the abstraction cycle. The 

abstraction cycle is the key, in this cycle both data and processes are viewed firstly at the 

conceptual level, then the logical or organizational level and finally at the physical or 

operational level. 

• EUROMETHOD: (CCTA, 1994) 

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html 

Euromethod could be described as a framework for the integration of existing 

european methodologies rather than as a methodology in its own right. 

• The UML (Unified Modeling Language) 

http://www.rational.com (or http://www-306.ibm.com/software/rational/) 
http://www.omg.org/UML 
http://uml.shl.com 

 (Excerpt from http://www.omg.org/UML) 

The OMG's Unified Modeling Language™ (UML®) helps you specify, visualize, 

and document models of software systems, including their structure and design, in a way 

that meets all of these requirements. (You can use UML for business modeling and 

modeling of other non-software systems too.) Using any one of the large number of UML-

based tools on the market, you can analyze your future application's requirements and 

design a solution that meets them, representing the results using UML's twelve standard 

diagram types.  

A.4 RELATIONS BETWEEN PROCESS MODELING METHODS 
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• SADT (Structural Analysis and Design Techniques) 

IDEFØ was derived from SADT.  

 

• SSADM (Structured Systems Analysis and Design Methodology) 

SSADM and SADT are not the same. (http://www.csci.csusb.edu/dick/methods.html) 

 

• UML (Unified Modeling Languaage) 

The UML was built on three major streams of modeling methods (Rosenberg and Scott 

1999, Ch 1).  

Table 8.2. Three major streams of the UML 

Data-Centered Method Scenario-Based Methods Structural Methods 

SADT 
Shlaer/Mellor 
Martin/Odell 
Rumbaough’s OMT 
ERDs 
DFDs 
State-Transition diagrams 

Jascobson’s OOSE, Use-case 
driven approach 
ParcPlace – OBA 
Alger/Goldstein – Scenario 
based Method 

OO Programming 
Booch Method 
Wirfs-Brock’s CRC Cards 

 
The UML are composed of twelve standard diagrams (Booch, Rumbaugh, and 

Jacobson 1999). 

Table 8.3. Twelve standard UML Diagrams 

Diagram Type Diagram Definition 

Class Diagram shows a set of classes, interfaces, and collaborations 
and their relationships. 

Object Diagram shows a set of objects and their relationships. 

Component Diagram shows the organizations and dependencies among a set 
of components. 

Structural 
Diagrams 

Deployment Diagram shows the configuration of run-time processing nodes 
and the components that live on them. 
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Table 8.3 Twelve standard UML Diagrams (continued) 

Diagram Type Diagram Definition 

Use Case Diagram shows a set of use cases and actors and their 
relationship. 

State Diagram  
(Statechart Diagram)  

shows a state machine, consisting of states, transitions, 
events, and activities. 

Activity Diagram shows the flow from activity to activity within a 
system. An activity shows a set of activities, the 
sequential or branching flow from activity to activity, 
and objects that act and are acted upon. 

Sequence Diagram is an interaction diagram that emphasizes the time 
ordering of messages 

Behavior 
Diagrams 

Collaboration Diagram is an interaction diagram that emphasizes the structural 
organization of the objects that send and receive 
messages. A collaboration diagram shows a set of 
objects, links among those objects, and messages sent 
and received by those objects. 

Package A general-purpose mechanism for organizing elements 
into groups 

Subsystem A grouping of elements of which some constitute of a 
specification of the behavior offered by the other 
contained elements 

Model 
Management  
Diagrams 

Model A simplification of reality, created in order to better 
understand the system being created; a semantically 
closed abstraction of a system 

 
The Unified Modeling Language (UML) literally includes most of major modeling 

languages today and is still evolving. (http://www.omg.org) 

• Petri Net 

Colored Petri Net (CPN) is variation of the traditional Petri Net. 

• Flowchart  

The Flowchart method is an ANSI standard (ANSI-IEEE standard 5807-1985 

(ANSI 1991; Osborne and Nakamura 2000, Ch 6)). 

A.5 PROCESS MODELING TOOLS IN THE MARKET 

Table 8.4 shows some of commercial process modeling tools available today and their 

developers. 
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Table 8.4. Process modeling tools 

Name a.k.a Company/Developer 

4Keeps   4Keeps, Inc (Former A.D. Experts) 

ActiveModeler   Kaisha-tec 

AI0 Win60   KBSI 

AllFusion (Process 
Modeler) 

BPWin Computer Associates (Former Plantinum) 

ARIS Toolset   IDS Scheer 

Enterprise Modeller   Business Integration Technologies 

Hyperformix Workbench SES/workbench Hyperformix 

iGrafx 2000   Micrografx 

MooD   Morphix 

ProcessWise Workbench   Fujitsu Teamware 

SmartDraw   SmartDraw.com 

Arena   Rockwell Software (Systems Modeling 
Corporation) 

BPD Lifecycle Manager Qualiware 

Corporate Modeler   Casewise 

CRISP-DM CRISP 1.0 SPSS 

iThink   Cognitus 

Metify ABM   Armstrong Laing Group 

Oracle Designer   Oracle 

ProcessModel http://www.processmodel.com/ ProcessModel 

ProSim6.0   KBSI 

SmartER   KBSI 

Visio   Microsoft 

WorkFlow Modeler   Meta Software 

 

A.6 ORGANIZATIONS RELATED TO PROCESS MODELING 

Several non-profitable organizations exist to develop standards and integrate 

process modeling efforts. The organizations and their self-introductions are as follows:  

 
• Work flow Management Coalition (WfMC) 

http://www.wfmc.org/ 
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The WfMC has over 300 member organizations worldwide, representing all facets of 

workflow, from vendors to users, and from academics to consultants.   

Subgroup: e-Workflow, http://www.e-workflow.org/ 

 

• Workflow and Reengineering International Association (WARIA) 

http://www.waria.com/ 

The charter of the Workflow And Reengineering International Association (WARIA) is 

to identify and clarify issues that are common to users of workflow, electronic 

commerce and those who are in the process of reengineering their organizations. The 

association facilitates opportunities for members to discuss and share their 

experiences freely. Established in 1992, WARIA's mission is to make sense of what's 

happening at the intersection of Business Process Management, Workflow, Knowledge 

Management and Electronic Commerce and reach clarity through sharing experiences, 

product evaluations, networking between users and vendors, education and training.   

• The Business Process Modeling Language (BPMI) 

http://www.bpmi.org/ 

BPMI.org (the Business Process Management Initiative) is a non-profit corporation 

that empowers companies of all sizes, across all industries, to develop and operate 

business processes that span multiple applications and business partners, behind the 

firewall and over the Internet. The Initiative's mission is to promote and develop the 

use of Business Process Management (BPM) through the establishment of standards 

for process design, deployment, execution, maintenance, and optimization. BPMI.org 
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develops open specifications, assists IT vendors for marketing their implementations, 

and supports businesses for using Business Process Management technologies. 

• The Association for Information and Image Management (AIIM) 

http://www.aiim.org 

A lot has changed since AIIM (The Association for Information and Image 

Management) was founded in 1943 as the National Microfilm Association. But one 

thing has remained remarkably consistent. Despite countless revolutions in 

technologies, our core focus has remained the same -- helping users connect with 

suppliers who can help them apply document and content technologies to improve their 

internal processes. AIIM International is the industry’s leading global organization. 

We believe that at the center of an effective business infrastructure in the digital age is 

the ability to capture, create, customize, deliver, and manage enterprise content to 

support business processes. The requisite technologies to establish this infrastructure 

are an extension of AIIM's core document and content technologies. These Enterprise 

Content Management (ECM) technologies are key enablers of e-Business and include: 

Content/Document Management, Business Process Management, Enterprise Portals, 

Knowledge Management, Image Management, Data Warehousing, and Data Mining. 

Our focus over the next 3-5 years will be helping our members - both users and 

suppliers – make this e-Business transition.  

 

• BizTalk  

http://www.biztalk.org/ 
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The goal of BizTalk.org is to provide resources for learning about and using Extensible 

Markup Language (XML) for Enterprise Application Integration (EAI) and business-

to-business (B2B) document exchange, both within the enterprise and over the Internet. 

On BizTalk.org you can learn how to use XML messages to integrate software 

applications and build new solutions. The design emphasis is to use XML to integrate 

your existing data models, solutions, and application infrastructure, and adapt them 

for electronic commerce. You can also learn about the BizTalk Framework, a set of 

guidelines for implementing an XML schema and a set of XML tags used in messages 

sent between applications.  

• ebXML 

http://www.ebxml.org 

To provide an open XML-based infrastructure enabling the global use of electronic 

business information in an interoperable, secure and consistent manner by all parties. 

• Object Management Group (OMG)26 

http://www.omg.org/ 

The Object Management Group (OMG) is an open membership, not-for-profit 

consortium that produces and maintains computer industry specifications for 

interoperable enterprise applications. Our membership roster, about 800 strong, 

includes virtually every large company in the computer industry, and hundreds of 

smaller ones.  Most of the companies that shape enterprise and Internet computing 

today are represented on our Board of Directors. Our flagship specification is the 

multi-platform Model Driven Architecture (MDA), recently underway but already well 

                                                 
26 The OMG is the official group which maintains the UML. 
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known in the industry. It is based on the modeling specifications the MOF, the UML, 

XMI, and CWM. OMG's own middleware platform is CORBA, which includes the 

Interface Definition Language OMG IDL, and protocol IIOP. The Object Management 

Architecture (OMA) defines standard services that will carry over into MDA work 

shortly. OMG Task Forces standardize Domain Facilities in industries such as 

healthcare, manufacturing, telecommunications, and others.  

A.7 OTHER RESOURCES FOR PROCESS MODELING 

• SODAN: http://www.sodan.co.uk/main.html?s=modeling 

SODAN sells an overview of workflow and process modeling tool products and 

suppliers (£375/each).  

• Bart-Jan Hommes: http://is.twi.tudelft.nl/~hommes/toolsub.html 

• A Glossary of Software Development Methods: 

http://www.csci.csusb.edu/dick/methods.html 

Dick Botting provides short definitions of over 100 software development methods 

and terms.  

• Evaluation of Systems Analysis Methodologies in a Workflow Context 

http://computing.unn.ac.uk/staff/cgnr1/badensoft.htm 

Fahad Al-Humaidan and B. Nick Rossiter compare OPM, SSADM, UML, Unified 

Process, SSM, and WfMS in fourteen categories. 
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APPENDIX D 

REQUIREMENTS COLLECTION METHODS 

Requirements collection activities rely on a variety of formalisms including 

Flowcharts, UML Activity Diagrams, the Use Case diagrams, Data Flow Diagrams 

(DFDs) (Osborne and Nakamura 2000), and IDEF0 (NIST 1993) schemas. Both 

Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999) 

are limited only to capturing sequences of activities and are not able to describe the 

information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard 

1992) which are a part of the UML methodology, define a set of sequences in which each 

sequence represents the interaction of the things outside the system (its actors) with the 

system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). Data flow 

Diagrams (DFDs) (Osborne and Nakamura 2000) consists of several levels of diagrams. 

The top-level DFD is called a context diagram. Details of information that is transferred 

between processes and data storages is separately described and called a data dictionary. 

However, DFDs do not show workflows, i.e., decisions or sequences of activities. DFDs 

capture information required for ‘system’ design, but do not describe information flows in 

a sequence of activities.  

IDEF0 (Integration Definition of Function Modeling is a Federal Information 

Processing Standard (FIPS) supported by ISO and is designed to define the “functions of a 

system or subject area with graphics, text and glossary (NIST 1993).” As in DFD modeling, 

IDEF0 models have a hierarchical structure and take a top-down approach. A unique 

feature of IDEF0 is its ICOM codes (Input, Control, Output, and Mechanism arrows). 

Although arrow types are categorized in detail, IDEF0 tracks information in chunks, but 
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not in terms of individual information items. Detailed information can be defined 

separately in IDEF1x (or IDEF1), but there is no direct link between the two modeling 

techniques.   

The above modeling methods are incorporated into a set of commercial tools (e.g., 

BPR®, Arena®, Rose®, and SmartDraw®). They have been further researched and enhanced 

in several systems: (e.g., PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS 

(Wilson et al. 2001), GPP (Wix and katranuschkov 2002), ISTforCE (Wix and Liebich 

2000), ATLAS (Tolman and Poyet 1995), and ICCI (Katranuschkov et al. 2002)) have 

been developed, to enhance or integrate existing modeling methods. Some commercial 

CASE (Computer-Aided Software Engineering) tools for database design (such as Visio®, 

AllFusion® (a.k.a. ERWin®, BPWin®, ModelMart®)), and Corporate Modeler®) are 

capable of coupling DBMSs mostly with ARMs (e.g., IDEF1x, EXPRESS-G, and ER 

diagrams) and sometimes with process models (AAMs). However, they do not provide any 

formal method to elicit information from heterogeneous business environments and to 

integrate the collected information into an industry-level product model. 

Appendix C provides additional information and resources on process modeling 

methods. 
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APPENDIX E 

NOTATION OF A CONTEXT-FREE GRAMMAR (CFG) 

The context-free grammar (CFG) is a formal system to define how any legal 

statement of a language can be derived by a set of axioms. The axioms are the rewrite rules 

of a language. A syntax of the CFG is a duplex <B, R>, where B is the union of terminals 

and non-terminals and R is the set of axioms or rules. For example, ‘W � χ’ denotes a 

syntactic rule ‘W can be replaced by χ.’  The arrow (�) is called the rewrite arrow and 

reads ‘is-a.’ Note that W � χ is different from χ � W. ‘W’ must always be a non-terminal 

symbol and χ is a string of either a terminal or a non-terminal symbol. A terminal symbol 

is a lexical item that cannot be split into smaller constituents of a language. Examples are 

{a, black, cat, ran} in Figure 8.2. A non-terminal symbol is a non-lexical symbol that 

represents a class of terminal symbols. Examples include {S (subject), NP (noun phrase), 

VP (verb phrase), N (noun), V (verb), Det (determiner), Adj (adjective)} in Figure 8.2. ‘-’ 

denotes concatenation of symbols.  

 

Figure 8.2. A linguistic example of a constituent structure tree 



 

 200

The context-free grammar can be depicted as a breakdown structure. The structure 

is called a constituent structure tree. The vertical breakdown denotes the is-a 

categorization like the arrow (�) and the horizontal enumeration represents grammatical 

relations of terminals and non-terminals such as subject-of, object-of, and modifier. Figure 

8.2 is an example of a constituent structure tree of a sentence “A black cat ran.”  

The given rewrite rules for ‘A black cat ran’ are as follows: 

S � NP – VP    

NP� Det – Adj – N   

VP � V  

Det � a  

Adj � black   

N � cat  

V � ran 

A � B | C denotes A � B or A � C. 

In a context free grammar, the left side of a re-write rule is limited to a single non-

terminal. The right side can be replaced by a null value in order to accommodate 

abbreviation or replacement phenomena.  

W � NULL 

For example, in English imperative, the subject “you” can be omitted:  

 S � NP – VP  

 NP � NULL 

 VP � go away 
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APPENDIX F 

A PSEUDO CODE27 FOR DETECTING SEMANTICALLY EQUIVALENT 
INFORMATION CONSTRUCTS 

FUNCTION Is_Semantically_Equivalent_ICs 

DIM x as information_construct 

DIM y as information_construct 

DIM UnabbreviatedIC as information_construct 

DIM AbbreviatedIC as information_construct 

 

IF len(x) = len(y) THEN 

 IF x = y THEN  

     Is_Semantically_Equivalent_ICs = TRUE 

     Merge_the_attributes_of_x_and_y_into_x 

ELSE 

     Is_Semantically_Equivalent_ICs = FALSE 

 END IF 

ELSE 

IF len(x) > len(y) THEN 

     UnabbreviatedIC = x 

     AbbreviatedIC = y 

ELSE  

     UnabbreviatedIC = y; 

AbbreviatedIC = x; 

END IF 

 IF left(UnabbreviatedIC, len(AbbreviatedIC)+1) = “*” + _ AbbreviatedIC  

     Is_Semantically_Equivalent_ICs = TRUE  

    Merge_the_attributes_of_x_and_y_into_UnabbreviatedIC  

    Delete_AbbreviatedIC_and_its_attributes 

ELSE 

     Is_Semantically_Equivalent_ICs = FALSE 

  END IF 

END IF 

                                                 
27 The pseudo code follows the Visual Basic grammar. 



 

 202

END FUNCTION 

 

SUB Merge_the_attributes_of_x_and_y_into_x 

END SUB 

 

SUB Merge_the_attributes_of_x_and_y_into_UnabbreviatedIC 

END SUB 

 

SUB Delete_AbbreviatedIC_and_its_attributes 

END SUB 
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APPENDIX G 

AUTOMATICALLY GENERATED PRELIMINARY PRODUCT MODELS IN 
EXPRESS 

SCHEMA unihighcti_042704; 

 

ENTITY documentation 

SUPERTYPE OF (ONEOF( 

drawing, 

bom, 

bidding_documents) 

); 

qc_check: qc_check; 

report_date: string; 

to_be_sent_to: string; 

revision_no: string; 

revised_date: string; 

report_time: string; 

revised_by: string; 

received_date: string; 

requirements: string; 

id: string; 

END_ENTITY; 

 

ENTITY piece 

SUPERTYPE OF (ONEOF( 

floor_piece, 

spandrel, 

pc_column) 

); 

pack: pack; 

windows: windows; 

bowing: bowing; 

design_requirements: design_requirements; 

wythe: wythe; 
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sample: sample; 

estimation: estimation; 

material: material; 

mold: mold; 

geometry: geometry; 

surface_treatment: surface_treatment; 

shipping: shipping; 

piece_mark: string; 

product_unit_measurement: string; 

product_size: string; 

product_amount: string; 

product_name: string; 

product_code: string; 

label: string; 

mobilization: string; 

blockout: blockout; 

hardware_list: hardware_list; 

connection: connection; 

location_details: location_details; 

production_and_handling: production_and_handling; 

drawing: drawing; 

END_ENTITY; 

 

ENTITY floor_piece 

SUPERTYPE OF (ONEOF( 

dt) 

) 

SUBTYPE OF ( 

piece 

); 

END_ENTITY; 

 

ENTITY pc_column 

SUPERTYPE OF (ONEOF( 

exterior_pc_column) 

) 
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SUBTYPE OF ( 

piece 

); 

END_ENTITY; 

 

ENTITY drawing 

SUPERTYPE OF (ONEOF( 

piece_drawing, 

erection_drawing, 

section_drawing, 

plan_drawing, 

detail_drawing, 

elevation_drawing, 

foundation_drawing) 

) 

SUBTYPE OF ( 

documentation 

); 

sealed: string; 

created_date: string; 

created_by: string; 

destroyed_date: string; 

engineering: engineering; 

callout: string; 

due_date: string; 

END_ENTITY; 

 

ENTITY assembly 

SUPERTYPE OF (ONEOF( 

floor_assembly) 

); 

dimensions: dimensions; 

piece_list: piece_list; 

grid: grid; 

END_ENTITY; 
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ENTITY connection 

SUPERTYPE OF (ONEOF( 

cip_haunch, 

tieback, 

corbel, 

pocket, 

dap, 

chord) 

); 

requirement: string; 

material: material; 

light_pole: light_pole; 

erection_sleeve: erection_sleeve; 

reinforcement: reinforcement; 

spacing: string; 

xx_type: string; 

piece_list: piece_list; 

END_ENTITY; 

 

ENTITY geometry 

SUPERTYPE OF (ONEOF( 

geometry_2d, 

geometry_3d) 

); 

id: string; 

constraints: constraints; 

geometry_3d: geometry_3d; 

dimensions: dimensions; 

END_ENTITY; 

 

ENTITY hardware 

SUPERTYPE OF (ONEOF( 

grout, 

tieback, 

handling_bolt, 

bolt, 
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handling_insert, 

handling_leg, 

erection_anchor, 

custom_item, 

cast_in_box, 

curtainwall_insert, 

shipping_frame, 

temporary_bracing, 

anchor, 

plate, 

lifting) 

) 

SUBTYPE OF ( 

material 

); 

surface_treatment: surface_treatment; 

END_ENTITY; 

 

ENTITY reinforcement 

SUPERTYPE OF (ONEOF( 

prestressing, 

rebar, 

mesh) 

) 

SUBTYPE OF ( 

material 

); 

youngs_modulus: string; 

waste: string; 

bpc_end_geometry: string; 

crosssectional_area: string; 

qc_check: qc_check; 

location_details: location_details; 

END_ENTITY; 

 

ENTITY qc_check 
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SUPERTYPE OF (ONEOF( 

interference_check) 

); 

inspector_id: string; 

id: string; 

requirements: string; 

inspector: string; 

inspection_dates: string; 

building_code: building_code; 

results: string; 

END_ENTITY; 

 

ENTITY rebar 

SUPERTYPE OF (ONEOF( 

bent_bar) 

) 

SUBTYPE OF ( 

reinforcement 

); 

temperature: string; 

diameter: string; 

END_ENTITY; 

 

ENTITY material 

SUPERTYPE OF (ONEOF( 

hardware, 

caulk, 

rigging, 

handling, 

offsite_staging, 

erection_handling_frame, 

gutter_system, 

strongback, 

brick, 

stone, 

electric_items, 
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reinforcement, 

retarder, 

admixture, 

pigment, 

pc_aggregate, 

form_panelization, 

form_handling, 

form_liner, 

adhesive, 

back_forming, 

concrete) 

); 

purchase_order: purchase_order; 

unit_price: string; 

pattern: string; 

id: string; 

xx_type: string; 

quantity: string; 

END_ENTITY; 

 

ENTITY production_and_handling 

SUPERTYPE OF (ONEOF( 

welding, 

repair, 

batch, 

pour) 

); 

pour: pour; 

equipment: equipment; 

operation_details: string; 

operation_cost: string; 

cost: string; 

production_cost: string; 

production_per_hour: string; 

weather: string; 

yard_cost: string; 
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electric_power_req: string; 

manager: string; 

concrete: concrete; 

labor: labor; 

schedule: schedule; 

END_ENTITY; 

 

ENTITY schedule 

SUPERTYPE OF (ONEOF( 

erection_schedule) 

); 

piece_list: piece_list; 

approved_date: string; 

schedule_date: string; 

actual_start_date: string; 

actual_pc_end_date: string; 

required_duration: string; 

planned_duration: string; 

planned_start_date: string; 

planned_pc_end_date: string; 

END_ENTITY; 

 

ENTITY erection_schedule 

SUPERTYPE OF (ONEOF( 

installation_schedule, 

foundation_schedule) 

) 

SUBTYPE OF ( 

schedule 

); 

END_ENTITY; 

 

ENTITY equipment 

SUPERTYPE OF (ONEOF( 

pretension_gun, 

crane, 
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roof_deck, 

safety_cable) 

); 

unit_cost: string; 

END_ENTITY; 

 

ENTITY geometry_2d 

SUPERTYPE OF (ONEOF( 

crosssection) 

) 

SUBTYPE OF ( 

geometry 

); 

base_point: string; 

END_ENTITY; 

 

ENTITY grid; 

y_axis_spacing: string; 

x_axis_spacing: string; 

END_ENTITY; 

 

ENTITY dt 

SUBTYPE OF ( 

floor_piece 

); 

qc_check: qc_check; 

mesh: mesh; 

pc_end: pc_end; 

flange: flange; 

recess: recess; 

chord: chord; 

dap: dap; 

structural_analysis: structural_analysis; 

stem: stem; 

stem_spacing: string; 

joint: joint; 
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END_ENTITY; 

 

ENTITY joint; 

dimensions: dimensions; 

END_ENTITY; 

 

ENTITY dimensions; 

depth: string; 

total_length: string; 

total_poured_length: string; 

id: string; 

floor_to_floor_height: string; 

thickness: string; 

xx_length: string; 

height: string; 

cast_length: string; 

width: string; 

END_ENTITY; 

 

ENTITY exterior_pc_column 

SUBTYPE OF ( 

pc_column 

); 

clearance: string; 

rebar: rebar; 

rebar_cage: rebar_cage; 

pocket: pocket; 

corbel: corbel; 

geometry_3d: geometry_3d; 

foundation_drawing: foundation_drawing; 

elevation_drawing: elevation_drawing; 

detail_drawing: detail_drawing; 

geometry_2d: geometry_2d; 

plan_drawing: plan_drawing; 

END_ENTITY; 
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ENTITY plan_drawing 

SUBTYPE OF ( 

drawing 

); 

END_ENTITY; 

 

ENTITY project; 

site: site; 

documentation: documentation; 

shipping: shipping; 

sales_representative: string; 

phase: string; 

job_number: string; 

size: string; 

owner_details: string; 

name: string; 

project_manager: string; 

contact_information: string; 

contractor_type: string; 

contractor_list: string; 

xx_type: string; 

contract_details: string; 

subctract_unit_cost: string; 

job_manager: string; 

approved_date: string; 

accountant: string; 

engineering_coorinator: string; 

design_requirements: design_requirements; 

estimation: estimation; 

END_ENTITY; 

 

ENTITY estimation; 

total_bid_prodice: string; 

unit_cost: string; 

item_code: string; 

item_description: string; 
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item_quantity: string; 

id: string; 

unit_measurement: string; 

estimator: string; 

taxes: string; 

total_loads: string; 

schedule: string; 

gross_margin: string; 

total_markup: string; 

END_ENTITY; 

 

ENTITY location_details; 

orientation: string; 

base_point: string; 

END_ENTITY; 

 

ENTITY stem; 

geometry: geometry; 

mesh: mesh; 

spacing: string; 

END_ENTITY; 

 

ENTITY section_drawing 

SUBTYPE OF ( 

drawing 

); 

END_ENTITY; 

 

ENTITY floor_assembly 

SUBTYPE OF ( 

assembly 

); 

wash: wash; 

pc_topping: pc_topping; 

END_ENTITY; 
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ENTITY pc_topping; 

xx_type: string; 

END_ENTITY; 

 

ENTITY piece_list; 

piece: piece; 

xx_list: string; 

quantity: string; 

id: string; 

END_ENTITY; 

 

ENTITY structural_analysis; 

start_date: string; 

results: string; 

END_ENTITY; 

 

ENTITY dap 

SUBTYPE OF ( 

connection 

); 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY geometry_3d 

SUBTYPE OF ( 

geometry 

); 

reinforcement: reinforcement; 

weight: string; 

volume: string; 

bottom: string; 

pc_top: string; 

xx_type: string; 

design: string; 

END_ENTITY; 
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ENTITY hardware_list; 

hardware: hardware; 

id: string; 

END_ENTITY; 

 

ENTITY lifting 

SUBTYPE OF ( 

hardware 

); 

standard_details: string; 

location_details: location_details; 

END_ENTITY; 

 

ENTITY chord 

SUBTYPE OF ( 

connection 

); 

location_details: location_details; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY detail_drawing 

SUBTYPE OF ( 

drawing 

); 

END_ENTITY; 

 

ENTITY elevation_drawing 

SUBTYPE OF ( 

drawing 

); 

END_ENTITY; 

 

ENTITY foundation_drawing 

SUBTYPE OF ( 

drawing 
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); 

END_ENTITY; 

 

ENTITY corbel 

SUBTYPE OF ( 

connection 

); 

blockout: blockout; 

geometry_3d: geometry_3d; 

rebar: rebar; 

location_details: location_details; 

END_ENTITY; 

 

ENTITY spandrel 

SUBTYPE OF ( 

piece 

); 

geometry_3d: geometry_3d; 

xx_type: string; 

END_ENTITY; 

 

ENTITY recess; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY wash; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY surface_treatment; 

id: string; 

cleaning: string; 

details: string; 

END_ENTITY; 

 

ENTITY flange; 
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geometry: geometry; 

connection: connection; 

END_ENTITY; 

 

ENTITY pc_end; 

connection: connection; 

END_ENTITY; 

 

ENTITY mesh 

SUBTYPE OF ( 

reinforcement 

); 

dimensions: dimensions; 

END_ENTITY; 

 

ENTITY blockout; 

location_details: location_details; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY interference_check 

SUBTYPE OF ( 

qc_check 

); 

END_ENTITY; 

 

ENTITY pocket 

SUBTYPE OF ( 

connection 

); 

id: string; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY erection_sleeve; 

geometry_3d: geometry_3d; 



 

 219

END_ENTITY; 

 

ENTITY light_pole; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY tieback 

SUBTYPE OF ( 

hardware, 

connection 

); 

END_ENTITY; 

 

ENTITY bent_bar 

SUBTYPE OF ( 

rebar 

); 

spacing: string; 

END_ENTITY; 

 

ENTITY rebar_cage; 

rebar: rebar; 

END_ENTITY; 

 

ENTITY plate 

SUBTYPE OF ( 

hardware 

); 

END_ENTITY; 

 

ENTITY nonprecast_element; 

geometry_3d: geometry_3d; 

END_ENTITY; 

 

ENTITY anchor 

SUBTYPE OF ( 
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hardware 

); 

anchor_details: string; 

END_ENTITY; 

 

ENTITY design_requirements; 

id: string; 

fire_rating_requirements: string; 

access_requirements: string; 

END_ENTITY; 

 

ENTITY shipping; 

project: project; 

shipping_frame: shipping_frame; 

schedule: schedule; 

qc_check: qc_check; 

truck_number: string; 

packer: string; 

truck_driver: string; 

trailer_number: string; 

cost: string; 

traffic_control: string; 

traffic_control_permit: string; 

traffic_control_personnel: string; 

crew: string; 

orientation: string; 

permits: string; 

special_req: string; 

instruction: string; 

receiver: string; 

notes: string; 

truck_load: truck_load; 

END_ENTITY; 

 

ENTITY truck_load; 

constraints: constraints; 
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designer: string; 

purchase_order_num: string; 

qty: string; 

id: string; 

END_ENTITY; 

 

ENTITY engineering; 

qc_check: qc_check; 

eng_date: string; 

sealed: string; 

END_ENTITY; 

 

ENTITY building_code; 

provision_reference: string; 

END_ENTITY; 

 

ENTITY erection_drawing 

SUBTYPE OF ( 

drawing 

); 

END_ENTITY; 

 

ENTITY labor; 

xx_type: string; 

rate: string; 

hours: string; 

END_ENTITY; 

 

ENTITY site; 

address: string; 

map: string; 

END_ENTITY; 

 

ENTITY concrete 

SUBTYPE OF ( 

material 
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); 

temperature: string; 

strength: string; 

mix: mix; 

mix_specification: string; 

END_ENTITY; 

 

ENTITY erection; 

safety_cable: safety_cable; 

roof_deck: roof_deck; 

hardware_list: hardware_list; 

tolerance: string; 

control_lines: string; 

hoistbay_location: string; 

crane: crane; 

qc_check: qc_check; 

cost: string; 

schedule: schedule; 

END_ENTITY; 

 

ENTITY constraints; 

min_length: string; 

max_length: string; 

average_length: string; 

average_weight: string; 

id: string; 

END_ENTITY; 

 

ENTITY pour 

SUBTYPE OF ( 

production_and_handling 

); 

constraints: constraints; 

bed: bed; 

quantity: string; 

status: string; 
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area: string; 

END_ENTITY; 

 

ENTITY mold; 

purchase_order: purchase_order; 

back_forming: back_forming; 

description: string; 

xx_type: string; 

id: string; 

name: string; 

adhesive: adhesive; 

form_liner: form_liner; 

form_handling: form_handling; 

form_panelization: form_panelization; 

schedule: schedule; 

dimensions: dimensions; 

END_ENTITY; 

 

ENTITY bidding; 

estimation: estimation; 

bidders: string; 

review: string; 

xx_type: string; 

END_ENTITY; 

 

ENTITY bidding_documents 

SUBTYPE OF ( 

documentation 

); 

END_ENTITY; 

 

ENTITY bom 

SUBTYPE OF ( 

documentation 

); 

created_by: string; 
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END_ENTITY; 

 

ENTITY batch 

SUBTYPE OF ( 

production_and_handling 

); 

END_ENTITY; 

 

ENTITY prestressing 

SUBTYPE OF ( 

reinforcement 

); 

tolerance: string; 

actual_elongation: string; 

guage_pressure: string; 

net_pull: string; 

splice_chuck: string; 

temperature_over_pull: string; 

temp_adjustment: string; 

dead_pc_end_seating: string; 

live_pc_end_seating: string; 

theo_elongation: string; 

design_data: string; 

xx_length: string; 

temp_diff_btw_conc_strand: string; 

yield_stress: string; 

pretension_gun: pretension_gun; 

tension: string; 

END_ENTITY; 

 

ENTITY piece_drawing 

SUBTYPE OF ( 

drawing 

); 

issued_date: string; 

END_ENTITY; 
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ENTITY foundation_schedule 

SUBTYPE OF ( 

erection_schedule 

); 

END_ENTITY; 

 

ENTITY sample; 

id: string; 

req: string; 

range: string; 

size: string; 

schedule: schedule; 

END_ENTITY; 

 

ENTITY structure; 

erection: erection; 

structural_analysis: structural_analysis; 

END_ENTITY; 

 

ENTITY installation_schedule 

SUBTYPE OF ( 

erection_schedule 

); 

END_ENTITY; 

 

ENTITY mix; 

qc_check: qc_check; 

material: material; 

stregnth: string; 

sheet: string; 

sample: sample; 

END_ENTITY; 

 

ENTITY pc_aggregate 

SUBTYPE OF ( 
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material 

); 

END_ENTITY; 

 

ENTITY purchase_order; 

status: string; 

id: string; 

END_ENTITY; 

 

ENTITY pigment 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY admixture 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY retarder 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY form_panelization 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY form_handling 

SUBTYPE OF ( 
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material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY form_liner 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY adhesive 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY back_forming 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY curtainwall_insert 

SUBTYPE OF ( 

hardware 

); 

END_ENTITY; 

 

ENTITY cast_in_box 

SUBTYPE OF ( 

hardware 

); 
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END_ENTITY; 

 

ENTITY electric_items 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY stone 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY brick 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY custom_item 

SUBTYPE OF ( 

hardware 

); 

END_ENTITY; 

 

ENTITY erection_anchor 

SUBTYPE OF ( 

hardware 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY wythe; 

strongback: strongback; 

END_ENTITY; 
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ENTITY strongback 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY gutter_system 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY shipping_frame 

SUBTYPE OF ( 

hardware 

); 

END_ENTITY; 

 

ENTITY handling_leg 

SUBTYPE OF ( 

hardware 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY handling_insert 

SUBTYPE OF ( 

hardware 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY bolt 

SUBTYPE OF ( 

hardware 
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); 

requirement: string; 

END_ENTITY; 

 

ENTITY handling_bolt 

SUBTYPE OF ( 

hardware 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY erection_handling_frame 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY offsite_staging 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY crane 

SUBTYPE OF ( 

equipment 

); 

load: string; 

location_diagram: string; 

name: string; 

location: string; 

tower_crane_fillin: string; 

hoist_bay_fillin: string; 

mat_req: string; 

communication_system: string; 

hoist_req: string; 
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END_ENTITY; 

 

ENTITY handling 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY rigging 

SUBTYPE OF ( 

material 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY bowing; 

adjustment: string; 

END_ENTITY; 

 

ENTITY temporary_bracing 

SUBTYPE OF ( 

hardware 

); 

END_ENTITY; 

 

ENTITY repair 

SUBTYPE OF ( 

production_and_handling 

); 

END_ENTITY; 

 

ENTITY welding 

SUBTYPE OF ( 

production_and_handling 

); 
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END_ENTITY; 

 

ENTITY caulk 

SUBTYPE OF ( 

material 

); 

END_ENTITY; 

 

ENTITY cip_haunch 

SUBTYPE OF ( 

connection 

); 

END_ENTITY; 

 

ENTITY grout 

SUBTYPE OF ( 

hardware 

); 

requirement: string; 

END_ENTITY; 

 

ENTITY roof_deck 

SUBTYPE OF ( 

equipment 

); 

req: string; 

END_ENTITY; 

 

ENTITY safety_cable 

SUBTYPE OF ( 

equipment 

); 

req: string; 

quantity: string; 

END_ENTITY; 
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ENTITY windows; 

id: string; 

END_ENTITY; 

 

ENTITY curtainwall; 

id: string; 

END_ENTITY; 

 

ENTITY bed; 

id: string; 

movement: string; 

END_ENTITY; 

 

ENTITY pretension_gun 

SUBTYPE OF ( 

equipment 

); 

id: string; 

END_ENTITY; 

 

ENTITY pack; 

num: string; 

END_ENTITY; 

 

ENTITY crosssection 

SUBTYPE OF ( 

geometry_2d 

); 

polyline: string; 

END_ENTITY; 

 

 

END_SCHEMA; (* end of unihighcti_042704*) 
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APPENDIX H 

WORKFLOW MANAGEMENT 

Workflow management is “the automation of a business process, in whole or part, 

during which documents, information or tasks are passed from one participant to another 

for action, according to a set of procedural rules (WFMC 1999).” It differs from pure 

process modeling in that it includes ‘execution’ and ‘management’ of business processes 

as well as their ‘specification’(Jablonski and Bussler 1996; Lawrence 1997; WFMC 1999). 

Workflow management systems control data flows (more often, documents flows) and 

specifies who is supposed to execute what action when. Examples include MQ Series 

Workflow® (IBM), BizFlow® (HandySoft), Workflow® (W4), i-Flow® (Fujitsu 

Software), and Staffware Process Suite® (Staffware). They are typically performed in 

heterogeneous and distributed work environments. Thus, some of directly relevant research 

areas naturally include distributed and mobile computing and data mining (such as OLAP 

(On-Line Analytical Processing) and data warehousing) that can enable users to inquire 

and view data from different points of view. Even though workflow management systems 

are similar to our work in that they combine processes and information flows, we regard 

workflow management as a separate vast area that deals with management and application 

of business processes and information and will not coincide with the focus of this project. 

We will, however, consider the formal workflow models that are mainly derived from 

transaction management in databases (Chakravarthy et al. 1990; Rusinkiewicz and Sheth 

1995; Weikum 1991) 
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