

A NEW FORMAL AND ANALYTICAL PROCESS TO
PRODUCT MODELING (PPM) METHOD AND ITS

APPLICATION TO THE PRECAST CONCRETE
INDUSTRY

A Dissertation
Presented to

The Academic Faculty

By

Ghang Lee

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in the
College of Architecture

Georgia Institute of Technology
December, 2004

Copyright © Ghang Lee, 2004

A NEW FORMAL AND ANALYTICAL PROCESS TO
PRODUCT MODELING (PPM) METHOD AND ITS

APPLICATION TO THE PRECAST CONCRETE
INDUSTRY

Approved by:

Charles M. Eastman, Advisor
College of Architecture, Georgia Tech

Godfried Augenbroe
College of Architecture, Georgia Tech

Dr. Shamkant B. Navathe
College of Computing, Georgia Tech

Dr. Martin Hardwick
Computer Science, RPI

Dr. Rafael Sacks
Civil Engineering, Technion

June 14, 2004

Product modeling is science, not art.

Chuck Eastman

 iv

ACKNOWLEDGEMENTS

This dissertation would not have been written without the support and feedback of

many people. First and foremost, I would like to thank Chuck Eastman, my advisor and

mentor. He is a warm-hearted advisor as well as a passionate and creative scholar.

Without his feedback and support, I would not be able to begin and finish my Ph.D. study.

This thesis was initiated by his question during a class. While developing GTPPM

described in this dissertation, there were many intellectual challenges. His insight,

experience, and advice helped me a lot in finding some possible answers. I also would

like to thank his wife, Mary Claire Eastman for her kindness and caring for my family.

Thanks to my thesis committee members for helping me structure and further

develop this thesis. I am much honored to have very renowned scholars in product

modeling as my thesis committee members. Prof. Fried Augenbroe in Building

Technology was my co-advisor. His knowledge in process and information modeling and

experience broadened my view towards process and product modeling. Dr. Sham

Navathe in Computer Science at Georgia Tech was my minor advisor. His lectures on the

fundamental database theories helped me clarify many data modeling issues. Dr. Rafael

Sacks, an external reader, is a senior lecturer of Civil and Environmental Engineering at

Technion Israel Institute of Technology. He’s been deeply involved in the development

of GTPPM since 2001. Without his feedback and encouragement, I would not be able to

work constantly on this research topic for several years. Dr. Martin Hardwick is a

professor in Computer Science at the Rensselaer Polytechnic Institute and the CEO of

 v

STEP Tools. I thank him for his interest and detailed feedback and also for sparing his

busy time to attend my thesis defense from Troy, NY.

There are several people that I owe acknowledgements for giving me thoughtful

and sincere comments on my work. Thanks to Robert Amor and Anders Ekholm.

In parallel to my thesis, I worked on a project to develop an intelligent 3D

parametric CAD system for the North American precast concrete industry. The project

was called the PCSC (Precast Concrete Software Consortium) project. Through the PCSC

project, I was able to test and evaluate my new “process to product modeling (PPM)”

method, which is my thesis topic. I am indebted to the PCSC (Precast Concrete Software

Consortium) members and Tekla for their support, help, and collaboration. I was very

impressed by their passion for the project. I am especially thankful to Hans Klohn, Mark

Aho, David Orndorff, Lee Tanase, Dave Mahaffy, Mike Hutchinson, Skip

Wolodkewitsch, Karen Laptas, David Campbell, Dave Bosch, and David Fiedler from the

PCSC, Jason Lien and Harry Gleich, the former members of the PCSC, and Ragnar

Wessman and Pertti Alho at Tekla. Bill Heeps, Information System Manager at High

Concrete was not a member of the PCSC. But without his help, I would not be able to

evaluate my method.

In 1995, while I was working at Kumho, I was fairly ignorant about Design

Computing as a field of study. I am grateful to Dr. Hyuk Song and Hanmin Lee, my

former bosses at Kumho, for introducing Design Computing to me and giving me a

chance to build my career in this area. I also thank Dr. Sungsuk Go, Dr. Jongsung Im,

Rakgi Choi, Jungkyu Lee and other colleagues at Kumho for their support.

 vi

I thank Dr. Ji-Hyun Lee at NYUST, Taiwan (previously at Carnegie Mellon) for

directing me to Chuck Eastman at Georgia Tech when I was looking for the best place to

pursuit my Ph.D. study.

I am also thankful to my former advisors at Korea University, Dr. Jungduk Lee,

Dr. Namchul Ju, and Dr. Kyungin Kang for their advice and consistent support even ten

years after I left school.

I also like to thank the Ph.D. Program at Georgia Tech. First of all, I’d like to

thank Tom Galloway, Dean of College of Architecture, and Chuck Eastman (again),

Director of the Ph.D. Program. Thanks to their support, I was able to attend many

conferences while I was staying at Georgia Tech and was extremely lucky, as a Ph.D.

student, to become a keynote speaker and a session chair at a couple of conferences.

However, without good friends, I would not have been able to enjoy my life at

Georgia Tech. I thank Frank Wang (and Liyen), Fehmi Dogan (and Jenny), David Craig,

Seokjoon You (and Saetbyul), Donghoon Yang (and Eunyoung), Jaemin Lee (and Nan-a),

Saleem Mokbel, Weiling He, Elif Sezen Yagmur, Yan Zhang, Hyeonjoon Moon (and

Eunkang), Cheolsoo Park (and Sujin), Pegah Zamani, Mahbub Rashid, and others for

their feedback and friendship.

I usually don’t like Hollywood stars listing names of their friends and sponsors at

an Academy Award. But I cannot just skip people who keeps reminding me that the earth

is a wonderful place to live: Kyuman Park, Yu-kyung Bae, Giyoung Kim, Jung-a Kim,

Byungho Kang, Jung-a Lee, Hannui Lee and Barbara, Youngjoon Simon Lee, Donggi

Namgung, Seung-Jong Park and Youngjin Chon, Hyeonjoo Park, Jooyun Chung,

Seungyun Gong and Yujin Lee, Jaesung Ryu and his family, Yum Park and Younkyung

 vii

Lee, Seong-Hyeak Won and Seungwon Shin, Jeehoon Park, Hyunghoon Kim, Hun-Hee

Cho, Youngchel Yum, Sanghyuk Son, Sejin Chon, Sujin Jang, Hokyu Hahn, Namho Park,

Hyungchang Lim, Shinho Kim, Kanghee Lee, Heesuck Henry Lee, Woong Lee,

Youngjoon Oh, Youngjoon Park, Kyoungwook Seo, Marim Kim, Youngjae Kim, Jinsoo

Lee, and many others.

I also thank my middle school teacher and mentor, Soonjae Lee for her over

twenty years of support.

Many thanks to my parents, Professor Kiyong Lee and Director Jungja Ha, for

always trusting my decisions and for raising me as a positive and optimistic person.

Thanks to my sisters, Sue-en and Juen, for always being my friends and supporters.

Thanks to my parents-in-law, Mr. Mooyoung Park and Mrs. Chunja Kwak, for raising

their daughter as a beautiful and wise lady.

I cannot thank enough my wife, Sungjin Park for her patience and support, and

Gio and Gia for reminding me how beautiful and delightful the world is. Sungjin, Gio,

and Gia have always been the motivation of my life and they will be.

 viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iv

TABLE OF CONTENTS... viii

LIST OF TABLES.. xii

LIST OF FIGURES ... xiii

SUMMARY .. xviii

CHAPTER 1 Introduction .. 1

1.1 What is a Product Model .. 1

1.2 A Standard Method for Product Modeling and its Drawbacks............... 2

1.3 A Basic Approach and Primary Goals.. 6

1.4 Research Questions and the Scope ... 10

1.5 Glossary .. 13

CHAPTER 2 Background... 18

2.1 Overview... 18

2.2 Needs for Standard Product Models ... 18

2.3 Early Building Product Models .. 24

2.4 CIS and IFC .. 28

2.5 Other Building Product Models & Relevant Projects........................... 31

2.6 Other Studies on Product Modeling.. 33

CHAPTER 3 A New and Formal Process-Centric Product Modeling Approach 35

3.1 Two Approaches to Develop a Product Model for Data Exchange...... 35

3.2 The Application-Centric Modeling Approach...................................... 36

 ix

3.3 The Process-Centric Modeling Approach... 41

3.4 The Completeness of a Product Model... 42

3.5 The Architecture of GTPPM... 44

CHAPTER 4 Requirements Collection and Modeling (RCM)... 48

4.1 Introduction... 48

4.2 The GTPPM RCM Language ... 50

4.3 Activities... 51

4.4 Flows, Transitions, and Dependencies ... 53

4.5 Other Process-modeling Components and Notation............................. 55

4.5.1 Initial and Final States .. 55

4.5.2 Static Information Sources.. 55

4.5.3 Dynamic Information Repositories... 56

4.5.4 Continue.. 57

4.5.5 Decision .. 58

4.5.6 The Process Components and Their Attributes 58

4.6 A Grammar for Product Information .. 59

4.6.1 Product Information Structure and Grammar 65

4.6.2 Categorization of product information 70

4.6.3 Syntactic rules for product information 73

4.6.4 Styles of Product Models.. 81

4.7 Relations between Information Categories in GTPPM 86

4.8 Dynamic Consistency Checking... 89

4.8.1 Notation of Dynamic Information Consistency Check............. 90

4.8.2 Basic Logic of Dynamic Information Consistency Check 91

4.8.3 Extended Logic of Dynamic Information Consistency Check . 95

 x

4.8.4 Practical Refinement of the Extended Logic 101

4.8.5 Application & Limitations of the Dynamic Consistency
Checking Method.. 104

4.8.6 Comparing RCM with Other Requirements Collection methods
.. 105

CHAPTER 5 Logical Product Modeling (LPM) .. 109

5.1 Introduction... 109

5.2 Schemas Mapping, Integration, Design Patterns, and Normalization 109

5.3 Integration of Collected Information in GTPPM................................ 113

5.4 Normalization in GTPPM... 115

5.5 Logical Product Modeling in GTPPM.. 116

5.6 Step 1: Unionizing Information Constructs .. 117

5.7 Step 2: Decomposition of Information Constructs 121

5.8 Step 3: Merger of Semantically Equivalent ICs 123

5.9 Step 4: Resolving Conflicts between Attribute Types........................ 124

5.10 Step 5: Resolving Conflicts between Attributes of a Supertype and its
Inherited Attributes ... 126

5.11 Step 6: Generalization/Specialization in GTPPM 127

5.12 Step 7: Resolving Conflicts between Attributes, Supertypes, and
Subtypes.. 132

5.13 Step 8: Limitations of GTPPM & Refinement of a Model................. 134

CHAPTER 6 Implementation .. 137

6.1 An Assumed Modeling Procedure and Implementation..................... 137

6.2 The Requirements Collection and Modeling (RCM) process 138

6.3 The Logical Product Modeling (LPM) Process.................................. 147

CHAPTER 7 Application & Evaluation .. 150

 xi

7.1 Overview... 150

7.2 Process Model Perspectives on Management and Engineering
Procedures... 151

7.3 Product Models for Managing Estimation, Scheduling, and Shipping
Information ... 153

7.4 Product Models for Designing/drafting .. 164

7.5 The Integration and Evaluation of Automatically Generated Product
Models .. 168

CHAPTER 8 Conclusion ... 175

APPENDIX A Early standard product modeling efforts... 179

APPENDIX B The formal definition of the semantic union ... 182

APPENDIX C Resources for Process Modeling Methods .. 185

APPENDIX D Requirements collection methods ... 197

APPENDIX E Notation of a Context-Free Grammar (CFG) .. 199

APPENDIX F A pseudo code for detecting semantically equivalent Information
constructs .. 201

APPENDIX G Automatically generated preliminary product models in EXPRESS.... 203

APPENDIX H Workflow management ... 234

REFERENCES ... 235

VITA 249

 xii

LIST OF TABLES

Table 1.1 Mapping between the STEP models and the three-level database architecture . 5

Table 2.1 IFC extension projects .. 30

Table 4.1. Mapping between vernacular information items and information constructs . 67

Table 4.2 Information constructs and entities in a product model.................................... 87

Table 4.3. RCM and other modeling methods.. 106

Table 4.4. Comparison of PISA and RCM ... 108

Table 5.1 Decomposition of ICs with the decomposition/association relations............. 122

Table 7.1 The degree of information dependence between activities by model type..... 153

Table 7.2 The statistics of the High model ... 159

Table 7.3 The statistics of the CTI model... 159

Table 7.4 Evaluation of the High Model .. 163

Table 7.5 The difference in the PIECE definitions... 166

Table 7.6 The statistics of the Unistress model .. 167

Table 8.1 Chronology of development in product data .. 179

Table 8.2. Three major streams of the UML .. 190

Table 8.3. Twelve standard UML Diagrams .. 190

Table 8.4. Process modeling tools .. 192

 xiii

LIST OF FIGURES

Figure 1.1 A partial IDEF0 model of ISO STEP Part 225 ... 8

Figure 1.2 Traditional & proposed product data modeling methods 9

Figure 1.3 Research questions .. 11

Figure 2.1 A timeline of product modeling efforts ... 18

Figure 2.2. Data exchange between different applications ... 19

Figure 2.3. Internal and external data exchange in practice ... 22

Figure 2.4 The attribute properties model of the Building System Model in EXPRESS. 25

Figure 2.5 The PDU entity and its subtypes in the GARM .. 26

Figure 2.6 A hamburger diagram.. 27

Figure 2.7 The RATAS building kernel model, defined as an abstraction hierarchy....... 27

Figure 2.8 A timeline of major product modeling efforts in AEC.................................... 32

Figure 3.1 The architecture of GTPPM .. 45

Figure 4.1. The hierarchy of activities .. 52

Figure 4.2 Activities.. 52

Figure 4.3. A basic mapping concept between process models and an information items53

Figure 4.4 Flows ... 54

Figure 4.5 Initial and final states... 55

Figure 4.6 Static information source... 55

Figure 4.7 Dynamic information source ... 56

 xiv

Figure 4.8 A pair of continues .. 57

Figure 4.9. A continue shape and a dummy flow between activities at different levels .. 58

Figure 4.10 Decision... 58

Figure 4.11 Process-modeling components of RCM and their attributes......................... 59

Figure 4.12 An information menu and information constructs... 66

Figure 4.13. A hierarchical structure of RCM product information in EXPRESS-G....... 73

Figure 4.14. The basic constituent structures of an information construct....................... 73

Figure 4.15 Product information as an access point to other information types............... 75

Figure 4.16. Abbreviation of specialized products ... 75

Figure 4.17. Concatenation of specialized products (SP) from different decomposed
products (DP) .. 78

Figure 4.18 Abbreviation of decomposed products (DP) ... 79

Figure 4.19. Abbreviation of specialized modifier entities (SME)................................... 80

Figure 4.20 A partial EXPRESS-G diagram of ISO STEP Part 41 83

Figure 4.21 The DRP_Object structure of the core representation................................... 85

Figure 4.22. An example of constructing product information .. 86

Figure 4.23. Information structure of RCM.. 88

Figure 4.24 A source activity, a target activity, and a flow.. 90

Figure 4.25 Upstream and downstream activities... 91

Figure 4.26 An example of "Calculate tire strength".. 92

Figure 4.27 The basic logic... 93

 xv

Figure 4.28 The first interface for checking the information consistency........................ 94

Figure 4.29 Types of activity information .. 96

Figure 4.30 The second interface for checking the information consistency 99

Figure 4.31 A practical approach to checking the information consistency................... 103

Figure 5.1 Four possible information integration methods in GTPPM 114

Figure 5.2 Roles of properties in GTPPM .. 118

Figure 5.3 Conflicting attributes ... 119

Figure 5.4 Unionization of Information Constructs.. 119

Figure 5.5 Conflicting attribute (role) names ... 120

Figure 5.6 Properties associated with the same entity .. 120

Figure 5.7 An example of two different properties associated with the same entity...... 121

Figure 5.8 Semantically equivalent information constructs ... 124

Figure 5.9 Merged entities in the specialization relation.. 124

Figure 5.10 A conflict between an entity type and a simple type................................... 125

Figure 5.11 A resolution for the attribute data type conflict... 125

Figure 5.12 A conflict between simple types.. 126

Figure 5.13 A resolution for the simple attribute data type conflict 126

Figure 5.14 A conflict between attributes of a supertype and inherited attribute........... 127

Figure 5.15 Deletion of inherited attributes.. 127

Figure 5.16 Common attributes of subtypes ... 128

 xvi

Figure 5.17 Generalization in GTPPM ... 128

Figure 5.18. The first iteration of specialization... 130

Figure 5.19. The second iteration of specialization .. 131

Figure 5.20 A conflict between an attribute and a subtype... 133

Figure 5.21 A resolution for the subtype and attribute conflict 133

Figure 5.22 An additional IC .. 133

Figure 5.23 A duplicate subtype relation.. 134

Figure 5.24 A resolution for a duplicate subtype relation .. 134

Figure 6.1 An assumed GTPPM modeling procedure .. 137

Figure 6.2. A part of a GT PPM model prepared by a precast concrete company 138

Figure 6.3 Entity PIECE defined in an Information Menu (IM) 139

Figure 6.4. A GT PPM Information Menu Interface (the IC Editor).............................. 140

Figure 6.5 Information Sets defined in a Vernacular Data Dictionary (VDD)............... 141

Figure 6.6 Vernacular information items (VIIs) defined in a VDD 142

Figure 6.7 The VII Updater .. 142

Figure 6.8 The Vernacular Information Item (VII) (or VDD) editor 143

Figure 6.9. A part of a GT PPM model with information sets 143

Figure 6.10 The Information Set Editor.. 144

Figure 6.11. The GT PPM Activity Information Editor ... 145

Figure 6.12. The GT PPM Information Mapper ... 146

 xvii

Figure 6.13. Exported Information Items ... 148

Figure 6.14 The EXPRESS Code Generator .. 149

Figure 6.15 GT EXPRESS2SQL .. 149

Figure 7.1 Generic top-level process model ... 151

Figure 7.2 A round table discussion at High Concrete before one-on-one interviews ... 154

Figure 7.3 Acquire Project.. 154

Figure 7.4 Mapping ambiguous terms based on the descriptions................................... 158

Figure 7.5 A SQL table structure of the High model with referential relations 160

Figure 7.6 A stack of double tees.. 165

Figure 7.7 A part of a double tee modeling process ... 165

Figure 7.8 Drawings from clients ... 166

Figure 7.9 EXPRESS code validation by EDM® ... 169

Figure 7.10 A hierarchy of MATERIAL generated by the Expresso Entity Grapher...... 169

Figure 7.11 Automatically generated PIECE and CONNECTION definitions............... 170

Figure 7.12 Several entity graphs of entities in the integrated model 171

Figure 7.13 An entity graph of IFC Building Elements.. 171

Figure 7.14 A partial EXPRES-G model of IFC Building Elements 172

Figure 8.1. RCM Notation .. 176

Figure 8.2. A linguistic example of a constituent structure tree 199

 xviii

SUMMARY

A product (data) model is a formally structured schema of some subset of the

information that is generated, modified and deleted throughout a product’s lifecycle.

Product models are being developed in many manufacturing, construction and industrial

domains to facilitate automation of activities, electronic communication and re-

engineering of engineering processes. The current standard product (data) modeling

process relies on the experience and subjectivity of data modelers who use their

experience to eliminate redundancies and identify omissions. In order to ensure

correctness, their decisions are validated via a time-consuming process of national and

international voting, e-mail and face to face meetings. As a result, product modeling

becomes a social activity that involves iterative review processes of committees.

This study aims to develop a new, formal method for deriving product models

from data collected in process models of companies within an industry sector. The

theoretical goals of this study are to provide a scientific foundation to bridge the

requirements collection phase and the logical modeling phase of product modeling and to

formalize the derivation and normalization of a product model from the processes it

supports. The long term practical goal is to greatly reduce the time and cost of producing

a product model from the current 5 to 10 years to 1.5 years or less. Another practical

benefit will be to allow companies to better plan and integrate their operations using the

resulting product model. To achieve these goals, a new and formal method, Georgia Tech

Process to Product Modeling (GTPPM), has been proposed. The basic approach is to

 xix

bind process and product data modeling together and to develop a product data model

that is sensitive to its various applications (processes).

This method eventually intends to support the ISO STEP effort. ISO STEP

(STandard for Exchanging Product data) is an international effort to develop standard

product models. The equivalent concepts to process and product models of ISO STEP are

respectively Application Activity Models (AAMs) and Application

Reference/Requirements Models (ARMs). Currently EXPRESS is the standard ISO

STEP data modeling language and IDEF0 is the standard AAM language. However, an

AAM and an ARM are linked implicitly and abstractly. In order to provide a mechanism

to tightly bind them together, several research questions should be answered. The

research questions are:

1) What is the process semantics that is required to elicit processes and

information necessary and sufficient to derive a product model?

2) How to specify required information in a machine-readable format

3) How to resolve the naming issues (a.k.a. the ‘nym’ issues: e.g., synonyms and

homonyms) and the conflicts between company-specific vernacular terms and

a consistent machine-readable terms

4) How to validate the consistency of information captured in a process

5) How to derive a product model from the collected process information

6) How to validate the well-formedness of the derived product model and

normalize the derived product model

 xx

7) How to integrate (or harmonize) product models into one unified model when

several different product models are derived from different processes about

the same product.

GTPPM consists of two modules. The first module is called the Requirements

Collection & Modeling (RCM) module. It provides semantics and a mechanism to define

a process model, information items used by each activity, and information flow between

activities. Thirteen process-modeling components have been defined for capturing

process semantics and information flow. In order to specify information items used by

each activity, a mechanism, called an information menu, has been developed. It structures

and restricts a way to specify information constructs (ICs) based on rules defined using a

context-free grammar (CFG). Information constructs (ICs) are formally defined

information items and represents domain semantics. The logic to dynamically check the

consistency of information flow within a process also has been developed.

The second module is called the Logical Product Modeling (LPM) module. It

integrates, decomposes, and normalizes information constructs collected from a process

model into a preliminary product model. Nine design patterns are defined to resolve

conflicts between information constructs (ICs) and to normalize the resultant model.

These two modules have been implemented as a Microsoft Visio® add-on. The

tool has been registered and is also called GTPPM®. The method has been tested and

evaluated in the precast concrete sector of the construction industry through several

GTPPM modeling efforts. The GTPPM was first deployed by fourteen precast producers

in the North America in analyzing the sales, design, engineering, production, and

shipping processes and information flow in the precast concrete industry. Based on the

 xxi

analysis results of the first attempt, three more test case models were developed. Three

product models and one integrated product model were automatically derived from the

three GTPPM models. One product model of a company was compared with the existing

Enterprise Resource Planning (ERP) system of the same company. The integrated model

was evaluated using the precast concrete extension of an existing standard product model

(i.e., PCC-IFC) as a benchmark.

A product model generated by the current GTPPM method is by no means

complete. An automatically generated product model will not include roles, data type,

cardinality, and the WHERE, DERIVE, and RULE clauses. Those should be added and

modified manually. The logic for automating those processes can be developed further in

the near future.

By using GTPPM, a complete set of information items required for product

modeling for a medium or a large industry can be collected without generalizing each

company’s unique process into one unified high-level model. However, the use of

GTPPM is not limited to product modeling. It can be deployed in several other areas

including:

• workflow management system or MIS (Management Information System)

development: Information required for processing an activity, passed to

succeeding activities, and fed back to previous activities can be defined.

• software specification development: A detailed definition of engineering

functions and processes can be developed, which will allow further

development of software in the engineering and design areas.

 xxii

• business process re-engineering: A process model with specific information

items can be used for reengineering of an organization like other process

models.

Also any form of a data model defined in EXPRESS can be read into GTPPM as

an information menu. Using this function, GTPPM can be used to update or validate an

existing product model by reading in an existing product model as an information menu.

It can be also used to develop conformance classes (i.e., valid subset models) of an

existing model.

We hope that this work will impact American and international standardization

activities (e.g., ISO efforts) to develop product models. By developing new formalisms

for product modeling, the proposed method is intended to build a formal and scientific

foundation for work in a field that is currently a craft, allowing systematic improvement.

 1

CHAPTER 1

INTRODUCTION

1.1 WHAT IS A PRODUCT MODEL

The information involved in design, engineering and manufacturing of each

product class involves many specialized entities, various types of aggregation, attributes

with specialized meaning and functional relations. A product (data) model1 is a formally

structured schema of such product information that is generated, modified, and deleted

throughout a product’s lifecycle. Defined as an integration and exchange standard, it is an

electronic medium to share and exchange product information among heterogeneous

systems within an organization, or more widely within/across industries. A product model

has distinctive characteristics from other data models:

1) It includes complex geometric information, defining the shape of each

component of the product, and also the shapes of different levels of component

composition.

2) The geometry is partially derived by the product’s intended functions. These

functions of the product are represented along with the topologies that enable

them, as well as the behavioral analysis results used to determine properties of

the product, partially capturing the product’s intent and rationale.

3) A product is manufactured or constructed. The information required to

fabricate, assemble, test, and manage the product are also included.

1 In this thesis, the terms a ‘product model’ and a ‘product data model’ are used interchangeably. Also a ‘data model’ and

a ‘(data) schema’ are used interchangeably.

 2

To date, over 30 product data models have been developed within the International

Standards Organization - Standard for Product Data Exchange (ISO-STEP 10303)

standards (ISO TC 184/SC 4 1994) and there are a growing number of industry-based

product models developed outside of the ISO organization, but using the same technology,

tools and procedures (CIMSteel Integration Standards Release 2 2002; IAI).

Product model schemas are large and multifaceted, reflecting multiple complex

semantic domains. For example, the CIMsteel product model used in the structural steel

industry (Crowley & Watson, 1999) has 731 entity types and a scope covering the design,

analysis, shop detailing and fabrication of steel structures for buildings. Currently, it is

supported by twelve applications. Other example domains for which product models have

been developed include NC tooling (ISO TC 184/SC 4 1996), sheet metal design processes

(ISO TC 184/SC 4 1999; Jurrens 1991), piping (ISO TC 184/SC 4; Palmer and Reed 1990),

process plant spatial layout (ISO TC 184/SC 4 2001), electronic assembly and packaging

design (ISO TC 184/SC 4 2001) etc. While significant effort has already been applied to

the development of product models, many engineering and production domains are still

evolving their IT infrastructure and have not yet developed corresponding product models.

Also, product models are live, not static, and require updating as new technologies and

concepts are integrated into a manufacturing or design domain. Thus the benefits of

improving the methods used in product modeling would have significant impact.

1.2 A STANDARD METHOD FOR PRODUCT MODELING AND ITS DRAWBACKS

The current method employed in all current product modeling efforts is based on

the ISO-10303 STEP languages and methods (NIST 1993, 1993). The STEP name for a

product model of each domain is an Application Protocol (AP). The STEP includes

 3

standard procedures that correspond to the ANSI/SPARC three-level database architecture:

i.e., a view, a logical model, and a physical model. The procedures begin by defining the

scope and processes to be supported, by defining a process model of the domain of

discourse, (called an Applications Activity Model (AAM)). STEP uses IDEF0 (Integration

Definition of Function Modeling) to define the AAM. It shows “the engineering process

context in which an AP will be used (VTT Building and Transport 2002)”. From the AAM,

a view of the information domain (called an Application Requirements Model (ARM)) is

defined using one of a set of conceptual modeling tools. (ISO STEP currently endorses

NIAM (Nijssen and Halpin 1989), IDEF1x (NIST 1993) and EXPRESS-G (ISO TC

184/SC 4 1994).) An Application Requirements Model is then refined and elaborated into

an Application Interpreted Model (AIM, which is a logical model of the information

domain). EXPRESS is the product modeling language universally used in such efforts

(ISO TC 184/SC 4 1994; Schenk and Wilson 1994; VTT Building and Transport 2002).

The initial AIM is then refined to integrate standard data model resources for representing

standard, cross-discipline concepts, such as geometry, units and measurements,

organizations, and so forth. The product model must support a variety of uses, centered

around queries, access, and management. These often require data about the data, or

metadata, needed for data management uses. Later, AIM can be implemented as a physical

model through the Standard Data Access Interface (SDAI) (ISO 10303 Part23, 2000).

Table 1.1 on the next page maps the STEP models and the ANSI/SPAC three-level data

structure based on Andrew Crowley’s five-level structure on p. 40 of (Crowley 1998) and

other references (Eastman 1999; Elmasri and Navathe 2000; ISO TC 184/SC 4 1994; NIST

2002).

 4

Product models are currently developed as a joint undertaking of domain experts

and product model experts, relying on committee reviews and convergence. The domain

experts rely on natural language to describe their requirements. The product model experts

first use process modeling languages and tools to define the scope of the domain (the

AAM) and then conceptual modeling tools to define the concepts in the domain and their

structure (the ARM). These two representations are separate and unrelated. They are

initially based on subjective and ad hoc interpretations of the expert’s knowledge. Because

the representations are new and complex to the domain experts, they are not easily checked

and require many cycles of iteration to converge to a meaningful result. Later the ARM is

elaborated and translated by the modeling experts to a full product model (or AIM) based

on the ISO STEP integrated generic resources (IRs)2. The IRs define “a generic ontology

for product data and provide the context of the AP domain ontology (Danner 1997).” The

product modeling process is iterative and converging between the modeling and domain

experts. It typically takes at least five years to complete the specialization and approval of

a product model. Some efforts have taken more than ten years. Throughout later stages,

application developers within the domain are engaged and translators to/from the product

model are developed. A product model specification is implementation-free; it can be

mapped into a text file format, an XML Document Object Model (DOM) or an XML

schema, a relational or object-oriented database schema, or object model direct mapping

interfaces. Initial interfaces typically involve file-based exchange, with database

implementations following. The STEP method using IDEF0 has been adopted by many

organizations such as US Air Force, IAI, and a number of projects carried out under the

2 ISO STEP Parts 41 to 56 define IRs.

 5

auspices of the European Union (CIMSteel Integration Standards Release 2 2002; Karstila

2001).

Table 1.1 Mapping between the STEP models and the three-level database architecture

Layer Model Languages STEP Model

External or view
level

External Schema or View IDEF0
IDEF1x
NIAM
EXPRESS-G
EXPRESS

AAM*, ARM
*An AAM is primarily an activity
/ process model, but also
represents information flow in a
process at a high level (e.g.,
IDEF0 ICOM).

Conceptual Level Conceptual or Logical Schema EXPRESS AIM

Internal Level Internal or Physical Schema
(Examples include internal data
models of CAx3 and other applications
as well as database management
systems.)

C++
Java
XML
(SQL)

STEP only provides an interface
(i.e, SDAI) to the physical
schema.

While the ISO-STEP methodology has been a significant step forward and has

allowed integration to be realized that could not have been achieved by earlier file-format

technologies, it suffers from a number of drawbacks:

1) The ISO-STEP product modeling process is a social process that involves

iterative review processes, rather than a rigorous collecting and processing of

strategic information (Eastman, Lee, and Sacks 2002). It relies on intuition,

tacit expertise and craftsmanship of the product modeling committee. Product

modeling needs to be put on a more rigorous scientific foundation, based on a

more formal and thus a systematically improvable process.

2) Current methods rely exclusively on human review for validation. While human

review is necessary for capturing semantic fallacies, consistency conditions

regarding information use within a process and product model can be identified

3 Application types starting with the phrase “Computer-Aided (CA)”: e.g., Computer-Aided Design (CAD), Computer-

Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE)

 6

(Lee et al, 2002). These define logical propositions supporting automatic

validation checking, reducing the range of manual checking required.

3) In almost all industry-wide product modeling efforts, IDEF0 models are built as

single unified models to represent idealized industry-wide processes, defined by

consensus among multiple stakeholders (Katranuschkov et al. 2002; NIST

1993). In this approach, any company level interest in planning its integration

with the product model must be carried out separately from the communal

activities. There is no means to include these variations in the modeling effort

or to validate that the product model developed supports current or anticipated

individual corporate processes.

4) Current product data models are defined as static structures, defined more as

archives of data rather than as support for strategic workflow processes. The

developmental and evolutionary aspects of product development and

production planning are not well supported (Eastman and Fereshetian 1994). If

product models are to truly support process re-engineering and integration,

closer linkage with the workflow characterization of a product domain is

required, to explicitly incorporate the developmental aspects of engineering and

design.

1.3 A BASIC APPROACH AND PRIMARY GOALS

Process modeling and product modeling are currently two different modeling

methods with different purposes for representing a domain. A process is a series of

activities that are “a piece of work that forms one logical step within a process” (WFMC

1999). On the other hand, a product model describes the definition, structure, and relation

 7

of information required to design, engineer, produce, and manage a product. Product

modeling serves information structure analysis, software development, database design,

and also organizational knowledge management and learning (Bernstein, Pal, and Shutt

2000). These two different modeling methods are related to each other by information.

Even though information used in a process is not directly depicted in most process

modeling methods, conceptually all the activities require input information to perform their

tasks and produce output information. The activity–specific information is closely allied to

the task-specific software applications developed to support an industry, so there is a

strong correspondence between the activity flows and application-specific data exchange

requirements. Since the exchange requirements are precisely the purpose of a product data

model, the process model can serve as an excellent source to identify many of the semantic

constraints applied in developing a product model.

The primary goal of this study is to develop the logic and procedures supporting a

formal method for product modeling, based on process-model-derived data. The basic

approach is to interweave (or to map) process modeling with product modeling. It aims to

provide a scientific foundation to elicit and collect information and domain knowledge

through process modeling that is sufficient to replace more traditional modes of conceptual

modeling and to (semi-) automatically derive and normalize a product data model from the

collected information (Figure 1.2, b). Some requirements collection and modeling methods

such as IDEF0 and DFDs allow users to define input and output information at a high level

as shown in Figure 1.1 (ISO TC 184/SC 4 1999) or even at a detail level4. However, there

4 In DFDs (Data Flow Diagrams), detailed information transferred between systems can be specified in a separate data

dictionary.

 8

is no logic or procedures yet to automatically derive a product model from the specified

input and output information without human intervention.

Figure 1.1 A partial IDEF0 model of ISO STEP Part 225

Another goal of this study is to provide the logic to integrate information

requirements collected from multiple AAMs into an ARM (Figure 1.2). As discussed

earlier, most standard product models today are developed based on a single

unified/integrated process model (AAM). And the single unified AAM is used only as a

means to define the scope and the context of a product model at a high level. It is not

because an AAM method is prohibiting multiple AAM generation or encouraging a single

unified AAM development. It is because there has not been a rigorous theory to integrate

information requirements specified in multiple AAMs into an ARM and, thus, it is only

time-consuming to produce multiple AAMs.

The theoretical goal of this work is to provide a formal structure to the information

collection, mapping, and structuring activities that are now used in an ad hoc way in

product modeling activities so that product modeling has a more scientific basis, rather

than only a social, information standardization basis.

The practical far-reaching goal of this work will be in reducing development time

of product models from the current 5 to 10 years to 1.5 years or less by minimizing the

committee review cycles, automating the product-modeling processes, and providing a

 9

logical foundation to check the validity. Reducing the development time is essential if

product modeling is to facilitate future re-engineering and automation in various industries.

It will become more critical as more standard product models are developed to support data

sharing between heterogeneous business and application environments. In the future, if a

product model cannot satisfy rapidly changing business and software environments, it will

become a restriction on design and manufacturing innovation.

Integrated

AAM
ARM AIM

weak link

static modeling

Application Activity Model

e.g., IDEF0, UML Activity Diagram

Application Requirements Model

e.g., IDEF1x, ER Diagram, Express-G

Express

mapping

a) Traditional Product Modeling Methods

AAM

Information

Constructs

Integrated

ARM

strong bond

dynamic modeling

Process and Information Flow Modeling

b) A Proposed Product Modeling Method

Shortened Modeling Time (1-1.5 years)

Long Modeling Time (5-10 years)

Application Interpreted Model

e.g., Express

AIM

Application Interpreted Model

e.g., ExpressApplication Requirements Model

e.g., IDEF1x, ER Diagram, Express-G

ExpressAAM

Information

Constructs

automated &

direct derivation

and integration

mapping

A single

integrated AAM

model

No rigorous method to check

the completeness of an ARM

Physical

Database

implemenation

Physical

Database

implemenation

feedback & updatesIRIRs
IRs

IRs

referencing

referencing

feedback & updates

Committee

Review

update

review

Figure 1.2 Traditional & proposed product data modeling methods5

5 The diagrams in grey are outside of the scope of this study.

 10

1.4 RESEARCH QUESTIONS AND THE SCOPE

Derivation of a product model from process information is not just a simple process

of adding information items to each activity and aggregating them back. First, process

information must be constructed as machine-readable information items having a

corresponding semantic representation in a product model. And the semantic concepts

identified in the process model should be mapped to product data model constructs.

Theoretically, the mapping from the captured process information to product data model

constructs is similar to the mappings from a data dictionary (a collection of data) to a

logical model, and eventually into a physical model. The information items arbitrarily

defined in natural language are not adequate for automating the mapping process. Formal

methods to define information constructs in a machine-readable format and to

incrementally structure the information constructs into a targeted data schema should be

provided. In this process, a resultant data schema should be normalized (decomposed and

restructured) in a logical form. Also appropriate schema integration methods to compose

the mapped product model constructs into an overall schema consistent with all the

constructs should be developed. While workflow systems6 have been able to achieve this

kind of synthesis for business data, it has not been possible for complex engineering data.

These research questions can be summarized as follows:

6 See Appendix E for a short review on workflow management systems.

 11

Information

Constructs

Information

Constructs

AAMAAM

111

333

44

66

7722

Process semantics

Specification of

required information
The ‘nym’ issues and the

conflicts between

vernacular terms

Validation of a process model

& its information flow
Normalization

Integration

11

222

33

777

444

AAM

Integrated

ARM

55555

Derivation of a non-

normalized ARM

Figure 1.3 Research questions

1) What is the process semantics that is required to elicit processes and

information necessary and sufficient to derive a product model?

2) How to specify required information in a machine-readable format

3) How to resolve the ‘nym’ issues (e.g., synonyms and homonyms) and the

conflicts between company-specific vernacular terms and a consistent machine-

readable terms

4) How to validate the consistency of information captured in a process

5) How to derive a product model from the collected process information

6) How to validate the well-formedness of the derived product model and

normalize the derived product model

7) How to integrate (or harmonize) product models into one unified model when

several different product models are derived from different processes about the

same product.

 12

The scope of this study is limited to the development of an integrated ARM. A

theoretical foundation for automating the mapping between an ARM and an AIM is

outside of the scope of this study.

Chapter 2 briefly reviews the history of product modeling and the existing product

models in the Architecture, Engineering, and Construction (AEC) domain7.

Chapter 3 provides formal definitions of two product modeling approaches: i.e., the

application-centric approach and the process-centric approach. It also formally defines the

relationship between a process model and a product model.

Chapter 4 introduces the Requirements Collection & Modeling (RCM) phase of the

proposed method. It discusses process semantics required for deriving a product model

from collected information requirements and describes a grammar for product information

using a Context-Free Grammar (CFG). Also it describes the logic for checking the

consistency of information flow within a process.

Chapter 5 discusses the Logical Product Modeling (LPM) phase of the proposed

method and proposes nine design patterns to integrate and normalize collected information

requirements into an ARM.

Chapter 6 explains how the proposed method has been implemented based on an

assumed product modeling process.

Chapter 7 reviews and evaluates the method. The proposed method were

experimented with fourteen precast producer members in the US and Canada. Three

product models and an integrated product model have been automatically generated from

collected information requirements through the proposed product modeling process. The

7 The facility management (FM), real estate, infrastructure industries are often treated as separate industries from the

AEC industry. However, this paper uses “the AEC industry” as a term, which also includes all other relevant industries.

 13

results were compared with a data schema of an existing ERP system and with the precast

concrete extension of an existing standard product model (i.e., PCC-IFC).

1.5 GLOSSARY

• activity: a logical step within a process (WFMC 1999) (Section 1.3) From a

product-modeling point of view, an activity of a process can be defined as an

act of processing information items (Section 3.4)

• application activity model (AAM): 1) the engineering process context in which

an AP will be used (VTT Building and Transport 2002)” (Section 1.2); 2) a

model that describes an application in terms of its processes and information

flow (ISO JTC 1/SC 32 2003)

• application context: the intended use of product data within an application (ISO

JTC 1/SC 32 2003)

• application interpreted model (AIM): 1) a logical model of the information

domain (Section 1.2); 2) an information model that uses the integrated

resources necessary to satisfy the information requirements and constraints of

an application reference model (ISO JTC 1/SC 32 2003)

• application protocol (AP): 1) The STEP name for a product model of each

domain is an Application Protocol (AP) (Section 1.2); 2) a part of the ISO

STEP standard that describes the use of integrated resources satisfying the

scope and information requirements for a specific application context. (ISO

JTC 1/SC 32 2003)

• application reference model (ARM): 1) a view of the information domain

(called an Application Requirements Model (ARM)) (Section 1.2); 2) an

 14

information model that describes the information requirements and constraints

of a specific application (ISO JTC 1/SC 32 2003)

• application: a group of one or more processes creating or using product data

(ISO JTC 1/SC 32 2003)

• flow: relation (e.g., transition) between activities. (Section 3.4)

• Georgia Tech process to product modeling (GTPPM): the process-centric

product modeling approach, which consists of the Requirements Collection and

Modeling (RCM) module and the Logical Product Modeling (LPM) module

(Section 3.5)

• information construct (IC): 1) a formally defined information item used within

a process. (Section 3.5); 2) a concatenation of tokens, which conforms to the

product information specification (PIS) grammar (Section 4.6.1)

• information item: a minimum expression of product information. (Section 3.4)

• information menu (IM): 1) a collection of tokens possibly used in a UoD with a

classification structure. It restricts the ways in which tokens can be strung

together in constructing information item. (Section 3.5); 2) a collection of

tokens that forms a minimum expression (or phrase) of product information

(Section 4.6.1)

• information unit: a grouping of relating constructs (entity data types, attributes

and relationships) that together represent one of the high level concepts of the

STEP data architecture (Fowler 1996)

• integrated resource: a part of the ISO STEP standard that defines a group of

resource constructs used as the basis for product data (ISO JTC 1/SC 32 2003)

 15

• logical product modeling (LPM): an algorithmic process to derive a product

model from collected information constructs (Section 3.5)

• model: an abstract representation or description (ISO JTC 1/SC 32 2003)

• normalization: 1) an activity of using the known semantics of data in the form

of dependencies that may be a cause for potential “update anomalies” requiring

unnecessary duplicate work as well as causing potential inconsistencies in a

database. (Section 5.2); 2) decomposition and restructuring of a data structure

to a normal form (Section 5.4)

• production information specification (PIS) method/mechanism: a method to

specify product information in a consistent, extensible, generative, analyzable,

and accessible manner (Section 4.6)

• process model: a model that describes how activities within a process are

connected, ordered, and structured, and represents a use case of information.

(Section 3.3)

• process: a series of activities

• product data: a representation of facts concepts, or instructions about a product

or set of products in a formal manner suitable for communication, interpretation,

or processing by human beings or by automatic means (ISO JTC 1/SC 32 2003)

• product information: 1) the information generated, used, and maintained

throughout a product's lifecycle. (Section 4.6) 2) facts, concepts, or instructions

about a product or set of products (ISO JTC 1/SC 32 2003)

• product model (or product data model): 1) a formally structured schema of such

product information that is generated, modified, and deleted throughout a

 16

product’s lifecycle (Section 1.1); 2) a model that describes the definition,

structure, and relation of information required to design, engineer, produce, and

manage a product. (Section 1.3)

• product: 1) a thing or substance produced by a natural or artificial process (ISO

JTC 1/SC 32 2003); 2) the identification and description, in an application

context, of a physically realizable object that is produced by a process (Fowler

1996)

• requirement collection & modeling (RCM): a graphical Requirements-

Collection-and-Modeling language for capturing information in the context of

its use (Section 3.5)

• resource construct: the collection of EXPRESS language entities, types,

functions, rules, and references that together define a valid description of

product data (ISO JTC 1/SC 32 2003)

• semantic intersection: a set of information items in two different data sets that is

semantically equivalent. (Section 3.2)

• state: A state (S) is a mode of a project. The state of a project is changed by a

set of activities (A). A project cannot autonomously change its state. (Section

3.4)

• supertype: a set of least common attributes of its subtypes (Section 4.6.1)

• token: a non-decomposable meaningful lexical element (ISO TC 184/SC 4

1994) (Section 3.5) (Section 4.6.1)

 17

• vernacular data dictionary (VDD): a data dictionary of vernacular information

items (VIIs), which includes VII names, definitions, data type, examples,

references, and synonyms (Section 6.2)

• vernacular information item (VII): a company-specific local nomenclature and

definition for product information (Section 3.5)

• view: a semantic subset of its superset similar to the concept of semantic

intersection; a derivable subset from its superset. (Section 3.5)

 18

CHAPTER 2

BACKGROUND

2.1 OVERVIEW

This chapter discusses why a standard product models is required and briefly

reviews the early product modeling efforts and product models in Architecture,

engineering, and construction (AEC).

2.2 NEEDS FOR STANDARD PRODUCT MODELS

1970 1980 1990 2000

VDA (1982): German Automobile Industry

AECMA: European Aerospace Industry

ICAM: IDEF

IGES (1979-1981): First practical solution

CAM-I (1973-1984): BRep

ANSI Y14.26(1970-1981): ANSI committee for standardization of a product model

ANSI/X3/SPARC: Three-level data model architecture

SET(1983): FrenchStandardd’Echangeet de Transfert (GOSET)

PDDI (1982-1987): ANSI Product Definition Data Interface

STEP (1984):STandard for ExchangingProduct (data) model

PDES (1984-1985): IGES, PDDI, STEP

HPS: (1989) Harmonization of Product Data
Standards Organization

The merger of PDES into ISO STEP(1991)

Figure 2.1 A timeline of product modeling efforts

The (standard) product modeling efforts first began as an effort to exchange a set of

geometric data between different CAD systems in the 1970s. Even at that time, when there

were only a few CAD systems with any significant market penetration, the demands for

standard geometry and topology to exchange data between different CAD systems were

 19

very well recognized (Goldstein, Kemmerer, and Parks 1998). Over the time, the scope of

product information, which can be managed electronically, has been broadened and so

does that of product models and the number and types of software applications. Figure 2.1

is a timeline of those product modeling efforts. A brief summary of each project is

provided in Appendix A. Detailed and good descriptions on each project are available in

(Bloor and Owen 1995; Eastman 1999; Goldstein, Kemmerer, and Parks 1998).

Figure 2.2 is a well known diagram that illustrates the needs of a standard product

model in terms of the number of translators required for exchanging data between n

numbers of software applications with and without a standard product model. Figure 2.2

(a) illustrates a case where there are n numbers of applications but without a standard

product model and Figure 2.2 (b) a case where there is a standard product model.

Figure 2.2. Data exchange between different applications

Each application needs at least two translators to import and export data to another

application in both cases. The number of translators required for exchanging data between

applications in Case (a) is 2 * n * (n - 1) or 2n2 – 2n and in Case (b) 2n. The difference

increases exponentially as the number of applications increases. Since more and more

: a standard product model

(a) Direct data exchange
between applications

(b) Data exchange
through a single standard

data model
: software application

: data exchange (information flow)

 20

software applications with various functions and formats are released to the market every

year, the standard data model approach seems very cost-effective and time-saving

compared to the direct data exchange approach. However, this comparison has been

criticized for being too idealistic. Some of the criticisms8 are as follows: (See Figure 2.3

for an example)

• A company or a project does not use all the software applications available in the

market (Figure 2.3), but only a small subset of the software applications available

in the market (Figure 2.3).

• Not all the software applications used by a company need to talk to each other. For

example, usually there is no data exchange between a CNC machine and a

structural analysis system (Figure 2.3).

• Through the last twenty or thirty years, software applications became versatile. One

application or a bundle of applications by one software vendor can support the

broad range of product design, engineering, and production activities.

• Some applications have embedded direct links between themselves and different

applications developed through Application Programming Interfaces (APIs) (e.g., a

CAD system and a structural analysis system in Figure 2.3). Some relevant

technologies are the middleware (e.g., ODBC), the Dynamic Link Library (DLL),

and the Component Object Model (COM) technologies.

8 This criticism is based on a survey on the use of software applications in the precast concrete industry, interviews with

architects, discussions with software developers, Fried Augenbroe’s presentation at ECPPM 2002 (Augenbroe 2002).
Another set of discussions on a standard product model can be found in (Amor 2001). Rober Amor discussed twelve
common misconceptions (or misbelieves) about standard product models and integrated project databases. Those are:
1) OO provides the complete solution; 2) The single data model will appear; 3) We represent reality; 4) User views are
reconcilable; 5) Mapping is easy; 6) The Internet solves the communication problem; 7) XML solves the
representation problem; 8) Documents will disappear; 9) CAD is the center of an integrated project database (IPDB);
10) IPDB solves information ownership problems; 11) IPDBs guarantee coordinated and consistent information; and
12) The industry is ready for IPDBs.

 21

• Some applications are dominant in a certain domain (e.g., AutoCAD in AEC). And

their data formats are often used as de facto standard data models for certain types

of applications (e.g., DWG or DXF). They are limited in many ways, but still

usable.

• Even if there is a standard data model, only a selected set of data can be exported or

imported between different types of applications. For example, usually an

Enterprise Resource Planning (ERP) system may not read in all the geometric data

from a Computer Aided Design (CAD) system and a CAD system will not read in

managerial data from an ERP system.

• Sometimes unidirectional data exchange is preferred by companies. For example,

many architectural firms are very reluctant to give electronic copies of their

projects to third parties unless they have a strong business relationship or are forced

to share information by building codes because 1) they do not want reveal their

business secrets and design esoterics; 2) there are always potential legal issues; and

3) technology is not there yet: e.g., the exchange process often loses or alters data.

And there is no rigorous method to keep track of changes or to validate an

exchanged model yet. For this reason, many AEC companies today do not read in

an electronic model from another party as it is, but rather incorporate changes into

their own model one by one manually.

• Also many software vendors are not willing to make their applications

interoperable because they believe that they will lose competitiveness in the market

by supporting data exchange between theirs and other applications (Szykman et al.

2001).

 22

Figure 2.3. Internal and external data exchange in practice

Although the benefits of a standard product model are not as great as they are in an

ideal situation, there are still several reasons to develop standard product models:

• First, different projects or companies use different sets of software applications.

Thus, software vendors need to support not one set of applications as shown in

Figure 2.3, but multiple sets of data exchange scenarios. Not all the applications

need to talk to each other as shown in Figure 2.2, but the exchange scenario can

still be pretty complex as reported in (Fischer and Kam 2002).

• The above argument is more true to the AEC industry than to the manufacturing

industries (including the automobile and the aerospace industries) because, unlike

them, companies in the AEC industry work like a temporary consortium a project

by a project (more like the movie industry) or a region by a region. There can be a

fixed set of software applications within a company, but not across companies in

the AEC industry.

Standard
Geometric Model
(e.g., DXF)

CAD
System

Structural
Analysis
System

CNC
Machines

ERP
System

Direct Link

Some other
OA systems
(e.g., Excel)

Internal Data Exchange within a
Company

Another
CAD
System

Another
CAD
System

External Data
Exchange

Unidirectional
Data
Exchange

Bi-directional
Data
Exchange

API &
Middleware
(e.g., ODBC)

 23

• Each application has a proprietary internal data structure. Even though many

software applications provide an open Application Programming Interface (API)

today, it is still not an easy job to understand the internal data structures of all the

targeted applications and develop and update translators between them.

• Software applications and their internal data structures are usually updated every

year or two. Even if a software application supports data import/export functions

only for a small number of applications, it will be time-consuming and expensive to

update translators every year.

• Some software vendors do not want to reveal the internal data structure of their

applications. In such cases, the translator development entails code-hacking and can

possibly lead to a legal dispute as a result.

• As the interest in the concept of a central product model repository (PMR)9 as a

means of product/project lifecycle management (PLM) and as a substitute for file-

based data exchange issues (You 2003) increases, the importance of a standard

product model especially in a collaborative work environment has further

emphasized by many studies (Adachi 2002; Amor 2001; Augenbroe 2002;

Hardwick et al. 2000; You, Yang, and Eastman 2004).

Industries, in fact, squander billions of dollars due to poor interoperability between

software applications (Szykman et al. 2001). A standard product model is an open public

data schema and can eliminate or reduce most of the issues described above. However,

there will be still many other technical and cultural issues in interoperability (e.g., the

9 a.k.a. an Integrated Project DataBase (IPDB,(Amor 2001)) and a Virtual Enterprise Product data Repository (VEPR,

(Hardwick et al. 2000)) .

 24

concurrent engineering issues; the change propagation and management issues) that a

standard product model cannot resolve. In any case, if a standard product model cannot be

delivered to the software developers in time, all these discussions are meaningless even in

the first place. An efficient and scientific product modeling method, which can generate a

rigorous and practical product model in a short period of time, is critical in the success of

the standard product modeling effort. This study aims to develop such a product modeling

method.

2.3 EARLY BUILDING PRODUCT MODELS

There have been many efforts to develop building product models. Early building

product models include Jim Turner’s Building System Model (BSM) (Turner 1988, 1988),

Gielingh’s General AEC Reference Model (GARM) (Gielingh 1988, 1988), the Finnish

RATAS project (Bjork 1989), and the Construction Integrated Manufacturing for Steel

Structures (CIMsteel or CIS)(AISC 2002; EUREKA 1987-1997).

Wim Gielingh was the chairman of the ISO-STEP AEC committee at that time and

both the BSM and the GARM were working STEP documents. The subcommittee was

called TC184/SC4 WG110. The BSM decomposed a building project into a single site, a

building, and a collection of (sub-) systems (Turner 1988). It used NIAM as a modeling

language. An interesting aspect of the BSM is that it initially proposed, so called, a

“shotgun” approach: i.e., exchanging data through generic OBJECT, ATTRIBUTE, and

VALUE objects (Figure 2.411) (Turner 1988) instead of exchanging data through building-

industry specific objects and attributes (e.g., an object DOOR has attributes MATERIAL,

10 TC: Technical Committee, SC: Sub-Committee, WG: Working-Group

11 A model in NIAM is provided in Appendix B.

 25

COLOR, STYLE). In a sense, this approach is similar to the late binding approach in

computer programming. But this approach does not work especially for exchanging data

between object-based CAx systems because there is no guideline to determine what

information means what: e.g., ‘tread_width’ in one system can mean ‘tread_length’ or

‘tread_depth’ in other systems. In order to avoid any misinterpretation, there should be a

separate standard data model to define the domain-specific objects and attributes.

Figure 2.4 The attribute properties model of the Building System Model in EXPRESS

GARM was initially proposed as a generic data model to integrate various models

developed within AEC and other models in STEP/PDES (Gielingh 1988). It included the

Product Definition Unit (PDU) entity and several subtypes (e.g., the Functional Unit (FU)

entity and the Technical Solution (TS) entity) (Figure 2.5). PDUs in AEC are Building,

Plants, Ships, and Civil Engineering. GARM does not predefine what a PDU is: it can be a

system, a sub-system, a component, a part, a feature, a space, or a joint. A Function Unit

(FU) represents a requirement for a PDU. A Technical Solution (TS) is an answer to the

 26

requirement. Such relations between FUs and TSs are described in, so called, a hamburger

diagram. Figure 2.6 illustrates an example of the hamburger diagram.

Figure 2.5 The PDU entity and its subtypes in the GARM

The GARM and the BSM were followed by the Building Construction Core Model

(BCCM) ISO STEP Part 106 by Jeffrey Wix in 1994. The BCCM was regarded as a

framework model and lacked detailed definitions of objects (Eastman 1999). It was later

withdrawn from the ISO STEP Integrated-application Resources (IR) list.

The RATAS project was led by Bo-Christer Bjork at VTT in Finland (Bjork 1989).

RATAS categorized a building into five levels: building, system, sub-assembly, part, and

detail. One of interesting aspects of the RATAS model is that it categorizes SPACE and

JOINT as an individual entity, not as an attribute or a relation (Figure 2.7) (Eastman 1999).

 27

TS TS TS

FU
Car

TS Volvo 340

FU FU FU
Motor Car Body Electric System

TS TS TS Renault B14.3E 340/84
Body
Design

340/84
Electric
System
Layout

FU FU FU Carburetor Starter Motor
Block

Figure 2.6 A hamburger diagram

Figure 2.7 The RATAS building kernel model, defined as an abstraction hierarchy

These models were framework models and have not been broadly accepted by

software vendors. On the other hand, the CIMsteel (CIS in short)(Crowley 2000; Crowley

and Ward 1999) and the Industry Foundation Classes (IFC) (IAI) models are the only two

 28

models that are practically and widely deployed by the AEC industry for exchanging data

today. These two models are compared and reviewed in the next section.

2.4 CIS AND IFC

The CIS (CIMsteel) model was initially developed by Andrew Crowley and

Alastair Watson at the University of Leeds (Crowley 1998) as part of the EU EUREKA

project (EUREKA 1987-1997). The current version of the CIS model is CIS/2 LPM6 and

is still maintained by Andrew Crowley supported by the American Institute of Steel

Construction (AISC).

The IFC model has been developed and maintained by the International Alliance

for Interoperability (IAI) since 1994. The current version of IFC is IFC2x2. And there are

thirteen completed extension projects and seven ongoing extension projects as of March 30,

2004. A short history of the IAI and the IFC is available at (IAI 2004).

The commonality between the CIS and IFC models is in that both of them are

industry-driven efforts even though the CIS project was initially an academe-led project

with support from a large industry team. The success of both models may be attributed by

this industry-level support. Currently there are nineteen software companies including

AutoDesk, Bentley, and Graphisoft that are involved in the IFC projects (IAI) in the North

America. And twelve software companies including Tekla, Intergraph, and Bentley are

involved in the CIS project (Yang et al.). Nevertheless, while IFC2x2 is adapted still in a

limited manner in real projects, the American Institute of Steel Construction (AISC)

informally reported that over 50% of the AISC steel fabricators is exchanging data using

CIS/2. A clear reason that IFC2x2 is deployed only in the limited scope of a project is that

it still lacks detailed object definitions, which are essential for exchanging information of

 29

real construction projects. This difference is due to IFC’s and CIS’ different goals, scopes,

modeling approaches, and styles. First, the goal of IFC is to develop a core high-level

model to which AEC-specific extensions can be added later (IAI 2000). IAI explains that,

if there is a huge model that contains all the information in the AEC, the model would be

“high complex and difficult to understand and virtually impossible implement.” The

domain-specific definitions are assumed to be added as a “leaf node (extension)” to the

core IFC model. Currently IAI is supporting many extension modeling efforts. The current

and completed IFC extension projects are listed in Table 2.1 as of March 30, 2004.

Thus, the structure of the IFC model is conceptual and generic. The backbone

entities of IFC2x2 stems from the IfcRoot entity. IfcRoot is subcategorized into three

conceptual entities: IfcObject, IfcPropertyDefinition, and IfcRelationship similar to the

basic three components of the Relational database approach: i.e., Entity, Property

(Attribute), and Relation:

ENTITY IfcRoot

 ABSTRACT SUPERTYPE OF (ONEOF

 (IfcObject

 ,IfcPropertyDefinition

 ,IfcRelationship));

 GlobalId : IfcGloballyUniqueId;

 OwnerHistory : IfcOwnerHistory;

 Name : OPTIONAL IfcLabel;

 Description : OPTIONAL IfcText;

 UNIQUE

 UR1 : GlobalId;

END_ENTITY;

On the other hand, the CIS model targeted a very specific domain (i.e., the steel

construction industry) and is structured according to four high-level processes in the

 30

construction steel industry12: Design, Analyze, Return Analysis Results, Modify Design,

and Manufacture. This process is described in detail in (Crowley and Ward 1999) as an

IDEF0 model. Information used in the four processes are modeled as four subset models

called the analysis model, the analysis result model, the design model, and the

manufacturing model accordingly. The distinction between these subset models has been

blurred while the conflicts between models were resolved through updates. However, the

initial modeling philosophy is still well integrated into the current model.

Beyond the overall structure, the CIS and the IFC models have minor differences.

In terms of a modeling style, the CIS model uses the ANDOR constraint, which causes

many problems in implementation, while the IFC model excludes the ANDOR constraint

(IAI). Entities in the IFC model are all named starting with “Ifc”, which makes reading and

sorting of entity names difficult.

Table 2.1 IFC extension projects

Completed Projects Ongoing Projects

1) HVAC Performance Validation [BS-7*]
2) HVAC Modeling and Simulation [BS-8]
3) Network IFC: IFC for Cable Networks in Buildings

[BS-9]
4) Code Compliance Support [CS-4]
5) Electrical Installations in Buildings [EL-1]
6) Engineering Maintenance [FM-1]
7) Costs, Accounts and Financial Elements [FM-8]
8) Material Selection, Specification and Procurement

[PM-3]
9) Steel Frame Constructions [ST-1]
10) Reinforced concrete structures and foundation

structures [ST-2]
11) Precast Concrete Construction (PCC)** [ST-3]
12) Structural Analysis Model and Steel Constructions

[ST-4]
13) IFC drafting extension [XM-4]

1) Early Design [AR-5]
2) Bridge [CI-2]
3) Industry Foundation Classes for GIS (IFG) [CI-3]
4) Electrical Installations in Buildings (EL-2) [EL-2]
5) Portfolio and Asset Management - Performance

Requirements (PAMPeR) [FM-9]
6) Structural Timber Model [ST-5]
7) Harmonization of ISO 12006 Part 3 with IFC [XM-

7]

* The numbers in parenthesis are extension identifier numbers

** The ST-3 project is also known as the PCC-IFC project.

12 It is also possible to say that the CIS model is modeled depending on four different application functions.

 31

Every model has a different style depending on its purpose and assumptions. IFC

and CIS also have different styles based on their different goals. Thus, it might not be valid

to judge which one is better over another. However, the method, which this study aims to

develop, should be able to allow various data modeling style. This issue is discussed in

detail in Section 4.6.4.

2.5 OTHER BUILDING PRODUCT MODELS & RELEVANT PROJECTS

Figure 2.8 summarizes major product modeling efforts in AEC. As shown in Table

2.1, IFC recently added the cast-in place (CIP) concrete extension (ST-2), the precast

concrete extension (ST-3) (Karstila et al. 2002) and the construction steel extensions (ST-1

and ST-4). Since these were all driven by the European Union, the resultant models do not

satisfy some of the demands of the North American AEC industries. In parallel to these

efforts, Chuck Eastman at Georgia Tech is leading a project to develop a product model for

the North American precast concrete industry for the last three years. The model is

tentatively called a Precast Concrete Product Model (PCPM). It is clear that the mapping

and harmonization between product models will be a critical issue in the near future. And

there is already a movement to respond to such issues.

Other building product models and relevant projects include:

• Building Elements (1994) Wolfgang Haas, STEP Part 225;

• BSAB (Ekholm 1996; Ekholm and Fridquist 1996);

• Building Lifecycle Interoperable Software (BLIS, http://www.blis-

project.org);

 32

• Architecture, Methodology and Tools for Computer-Integrated Large-Scale

Engineering (ATLAS) (Tolman and Poyet 1995);

• Virtual Enterprise using Groupware tools and distributed Architecture

(VEGA); VERA at VTT (1997-2002);

• Computer Models for the Building Industry in Europe (COMBINE I &

II)(Augenbroe 1993, 1995);

• the Engineering Database Model (EDM) project (Eastman, Chase, and

Assal 1993);

• the Intelligent Services and Tools for Concurrent Engineering (ISTforCE)

project (Wix and Liebich 2000);

• OSMOS IST-1999-10491 (Wilson et al. 2001);

• Electronic Business in the Building and Construction IST-1999-10303 (E-

Construct).

Figure 2.8 A timeline of major product modeling efforts in AEC

Summaries and reviews on some of these models and projects are available in

(Christiansson and Karlsson 1988; CSTB 2004; Eastman 1999; Ronneblad 2003). Among

 33

these, the EDM project (Eastman and Jeng 1999) was unique in that it attempted to

develop an evolvable product model through the lifecycle of a product instead of defining a

static product model that can only support the predefined scope of product information.

Many advanced engineering database issues such as incremental schema evolution,

concurrent engineering, selective updates, and integrity maintenance were identified and

discussed through the project. As a result, a data model and implementation language

EDM-2 has been developed and a small case has been implemented on top of UniSQL®.

However, the project has been discontinued and the approach has not been rigorously

evaluated yet.

2.6 OTHER STUDIES ON PRODUCT MODELING

Much of the literature in product models involves case studies on their application

and expected benefits (Giannini et al. 2002; Smith 2002; Szykman et al. 2001). Others

focus on new developments of product models that extend their use and support new

engineering applications, such as the development of product catalogs (Peak, 2001),

support for feature-based design (Dereli and Filiz 2002), and made-to-order products data

exchange using parametric models (ISO TC 184/SC 4 2001). In addition, there have been

some efforts to define a common set of abstract concepts and relations for product models

(Bjork 1989; Eckholm and Fridquist 1996), especially based on function-structure-

behavior trichotomy (Fenves 2001). Work has begun to address the prescriptive definition

of a product model with linkages to a process model, so that the interactive effects of

design changes on processes can be better identified (Feng and Song 2000). Other work

has used STEP-models to identify product groups (El-Mehalawi and Miller 2001).

 34

Work has also focused on development of extensions to the basic STEP methods.

These include languages for mapping between EXPRESS models (Spooner and Hardwick

1997) and the development of incremental evolution of EXPRESS models (Kahn et al.

2001) and analysis of abstraction level (Mannisto et al, 2001). An effort somewhat related

to this study was to develop an EXPRESS product specification schema (McKay, de

Pennington, and Baxter 2001). This work builds upon product specification concepts of

(Pahl and Bietz 1998) to capture the requirements for made-to-order products. The

requirements are for the product, however, not a product model.

 35

CHAPTER 3

A NEW AND FORMAL PROCESS-CENTRIC PRODUCT MODELING
APPROACH

3.1 TWO APPROACHES TO DEVELOP A PRODUCT MODEL FOR DATA

EXCHANGE

All product models are developed through a conceptual thinking process. Modeling

by decomposition is a good example of conceptual modeling: e.g., A BUILIDNG consists

of SUBSYTEMs. A SUBSYSTEM consists of building PARTs. A PART consists of

SUBPARTs and so on. But, if a product model is to be developed only depending on a

conceptual thinking process, there will be no constraint or reference to determine the scope

of a product model. Also, there might be a gap between the resultant product model and

actual user requirements. Thus, a product model should be defined in a certain context or

within a specific scope.

The scope or context of a product model for data exchange can be defined generally

by two ways: i.e., by native data structures of software applications of interests or by

activities and processes of interests. These approaches can be respectively called an

application-centric approach and a process-centric approach. Since applications also

operate to support a process, these two approaches are not mutually exclusive. However,

these two approaches are taking theoretically different approaches to automate/rationalize

data modeling processes. The following two subsections formally define and compare

these two approaches introducing new semantic set operations. The last section of this

 36

chapter introduces and overviews the architecture of a new and formal process-centric

product modeling approach proposed in this thesis.

3.2 THE APPLICATION-CENTRIC MODELING APPROACH

Not all the data in two applications can be exchanged. But more than a

mathematical intersection of the two native data sets can be exchanged. We call the set of

data, which can be exchanged between two data models, a semantic intersection. A

semantic intersection is a set of information items in two different data sets that is

semantically equivalent. For example, let’s assume that A is a set of information required

by a delivery management system or corresponding process, and that B is a set of

information required by a structural analysis system or corresponding process.

A ≡ {project_name, load, driver}

B ≡ {strucutre_name, load, frame}

The results of regular set operations13 of these two sets will be:

BA + ≡{project_name, structure_name, load, load, driver, frame }

BA∩ ≡{load}

BA∪ ≡{project_name, load, driver, structure_name, frame }

However, it is very unlikely that data models of two different applications use the

same terms or the same data structure to define their native data structure. Thus, let us

assume that project_name in Set A is a synonym of structure_name in Set B and that load

13 The regular set operations assume that there is no homonym and synonym in any set.

 37

(“truck load”) in Set A is a homonym of load (“structural load”) in Set B. In such a case, the

results of the semantic set operations of these two sets will be:

Let +∩ : a set (or aggregation) of semantically equivalent entities

*∩ : semantic intersection

fsi(x, y): a function, which returns either one of semantically equivalent

information items x or y; x and y can be also expressed in terms of

functions: e.g., f(x) and f(y)

BA +∩ ≡{project_name, structure_name}

BA *∩ ≡{ fsi(project_name, structure_name)}

If fsi(project_name, structure_name) = project_name,

BA *∩ ≡{project_name}

(The definition and an example of the semantic union (*∪) are provided in

Appendix B.)

In this case, only project_name and structure_name can be exchanged between two

systems. Others will be lost in the data exchange process. The definition of semantically

equivalent items is not limited to synonyms. The entities in driving and driven relations

can be also regarded as semantically equivalent items. For example, a CAD system usually

does not carry “surface_area” in a native data model because the surface area of a shape

can be calculated based on other geometric information. On the other hand, an estimation

 38

system often includes “product_surface_area”, but does not manage detailed geometric

information of a product. For example, let’s assume that we are interested in

“wall_surface_area”. Let A be a set of information in a CAD model. Let B be a set of

information in an estimation system. “�” denotes a functional dependency. A�B 14

denotes “if A then B” or “B is derived from A”.

A ≡ {wall_width, wall_height}

B ≡ {wall_surface_area}

(wall_width, wall_height) � (wall_surface_area)

BA *∩ ≡{ fsi(wall_width × wall_height, wall_surface_area)}

≡{ fsi(wall_surface_area, wall_surface_area)}

In general, if there are driving and driven items, driven items should be regarded as

a semantic intersection of driving and driven items because it is usually possible to derive

driven items from driving items, but not vice versa. Therefore, the semantic intersection of

Applications A and B in the above example is:

 BA *∩ ≡{wall_surface_area}

However, if the relationship between items is bidirectional (i.e., an item can be both

a driving and a driven item of the other item at the same time), all the items should be

included.

If a∈A, b∈B, a�b, b�a, then

BA *∩ ≡{a, b}

14 The same symbol is used in a later section to show a rewrite rule in the Context-Free Grammar.

 39

e.g.,

A ≡ {wall_width, wall_height}

B ≡ {wall_height, wall_surface_area}

BA *∩ ≡{wall_height, fsi(wall_width × wall_height, wall_surface_area),

 fsi(wall_width, wall_surface_area ÷ wall_height)}

≡ {wall_height, wall_surface_area, wall_width}

In many cases these relations are not apparent and are difficult to define. (Stouffs,

Krishnamurti, and Eastman 1996) is a good example of showing the complexity of

mapping different solid representations.

 This definition implies two apparent, yet important facts about data exchange

between two systems:

1) Theoretically as well as practically, there cannot be lossless data exchange

between two applications.

2) The more similar two application types are, the more information they can

exchange.

If there are more than two applications, a product model will be the grand union of

all the semantic intersection of all the applications:

Let Ai and Aj : an application

n: the number of applications

Product Model D ≡)*(
11
∑∑

==

∩
n

j
j

n

i
i AAU

 40

This definition is important because it provides an algorithmic definition of a

product model and opens up a possibility of automating the development of a translator or

a data model: i.e., theoretically, if a semantic intersection of all the native data models of

interest can be identified, a product model to support data exchange between the native

data models can be automatically derived from the identified semantic intersection.

Identification of a semantic intersection of two data models basically undertakes the same

process as schema mapping. As Robert Amor pointed out (Amor 2001), mapping is not

easy and there is much work to be done to make automated translator or product model

development possible.

However, the application-centric product modeling approach also has several

drawbacks. A product model often includes non-existing software applications that users

wish to include in their data exchange scenario in the near future. But, based on the above

definition, a product model cannot be defined if the data structures of targeted software

applications are not predetermined. Also a product model can be used as a standard data

schema not only for data exchange between different applications, but also for a central

project/product management system (PMS) to support a collaborative work environment.

The application-centric approach is not suitable for developing a data schema for a central

project/product management system (PMS) because it cannot capture additional

information that is required for managing project/product information (which are usually

not included in application data structures). On the other hand, the process-centric

modeling approach has the strength over the application-centric approach in this regard.

 41

3.3 THE PROCESS-CENTRIC MODELING APPROACH

Process models aim to describe a process in terms of (who-) what-when: e.g., what

are the tasks?; what first?; what next?; what are the precedences among activities?; what

if?; and sometimes who did what? A process model describes how activities within a

process are connected, ordered, and structured, and represents a use case of information. A

process-centric data modeling method is a data modeling method that uses a process model

as a means to collect user requirements. Many modern data modeling methods are taking

the process-centric approach including the IDEF (NIST 1993) and the UML (Booch,

Rumbaugh, and Jacobson 1999), and some ER data modeling15 methods. (See Appendix

C and Appendix D for more review on requirements collection methods.)

The advantages of a process-centric and use-case-driven data modeling approaches

have been discussed by many studies (Augenbroe 2002; Elmasri and Navathe 2000, 2004;

Garg and Jazayeri 1996; Rosenberg and Scott 1999, 1999). Some of them are as follow:

• It represents complex and specific user requirements in a visible and formal

description.

• It provides a means to formally review, validate, and improve the requirements.

• It clearly defines the scope of a product data model.

• These capabilities are crucial especially for a large-scale development project.

• The captured requirements can be reused in the update or in similar projects.

15 In ER data modeling, Data flow Diagrams (DFDs) are often employed rather than a process model. Strictly speaking

the DFD method is not a process modeling method because it represents data flow between systems, not between
activities.

 42

In addition, if a product data model can be derived directly from collected process

information, theoretically the completeness of a product model can be guaranteed. The

next section formally defines the relationship between a process model and a product

model.

3.4 THE COMPLETENESS OF A PRODUCT MODEL

The basic process-modeling elements include states, activities (tasks or functions),

and flows (relations or transitions).

• An activity (A) is a logical step within a process. An activity processes

information.

• A state (S) is a mode of a project. The state of a project or information

processing is changed by a set of activities (A). A project cannot autonomously

change its state.

{A0, A1, A2 …}(Si) � Si+1

where Si is the current state of a project or information processing and Si+1 is

the next state

• Flows define relations (e.g., transitions) between activities.

The relation between a process model and a product model can be formally defined.

All the activities in a process require input information to perform their tasks and yield

output information. From a product-modeling point of view, an activity of a process can be

defined as an act of processing information items (Eastman 1996). An information item is

a minimum expression of product information. An activity can be formally defined as

follows:

Def. 1: A ≡ {(i, f) | i∈I ∧ f∈F ∧ ∃J(J⊆I ∧ J=f(i))}

 43

where A is an activity, I is a set of information of a Universe of Discourse (UoD), J

is a subset of I, and F is a set of non-decomposable functions or acts of processing

information. F produces a new set of information J and receives, generates, updates,

deletes, or distributes an information item.

Def. 1a: F = {receive, generate, update, delete, distribute}

Similarly, in this perspective, a process is a set of activities, states, and their

relations. A relation (i.e., flow) can only connect either an activity and another activity, or

an activity and a state at a time.

Def. 2: P ≡ {(a, s, r) | a∈A ∧ s∈S∧ r∈R ∧ ∃b∃t(b∈A ∧ t∈R ∧ (r(a, b) ∨ t(a, s)))}

where P is a process, R is a set of relations (or flows) between an activity and an

activity or between an activity and an activity, A is a set of activity, and S is a set of states

By replacing activities in Def. 2 with sets of information in Def. 1, a process can be

characterized by the collection of information processed by its activities.

P ≡ {((i, f), s, r) | i∈I ∧ f∈F ∧ s∈S ∧ r∈R}

A product data model is a set of information items and their relations. Note that

information items of a product model have different relations (or a structure) from those of

a process model. However, if they are describing the same UoD, then the collection of

information items should be the same.

Def. 3: D ≡ {(i, q) | i∈I ∧ j∈I ∧ q∈Q ∧ ∃j(q(i, j))}

where D is a product data model, I is a set of information in a Universe of

Discourse (UoD), Q is a set of relations between information items in a product model.

If the UoD includes multiple processes, information items in a product model will

be equal to the union of every information item in each process.

 44

Id ≡ {i | i∈P0 ∨ i∈P1 ∨ … i∈Pn}

where Id: = a set of information in a product model D, Pn is a process

By restructuring (or normalizing) the information collected from each process of

the UoD, theoretically a product model can be derived. When one can capture all the

activities within a process and information items processed by each activity, a product

model derived from the collected information can be said to be complete. Thus, if a certain

set of information is not included in a product model, it is either because the process model

is not properly defined or because the information required by each activity has not been

properly specified.

3.5 THE ARCHITECTURE OF GTPPM

This study takes the process-centric product modeling approach because it has

many advantages as described earlier and also because it is a standard approach. The new

process-centric product modeling method proposed in this thesis is called Georgia Tech

Process to Product Modeling (GTPPM). GTPPM consists of two modules: the

Requirements Collection and Modeling (RCM) module and the Logical Product Modeling

(LPM) module (Figure 3.1).

RCM is a graphical Requirements-Collection-and-Modeling method for capturing

information in the context of its use. A RCM model consists of three parts:

• process modeling: Different users (or companies, applications) may use

information in different ways. GTPPM (RCM) encourages domain experts

to generate a process model based on their current or envisioned work

process without compromising other processes.

 45

• vernacular information items (VII) specification: Domain experts may

specify information used by each activity in their local terms. This task is

optional.

• information constructs (IC) specification: Information constructs (ICs) are

formally defined information items used within a process. Modelers can

specify information used by each activity in a formal and standardized

(machine-readable) way using ICs. Or they can define VIIs first and then

map VIIs to the equivalent ICs. Whatever the case, information items

should be defined as ICs in the final collection of information items to

support automation of the analysis process.

Figure 3.1 The architecture of GTPPM

An information menu is a collection of tokens possibly used in a UoD with a

classification structure. It restricts the ways in which tokens can be strung together in

 46

constructing information item. A token is a “non-decomposable meaningful lexical

element (ISO TC 184/SC 4 1994)”. Tokens in an information menu should be defined

following the ‘nym’ principle: ‘no synonyms, no homonyms’ (Schenk and Wilson 1994).

A set of rules for developing an information menu has been proposed in Section 4.6.

An information menu and a traditional data dictionary are similar in that both

define tokens and their definitions and relations. However, an information menu is

different from a data dictionary in several ways. While a traditional data dictionary is a

collection of definitions of an existing data model, an information menu is not. An

information menu carries only tokens and all the logically possible relations between them

where as traditional data dictionaries carry details of entities in a final data model and,

sometimes, fixed relations between them. For example, a token “door” can be defined as an

attribute as well as an entity in an information menu as far as it means the same thing. Also

the relationship between tokens is not predefined. The token “door” and another token can

be defined as the association relation and also as the specialization relation. Conflicts

between the relations and the data types should be resolved in the LPM phase. Another

difference between an information menu and a data dictionary is that only a subset of

tokens defined in an information menu is included in a product model whereas the set of

tokens in a data dictionary is equal to the set of tokens in its data model.

A collection of information constructs or vernacular information items is a view,

not a subset of a final product model (Figure 3.1). The definition of a view is consistent

with that of a view in data modeling. A view can be formally defined as a semantic subset

of its superset similar to the concept of semantic intersection: i.e., a view is a derivable

subset from its superset.

 47

For example,

Let S be a set of information.

T be a subset of S

V be a view of S

If S ≡ {product_id, product_name, product_volume, product_density},

and T ≡ {product_id, product_volume}

then,

V≡ {product_id, job_name, total_number_of_product, product_weight}

where job_name is product_name,

total_number_of_product is the total count of product instances,

prouct_weight = product_volume × product_density

ICs collected through the RCM phase will be analyzed, integrated, and converted

into a product model through the Logical Product Modeling (LPM) phase. LPM is an

algorithmic process to derive a product model from collected information constructs. This

process is often hidden from users. It’s composed of several steps:

• Integration of information constructs (ICs) from several RCM models

• Normalization of collected information constructs into a formal product

data model

 The next two sections provide detailed descriptions on the RCM and the LPM

modules.

 48

CHAPTER 4

REQUIREMENTS COLLECTION AND MODELING (RCM)

4.1 INTRODUCTION

Without clear definition of the required information collected in requirements

analysis, a data model cannot be designed to perform its targeted functions. For this reason,

in order to facilitate the participation of end-users at an early stage of data model

development, techniques such as Joint Application Design (JAD) and Contextual Design

(Beyer et al., 1997) have been proposed. Also, several data collecting methods, including a

Use Case Driven Approach (Jacobson, Jonsson, and Overgaard 1992), Data flow Diagrams

(DFDs), and Upper Case tools are often deployed. However, it is still very difficult to

capture a complete set of required information for a model for the following reasons:

• As error-prone human beings, modelers are apt to miss certain requirements.

• Natural language is ambiguous. In a large modeling effort, it is not rare to

see one modeler use a term in one way, and another modeler use it in a

different way.

• Specific methods to check the consistency and completeness of collected

information at an information-level have rarely been introduced. Some

methods, including Jacobson’s Robustness Analysis (Rosenberg & Scott,

1999), include consistency checking of a model, but they are mostly based

on the logic and syntax of diagrams – e.g., a certain shape can be connected

 49

to a shape, but not to the others - rather than on the captured information

itself.

Methods that can improve the quality of information generated in the requirements

stage can result in higher quality software development. The author proposes a new

Requirements Collection and Modeling (RCM) method. The RCM aims to achieve the

following goals:

• to model the functional and procedural requirements of a domain for

enterprise reengineering and software engineering, using process modeling,

• to systematically collect the rich set of information required for a product

model in the context of its use-case scenarios, i.e., a process (Eastman, Lee,

and Sacks 2002). The rich set of information should help product-modelers

gain in-depth understanding of an industry by:

o providing accurate definitions of terms

o providing a complete set of information required for product

modeling. By the completeness of a product model, we mean full

support and coverage of the Universe of Discourse (UoD)

o making the semantic differences between terms used in different

companies explicit

o identifying groupings of information used

o exposing differences in the business practices of different companies

o supplying various information-use scenarios of each company

• to automatically validate the consistency of the information collected

 50

• to capture the heterogeneous processes of multiple companies within an

industry domain

• and to generate a standard product model without losing the unique features

of each company’s process.

4.2 THE GTPPM RCM LANGUAGE

Like any other graphical modeling language, the RCM has semantics, syntax, and

shapes (symbols). Process semantics dictate the ‘meaning of process-modeling

components’ while process syntax dictates the ‘structure of process-modeling components’.

A shape is the ‘geometric configuration of process modeling concept’. RCM’s notation,

syntax, and semantics are based on those of current process-modeling-language

conventions so that users can minimize their learning curve and errors. They are basically

similar to the definition of traditional workflow (ANSI - IEEE standard 5807-1985, ANSI,

1991) and UML Activity Diagrams. However, the RCM has some unique concepts and

syntactic rules in order to allow users to explicitly (and sometimes implicitly) specify

information items used in a process.

As defined in Def. 2 of Section 3.4, a process model is composed of activities,

states, and relations between them:

P ≡ {(a, s, r) | a∈A ∧ s∈S∧ r∈R ∧ ∃b∃t(b∈A ∧ t∈R ∧ (r(a, b) ∨ t(a, s)))}

RCM has four types of activities (A), three types of flows (R), and two types of

states (S). In order to enrich the process semantics, two variations of an activity (i.e., static

information source and dynamic information repository) that represent information storage

and two information flow controls (i.e., decision, continue) are added. The following

 51

sections describe RCM components, their syntactic rules, and relations with information in

detail.

4.3 ACTIVITIES

An activity represents a discrete task. In RCM, activities are categorized by two

axes. Activities can be distinguished first as internal activities or as external activities.

Internal activities represent activities that are within a UoD while external activities

represent activities that are outside of a UoD. Many requirement engineering methods

focus only on internal activities and often ignore external activities. However, in order to

check the consistency of information flow between external and internal activities as well

as between internal activities, external activities that are interfacing with internal activities

and their information items should also be specified. (See Section 4.8 for details on the

consistency checking of information flow.) Thus, external activities are explicitly defined

separately from internal activities in GTPPM.

In addition to the external and internal concept, activities can be categorized as

high-level activities or as detailed activities. High-level activities are a relative concept to

detailed activities. High-level activities are aggregations of other high-level activities

and/or of detailed activities. The hierarchical structure of activities provides a context of

the overall model and helps modelers to elaborate a process step-by-step from high-level

activities to detailed activities without missing any critical aspects of a model. Among

high-level activities, the highest activities are called top-level activities (Figure 4.1). A top-

level model, composed of top-level activities, is similar to a context diagram in a DFD

(Data flow Diagram) and a top-level context diagram in IDEF0. Note that there is no

 52

separate notation for a top-level activity because top-level activities are merely a type of

high-level activity and behave in the same way (Figure 4.1).

Detailed level

(middle level)

Top-level

…
…

…
…High level

(highest level)

(lowest

level)

Figure 4.1. The hierarchy of activities

The notation for the combinations of the two distinctions (external/internal and

high-level/detailed) is presented in Figure 4.2:

A ≡ {internal highlevel activity, internal detail activity, external highlevel activity,

internal detail activity }

Figure 4.2 Activities

Figure 4.3 illustrates the basic mapping concept between activities and information

items. Each activity uses a certain set of information items. Some information items may

be used repeatedly, but some may not be used at all. Information items in detailed activities

are explicitly defined, but no information items are specified for high-level activities

Figure 4.11 for details). This avoids redundancy and potential conflict between the

 53

information recorded in a high-level activity and that detailed in its constituent detailed

activities. Instead, the information used in high-level activities can be derived by

aggregating the information of their constituent detailed activities.

Figure 4.3. A basic mapping concept between process models and an information items

4.4 FLOWS, TRANSITIONS, AND DEPENDENCIES

A flow represents the movement of information and objects between activities. In

RCM, flows are categorized into information, material, and dummy flows by the

information type that they transfer and into forward and feedback flows by the direction of

information flow.

A material flow represents a flow of physical objects and information that describes

them. An example is a product marked with a bar code carrying encoded data from a plant

to storage. Other flows that carry information are information flows. Information flows that

do not carry explicitly-specified information items are called dummy flows. Information

Generic Top-level Activities

Detailed Activities

(Middle-level Activities)

Process Models

A Set of Information

Company A
Company B

Information Items:

Interface

 54

flows between external activities or between activities at different levels of detail are

dummy flows:

Figure 4.4 Flows

Most modeling methods allow feedback, but they do not generally distinguish

feedback from forward flows. However, if workflows are defined at an information level, it

is important to distinguish feedback from forward flows because they imply cyclical

repetition of activities.

The following four syntactic rules apply to all types of flows:

Rule 1: A flow can link any shapes except for flows.

Rule 2: A flow must be from one shape to another; it must link exactly two

different shapes.

Rule 3: A flow must have two distinctive ends to indicate a direction.

Rule 4: Flow arrows can connect activities at any level of detail. However, a flow

between activities at different levels is by definition a dummy flow. In order to

explicitly describe an information flow between an internal detail activity and

any type of high-level activity, a flow must exist between the detailed activity

and a constituent detailed activity of the high-level activity in addition to the

original dummy flow between activities at two different levels (Figure 4.9).

Feedback flows must conform to the following syntactic rule:

 55

Rule 5: Feedback flows must always participate in the formation of a cycle within a

process.

4.5 OTHER PROCESS-MODELING COMPONENTS AND NOTATION

The concepts of the remaining RCM process-modeling components (Figure 8.1) are

summarized in the subsections below.

4.5.1 Initial and Final States

Figure 4.5 Initial and final states

Initial and final states represent the starting and ending points of a process. A

process embedded in a complex context may have multiple starting and ending conditions,

with multiple initial and final states. The state of a process or project is regarded as “in

process” if the state of project is omitted between activities. (See Section 3.4 for a formal

definition of the relationship between activities and states.)

4.5.2 Static Information Sources

Figure 4.6 Static information source

Static information sources are sets of predefined information of an organization

outside of a project. Examples are regional codes, regulations, standards, manuals, etc. A

 56

static information source does not receive, update, delete, or generate information within

the context of a project, but only distributes information to descendent activities:

Fs = {distribute}

where Fs is a function of Static information sources

cf. Def. 1a: F = {receive, generate, update, delete, distribute}

where F is a function of Activities.

4.5.3 Dynamic Information Repositories

Dynamic Information Source

Figure 4.7 Dynamic information source

Dynamic information repositories represent information reservoirs such as project-

specific database management system (DBMS) or a schedule board that allow dynamic

storage and retrieval of information within a project. Note that only a portion of the

information generated and used in a process, is stored in a database and managed. A

dynamic information repository only receives, updates, deletes, or distributes information,

but does not generate information:

Fd = {receive, update, delete, distribute}

where Fd is a set of functions of Dynamic information sources (cf. Def 1a)

 57

4.5.4 Continue

102

102

Continue

Figure 4.8 A pair of continues

A continue represents the continuity of flow. The main function of a continue shape

is to increase readability by interrupting an information flow between two activities, to

allow reference across pages or across areas of a model that contains dense graphics. The

software aids the user in ensuring that:

• Continue shapes exist in pairs; an “out” and an “in” continue shape. There

cannot be multiple flows in or out of a continue shape.

• Each pair of continues must have a unique identifier. And an “in” and “out”

pair of continues must use the same identifier.

• Pairs of continue shapes transfer information only between detailed

activities.

• When a flow connects an internal detail activity and any type of high-level

activity, a continue shape must be placed between two activities to redirect

the flow from a dummy flow to an information flow (See Rule 4 for flows

and Figure 4.9). In Figure 4.9, an information flow is represented as a thick

line to help readers to better understand the diagram

 58

Figure 4.9. A continue shape and a dummy flow between activities at different levels

4.5.5 Decision

A decision (control) defines a condition (C) of flows (R: relations) between

activities and/or states. Semantically, decisions represent an (exclusive) OR-transition and

support what-if scenarios (e.g., “if approved” or “if x > 1”). An OR-transition in RCM

includes a decision component, which represents the conditions of the transition.

Figure 4.10 Decision

4.5.6 The Process Components and Their Attributes

Each process-modeling component carries certain information. The process components

and their attributes are illustrated in Figure 4.11 on the next page using EXPRESS-G. Note

that only detail activities, information repositories, and information flows explicitly carry

product information. Examples of RCM models are presented in Section 5 Implementation

and Examples.

 59

STRING

input S[0:?]

output S[0:?]

Detail Activity

Information

Construct (IC)

Vernacular

Information Item

(VII)

input2 S[0:?]

output2 S[0:?]

(ABS)Activity
Highlevel Activity

1

External Highlevel

Activity

Internal Highlevel

Activity

1

External Detail

Activity

Internal Detail

Activity

1

STRINGactor

INTEGERactivity_duration

NUMBERactivity_cost

name

STRING

input S[1:?]

Dynamic

Information

Repository

Information

Construct (IC)

Vernacular

Information Item

(VII)

input2 S[0:?]

(ABS)Information

Repository

Static Information

Source

1

name

output S[0:?]
Information

Construct (IC)

Vernacular

Information Item

(VII)

output2 S[0:?]

information_source_type [1:?]

International Organization

Regional Organization

Industry

Company

Supplier

Others

(ABS)Flow Information Flow

Material Flow

Feedback Flow

Information Flow

STRINGname

1

Dummy Flow

Information Set
information_sets S[0:?]

associated_detail_activity S[1:?]

STRING

Final State

(ABS)State
Initial State

1

name

STRING

Decision

decision_topic

STRINGdecision_maker

Continue

*linked_continue[1:1]

information_source_type

begin_with ends_with

Activity

Continue

Decision

Info Repository

State

process_components

Figure 4.11 Process-modeling components of RCM and their attributes16

4.6 A GRAMMAR FOR PRODUCT INFORMATION

The ultimate goal of RCM is to capture “information” requirements for product

modeling through process modeling. Product information is the information generated,

used, and maintained in the processes of design, engineering, manufacturing, delivery, and

16 Refer to the GT PPM (Lee, Sacks, and Eastman 2002b) for details. The same component names (without underbars or

abbreviation) as those in the texts have been used to help readers to better map them)

 60

maintenance. Examples of product information in the building industry are building type,

building identifier, owner first name, and so on. When product information is formally

structured, the structured schema of product information is called a product data model (or

a product model). (Note that we use two terms a product data model and a product model

interchangeably in this paper.) A product model consists of attributes with specialized

meaning, special entities and features with technical functions, and aggregations across

specialized classes.

This section describes a method to allow domain experts to capture and specify

product information in a consistent and analyzable format. We call the proposed method

the Product Information Specification (PIS) method or mechanism. A long-term goal is to

(semi-)automatically derive a data model out of the product information specified by

domain experts, who know the domain best. However, product information is difficult to

capture because of the following reasons:

a) Tacitness: Product information is tacit. Even domain experts, who use product

information everyday, cannot easily articulate product information required

without a specific context.

b) Enormousness: Product information has an enormous volume. It not only

includes direct geometric and material descriptions, but also all kinds of other

information such as that on their design, engineering, manufacturing, and

management processes. (For example, the CIMsteel product data model used in

the structural steel industry has over 731 entity types covering the design,

analysis, shop detailing and fabrication of steel structures for buildings (AISC

 61

2002)). Such a huge amount of product information is very difficult not only to

capture, but also to depict in an unambiguous, consistent, and analyzable form.

c) Informality: Information can be managed and learned with great ease and

efficiency when it is well structured. However, it is not easy to categorize

information in an easily recognizable and universally applicable structure when

it relies on a grammar of a natural language.

d) Ambiguities: When information items are described in a natural language, the

collected information will yield lexical and structural ambiguities. Examples of

the lexical and structural ambiguities in product information are:

• Lexical ambiguity: Even within an industry that produces the same products,

different terms are often used by different people to refer to the same

concept or object. For example, in the precast concrete industry, ‘control

number’ is used differently in different companies. In some, it refers to a

‘product number’, ‘production serial number’, ‘serial number’ and so on,

which is assigned to a piece after it is fabricated. In others, it is used quite

differently, as an ‘assembly location number’ or ‘erection control number’,

which is used to schedule detailing, production and erection sequences. The

lexical ambiguity is also called the ‘nym’ problems (i.e., homonyms and

synonyms) (Schenk and Wilson 1994).

• Structural ambiguity: Often product information is not a single word, but a

combination of several words like a phrase in natural language. Information

items can be constructed in various ways. However, often the richer the

expressions are, the subtler the differences between the expressions.

 62

Sometimes subtle differences in the order of terms can make a significant

semantic difference. For example, ‘concrete finish’ signifies ‘finishing

applied to a concrete surface’ while ‘finish concrete’ signifies ‘a special

concrete used as a type of finish for a piece.’

In order to overcome these difficulties, many formal knowledge specification

methods and languages have been proposed and developed, especially in knowledge

representation (KR) and data modeling. Examples of the formal specification languages

for knowledge-based systems (KBS) include DESIRE, FORKADS, KbsSF, (ML)2,

MODEL/KADS, MoMo, OMOS, QUL, and KARL. Some formal approaches for data

modeling are the Relational Model (Codd 1970), the Entity-Relationship Model (Chen

1976), the Functional Data Model DAPLEX (Shipman 1981), the SDM (Hammer and

McLeod 1981), the Object-Oriented Model (Banerjee et al. 1987) and other semantic

models. These methods gave birth to several (standard) data modeling languages such as

SQL (ISO JTC 1/SC 32 2003), IDEF1x (NIST 1993), XSD/XML (Berners-Lee 1994;

Cover 1999), and a standard product data modeling language EXPRESS (ISO TC 184/SC

4 1994; Schenk and Wilson 1994). The data modeling languages listed above have been

refined over decades and have their strong adherents. Nevertheless, we found that existing

former data modeling and KR methods are not suitable for our purpose (i.e., specifying

product information in a simple, yet consistent and analyzable form) because of the

following reasons:

• Specialized product information is often carried as implicit knowledge in

natural language through everyday conversation by domain experts. We

believe that domain experts are the best persons to describe product

 63

information required for their tasks. But many formal modeling languages

are not generally accessible by domain experts. Some modeling languages

are even close to mathematical descriptions.

• Modeling languages such as XSD or XML may be simple enough to be

used by domain experts even in the very early data modeling phase: i.e., the

requirements collection phase. However, they still do not provide a

mechanism to maintain the consistency (i.e., the lexical clarity) of an

enormous amount of terms used in a UoD. (The limitation of XSD and

XML in expressing the semantics of the specialization (inheritance) relation

is another issue here.)

Note that the PIS method, we are proposing in this paper, is not to develop a

generic structure of product models such as ISO STEP Part 41 (ISO TC 184/SC 4 2000)

and the Generic Core Representation of product information (Szykman et al. 2001). Also

its goal is not to define a data dictionary for product information such as the STEP Library

(Renssen 1997) or to propose another data modeling language, which can replace XSD or

SQL. The proposed protocol is independent of data modeling languages and can be

implemented in XSD (XML), SQL, EXPRESS, or any other data modeling languages later

albeit we chose EXPRESS as a main target because EXPRESS is an international standard

product data modeling language by the ISO – International Organization for

Standardization (ISO TC 184/SC 4 1994). Rather, it aims to develop a high-level product

information categorization and a grammar that can allow domain experts to easily,

efficiently, and clearly specify product information in an analyzable form so that the

 64

collected information can be analyzed and transformed into a product data model in the

later stage. The criteria for the PIS method can be summarized as follows:

1) consistency between terms: There should not be the ‘nym (homonyms and

synonyms)’ problems and ambiguities in the definitions of terms.

2) generativity & extensibility: The list of product information should be

extensible and editable, and not fixed. Domain experts should be able to

generate and add new information constructs as many as possible.

3) analyzability: Information constructs built from an information menu

should be analyzable and transformable to a form of a product model.

4) accessibility: An information menu should be structured in a way that

domain experts (non-data-modeling experts) can easily navigate and

maintain a large amount of product information.

The following sections describe the concept of the PIS mechanism in more detail.

And they also discuss how to construct a system of rules that both analyze and generate

structured product information.

Product information is basically a concatenation of tokens (or words). A token is a

“non-decomposable meaningful lexical element (ISO TC 184/SC 4 1994)” of a UoD.

Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’. A token per se (e.g., ‘type’)

has a certain meaning, but often is insufficient to represent product information. On the

other hand, if several tokens are concatenated in a logical way, the chain of tokens can

represent meaningful product information (e.g., ‘finish-material-type’, ‘engine-type’). This

paper explores and defines grammatical rules for specifying product information by

concatenating tokens in a consistent and analyzable form, similar to grammatical rules for

 65

generating syntactically and, sometimes, semantically meaningful sentences (or phrases) in

a natural language. The following sections describe the concept of the PIS mechanism in

more detail. And they discuss a system of rules that both analyzes and generates structured

product information.

This study takes a linguistic approach in defining the structure and the syntactic

rules for defining product information. A linguistic approach (i.e., the context-free

grammar (CFG)) is taken because (1) a data model is essentially a representation of the

universe of discourse (UoD) based on a language; and (2) even 40 years after the CFG was

first introduced by Chomsky, it is still an effective and efficient means to analyze and

define grammatical rules for generating meaningful expressions. The proposed system will

be a duplex <B, R> consisting of a set B of basic elements and a set R of context-free

rewrite rules each of which defines a minimal hierarchical structure, called a local tree

(Chomsky 1965, Ch 1-2; Smith and Wilson 1979). Appendix E provides a brief summary

of notation of a context free grammar (CFG). Some notational rules are revised or added

to suit the characteristics of product information and the purpose of this study.

4.6.1 Product Information Structure and Grammar

The RCM PIS method categorizes product information at three levels, namely

tokens, information items and information sets and provides a grammar for defining

product information.

As stated earlier, a token is a “non-decomposable meaningful lexical element (ISO

TC 184/SC 4 1994)” of a UoD. Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’.

A token per se (e.g., ‘type’) has a certain meaning, but often is insufficient to represent

product information. On the other hand, if several tokens are concatenated in a logical way,

 66

the chain of tokens can represent meaningful product information (e.g., ‘finish-material-

type’, ‘engine-type’). We call the concatenation of tokens an information construct (IC).

The definition and the structure of tokens are recorded in an information menu. An

information menu is a collection of tokens that forms a minimum expression (or phrase) of

product information. The differences between an information menu and a traditional data

dictionary are discussed in Section 3.5. Figure 4.12 illustrates how product information can

be defined using tokens in an information menu. Let us assume an information item “an

identifier of a beam, which is a kind of (precast concrete) piece” is required by an activity

“Prepare Initial Quotation”. It can be defined as piece*beam{id} using three tokens piece,

beam, and id in an information menu.

Figure 4.12 An information menu and information constructs

As briefly described earlier, it is assumed that RCM will include two groups of

experts, which have expertise in different domains. The two groups are domain experts

(representatives of an industry of a company) and modeling experts (or mediators; process

and product modeling experts). Information is classified in a way that can help each group

to contribute what it knows best. The product information can be expressed in two ways:

either as vernacular information items (VIIs) or as information constructs (ICs). Domain

 67

experts, who may not be familiar with the structure of an information menu and ICs, can

define product information as vernacular information items (VIIs) as far as they provide a

definition of the VIIs in their own data dictionary. Later, modeling experts can map ICs

and VIIs based on the definitions of VIIs specified by domain experts. Table 4.1 lists

examples of mapping between VIIs and ICs. Company A may call an identifier of a

(precast concrete) piece “Piece Mark.” Company B may call the same thing “Mark

Number.” The VIIs are synonyms and can be mapped to an IC “PIECE{id}”, which is a

concatenation of two tokens, i.e., piece and id.

Table 4.1. Mapping between vernacular information items and information constructs

Company A VIIs Company B VIIs ICs

Site name Construction site name SITE{name}

Site address Construction site location SITE{address}

Estimated weight Load PIECE+LOADS{weight, unit}

Piece mark Mark number PIECE{id}

Serial number Control number PIECE{control_id}

The specified information items (both VIIs and ICs) can be grouped as an

information set. An information set is a user-defined grouping of information items that

flow from one activity to another. Examples are forms, work order, bills of materials, and

specific drawings. Information sets play the following roles in RCM:

1) In everyday life, domain experts do not deal with their work at an information-

item level but at an information-set level (e.g., forms, work orders). Grouping

information items in sets provides a cognitive bridge between what they

actually deal with (information sets) and what they unconsciously process

(information items).

 68

2) Information sets can be considered as milestones of information production in a

process. An information set implies that its subsumed information items are

required in order to proceed to the next activities.

Tokens are further categorized into types and entities. A type and an entity in this

paper are the same as those defined in EXPRESS. A type is a “representation of a domain

of valid values (International Organization for Standardization 1994)” and an entity is a

“type which represents a collection of conceptual or real-world physical objects which

have common properties (International Organization for Standardization 1994).” A set of

entities that describes the main physical objects of a domain forms the backbone of an

information grammar. For example, structures, assemblies, pieces, reinforcement and

embeds are the main products or parts of the Precast Concrete Industry.

The structures and relations of different types of tokens are defined in an

information menu. Modelers are restricted to select information from the limited number of

possible tokens that can be linked in an information menu based on context-free rewrite

rules (Chomsky 1965; Jurafsky and Martin 2000) defined for product information.

The approach in this study defines tokens used in a universe of discourse (UoD) by

four general abstraction mechanisms of knowledge representation (KR): i.e., classification

& instantiation, aggregation & decomposition, generalization & specialization, and

association (Eastman 1999; Elmasri and Navathe 2000; Smith and Smith 1977; Smith and

Smith 1997).

Some early papers (Codd 1979; Smith and Smith 1977) categorize both

instantiation and subtype as a form of specialization, but this paper uses the term

specialization only to represent the subtype-supertype relationship. For example, ‘bolt’ and

 69

‘weld’ are specialized types of ‘fastener.’ Generalization is the inverse of specialization.

Instantiation represents the is-an-instance-of relationship. If twelve ‘C8’ chairs are placed

in an office, each individual chair is an instance of the chair type ‘C8.’ Note that an

instance of a class (i.e., the twelve ‘C8’ chairs) can be either a class or a value of an

attribute depending on a modeler’s intention. Classification is the inverse of instantiation.

Decomposition represents the is-a-part-of relationship. The inverse is aggregation and

represents the has relationship. A ‘table’ has four ‘legs’ and a ‘tabletop.’ Association

represents other attributive and referential properties. For example, ‘color’ and ‘width’ can

be properties of a ‘tabletop.’ The difference between aggregation and association is that

when an instance of a higher-level entity in an aggregation relationship is deleted, in some

cases its lower-level instances are also deleted: i.e., an aggregation relationship often

represents a semantic dependency between two entities. For example, if an instance of a

‘table’ is deleted, the instances of its ‘legs’ and its ‘tabletop’ should also be deleted.

Entities in an association relationship, on the other hand, do not need to be deleted even

when their associated entities are deleted. Identification, “the abstraction process to define

whereby classes and objects are made uniquely identifiable by means of some identifier”

(Elmasri and Navathe 2004) can also be added to these four abstraction concepts.

Currently EXPRESS is a standard language for specifying a product data model

(ISO TC 184/SC 4 1994). Since the eventual goal of GTPPM is to develop a product

model in EXPRESS, the RCM PIS method should comply with the structure of EXPRESS.

EXPRESS supports the three abstraction mechanisms (i.e., instantiation, specialization,

and association). EXPRESS does not distinguish the aggregation & decomposition relation

from the association relation. EXPREES takes an object-oriented approach. Naturally, the

 70

classification & instantiation relation is embedded in EXPRESS. However, in EXPRESS,

the term instantiation is used generally to represent data population similar to the

instantiation concept in object-oriented programming language. EXPRESS does not

distinguish the instantiation relation between classes from subtyping. Both the instantiation

relation between classes and subtyping are regarded as a type of specialization. The

generalization & specialization relationship is defined by the SUBTYPE OF and

SUPERTYPE OF constraints in EXPRESS. And the classes and their instances are defined

as the ENTITY and ATTRIBUTE constructs and their values. The association relation

includes all other relations between ENTITIES and ATTTRIBUTES. Although EXPRESS

does not distinguish the decomposition relation from the association relation, the proposed

method classifies entities in the decomposition relation differently from those in the

association relation.

EXPRESS has four existence constraints: BAG, LIST, SET, and ARRAY and the

cardinality ratio (or arity): e.g., LIST [0:?] OF and SET [1:?] OF. These can be imposed

between ENTITIES with the association relationship. In data modeling, the existence

constraints (esp. cardinality ratio) and other types of constraints (e.g., RULES) are often

defined in the late phase of logical data modeling. This PIS method focuses on the early

requirement collection phase of data modeling and, is therefore relatively unconcerned

with detailed level constraints (e.g., the existence constraints) between information items.

4.6.2 Categorization of product information

We first categorized product information in a fashion similar to categorization of

parts of speech such as nouns, objects, and adjectives in natural language before

establishing rules for specifying consistent and analyzable product information.

 71

By the definition of product model, constituents of any product model well

accepted today (e.g., ISO STEP (ISO TC 184/SC 4 2004) and IFC (IAI 2003)) can be

categorized into information that directly represent products and information that qualifies

products. We call the former product entities (P) and the latter modifiers (M). Based on

this distinction, tokens, which compose a product information item, are first categorized

into two major abstract constituents: product entities (P) and modifiers (M). The definition

of entity in ‘product entities’ is compliant to that of ISO 10303 (International Organization

for Standardization 1994): an entity is a “type which represents a collection of conceptual

or real-world physical objects which have common properties” and a type is a

“representation of a domain of valid values.” An entity without properties is called an

empty entity. The definition of empty is identical to that in mathematical set theory: i.e., a

set without an element. An entity cannot be empty and must have a property:

Rule 1: Unless an entity inherits properties from its higher-level entities, an entity

must not be empty.

Product entities (P) literally represent entities describing the products of an industry.

A modifier (M) is either an entity or an attribute that “qualifies” product entities (P) or

other entities. The “qualification” relation between a Product entity (P) and a modifier (M)

is often represented as the association relation, but sometimes can be represented as the

specialization relation. (An example is provided in the next section.) An attribute is a trait

or property of an entity. Modifiers (M) describe the design, engineering, manufacturing,

and management information of products. Modifiers are subcategorized into Modifier

Entities (ME, an entity-type modifier) and Modifier Attributes (MA, an attribute-type

 72

modifier) by their type. An example of a product entity and a modifier is 'CAR' (a product

entity) and 'DESIGNER' (a modifier).

The definition of a product entity is relative. It depends on the universe of discourse.

'CAR' is a product of the automobile industry, but 'BUILDING' is not. 'BUILDING' is a

product of the building industry, but 'CAR' is not. 'DESIGNER' is not a product of the

automobile industry, but it provides additional information on a product 'CAR'. Whether

'DESIGNER' is defined as an attribute of 'CAR' or not, 'DESIGNER' still semantically

qualifies a product entity 'CAR' and is, therefore, a modifier of 'CAR'.

The product entities (P) and modifiers (M) are further subcategorized by the three

major abstraction concepts (Eastman 1999; Elmasri and Navathe 2004): i.e., a)

generalization & specialization; b) classification & instantiation; c) aggregation &

decomposition; and d) association. Applying these abstraction concepts, product entities

(P) are further subcategorized into decomposed products (DP) and specialized products

(SP). Decomposed products (DP) represent products in the aggregation relationship. Many

researchers (Codd 1979; Smith and Smith 1977) and modeling language including

EXPRESS, as described earlier, do not distinguish the specialization (supertype - subtype)

relation from the instantiation relationship at a conceptual. Specialized products (SP)

represent products in both the specialization relation and the instantiation relationship.

By the same logic, modifier entities (ME) are further subcategorized into

specialized modifier entities (SME). Figure 4.13 illustrates a hierarchical structure of PIS

information structure in EXPRESS-G. Note that this structure is different from a

constituent structure tree and does not imply any syntactic rules.

 73

1

(ABS)Product

(ABS)Token

Decomposed

Product (DP)

Specialized Product

(SP)

(ABS)Modifier

Modifier Entity (ME)

1

Modifier Attribute

(MA)

1

Entity

1

Attribute

modifier S[1:?]

attribute S[0:?]

*is_linked_to S[0:?]

Figure 4.13. A hierarchical structure of RCM product information in EXPRESS-G

4.6.3 Syntactic rules for product information

This section describes syntactic rules for constructing product information by

combining product-information constituents categorized in the previous section. We call a

product information item composed of several tokens an information constructs (IC). Each

information construct (IC) corresponds only to one product information item. Figure 4.14

illustrates two simple ways of composing information constructs.

IC

P M

DP MA

building name

IC
[
P
[
DP

[building]]
M

[
MA

[name]]]

a) IC

P M

DP MA

door name

IC
[
P
[
DP

[door]]
M

[
ME

[producer]
MA

[name]]]

b)

ME

producer

IC

M

ME MA

schedule start date

IC
[
M

[
MA [start date]]]

c)

ME
[schedule]

IC

P M

MA

airplane id

IC
[
P

[airplane]
M

[
MA

[id]]]

d)

Figure 4.14. The basic constituent structures of an information construct

Rule 2: An information construct (IC) ends with a modifier attribute (MA) (because

there cannot be an empty entity).

 74

Rule 3: An information construct (IC) must not end with a modifier entity (ME).

Rule 4: Product entities (P) work as main access points to other information types.

If any type of product entity (P, SP, or DP) exists in an information construct,

the information construct (IC) always begins with a product entity. If not, the

information construct (IC) begins with a modifier entity (ME).

The rules for Figure 4.14 can be summarized by the CFG notation as follows:

 IC � P – M | M

 P � DP

 M � MA | ME – MA

(NB: A vertical bar | denotes “OR”.)

As stated earlier in Rule 4, the PIS method defines product information types (i.e.,

P, DP, and SP) as a kind of index for modelers to access other types of product information.

It is because product information is the focus of product modeling (thus, any product

model includes product information) and also because domain experts are generally very

familiar with a hierarchical structure of their product information. In other words, even if

non-product information types were used as an access point to product information, it

would not make much difference in terms of representing a structure of an information

construct. For example, an information item “the delivery date for a column, which is a

kind of product” can be represented in two ways: (a) one starting from product information

and (b) the other starting from the delivery schedule.

(a) product*column+delivery_schedule{delivery_date}

(b) delivery_schedule{delivery_date}+product*column

 75

They may require slightly different syntactic rules. But when they are represented

as information constructs, they eventually represent the equivalent structure (Figure 4.15

(a) and (b)).

Figure 4.15 Product information as an access point to other information types

Yet the PIS method defines product types (i.e., P, DP, and SP) as a kind of index

for modelers to access other types of product information for two reasons. It is because a

product and its components are the main focus of product modeling and also because

domain experts are generally very familiar with a hierarchical structure of their product

information.

Figure 4.16. Abbreviation of specialized products

Figure 4.16 illustrates abbreviation rules for specialized products. The purpose of

abbreviation rules is to remove redundant expressions in an information construct so that

 76

the information construct can be expressed in a succinct manner that users of the

information can comprehend quickly and easily.

Rule 5: (abbreviation rules for specialized products) A specialized product (SP)

inherits all the properties of its higher-level entities (i.e., supertypes).

Therefore, semantically and logically, a specialized product (SP) alone can

represent a product. As exemplified earlier, ‘car-sedan’ means the same thing

as ‘sedan’. Thus, we can abbreviate ‘car-sedan’ to ‘sedan’ without diluting its

meaning.

The applied abbreviation rules can be analyzed as follows: ‘car’ can be categorized

as a main product (P) and ‘sedan’ can be categorized as a specialized product (SP). A

specialized product (SP) can be regarded as a replacement of a decomposed product (DP).

Figure 4.16 a) illustrates the first case. The rule applied here can be defined as follows:

Rule 5.1:

 P � SP, iff SP is a specialized product of P.

The same logic can be applied to the abbreviation of a chain of decomposed and

specialized products in Figure 4.16 b) and c). ‘engine (DP)’ is a part of ‘car (P)’. ‘V6

engine (SP)’ is a type of ‘engine (DP)’. ‘engine-V6 engine’ can be abbreviated to ‘V6

engine’ without losing its meaning. The rules applied here can be analyzed in two ways.

First the abbreviation phenomena can be analyzed as the replacement of DP by SP as

illustrated in Figure 4.16 b). The rules can be described as follows:

Rule 5.2:

P � DP

DP � SP, iff SP is a specialized product of DP.

 77

Alternatively, the abbreviation phenomena can be analyzed as the replacement of

DP by NULL as illustrated in Figure 4.16 b). The rules can be described as follows:

Rule 5.3:

 P � DP – SP

 DP � NULL

 SP � V6 engine

Both approaches are logically valid and yield the same result: i.e., P � SP.

However, the second approach leaves the possibility of having a non-abbreviated form of

the information item (e.g., engine-V6engine) while the first approach does not allow any

non-abbreviated form of the information item. Thus, the second approach has been taken.

By the same token, a specialized product (SP′) of a certain specialized product (SP)

can replace its antecedent specialized product (SP) (i.e., supertype). Applying these rules, a

series of specializations can be replaced by the last specialization.

Rule 5.4:

 SP � SP – SP′, iff SP′ is a specialized product of SP

 SP � NULL, iff SP is followed by SP′.

 78

Figure 4.17. Concatenation of specialized products (SP) from different decomposed products (DP)

If the order of tokens is changed, the meaning of an information construct differs.

An example is ‘hatchback – V6 engine – material – name’ and ‘V6 engine – hatchback –

material – name’. The former depicts ‘the material name of a V6 engine in a hatchback-

style car’ while the latter would depict ‘the material name of a hatchback-style V6 engine’

if there were such a thing. Therefore, we set up a rule that says:

Rule 6: In a concatenation of DP – DP′, the DP′ should always be a component of

DP.

The rule can be formalized as follows:

 DP � DP – DP′, iff DP′ is a component of a decomposed product DP

 Similarly,

Rule 7.1:

 P � DP – DP′, iff DP′ is a component of a decomposed product DP

By these rules, ‘hatchback – V6 engine’ should always be interpreted as “a V6

engine in/of a hatchback-style car”.

Figure 4.18 shows an example of abbreviation rules for decomposed entities:

Rule 7: (abbreviation rules for decomposed entities) When a series of decomposed

products (DP) are concatenated, the last decomposed product represents the

whole concatenation.

A formal descriptions of the additional rule is:

 DP � NULL, when DP is followed by its decomposed product, DP′

In Figure 4.18, since it is apparent that ‘structure’ belongs to a ‘site’ and a ‘project,’

‘project – site – structure’ can be replaced by ‘structure.’

 79

Figure 4.18 Abbreviation of decomposed products (DP)

The same logic for abbreviation rules can be applied to specialized modifier entities

(SME). Abbreviation rules for specialized modifier entities are:

Rule 7.1:

 SME � SME – SME′, iff SME′ is a subtype of SME

 SME � NULL, iff SME is followed by its subtype SME′.

 ME � NULL, iff ME is followed by its SME.

For example, if we want to describe the ‘date when a beam was cast,’ it can be

expressed as:

 IC[P[DP[piece]SP[SP[flexural piece]SP[beam]]]M[ME[ME[production]SME[cast]]MA[date]]]

Applying the abbreviation rules, the information construct can be simplified as:

 IC[P[DP[NULL]SP[SP[NULL]SP[beam]]]M[ME[ME[NULL]MAE[cast]]MA[date]]]

 ≡ IC[SP[beam]M[MAE[cast]MA[date]]]

The constituent structure tree of the ‘date when a beam was cast’ is illustrated in

Figure 4.19.

 80

Figure 4.19. Abbreviation of specialized modifier entities (SME)

Not that, in any case, the abbreviation of information constructs is optional, but not

mandatory. The main purpose of the abbreviation rules is to recognize semantically

equivalent information constructs. Therefore, the use of abbreviation should be minimized.

Otherwise, it can yield other ambiguous cases as in natural language.

In GT PPM, the specialization relation has been distinguished from the association

relation by using a separate concatenation symbol: An asterisk (*) denotes the

specialization relation; A plus sign (+) denotes the association relation. The decomposition

relation has not been distinguished from the association relation because the target

language EXPRESS does not distinguish between them. (See Section 2 for details.)

However, this is an implementation-level decision; if necessary, it is possible to use

different concatenation symbols for different abstractions. An example of the ‘date when a

beam was cast’ in Figure 4.19 can be represented as:

piece*beam+production*cast{date}

≡ piece*beam+cast{date}

≡ beam+cast{date}

A full definition of this grammar and its use is being prepared.

 81

4.6.4 Styles of Product Models

Each product model has a style, which is also called a modeling philosophy,

intention, or concept. Depending on a modeling style, a different generic structure of a

model (a.k.a. a core representation, a framework, or a skeleton of a model) is created. As

stated earlier, the PIS method aims to support any product model defined in EXPRESS.

Since the PIS method categorizes product information by generic knowledge

representation concepts and by the structure of EXPRESS, the structure of product

information defined by the PIS method should be transferable to a product model defined

in EXPRESS and also vice versa. However, the PIS method itself only defines the rules to

structure product information, not what the structure of a final product model should be.

The structure of a final product model is defined by how a modeler categories tokens. A

structure and a style of product information specified by a modeler through the PIS method

will be kept through the GTPPM process and will form the core structure17 of the final

product model. This section shows how various styles of existing product models can be

supported by the PIS method in the early requirements collection phase of product

modeling. The first example is the IFC 2x2 model. It adopted the top-down modeling

approach. As described in Section 2.4, the IfcRoot is at the top of the IFC model. IfcRoot

has three subtypes: i.e., IfcObject, IfcPropertyDefinition, and IfcRelationship.

ENTITY IfcRoot

 ABSTRACT SUPERTYPE OF(ONEOF(IfcObject, IfcPropertyDefinition,IfcRelationship));

 GlobalId : IfcGloballyUniqueId;

 OwnerHistory : IfcOwnerHistory;

 Name : OPTIONAL IfcLabel;

17 The structure of information constructs may not exactly the same as that of the final product model because, if there are

conflicting definitions (structures) of product information, those have to be resolved. Also through a normalization
process, the structure may vary.

 82

 Description : OPTIONAL IfcText;

UNIQUE

 UR1 : GlobalId;

END_ENTITY;

And IfcProduct is defined as a subtype of IfcObject.

ENTITY IfcObject

 ABSTRACT SUPERTYPE OF(ONEOF(IfcActor, IfcControl, IfcGroup, IfcProcess, IfcProduct,

IfcProject, IfcResource))

SUBTYPE OF (IfcRoot);

 ObjectType : OPTIONAL IfcLabel;

INVERSE

 IsDefinedBy : SET OF IfcRelDefines FOR RelatedObjects;

HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;

HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;

Decomposes : SET [0:1] OF IfcRelDecomposes FOR RelatedObjects;

IsDecomposedBy : SET OF IfcRelDecomposes FOR RelatingObject;

WHERE

 WR1 : SIZEOF(QUERY(temp <* IsDefinedBy | 'IFCKERNEL.IFCRELDEFINESBYTYPE' IN

TYPEOF(temp))) <= 1;

END_ENTITY;

In the case of the IFC 2.2x model, IfcRoot, IfcObject, IfcProduct, and other

subtypes of IfcProduct can be defined as Product Entities (P). And all other entities and

attributes including IfcPropertyDefinition, IfcRelationship, IfcActor, IfcControl, IfcGroup,

IfcProcess, IfcProject, and IfcResource can be defined as Modifiers (M).

The IfcRoot and IfcObject entities will be “shared” as supertypes of both Product

entities (P) and Modifiers (M). Semantically, IfcRoot and IfcObject are ABSTRACT SUPERTYPEs

 83

of Product entities (P) and Modifiers (M). Technically IfcRoot and IfcObject will be treated

as Product entities (P) and also be an access point to other information types.

identifier

STRING

label

STRING

text

STRING

product

id

name

description

frame_of_reference S[1:?]

product_context

application_context_element

1

library_context

library_reference

product_concept_context

market_segment_type
product_definition_context

life_cycle_stage

name

frame_of_reference
(INV) context_elements S[1:?]

application_context
application

description

id

discipline_type

product_related_product_category

product_category
name

description

id

products S[1:?]

product_definition_formation

*id

description

*of_product

product_relationship

id

name

description
relating_product

related_product

application_context_relationshipname

description

relating_context
related_context

Figure 4.20 A partial EXPRESS-G diagram of ISO STEP Part 41

The second example is ISO STEP Part 41 (ISO TC 184/SC 4 2000). It defines the

Generic Product Data Resources (GPDR): i.e., the “information units” for a product model

and their interrelated relations. An information unit is “a grouping of relating constructs

(entity data types, attributes and relationships) that together represent one of the high level

 84

concepts of the STEP data architecture (Fowler 1996)". In Part 41, the product information

is represented as the product and product_context entity types at the top level. The product

entity type defines a product as being of interest. The product_context is defined from three

points of views: 1) the classification view: how the product is classified or categorized; 2)

the marketing view: how the product is presented to the market; and 3) the technical view:

how the product is defined at a particular life-cycle phase (Fowler 1996).

Figure 4.20 illustrates a partial EXPRESS-G model of ISO STEP Part 41 focusing

on the product entity type. The product_category information unit, the product_concept

information unit, and the the product_definition information unit in Figure 4.20

respectively represent the classification view, the marketing view, and the technical view.

The mapping between the structure of ISO STEP Part 41 and the PIS method is

fairly straightforward. product and its subtypes and subsystems can be categorized as

Product entities (P) and the others including product_context, product_category, and

product_definition can be categorized as Modifiers (M).

Szykman et al. (Szykman et al. 2001) proposed another generic structure for

product information. The proposed data structure is called the core representation. The

core representation is categorized into DRP_Object and DRP_Relationship at the top level. The

DRP_Objects is specialized as Aritifact, Restricted_DRP_Object, Behavior, and Specification

(Figure 4.21). And the Restricted_DRP_Object is specialized as Flow, Form, Function, Geometry,

and Material by the function, form (structure), and behavior concept (Chandrasekaran

1994). In this structure, the DRP_Object and Arifact entities can be categorized Product

entities (P) and the others as Modifiers (M). However, the entities can be categorized

differently depending on a modeler’s intention.

 85

(ABS)DRP_Object

Artifact
(ABS)Restricted_D

RP_Object
Behavior Specification

Flow Form Function Geometry Material

Transfer_Function

Figure 4.21 The DRP_Object structure of the core representation

Figure 4.22 provides another example of constructing product information created

by the author as a proposal for a generic product model structure. The main concept is to

structure product information by phase of a product’s life-cycle. Figure 4.22 depicts a

breakdown structure of main product entities. The vertical axis represents the aggregation

relationship and the horizontal axis represents the specialization and instantiation

relationship. The specialized products in this paper are structured based on the incremental

product design and engineering processes.

As noted earlier, a product (P) can be classified differently depending on its use.

Also the depth of layers and the strata can differ depending on the design intention/scope

of a data model and the characteristics of products.

 86

Product Product
Type

Designed
Product

Detailed
Product

Manufactured
Product

Parts

Subparts

Specialization (is a kind of)

A
g
g
re

g
a
ti
o
n

Generalization

Instantiation
(is an instance of)

Classification

Part
Type

Designed
Part

Detailed
Part

Manufactured
Part

Subpart
Type

Designed
Subpart

Manufactured
Subpart

Is
 a

 p
a
rt

 o
f

Decomposed Product (DP) Specialized Product (SP)

Detailed
Subpart

Main Product Entities

Figure 4.22. An example of constructing product information

4.7 RELATIONS BETWEEN INFORMATION CATEGORIES IN GTPPM

In order to understand the LPM process, readers should understand the relations

between GTPPM information types first.

First, a Vernacular Information Item (VII) is semantically equivalent to an

Information Construct (IC). This rule is a basis for mapping between a VII and an IC.

Second, an aggregation of information items used in a process is a view of a

product model. For example, an IC, PIECE+MATERIAL*CONCRETE{strength} may look like Table

4.2 in a final product model in EXPRESS:

Third, by definition, entities and attributes in a product model are a subset of tokens

defined in an information menu. An information menu defines tokens, which can be later

translated into entities and attributes of a final product model, and the semantic relations

between them. Tokens, which are not defined in an information menu won’t appear as an

entity or as an attribute in a product model unless a product modeler intentionally add new

 87

entities or attributes in a process of refining the final product model. Some tokens in an

information menu may be never used to form information constructs. Nevertheless, a

product model as a whole is not a subset of an information menu because additional

constraints can be added to a product model later.

Forth, some of the semantic relations between tokens defined in an information

menu will be inherited to a product model, but not all. If there are conflicts between the

semantic relations, only the selected ones will remain. Also the relations can be changed

through a normalization process.

Fifth, an aggregation of information constructs used in a process is not a view of an

information menu. Since an information construct is a concatenation of tokens, it is

obvious that an aggregation of ICs is not a subset of an information menu. However, it is

open to further discussion whether an aggregation of ICs is a semantic derivation from

tokens or not.

Table 4.2 Information constructs and entities in a product model

Information Constructs Entities in a Product Model

PIECE+MATERIAL*CONCRETE{strength}

ENTITY piece

 material: material;

END ENTITY;

ENTITY material

 SUPERTYPE OF (concrete);

 strength: REAL;

END ENTITY;

ENTITY concrete

 SUBTYPE OF (material);

END ENTITY;

 88

The structure and the relations between information categories of RCM are

summarized in Figure 4.23.

An information set is a set of information items. Information items are categorized

into two types: information constructs (ICs) and vernacular information items (VIIs). ICs

and VIIs have a mapping relationship. Information constructs is composed of several

tokens. Tokens are categorized by general knowledge representation (KR) concepts and

also by the entity/attribute distinction.

STRING

information_items S[1:?]

Information

Construct (IC)

Information Set

1

(ABS)Product

(ABS)Token

Decomposed

Product (DP)

Specialized Product

(SP)

Vernacular

Information Item

(VII)

(ABS)Information

Item 1

*item_name

data type

STRING
description

STRING
synonym S[0:?]

STRING

STRING
example S[0:?]

reference S[0:?]

(ABS)Modifier

Modifier Entity (ME)

1

Modifier Attribute

(MA)

1

*item_name L[1:?]

STRING*token_name

Integer

Real Number

Text

Date

Time

2D Graphic

3D Graphic

Collection

is_mapped_to

Entity

1

Attribute

modifier S[1:?]

attribute S[0:?]

STRINGdescription

synonym S[0:?] STRING

*is_linked_to S[0:?]

data_type

(INV) information_set [0:?]

Figure 4.23. Information structure of RCM

 89

VIIs are local terms of a company or a certain group of people. Each IC and VII

should be unique. VIIs can have many synonyms. Examples, references, descriptions, and

data types of VIIs should be provided for later mapping between ICs and VIIs. The

following shows an example of a VII “delivered date” and its attributes:

Name: delivered date

Date Type: date

Description: date when a piece is delivered to a site, NB:

It may be different from shipped date.

Synonyms: (empty)

Example: Oct 5, 2001

Reference: Packing slip

4.8 DYNAMIC CONSISTENCY CHECKING

The quality of information generated by domain experts in the requirements

collection phase is an important determinant of the quality of the resulting data model

because RCM is based on process model information. Thus, a rigorous method to validate

a model and its information flows is a key to its success. This section introduces the logic

of consistency checking using information flows, and describes how it helps modelers to

automatically and dynamically validate their models in real-time.

Any process-modeling method must rely on semantic validation and syntactic

validation methods. In semantic validation, the only way in which modelers can confirm

the consistency of a model is by considering what information is necessary for an activity

or in what order activities should be laid out. Semantic validation methods are difficult to

automate because the judgment often relies on domain-specific (sometimes case-specific)

 90

experience and knowledge, which are difficult to generalize and transform into logic.

Automated syntactic validation is available in most graphical modeling languages

including the UML (Rosenberg and Scott 1999) and Petri-Nets (Eastman 1999). They

check the consistency of a model subject to the syntax of their graphic symbols. What

distinguishes RCM from other methods is that it incorporates the logic of checking the

consistency of information flow, based on the interaction and interdependence of the

activities with regard to the availability or unavailability of information: i.e., information

used by an activity must be provided by its precedent activities, otherwise the activity

cannot be performed and the model is inconsistent.

4.8.1 Notation of Dynamic Information Consistency Check

As described earlier, GT PPM has functions to collect, store, edit, and analyze

information used in each activity in a process. These allow modelers to input information

used for each activity as they build a process model. Among GTPPM symbols, this section

focuses on two types of process semantics at a high level, i.e., the activity and the

information flow (Figure 4.24). The information flow will be simply called a flow in this

section for convenience.

Figure 4.24 A source activity, a target activity, and a flow

 91

The information used in each activity and flow is assumed to be collected and

stored in each activity and each flow. Each flow has a single source activity and a single

target activity (Figure 4.24).

Figure 4.25 Upstream and downstream activities

Neighboring activities of an activity can be categorized ad hoc into upstream and

downstream activities (Figure 4.25). A set of activities that provides information to an

activity in a modeler’s current focus is called a set of upstream activities. On the other

hand, a set of activities that are fed with information by an activity in a modeler’s current

focus is called a set of downstream activities. In Figure 4.25, U1 and U2 are upstream

information source of an activity A, and D1 and D2 are downstream activities of an activity

A. Clearly, the definition of upstream and downstream activities is relative. D2 can be

called a downstream of P1 and P2, and P1 and P2 can be called upstream of D2.

4.8.2 Basic Logic of Dynamic Information Consistency Check

The fundamental level of information consistency checking in GT PPM is an act of

selecting and inputting information for a certain activity in a manner similar to the DFD

method. If there is an activity ‘Calculate the strength of a tire’, a modeler may easily tell

what information is necessary and what is not. We call this semantic validation of

 92

information consistency. Still, there is no way to guarantee that information collected is

complete or logically valid. Semantic validation is subjective because it is solely based on

modelers’ knowledge and judgment. For example, if ‘engine volume’ is an input

information item for an activity ‘Calculate the strength of a tire’, a reader can guess that

this is not right, but can only validate it by consulting a tire expert. Also, he/she cannot

check if a critical variable is missing in the collected information. While semantic

validation will always be partly a human responsibility, information consistency and

robustness can be enhanced through logical checking.

The core concept developed here is called validation by information dependency:

i.e., unless certain information is provided, other information cannot be generated. In the

previous tire example (Figure 4.26), if ‘engine volume’ is provided as input to ‘Calculate

tire strength’, we can infer that there is a certain dependency between ‘the strength of a

tire’ and ‘engine volume.’ Conversely, if ‘tire materials’ is provided as output, ‘tire

materials’ must be either input to or generated by ‘Calculate tire strength.’ By using this

concept we can infer what information and Activities are missing.

Figure 4.26 An example of "Calculate tire strength"

 93

The first set of rules we initially implemented for checking information consistency

was to compare the information set of an activity with the flows that stream into/out of the

activity. The basic logic was that, by definition of information dependency, the information

set of an activity must be an aggregation of information flowing into the Activity from

source activities and the information generated in the activity itself. Therefore, a set of

inflow information (Fu) must be a subset of information (I) of an activity (Figure 4.27 (1)).

Conversely, any outflow information (Fd) must be a subset of its source activity (A)

(Figure 4.27 (2)).

I F
d

F
u

φ≠∩ IFu
IFd ⊆

Figure 4.27 The basic logic

Expanding this logic, several rules are defined as follows (Figure 4.27):

Rule 8: Intersection of information (Fu) in any upstream flow that streams into a

target activity and information (I) of the target activity (A) must not be an

empty set:

φ≠∩ IFu

Rule 9: A set of information (Fd) in any downstream flow that streams out of a

source activity must be a subset of information (I) of the source activity (A):

IFd ⊆

 94

Rule 10: By definition of a flow, a new information item (Ig) can only be generated

in an activity (A) but not on any information flow (F). An information flow

simply carries a set of information between activities:

)}()(|{ Fggg IiIii ∉∧∈

where I: activity information; IF: information of a flow

Figure 4.28 The first interface for checking the information consistency

The logic was initially implemented in GT PPM (Figure 4.28). This version was

used for process modeling by the PCSC, which included 23 precast producers in the USA,

Canada, and Mexico. Fourteen detailed models were collected and analyzed (Sacks et al.,

2002). Even though the logic of this first approach was straightforward to understand, the

information collected showed some inconsistency. It was found that, since it was very

time-consuming and difficult for modelers to identify and report information for both

 95

activities and flows, some modelers simply copied information from a flow to an activity

without seriously considering the actual use of information. Moreover, since this logic was

defined based on relations between information of an activity and its connected flow,

relations between information in activities, which were our actual interests, could not be

clearly shown. Therefore, I sought more rigorous definitions that could define relations of

information between activities and that could validate information consistency between

activities directly.

4.8.3 Extended Logic of Dynamic Information Consistency Check

The second approach focuses on relations of information within and between

activities. In order to define information and its relationship more specifically, an

information set of an activity is categorized into information input (Ii) and information

output (Io). The Information output is further subcategorized into passed through (without

modification, Ipt), modified (Im), and generated information (Ig) (Figure 4.29).

RCM categorizes information types into input and output information and

subcategorizes them into five types. They are defined as:

• Input (Information, Ii): Information required by this activity. Input is subdivided

into:

o Remaining Information (Ir), which is purely referenced and is not

transferred to the downstream activities and remains in an activity.

o The rest of the Input Information:= Input (Ii) – Remaining Information

(Ir)

• Output (Information, Io): Information available from this activity.

o Information Modified (Im), whose values are potentially changed or

modified in this activity.

o Information Passed-Through (Ipt), which is not modified by the activity,

but transferred to the downstream activities as output.

 96

o Information Generated (Ig), i.e. newly generated in this activity.

Figure 4.29 Types of activity information

Figure 4.29 illustrates the information types of an activity in RCM. Note that input

information excludes information items returning through feedback flows in consistency

checking. In addition to input and output information, references for checking information

consistency are defined: i.e., unavailable, unused, and not-provided information. The

relationships between information items imply functional dependency: i.e., input

determines output and output is dependent on input. The rules that define the relationships

between information types are:

Rule 11: Activity information set is the union of input information set and output

information set:

oi III ∪≡

Rule 12: Output is the union of passed through, modified, and generated

information:

},,{ gmpto IIII U≡

Rule 13: Input is the union of passed through, remaining, and modified

information:

 97

},,{ mrpti IIII U≡

Rule 14: The intersection of remaining, passed through, modified, and generated

information is an empty set:

φ≡},,,{ gmptr IIIII

Rule 15: By Rule 12 and Rule 13, remaining information is the subtraction of

output information from input:

oi II −

},,{},,{ gmptrmpt IIIIII UU −≡

rI≡

Rule 16: A set of Activity information is the union of input and generated

information:

oi III ∪≡ (from Rule 11)

)(gmpti IIIII ∪∪∪≡ (by Rule 12)

gi III ∪≡∴ (by Rule 13)

Rule 17: Intersection of input (Ii) and generated information (Ig) is an empty set:

φ≡},,,{ gmptr IIIII (from Rule 14)

φ≡∪ gi II (by Rule 13)

Thus far, we defined internal information types of an activity and their relationship.

The relations of information between activities are redefined according to these new

 98

information types and in-/out- flow information. The basic assumption is that the input

information can receive information only from upstream activities, and the output

information can provide information only to downstream activities. The relations are

defined as follows (See Figure 4.25 and Figure 4.29 for reference):

Where

dn(A): downstream activities of an activity A;

up(A): upstream activities of an activity A;

output(A, x): output information of an activity A;

input(A, x): input information of an activity A

Rule 18: The input (Ii) of an activity (A) must be a subset of the unionized output

(Io
U1, Io

U2 Io
U3 … , Io

Un) of its upstream activities (U1, U2, U3…Un):

ia II ⊇ , where Available Information Ia

)}),(up(output|{ xAxU≡

Rule 19: The output (Io) of an activity (A) must contain the set of unionized input

(Ii
D1, Ii

D2, Ii
D3 … , Ii

Dn) of downstream activities (D1, D2, D3…Dn) of A less

the set of aggregated output (Io
P1, Io

P2, Io
P3 … , Io

Pn) of their upstream activities

(P1, P2, P3 … Pn), excluding the activity A:

roo II ⊇ , where Required Output Information Iro

)}),(dn(input|{ xAxU≡

)})),(up(dn(output|{(yAyU−

 99

These ruless can be used for checking the consistency of information flows in

complete models. However, in order to practically help modelers to build more robust

models, we subcategorized the check results into several additional information sets, which

could support real-time consistency checking as models are composed. These are called

references. The references include (See Figure 4.29 and Figure 4.30):

Figure 4.30 The second interface for checking the information consistency

Rule 20: A set of information that does not conform to Rule 18 is called

unavailable information. In other words, input information that does not exist

in available information is unavailable information:

Unavailable Information aiua III −≡

Rule 21: A set of information that is a subset of available information, but does not

exist in input is unused information:

Iu

Iuu

Iua

Ii

Ir

Ipt

Im

Ig

Ip

Inp

 100

Unused Information iauu III −≡

Rule 22: Conversely, a set of information that is a subset of available information

and also that of input is used information:

Used Information iau III ∩≡

Rule 23: A set of information that does not conform to ia II ⊇ , where Available

Information Ia

)}),(up(output|{ xAxU≡

Rule 19 is not-provided information Inp:

Not-provided Information oronp III −≡

Rule 24: A subtraction of not-provided information from required output

information is provided information Ip:

Provided Information nprop III −≡

The logical propositions are implemented in a user interface that automatically and

dynamically checks the consistency of information as modelers edit a required output

information list. Only input, passed through, modified and generated information are saved

– the other categories are dynamically calculated based on these rules. As modelers update

information, all the relations among relevant information sets are automatically rechecked

and the check results are updated. In actual implementation, the derived rules such as Rule

15, Rule 16, and Rule 17 reduced the extent of source codes.

 101

4.8.4 Practical Refinement of the Extended Logic

In this section, a practical refinement is introduced. While the extended logic of

checking information consistency is theoretically robust, the interface shown in Figure 7

suffers the following drawbacks:

Selecting information items requires much work. In order to achieve a complete set

of information for an activity, users must carefully and thoroughly think out what

information is needed for four categories; i.e., for input, passed through, modified, and

generated information.

• A process model of a medium-size organization usually includes hundreds of

Activities for which information must be selected from a data dictionary (Sacks

et al., 2002). In the case of the PCSC, a data dictionary with over 30,000

possible combinations of information is provided. Selecting the correct

information from them for each Activity is not trivial. Modelers are apt to lose

concentration and that can lead to an imprecise model. Thus, selecting and

editing information from a data dictionary should be reduced as much as

possible

• These drawbacks can be reduced by implementing the extended consistency

checking logic as follows:

• Passed through, modified, and generated information lists are merged into an

output information list. In the extended logic, the author distinguishes passed

through, modified, and generated information explicitly. However, generated

information does not denote the information item that is first generated in the

whole sequence, but locally generated information within an activity. That is, if

 102

a user wants to keep track of the first activity in which an information item is

generated, then information items should be considered in the context of the

whole sequence, not that of an individual activity. An information item that

does not appear in any previous activities is true newly-generated information,

while an item that exists in the previous activities, is true modified or passed

through information.

• In all cases, input information is drawn directly from the output of the upstream

activities. Conversely, output information should provide any downstream

information that is not fed by other activities. It would therefore be preferable

to drag the information from that available or required rather than select it from

a large data dictionary. This approach allows users to select and copy

information from available information (Ia) and also from required output

information (Iro) based on Rule 18 and Rule 19. In this case, the information

copied will be deleted from its source information list based on Rule 20 and

Rule 24. For example, if a user selects information from an unused information

list and add it to an input list, the added information will be removed from the

unused information list automatically.

• Output information shares passed through and modified information with input

information (Rule 12 & Rule 13). Therefore, information items in the lists of

input and output information can be copied from/to each other. In this case, the

copied information will remain in both input and output information lists.

• The lists of used and provided information are omitted so as to reduce the

complexity of the user interface and to increase the viewing space for the

 103

remaining other lists. Available, used, provided, and required output

information types are hidden.

• Unavailable information (Iua) can be derived by Rule 20. Any information that

falls into the unavailable information list must be provided by the upstream

activities. If no activity exists that can provide the unavailable information, a

new activity (or activities) must be added and connected with an information

flow symbol/shape.

• Required and not-provided information can be derived by Rule 19 and Rule 23.

• Not-provided information must either be added in the output information list, or

it must be provided to the downstream activities from other activities.

Figure 4.31 A practical approach to checking the information consistency

Since this new interface allows users to use selected information over and over

through activities, it provides a degree of semantic consistency as well as reducing the

Io

Ii

Iuu

Inp

Ina Ir

 104

effort required of users in selecting information and maintaining the logical consistency

between information collected.

4.8.5 Application & Limitations of the Dynamic Consistency Checking Method

It has been described how the consistency of information flows in a process model

can be checked using logic based on information dependence between activities. A system

can automatically check consistency of information flows according to this logic and can

display inconsistent information items as unavailable- or not-provided-information lists.

Modelers can maintain the consistency of a process model and its information flows by

revising a model in any or all of three ways:

1) editing the information lists of relevant activities

2) adding or removing activities

3) creating, removing, or diverting information flows.

However, modelers should be aware of the limitations of this method as a

consistency checker for process models:

• This consistency checking is not aimed at finding the most efficient form of

information exchange (cf. DFD). Rather it reflects business practices and

policy and, therefore, allows redundancy of information.

• It can guarantee a certain degree of completeness and robustness, but cannot

guarantee absolute completeness of collected information because of the

nature of modeling efforts. For example, even as a model is compiled,

requirements may change.

 105

4.8.6 Comparing RCM with Other Requirements Collection methods

Requirements of a UoD can be captured in a variety of formalisms. Common

methods include Flowcharts, UML Activity Diagrams, Use Case diagrams, Data flow

Diagrams (DFDs) (Osborne and Nakamura 2000), and IDEF0 (NIST 1993) schemas. Both

Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999)

are limited only to capturing sequences of activities and are not able to describe the

information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard

1992), which are a part of the UML methodology, define a set of sequences in which each

sequence represents the interaction of the things outside the system (its actors) with the

system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). They do

not explicitly bring out the “information” hidden in the use-case notation. Data flow

Diagrams (DFDs) (Osborne and Nakamura 2000) represent flows of information in a

system using information flow symbols, processes, external entities (a.k.a.

source/destination, sink), and internal data storages (often files). The whole set of DFDs

consists of several levels of diagrams. The top-level DFD is called a context diagram.

Details of information that is transferred between processes and data storages is described

separately and called a data dictionary. However, DFDs do not show workflows, i.e.,

decisions or sequences of activities. DFDs capture information required for ‘system’

design, but do not describe information flows in a sequence of activities. It is important to

capture information in a context of its use because information is often aggregated and

decomposed in a data model depending on its use-cases (i.e., in what process it’s used and

stored) not on its system configuration (i.e., in what machine it’s used and stored).

IDEF0 (Integration Definition of Function Modeling (International Organization

for Standardization 1994)) is a Federal Information Processing Standard (FIPS) supported

 106

by ISO It is based on SADT (Structural Analysis and Design Techniques) and is designed

to define the “functions of a system or subject area with graphics, text and glossary (NIST

1993)”. As in DFD modeling, IDEF0 models have a hierarchical structure and take a top-

down approach. A unique feature of IDEF0 is its ICOM codes (Input, Control, Output, and

Mechanism arrows). Input and Output arrows indicate the data and object flows into and

out of a function. Control arrows denote the “required conditions for a function,” and

Mechanism arrows represent the “means of performing a function”. Arrow types (or flows)

are categorized in terms of use, but individual information items are not carried by the

arrows between functions. Detailed information can be defined separately in IDEF1x (or

IDEF1), but there is no direct link between the two modeling techniques. These modeling

methods are available in commercial tools (e.g., BPR®, Arena®, Rose®, Visio®, and

SmartDraw®).

Table 4.3. RCM and other modeling methods.

RCM Components UML Activity
Diagrams

IDEF0 Flowchart DFDs

Internal/External Activity or
Function

× × × �

Hierarchical Structure × � × �

Information Flow � � � � (Data flow)

Feedback Flow × × × ×

Material Flow � (Object Flow) × × ×

Continue Shape × × × ×

Decision Shape � × � ×

Static Info Source × × � (Storage) �
(Source/Sink)

Dynamic Info Repository × × � (Storage) � (Files)

Information Menu
(Data Dictionary)

× × × �

�: available; ×: not available; �: similar

 107

The differences in modeling concepts between the RCM and other modeling

methods with similar purposes are summarized in Table 4.3. (Use-Case diagrams are not

included in Table 4.3 because they do not have conceptual commonality with the RCM

except for the fact that both methods focus on use cases). In Table 4.3, the data dictionary

of DFDs is marked with a triangle because it simply has the form of a collection of word-

cards and does not have any structure or any method to deal with the large number of

information items that can occur in a data model. Object flows in the UML are also marked

with a triangle. They are somewhat similar to material flows in RCM; however they differ

from material flows in that material flows are only restricted to physical materials while

object flows include also non-physical objects and forms such as orders and bills (Booch,

Rumbaugh, and Jacobson 1999).

Some commercial CASE (Computer-Aided Software Engineering) tools for

database design (such as Visio®, AllFusion® (a.k.a ERWin®, BPWin®), and Corporate

Modeler®) are capable of coupling DBMSs mostly only with ARMs (e.g., IDEF1x,

EXPRESS-G, the UML as a modeling package, and ER diagrams) and sometimes with

process models (AAMs). Several other methods have been researched and developed: e.g.,

PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS (Wilson et al. 2001), GPP

(Wix and katranuschkov 2002), ISTforCE (Wix and Liebich 2000), ATLAS (Tolman and

Poyet 1995), VEGA (Bakkeren et al. 1996), ICCI (Katranuschkov et al. 2002),

PISA(Bakkeren et al. 1996)). Among these, PISA directly interrelates process and product

modeling by assigning additional symbols to each ICOM (Input, Control, Output,

Mechanism) code of IDEF0. Table 4.4 compares PISA and RCM. The others are mostly

focused on workflow management methods. Including PISA, the author is not aware of

 108

any formal method that can elicit discrete information items from heterogeneous business

environments step by step, validate collected information items, and integrate them into an

industry-level product model.

Table 4.4. Comparison of PISA and RCM

 PISA RCM

Basis for process modeling IDEF0 N/A

Basis for product modeling NIAM (graphical)
EXPRESS (textual)

Information Menu
EXPRESS (final result)

Integration of process and product
modeling

Yes Yes

 109

CHAPTER 5

LOGICAL PRODUCT MODELING (LPM)

5.1 INTRODUCTION

The goal of LPM is to (semi-)automatically derive a product model from collected

information constructs. The LPM is a combinatorial process of integrating and normalizing

(i.e., decomposing and restructuring) information constructs into a formal product model.

The targeted data modeling language, in this thesis, is EXPRESS. This chapter first

discusses the data integration method and then the normalization method in LPM.

Nevertheless, the integration and normalization processes are reciprocal and cannot be

treated separately. The integration and normalization rules are also defined as design

patterns18. A product model developed through GTPPM is by no means complete. Much of

the information that provides the semantics (i.e., roles, rules, cardinalities, data types) still

has to be added manually and the resultant model should be modified. The limitations are

discussed at the end of this chapter.

5.2 SCHEMAS MAPPING, INTEGRATION, DESIGN PATTERNS, AND

NORMALIZATION

Sometimes different work processes use the same set of data. Sometimes two

equivalent processes may use the different sets of data. But different work processes

usually require (and use) different sets of data. In order to make a product data model

18 See the next section for more information on design patterns.

 110

support various work processes, a product model should be an integration of different sets

of data, which are required by different processes. We regard integration to be different

from simple aggregation. While aggregation is a simple consolidation of data, integration

is a semantic union19 of different sets of data. In an integration process, semantic relations

between different sets of data should be defined and mapped. Conflicts 20 between

information constructs should be resolved.

There are several ways of mapping and integrating (sub-) schemas. A brief and

general introduction to the EXPRESS integration method is available in Section 6.3 of

(Schenk and Wilson 1994). Schenk and Wilson defines integration as a process of

combining Topical Information Models (TIMs), which are domain-specific information

models developed by several modeling teams, into a minimally redundant, non-ambiguous

and complete Integrated Information Model (IIM). The TIM and the IIM are conceptually

similar to the ARM and the AIM of the STEP method except for the fact that an IIM does

not have predefined integrated generic resources (IRs). Schenk and Wilson categorize

model integration into six forms:

1) cosmetic integration: modeling and documentation in a consistent style

2) editorial integration: elimination of synonyms and homonyms

3) continuity integration: elimination of redundancies and identification of gaps

4) structural integration: generalization of underlying concepts in TIMs and

interfacing of an IIM with other IIMs

5) core-based integration: integration of TIMs into a high-level, abstract, and

generic core information model

19 See Appendix E for a formal definition of the semantic union.

20 See the design patterns in the following sections for examples.

 111

6) evolution-based integration: development of an IIM by integrating a TIM and

another TIM until all the TIMs are integrated.

However, these descriptions provide only general guidelines and strategies for

model integration and do not deal with the integration problems in detail.

Another effort worthy of discussing, is EXPRESS X. EXPRESS X is the ISO STEP

schema mapping language that provides a formal description method to map two different

schemas and their entities using Rule Declaration and Type Map Declaration (ISO TC

184/SC 4 1999). However, EXPRESS X is a mapping mechanism between two schemas,

not an integration method.

For some reasons, many people misconceive that XML can automatically integrate

two or more different schemas. XML has Include, Import, and Redefine mechanisms to

reuse or to integrate different schemas into a new one (Wyke and Watt 2002). But they are

not very different from the concept of the schema interfacing (or referencing) mechanism

in EXPRESS. Both XML and EXPRESS provide tools for model integration, but the work

still has to be done by humans. There is still no logic to automatically integrate two

schemas in XML and EXPRESS, which the author is aware of.

Another approach to mapping and integrating (sub-) schemas is to use design

patterns in object oriented programming. Design Patterns originated from Christopher

Alexander’s Pattern Language for buildings and towns (Alexander et al. 1997). The design

pattern for object oriented programming has grown as a new field through years of efforts

by design pattern groups and conferences (e.g., Ward Cunningham and Kent Beck

(Coplien 1999), Erich Gamma and his colleagues (Gamma et al. 1994), Pattern Languages

of Programming conference (PLoP), and Object Oriented Programming conference

 112

(OOPSLA), and Object Management Group (OMG)). Each design pattern describes a

particular object-oriented design problem; the core of the solution; and the constraints,

consequences, and trade-offs of its use. Gamma et al. categorized design patterns into

three: Creational, Structural, and Behavioral Patterns in their book (Gamma et al. 1994).

The first two categories deal with instantiation and composition/decomposition of objects.

The last category deals with encapsulation of algorithms.

The design pattern approach can be also applied to normalization of a data model.

Normalization is an activity of using the known semantics of data in the form of

dependencies that may be a cause for potential “update anomalies” requiring unnecessary

duplicate work as well as causing potential inconsistencies in a database. Normalization of

data was first proposed by Codd (Codd 1972) in the context of the relational model. The

process of normalization can be defined by constraints or conditions that must be satisfied

progressively to achieve a higher “quality” or “goodness” of design (Elmasri & Navathe,

2004). The process successively decomposes the relations so that, after each

decomposition, a higher normal form is met; yet, the decomposition must be “non-

additive” – in that it does not produce any spurious data after joining the component

relations. The relational normalization theory is well accepted and defines the well-known

first through fifth normal forms considering functional, multi-valued and join dependencies.

However, in practice, the higher normal forms like the fourth and fifth normal forms are

rarely used because their dependencies are hard to detect or for performance reasons, so as

to avoid joins. It is difficult to apply the conventional normalization criteria and

dependencies to several application domains: e.g., the human genome databases (Kogelnik

et al. 1998)).

 113

However, in object-oriented data models, redundancy of data is less of a concern

because of their efficiency of representing the specialization relationship and other

relations using "pointers" compared to the relational data model, which relies on foreign

key - primary key relationships. There have been several efforts to explore and develop

different normal forms for object-oriented data models from relational normal forms (Beeri,

Bernstein, and Goodman 1978; Tari, Stokes, and Spaccapietra 1997). They illustrate that

object-oriented models can be decomposed and integrated relatively freely depending on

the given normalization criteria. However, unlike relational normalization, the goals (or

criteria) of normalization are not clearly set in object-oriented data modeling languages.

For example, (Tari, Stokes, and Spaccapietra 1997) proposed user-interpretation-based

normalization. Three functional dependencies (i.e., path dependency, local dependency,

and global dependency) were provided to support the method. Even though their method

supports normalization (restructuring) of objects by user-defined constraints, the method is

weak in terms of providing a standard or generic normalization method because any user-

defined constraints can be a “norm.”

The following sections describe a method to integrate collected information

constructs into an Application Requirements Model (ARM) and define design patterns to

resolve conflicts between different information constructs in the collected information

requirements and to normalize an integrated model.

5.3 INTEGRATION OF COLLECTED INFORMATION IN GTPPM

In GTPPM, there are four possible integration approaches. Figure 5.1 illustrates the

four options. The bold line indicates a point of integration. The double-lined circle

indicates an integrated model or an aggregated model.

 114

Figure 5.1 Four possible information integration methods in GTPPM

a) Integration of process models: Different process models can be integrated into

one process model. Information requirements will be defined based only on a

single unified process model. This is the most common approach that is taken

today by STEP and IFC modeling efforts.

b) Integration of vernacular information items: Information items required by

each process can be specified in each company’s local terms. Specified

vernacular information items (VIIs) can be aggregated and mapped to

information constructs. Then the semantic conflicts can be resolved in the

normalization process of information constructs (ICs) into a product model.

c) Integration of information constructs: Lists of information constructs can be

aggregated into one large list. The aggregated ICs can be normalized into an

integrated product model. The semantic conflicts should be resolved in the

normalization process.

 115

d) Integration of data models: A product model can be derived from each RCM

model. And the generated product models can be integrated into a final product

model.

Among these, this study takes the second and third approaches. In the first

approach, if the process models can be integrated “losslessly”, an integrated product model,

which can support various processes, can be developed from the integrated process model.

It will not be easy to integrate processes without losing any semantics. However, even if

process models can be integrated losslessly, it will be difficult for modelers to specify

information requirements based on an integrated process model because an integrated

process model may not be able to represent the real contexts of information use.

The fourth approach is not very different from general schema integration. Each

product model will have additional constraints (e.g., arities, rules) to the preliminary

product models directly derived from RCM models. And the more detailed and complex

constraints will be, the more difficult to resolve the conflicts between them. Thus, it is

better to integrate information constructs when they are as little structured as possible.

In this regard, the second and third approaches are most feasible among the four

possible integration approaches. The two approaches are interchangeable because a data

structure is not sensitive to the order of aggregation (albeit it may be sensitive to the order

of integration).

5.4 NORMALIZATION IN GTPPM

The definition of normalization in GTPPM is not very different from most existing

ones (i.e., decomposition and restructuring of a data structure to a normal form), but the

 116

scope and goals are not the same. Unlike traditional relational database normalization

theories, the goal is not to eliminate redundancies or anomalies at an instance level (e.g.,

null value, lossless joint, multi-valued dependencies (Elmasri and Navathe 2004), but at an

entity level. Since GTPPM is a schema generation method, the instance-level

normalization issues are out of its scope. Also it does not deal with optimization issues that

can make database transaction and query more efficient and faster. In any case, traditional

database normalization and optimization methods can be applied when the final product

model is implemented as a physical model.

The main goals of normalization in GTPPM are (1) resolving conflicts between

information constructs with different data structures; and (2) eliminating redundant entities

and attributes at a schema level.

5.5 LOGICAL PRODUCT MODELING IN GTPPM

As noted earlier, the integration and normalization processes are separated.

Conflicts occurring in the integration process will be resolved during the normalization

process. The current LPM is composed of eight steps.

Step 1: Union information constructs

Step 2: Decompose information constructs into entities by the association and

decomposition relations.

Step 3: Detect and merge semantically equivalent entities.

Step 4: Detect and merge semantically equivalent attributes within entities.

Step 5: Resolve conflicts between attributes of a supertype and its inherited

attributes.

 117

Step 6: Generalize the data structure: Extract supertypes and their attributes from

information constructs

 Step 7: Resolve conflicts between attributes, supertypes, and subtypes.

Step 8: Refine the automatically derived product model

The LPM process is described in detail according to these eight steps in the

following sections with examples and nine design patterns. The nine design patterns were

defined to resolve the conflicts detected by MS SQL Server 2000® and EDM® through the

evaluation process of three test cases described in Sections 7.3 through 7.5. Syntactically

sound three test case models and an integrated model of the three test case models could be

generated through the nine design patterns. We believe that these patterns are adequate for

the normalization process as described. However, additional design patterns may be

required and defined in the future.

5.6 STEP 1: UNIONIZING INFORMATION CONSTRUCTS

LPM first collects and unionizes the properties of all the information constructs in

the RCM models. In this process, information constructs are unionized without any

normalization or conflict resolution. Since the tokens of an information menu, on which

information constructs are based, are defined based on the ‘nym’ principles (i.e., no

homonym, no synonym), tokens with the same spelling should be regarded as identical.

For example, if we have two information constructs of PROJECT, A and B, as shown

below,

A: PROJECT ≡ {name, id, site}
B: PROJECT ≡ {name, manager, schedule, client}

the union of A and B will be:

 118

A ∪ B: PROJECT ≡ {name, id, site, manager, schedule, client}

The properties can be either a simple attribute or an entity in EXPRESS. This rule

can be generalized as a design pattern. Note that the LPM process assumes that data types

of attributes will be manually defined in the last of step of LPM in order to reduce the

conflicts between attribute types. During the LPM normalization process, the data types of

simple attribute types will be temporarily defined as STRING. And data types of entity-

type attributes will be temporarily defined as the same as their roles (Figure 5.2) until

manual modification. Also in the EXPRESS-G diagrams used for describing design

patterns, roles will be omitted assuming that they are unique or the same as associated

entities unless specified otherwise.

Figure 5.2 Roles of properties in GTPPM

In any case, if there are conflicts between data types, those should be resolved in

the normalization process. (See Design Pattern 4 and Design Pattern 5 for examples and

details on this issue.)

Design Pattern 1: Unionization of Information Constructs

 119

Problem: Different information constructs denote that an entity has different (sets of) attributes

(Figure 5.3) NB: Conflicting entities are in peach (or in grey in black and white print).

Figure 5.3 Conflicting attributes
Solution: Each relation has a specific meaning in structuring a data model. Thus, the general

principle of model integration is to preserve semantics of information constructs as much as possible in an

integrated model. Thus, the attributes of an entity should be the union of attributes of the entity defined in

information constructs.

Figure 5.4 Unionization of Information Constructs

Notes: If there is a case that different attributes of an entity are associated with one entity type as

shown in Figure 5.5 (a), there is no conflict in the information construct. An example is when A: schedule;

Role_1: start_date; Role_2: end_date; and C: date. On the other hand, this should not occur if tokens are

defined following the ‘nym’ principle, but if one attribute (name) is associated with two entities as shown in

Figure 5.5 (b), one of the Role names should be changed unless there is a mechanism to integrate or merge

the two attributes, namely, C and D in the example. An example is when A: product; Role_1: id; Role_2: id;

C: unique_id; and D: design_model_id. In this case, either Role_1 or Role_2 should be renamed. Role_2 may

be renamed to design_type.

 120

Figure 5.5 Conflicting attribute (role) names

Design Pattern 1 defines a situation when a property is shared by two “different”

entities. It is also possible that a property is shared by two “different” entities. In such

cases, the property should be regarded as a property of both entities.

Design Pattern 2: A Shared Entity Type

Problem: A property of Entity A (in Figure 5.6) is associated with Entity B. A property of another

entity (Entity C), which is associated with a property of Entity A, is also associated with Entity B.

Figure 5.6 Properties associated with the same entity

Solution: Two different entities can have properties that are pointed to the same

entity. Entities A and C in Figure 5.6 are two different entities. Therefore, there is no conflict in this case.

 121

Figure 5.7 An example of two different properties associated with the same entity

5.7 STEP 2: DECOMPOSITION OF INFORMATION CONSTRUCTS

Information constructs are a concatenation of tokens linked by the decomposition

relation and/or the specialization relation. Through the LPM process, the collected

information constructs will be broken down either into entities or into attributes. LPM Step

2 is the first step to break down information constructs into smaller chunks by the

association and decomposition relations. The decomposition procedure in Step 2 is as

follows:

a) As described in Section 4.6.3, the decomposition/association relation is

represented as “+” in GTPPM. If entities in an IC are concatenated by “+”, then

decompose ICs into separate entities. For example, an IC

PIECE+GEOMETRY+DIMENSIONS{length} will be decomposed into three

entities PIECE, GEOMETRY, and DIMENSIONS{length} in this process.

b) If an entity already exists, do not create a new one, but merge the attributes of

the entity into the existing one following the Design Pattern 1. This is to avoid

redundancy of entities.

c) If there is a concatenation of “A+B”, the entity B should be added as an

attribute of A. For example, GEOMETRY in the PIECE+GEOMETRY

 122

concatenation should be added as an attribute of the PIECE entity. See Table

5.1 for more examples.

d) Step 2 should also conform to Design Pattern 1 and Design Pattern 2.

Table 5.1 illustrates an example of decomposing ICs in EXPRESS. *: denotes the

specialization relation as described in Section 4.6.3.

Table 5.1 Decomposition of ICs with the decomposition/association relations

Information Constructs

PIECE+GEOMETRY+DIMENSIONS{length}

PIECE+GEOMETRY*GEOMETRY_3D{volume}

Decomposition in EXPRESS

ENTITY piece

 geometry: geometry;

 geometry*geometry_3d: geometry*geometry_3d;

END ENTITY;

ENTITY geometry

 dimensions: dimensions;

END ENTITY;

ENTITY dimensions

 length: REAL;

END ENTITY;

ENTITY geometry*geometry_3d

 volume: REAL;

END ENTITY;

 123

5.8 STEP 3: MERGER OF SEMANTICALLY EQUIVALENT ICS

Some information constructs are in different structures, but semantically represent

the same thing. Step 3 identifies the semantically equivalent information constructs based

on the abbreviation rule defined in Section 4.6.3. Examples are:

STAIRCASE{piece_mark, length, height, width}

ASSEMBLY*STAIRCASE{piece_mark, component_list }

PIECE*ASSEMBLY*STAIRCASE{assm_mark, num_of_steps}

STAIRCASE{piece_mark, num_of_steps, balusters}

PIECE*ASSEMBLY*STAIRCASE

≡ ASSEMBLY*STAIRCASE

≡ STAIRCASE (by the abbreviation rule)

ASSEMBLY*STAIRCASE represents the relationship between ASSEMBLY and STAIRCASE, but

STAIRCASE alone cannot. Thus, the semantically equivalent entities should be merged into an

unabbreviated form to capture as much semantics as possible. In the above example, the

entities and attributes should be merged into PIECE*ASSEMBLY*STAIRCASE.

PIECE*ASSEMBLY*STAIRCASE {piece_mark, assm_mark, length, height,

width, component_list, num_of_steps, balusters}

This process can be generalized as Design Pattern 3.

Design Pattern 3 Merger of semantically equivalent entities

Problem: The specialization relation between two entities is represented in an information construct,

but not in other information constructs.

 124

Figure 5.8 Semantically equivalent information constructs

Solution: Integrate the information constructs to the most semantically rich hierarchical structure.

Figure 5.9 Merged entities in the specialization relation

A pseudo-code for detecting semantically equivalent ICs is provided in Appendix F.

5.9 STEP 4: RESOLVING CONFLICTS BETWEEN ATTRIBUTE TYPES

There can be a conflict between property (attribute) types. A property of an entity

can be defined as an entity type in one information construct, but as an attribute type in

 125

another. It can be also defined as STRING in one information construct and as an

INTEGER in another. Design Pattern 4 and Design Pattern 5 deal with such conflicts

between attribute types. Since the LPM process defines all the data types as STRING in

the beginning, the second case does not occur. However, Design Pattern 5 provides a

solution for such a case.

Design Pattern 4 A conflict between an entity type and an attribute type

Problem: A property may be defined as an entity type by one information construct and as an

attribute type by another.

Figure 5.10 A conflict between an entity type and a simple type

Solution: An entity carries much richer information than an attribute type. Thus, the property

should be defined as an entity. The order of selection should be:

Entity > User-defined types > Simple (attribute) types

Figure 5.11 A resolution for the attribute data type conflict

Design Pattern 5 A conflict between simple attribute types

 126

Problem: Different information constructs define the data type of an attribute as different simple

types.

A

B

A
STRING

B

(a) (b)

INTEGER

Figure 5.12 A conflict between simple types

Solution: The order of selection of simple types should be dependent on the inclusiveness of data

types. For example, REAL can be expressed by STRING, but REAL cannot express STRING. LOGICAL

can be expressed as 1, 0, -1 in INTEGER, but LOGICAL cannot express INTEGER. Thus, STRING is more

inclusive than REAL. And INTEGER is more inclusive than LOGICAL. The order of inclusiveness of

simple data types are:

BINARY > STRING > NUMBER > REAL > INTEGER > LOGICAL > BOOLEAN

Figure 5.13 A resolution for the simple attribute data type conflict

5.10 STEP 5: RESOLVING CONFLICTS BETWEEN ATTRIBUTES OF A SUPERTYPE

AND ITS INHERITED ATTRIBUTES

Design Pattern 6 Conflicts between attributes of a supertype and its inherited attributes

Problem: Attributes of a supertype are defined as attributes of its subtypes in different information

constructs.

 127

Figure 5.14 A conflict between attributes of a supertype and inherited attribute

Solution: Since all the attributes of a supertype will be inherited to its subtypes, it is redundant to

define the attributes of a supertype again as attributes of its subtypes. The redundant attributes of subtypes

should be deleted.

A

C
B

L

K D

K

L

Figure 5.15 Deletion of inherited attributes

5.11 STEP 6: GENERALIZATION/SPECIALIZATION IN GTPPM

The goal of Step 6 is to restructure the entities by the specialization relation. The

specialization relation is denoted as “*” in GTPPM as described in Section 4.6.3. Unlike

tokens in the association/decomposition relation, tokens in the specialization relation

cannot be simply decomposed and added incrementally because of the inheritance

mechanism of the specialization relation. For example, if two subtypes B and C of a

 128

supertype A have a common attribute D, the attribute D should be an attribute of the

supertype A and should be removed from the subtypes B and C (Design Pattern 7).

Design Pattern 7: Generalization

NB: Design pattern 6 deals with a conflict between attributes of subtypes and attributes of their

supertype whereas Design Pattern 7 defines a pattern for creating new attributes of a supertype by extracting

least common attributes of its subtypes.

Problem: If subtypes of a supertype have common attribute(s),

A

C
B

D

D

Figure 5.16 Common attributes of subtypes

Solution: the common attribute(s) should be deleted from the subtypes and added to the supertype.

A

C
B

D

Figure 5.17 Generalization in GTPPM

 129

Based on Design Pattern 7, a supertype can be formally defined as a set of least

common attributes of its subtypes:

Supertype T ≡ { x: attribute; S: subtype of T | ∃x∀S(x ∈ S)}

Step 6 identifies and extracts least common attributes of subtypes from the

collected information constructs and add them to their supertype. The extraction process

must start with the top-level supertype because the top-level supertype is a set of the most

common attributes of all the subtypes. For example, after Step 5, ICs may look like the

examples below. At this point, there should not be any entities in the

decomposition/association relation and any semantically equivalent items, which should

have been resolved in the previous step.

piece*beam{piece_mark, length}

piece*wall{piece_mark, length, wythe}

piece*assembly*staircase{piece_mark, assm_mark, num_of_steps}

piece*assembly*facade{piece_mark, assm_mark, window}

First iteration: In the above example, PIECE is the top-level supertype. The most

common attribute ‘piece_mark’ among the subtypes becomes an attribute of PIECE.

PIECE and ‘piece_mark’ will be removed from the list. WALL, BEAM, ASSEMBLY will

be marked as subtypes of PIECE.

piece*beam{piece_mark, length}

piece*wall{piece_mark, length, wythe}

piece*assembly*staircase{piece_mark, assm_mark, num_of_steps}

piece*assembly*facade{piece_mark, assm_mark, window}

 130

The PIECE entity in EXPRESS can be defined as follows:

ENTITY piece

SUPERTYPE OF (beam, wall, assembly*staircase, assembly*facade);

 piece_mark: id;

END_ENTITY;

beam wall assembly*staircase

piece_mark
length

piece_mark
length
wythe

piece_mark
assm_mark

num_of_steps

assembly*facade

piece_mark
assm_mark

window

piece

piece_mark
beam
wall

assembly*staircase
assembly*facade

Figure 5.18. The first iteration of specialization

Second iteration: After removing PIECE from ICs in the first iteration,

ASSEMBLY becomes the top-level supertype of STAIRCASE and FACADE.

‘assm_mark’ is the common attribute between them. A new entity ASSEMBLY is created,

and ASSEMBLY and assm_mark are deleted from the list.

beam{length}

wall{length, wythe}

assembly*staircase{assm_mark, num_of_steps}

assembly*facade{assm_mark, window}

 131

At this step, PIECE and ASSEMBLY can be described in EXPRESS as follows.

Since ASSEMBLY*STAIRCASE and ASSEMBLY*FAÇADE have been decomposed,

the two entities should be removed from the subtype list of PIECE. And ASSEMBLY

should be added as a new subtype. Figure 5.19 is an illustration of the second iteration.

beam wall staircase

piece_mark
length

piece_mark
length
wythe

piece_mark
assm_mark

num_of_steps

facade

piece_mark
assm_mark

window

piece

piece_mark
beam
wall

assembly*staircase
assembly*facade

assembly

Assembly

assm_mark
staircase
facade

Figure 5.19. The second iteration of specialization

ENTITY piece

SUPERTYPE OF (beam, wall, assembly*staircase, assembly*façade, assembly);

 piece_mark: id;

END ENTITY;

ENTITY assembly

SUPERTYPE OF (staircase, facade);

 assm_mark: id;

END ENTITY;

 132

The generalization process in LPM can be formally defined as a pseudo code and a

design pattern as follows:

DIM supertype as ENTITY

DIM supertypes as SET_OF_SUPERTYPES

DIM subtype as ENTITY

DIM subtypes as SET_OF_SUBTYPES

DIM attr as ATTRIBUTE

DIM attrs as SET_OF_ATTRIBUTES

DIM name as ENTITY_NAME

SUB specialization

DO WHILE exists(the_least_common_attrs)

 attrs = get_common_attr(subtypes)

 create_supertype(name)

add_attr(attrs)

 add_FK(supertypes)

 delete_obsolete_FK(supertypes)

delete_added_attrs(subtypes);

LOOP

END SUB

5.12 STEP 7: RESOLVING CONFLICTS BETWEEN ATTRIBUTES, SUPERTYPES,

AND SUBTYPES.

Design Pattern 8 Conflicts between a subtype and a property

Problem: An entity B may be defined as a property of another entity A in one information construct,

but also as a subtype of the entity A in the other information construct.

 133

Figure 5.20 A conflict between an attribute and a subtype

Solution: An entity carries more information when it is defined as a subtype of the other entity than

when it is defined as a property of the same entity because a subtype inherits attributes from its supertype.

Thus, the entity should be defined as a subtype rather than as a property.

Figure 5.21 A resolution for the subtype and attribute conflict

If two additional information constructs in the specialization relation are added to

the above example as shown in Figure 5.22, Entity C will be defined as a subtype of both

Entities A and B, but Entity B will be also defined as a subtype of Entity A. Design Pattern

9 deals with such cases.

Figure 5.22 An additional IC

 134

Design Pattern 9 A duplicate subtype relation

Problem: An entity is defined as a subtype of another entity twice: once directly from its supertype,

the second time indirectly through another supertype.

Figure 5.23 A duplicate subtype relation

Solution: Since all the attributes of a supertype will be inherited to a subtype through a hierarchical

structure, it is redundant to define an inheritance relationship between a supertype and a subtype when the

subtype is already linked to the supertype through a hierarchical structure.

Figure 5.24 A resolution for a duplicate subtype relation

5.13 STEP 8: LIMITATIONS OF GTPPM & REFINEMENT OF A MODEL

Through steps 1 through 7, a syntactically sound EXPRESS model can be derived

from collected information constructs. The following EXPRESS code is an example of

automatically derived definition of exterior_pc_column through Steps 1 through 7:

ENTITY exterior_pc_column

SUBTYPE OF (

pc_column

 135

);

surface_treatment: surface_treatment;

clearance: string;

hardware_list: hardware_list;

rebar: rebar;

rebar_cage: rebar_cage;

pocket: pocket;

corbel: corbel;

geometry_3d: geometry_3d;

foundation_drawing: foundation_drawing;

elevation_drawing: elevation_drawing;

detail_drawing: detail_drawing;

geometry_2d: geometry_2d;

plan_drawing: plan_drawing;

END_ENTITY;

By no means, the automatically derived product model is complete. For example,

the current PIS system does not define roles and cardinalities defined in the beginning. For

example, let’s assume that the BOM (bill of material) entity in a final product model has an

attribute piece_list, which is a list of pieces:

ENTITY BOM;

 piece_list: LIST [0:?] OF piece;

END_ENTITY;

Such semantics can be captured, but in a limited format using the current Product

Information Specification (PIS) method:

BOM{piece list;}

And the automatically derived definition of BOM will be:

ENTITY BOM;

 piece list: piece_list;

 136

END_ENTITY;

Thus, the automatically derived definition of BOM will not include any cardinality

and role information. Such information should be added manually afterwards. In addition

to the cardinality and role definitions, other data modeling semantics that cannot be

captured by GTPPM and should be added after the LPM phase at this point are as follows.

The distinction between mandatory vs. optional relations has not been made. Also the

RULE, WHERE, DERIVE, and UNIQUE clauses have not been added. A product modeler

may even remove or add entities or restructure some of the relations in. Also, simple (data)

types (e.g., REAL or NUMBER) have to be redefined from the current STRING type.

Other user-defined attribute types may need to be defined.

If a resultant product model is far from the expectation, the product modeler should

re-examine the scope and activities defined in the RCM process models, the structure of

the information menu, and information constructs defined within each activity.

 137

CHAPTER 6

IMPLEMENTATION

6.1 AN ASSUMED MODELING PROCEDURE AND IMPLEMENTATION

Figure 6.1 An assumed GTPPM modeling procedure

GT PPM has been implemented as a MS Visio® add-on. The tool is designed to

support several modeling approaches illustrated in Figure 6.1. This chapter describes the

modeling approaches and GT PPM interfaces to support each step in detail. GTPPM is a

collaborative work process between domain experts and product modeling experts

(mediators). Possible roles of domain experts and product modeling experts in each step

are also described.

 138

6.2 THE REQUIREMENTS COLLECTION AND MODELING (RCM) PROCESS

First, domain experts model a process without information such as examples shown

in Figure 6.2. The GTPPM tool includes several functions to comply with the syntactic

rules of process components defined in Sections 4.3 though 4.5. It can check disconnected

flows, the direction (in/out) of flows, and the relations between high-level activities and

their subsidiary detailed activities. It automatically generates identifiers for a pair of

continue shapes and hyperlinks between them. Feedback flows in Figure 6.2 create loops

through dynamic information repository (i.e., “Production Facilities”) to other activities

Figure 6.2. A part of a GT PPM model prepared by a precast concrete company

In parallel or in advance, product modeling experts (mediators) prepare an

information menu (IM) in an Excel® file Figure 6.3. An IM includes a list of main products

(PD) and the definitions of entities. Each entity definition specifies its specialized products

(SPs or subtypes), decomposed products (DPs) and modifier entities (MEs), modifier

 139

attributes (MA), and synonyms. Since GTPPM aims to derive an EXPRESS model, the

specialization and the instantiation relations and the decomposition and the association

relations are not distinguished. The SUPERTYPE field on the far right side of Figure 6.3

can be automatically filled using an IM (information menu) Macro. There are several other

IM Macros developed to check the consistency of items defined in an information menu by

checking misspelled entities and dangling entities (entities that are not associated with any

other entities).

Figure 6.3 Entity PIECE defined in an Information Menu (IM)

 140

Figure 6.4. A GT PPM Information Menu Interface (the IC Editor)

Figure 6.4 illustrates the IC Editor. In a large project that includes heterogeneous

business practices and domain experts with various experiences, expert modelers can

create one or two GT PPM models as pilot models by visiting companies and generate an

information menu. Most standard terms of an industry can be captured in this preparation

phase. When an information menu is ready, other domain experts can join a modeling

effort. Domain experts should map all their VIIs to corresponding information constructs

(ICs) (Figure 6.12). GT PPM reads in an information menu from an MS Excel® file in real-

time. Users can select, compose, and add information items (i.e., ICs) from the information

menu to each activity. The left window of Figure 6.4 shows a hierarchical structure of

tokens that represents aggregation, specialization, and classification (see Section 4.6). The

right window shows ICs that are composed of tokens available from the left window.

 141

While modeling a process, domain experts create a vernacular data dictionary

(VDD). The vernacular data dictionary (VDD) includes information on information sets

(Figure 6.5) and vernacular information items (VIIs) (Figure 6.6). It includes VII names,

definitions, data type, examples, references, and synonyms.

Figure 6.5 Information Sets defined in a Vernacular Data Dictionary (VDD)

Figure 6.8 illustrates the VII/VDD editor. A VDD is stored in a separate Excel®

file21 from an IM file. The VII name should be unique. If domain experts add a new item

with the same name as an existing VII, it alerts users. The list of VIIs can get very long

after a while. Domain experts can search for a term they defined by typing in part of the

term. For example, if a domain expert types an unfinished word, e.g., “proj”, and executes

“Search”, the VII editor search through VII names and synonyms and returns any terms

with “proj” in their name and homonyms (Figure 6.8). Another core function of the VII

editor is that, if domain experts want to update a term for some reasons (e.g., typos, a

21 VDDs and an IM are stored in separate Excel® files because a VDD is only of interest of a certain modeler (team), but

not of interest of the whole modeler teams. Only the IM will be shared by different modelers (or teams) and VDDs will
be kept by each modeler (team).

 142

conflicting name), it updates not only the term in the VDD, but also all the terms with the

same name in the model (Figure 6.7).

Figure 6.6 Vernacular information items (VIIs) defined in a VDD

Figure 6.7 The VII Updater

 143

Figure 6.8 The Vernacular Information Item (VII) (or VDD) editor

Figure 6.9. A part of a GT PPM model with information sets

Domain experts can define and add information sets and subsumed VIIs where they

are necessary prior to defining information items required by each activity. DAILY

SCHEDULE and SHIPPING SCHEDULE in Figure 6.11 are examples of information sets.

Specific descriptions of new VIIs must be added to a vernacular data dictionary (VDD).

 144

Information sets can be specified using the Information Set Editor (Figure 6.10). Users can

add, remove, and update information items of information sets. Tags, which show a list of

information sets in a flow, automatically appear when information sets are defined. Once

information sets are defined, they can be used over and over.

After adding information sets, domain experts fill in input and output information

of each activity, checking the consistency of a model using information sets as targets for

information generation using the Activity Information Editor (Figure 6.11). The Activity

Information Editor lists input and output information of an activity (see Section 4.8 for

details). Inconsistent information items appear highlighted in the unused-, unavailable- or

the not-provided-information lists.

Figure 6.10 The Information Set Editor

 145

Figure 6.11. The GT PPM Activity Information Editor

If a project is simple in terms of the size of information and domain experts are

comfortable with using information constructs (ICs), the VII modeling process can be

skipped and information items can be specified using ICs from the beginning. However, if

information items are defined in VIIs, the VIIs should be mapped to corresponding ICs

using the Information Item Mapper illustrated in Figure 6.12. Currently one VII can be

mapped to one or to many ICs. Sometimes one vernacular information item includes

several pieces of information. But, in a non-computerized format, the subsidiary

information items are not explicitly defined as individual information items. In such cases,

the VII with several pieces of information can be mapped to several ICs. Or the VII can be

decomposed into several VIIs. And each VII can be mapped to one IC. Conversely several

VIIs should be mapped to one IC when VIIs are synonyms.

 146

The structure and the contents of an information menu should be revised if ICs,

which are meant to correspond with VIIs, cannot be composed from the information menu.

The upper right corner window of the Information Item Mapper (Figure 6.12) shows

mapped pairs of information items. The mapped VIIs can be automatically replaced by ICs.

If there are any VIIs that are not mapped to ICs, a system automatically checks and lists

them as ‘unmapped information items’ in the replacement procedure.

The Activity Information Editor (Figure 6.11) has the VII mode and the IC mode.

Domain experts can switch freely from one information item mode to another. The

consistency checking module works in both the VII mode and the IC mode. Domain

experts fill in missing information or revise a model using the three methods described in

Section 4.8.5 until a model becomes consistent.

Figure 6.12. The GT PPM Information Mapper

 147

GT PPM will automatically translate information items from one mode to another

based on the mapping relations defined in the Information Item Mapper (Figure 6.12). The

mapping rules are:

• From VIIs to ICs: If there are any newly defined VIIs, they will be translated as

unmapped user-defined items. The unmapped VIIs can be mapped to ICs at this

stage or at the next stage using the Information Mapper (Figure 6.12).

• Mediators collect GT PPM models from each domain expert. If there are still

any unmapped VIIs, they should be mapped ICs at this stage by mediators in

cooperation with domain experts.

• From ICs to VIIs: If there are no corresponding VIIs to ICs in a mapping table

(Figure 6.12), the VIIs will be automatically named using corresponding ICs.

Users can modify the VII names later.

6.3 THE LOGICAL PRODUCT MODELING (LPM) PROCESS

When the RCM process is completed, mediators extract ICs from collected RCM

models. GT PPM automatically exports ICs of each activity to a new Excel® file (Figure

6.13). The extracted data can be further analyzed for various analyses.

 148

Figure 6.13. Exported Information Items

Even though the targeted data modeling language is EXPRESS, since many

commercial database management systems (DBMS) are relational database management

systems, the GTPPM tool also supports automated SQL code generation. SQL code can be

generated by first creating EXPRESS code and then converting the EXPRRESS code to an

SQL code using the GT EXPRESS2SQL (Figure 6.15) built on top of the CIS2SQL®

schema converter. The CIS2SQL® schema converter is developed by Seok-Joon You at

Georgia Tech (You, Yang, and Eastman 2004).

In EXPRESS, the specialization relation can be either ONEOF or ANDOR.

Currently GTPPM is not allowing the ANDOR relation in order to reduce the complexity

of a model. Each number on the command button in the EXPRESS Code Generator

corresponds to each step of LPM (Figure 6.14).

 149

Figure 6.14 The EXPRESS Code Generator

Figure 6.15 GT EXPRESS2SQL

 150

CHAPTER 7

APPLICATION & EVALUATION

7.1 OVERVIEW

This chapter reports on the results of application and evaluation of GTPPM. The

GTPPM has been deployed in the Precast Concrete Software Consortium (PCSC) project

for several times for the last three years, and modified based on the results. The PCSC is a

consortium of major precast concrete producers in Canada and the US22 formed in 2001.

The goals are to fully automate and integrate engineering, production, and construction

operations, to gain productivity, and ultimately to increase the market share. As the means

to achieve the goals, the PCSC chose to develop an intelligent 3D parametric CAD system

and a Precast Concrete Product Model (PCPM) to enable data exchange between diverse

systems used during the sales, design, engineering, production, and construction operations

processes.

The following sections describe several GTPPM efforts. The PCSC member

companies modeled their own management and engineering processes using GTPPM. As a

22 Initially ITISA, a Mexican precast producer, was also a member of the PCSC. However, some of members have

withdrawn and new members have joined the PCSC. The initial 23 member companies were Blakeslee Prestress,
Cheyenne Concrete Co., Concrete Impression of Florida, Inc., Concrete Technology Inc., Con-Force Structures Ltd.,
Coreslab International Inc., Finfrock, High Concrete Structures, ITISA, IPC Inc., Lafarge Canada Inc., Meridian
Precast & Granite, Metromont Prestress Company, New Enterprise Stone & Lime Co, Inc., Oldcaste Precast Inc., Pre-
Con Inc., Rinker Precast, Rocky Mountain Prestress, Strescon Ltd., the Shockey Precast Group, the Spancrete Group
Inc., Unistress Corp., and Wells Concrete Products Company. The current 15 member companies (as of March 29,
2004) are Blakeslee Prestress, Concrete Technology Inc., Con-Force Structures Ltd., Coreslab International Inc., High
Concrete Structures Inc., IPC Inc., Lafarge Canada/Precon, Metromont Prestress Company, New Enterprise Stone &
Lime Co. Inc., the Shockey Precast Group, Strescon Ltd., Tindall Corp., Unistress Corp., and Wells Concrete Products
Company. The Georgia Tech team led by Prof. Charles Eastman and consisting of Rafael Sacks and Ghang Lee are
technical advisors of the PCSC.

 151

result, fourteen GTPPM models were developed. Among the fourteen GTPPM models,

three models were elaborated based on on-site interviews. Information constructs collected

from the three elaborated models were integrated and normalized into a single integrated

product model. The integrated product model was compared to the PCC-IFC model, the

IFC model extension for precast concrete (Karstila et al. 2002; Karstila and Suikka 2001;

VTT 2004).

7.2 PROCESS MODEL PERSPECTIVES ON MANAGEMENT AND ENGINEERING

PROCEDURES23

complete
project

abandon
project

Acquire Project Do Detail Design Fabricate

Check Quality
Assurance

Prepare Molds Check Quality
No.2

Move to Yard

Schedule Engr.
Staff

Material Cost
Database

Labor Cost
Database

Plant Scheduling

Prepare Project
Schedule

Billing for Project

Deliver to Site Erect Structure

Yard Layout
Planning

Prepare Reinf. &
Hardware

Prepare/track bill
of Material Prepare Batch

Instructions

Figure 7.1 Generic top-level process model

From June 2001 to November 2001, GTPPM was deployed by fourteen PCSC

members in analyzing the sales, design, engineering, and production processes of the

precast concrete industry five years in the future. The goal was to understand and capture

requirements for a next-generation precast concrete CAD system. The results were

23 This section is a summary/excerpt from (Sacks, Eastman, and Lee 2004) with modification.

 152

incorporated into a Request for Proposal (RFP) to CAD vendors. Typical processes began

with a standard contract bid followed by the full range of precast concrete activities: cost

estimating, bidding, contract award, assembly layout design, structural analysis, detailed

piece design, production, handling, shipping, erection, scheduling and project control. The

modelers’ view was that of precast designers and producers, which defines the scope of the

models. Client activities such as conceptual programming, overall project costing, and life

cycle issues such as design for demolition and recycling, do not appear in any of them.

The collected models were categorized into three types: design build models,

subcontract models, and design only models. Three models described a design-build

process, and so covered the conceptual design phase in greater detail than the more

traditional bidding process models. Two models were prepared by precast design

consultants and so cover the design phase alone. Each model underwent a number of

cycles of review by the research team and improvement by their authors before being

approved for inclusion in the analysis and further development work. One model was

rejected due to lack of detail, leaving thirteen models to work with.

All of the models use the generic top-level model as their starting point. Although

modelers added additional intermediate layers of aggregate activities, every detailed

activity can be traced to one common top-level activity. Using this as a starting point for

analysis across companies, a list of middle-level activity groups was compiled for each

top-level activity.

The degree of information dependence between activities was determined by the

ratio of the number of information flow (nF) to the number of detailed activities (nA). Table

7.1 shows the degree of information dependence between activities by three model types.

 153

The analysis results indicated that the degree of dependence between activities was

relatively unvarying by model type. But, since the number of samples was small, we were

reluctant to generalize the finding.

Table 7.1 The degree of information dependence between activities by model type

Model Type
(1)

Feature*
(2)

Average
(3)

Largest
(4)

 nA 269 323

 nF 476 572

Design Build Models

 nF / nA 1.77 1.77

 nA 154 275

 nF 232 520

Subcontract Models

 nF / nA 1.50 1.89

 nA 57 81

 nF 89 130

Design Only

 nF / nA 1.56 1.60

*: nA = number of activities; and nF = number of information flows

While analyzing the collected information constructs, inconsistency in information

flows was found. This motivated the development of a more rigorous method to validate

the consistency of information flow as described in Section 4.8.2.

7.3 PRODUCT MODELS FOR MANAGING ESTIMATION, SCHEDULING, AND

SHIPPING INFORMATION

In December 2002, GTPPM was deployed for the second time in a project to

capture the current management processes (i.e., estimation, bidding, production, and

shipping) of two precast producers, High Concrete (Denver, PA) and CTI (Springboro,

OH) after major modification. Unlike the first attempt, the models were generated by the

author based on the interviews with the manager-level personnel of each company (Figure

7.2).

 154

Figure 7.2 A round table discussion at High Concrete before one-on-one interviews

Later, the generated models were reviewed again by domain experts. The two

companies were chosen because they were two of a few companies, which had a database

management system for managing estimation, production, and shipping information. The

goals were to capture their current processes and information flow as they were, and to

compare automatically generated (preliminary) data models and their actual database

schemas.

Review Bid Prospects

Create Takeoff

Abandon project

Confirm Eng &

Production Capacity

Determine Labor

Productivity

Apply Costs to

Takeoff

Solicit Erect

Generate Estimate

Submit Quote to

Client

Lose project

2:Do Detail Design

Productivity

Measure (hrs/

unit)
Project DB

Material Cost

Database

(annually

updated)

Shipping Cost

Database

(annually

updated0

Configure Assembly

(erection drawings)

Building Codes

Consider special

requirements

Overhead Cost

Win?

Bid Engineering

32:Prepare Project

Schedule

33:Prepare Project

Schedule

Yes

No

ENGINEERING/DRAFTING REQUIREMENTS

FINANCIAL INFORMATION

MATERIALS REQUIREMENTS

SITE LOCATION

PROJECT DIRECTORY

MIX/FINISH/SAMPLE INFORMATION

FIELD RELATED SERVICES

SCHEDULE

PROJECT INFORMATION SHEET

PROJECT REVIEW CRITERIA

JOB SUMMARY SHEET

TAKEOFF LIST

STRAND SUMMARY

JOB COST REPORT

TAKEOFF LIST

STRAND SUMMARY

TAKEOFF LIST

STRAND SUMMARY

ESTIMATE DETAIL

SPECIAL PRODUCTION REQUIREMENTS

Sales Interview With

Customer

Figure 7.3 Acquire Project

 155

First, process models were generated with domain experts at each department.

Figure 7.3 illustrates a process of “Acquire Project” with information sets required by a

project acquisition process. During this process, takeoff (i.e., the quantity of products and

subcomponents), rough estimation and production schedule, and bidding information were

generated.

Then, information sets were defined based on standard company reports required

by the end of certain activities (e.g., job summary sheet, turnover meeting check list, piece

tag, and packet slip). The information sets were defined with vernacular information items

(VIIs). Examples of specified information sets and their items are as follows:

PROJECT INFORMATION SHEET {;project name;location;report

date;purchaser;address;city_state_zip;project size;job#;contract

value;taxes;status;type;sold as;detailed project requirements;Sales Rep;estimator;}

PIECE DRAWING {;piece mark;piece qty;piece volume;piece weight;hardware/reinforcing

item;hardware/reinforcing quantity;mix #;revision date;revision by;revision

no;drawn date;drawn by;dwg ckd;eng chk;dwg ckd date;eng ckd date;project

name;drawing nbr;job#;dimension;piece shape;material pattern;note;received

date;issued date;concrete strength;dwg destroy date;rebar schedule;}

PACKING SLIP {;address;city_state_zip;job#;truck number;trailer number;truck

driver;payment method;po#;piece mark;piece qty;piece description;comments;contents

packaged by;contents checked by;contents received by;delivered date;}

PIECE TAG {;bar code;piece weight;piece mark;}

BOM FOR PIECE {;project name;job#;project phase;piece mark;drawing nbr;note;report

date;bom created by;bom checked by;revision date;revision no;piece finish;piece

qty;piece description;}

SCHEDULE{;Contract Date;engieering date;review by architect;production end

date;erection start date;erection end date;}

 156

JOB COST REPORT {;project name;location;project type;job#;estimate no;product type

id;product element id;operation;product size;product u/m;product qty;operation

cost;total operation cost;}

TAKEOFF LIST {;project name;location;job#;product type id;product element

id;product name;product qty;product size;product u/m;estimator;estimate no;area

code;distance between the project site and the plant;piece mark;piece depth;piece

width;piece unit length;piece weight;load name;total loads;total # of pieces;piece

qty;}

JOB SUMMARY SHEET {;project name;location;estimate no;rev no;job#;product

name;product type id;product qty;product size;product u/m;product $/unit;product

amount;total production cost;total yard costs;total shipping cost;total erection

cost;taxes;total markup;gross margin without markup;gross margin;total bid

price;scope of work;}

Some other examples of information sets without detailed items include:

PROJECT DIRECTORY

SITE LOCATION

FINANCIAL INFORMATION

ENGINEERING/DRAFTING REQUIREMENTS

MATERIALS REQUIREMENTS

MIX/FINISH/SAMPLE INFORMATION

FIELD RELATED SERVICES

BOM FOR HARDWARE

PROJECT REVIEW CRITERIA

ESTIMATE DETAIL

ERECTION DRAWING

STRAND SUMMARY

SPECIAL PRODUCTION REQUIREMENTS

DETAILED POUR SCHEDULE

DAILY CONCRETE POUR SCHEDULE

TURNOVER MEETING CHECK LIST

 157

DAILY PRODUCTION SCHEDULE

4 WEEK SCHEDULE

PRODUCTION SCHEDULE

FORM DRAWING SCHEDULE

PRE-TENSION REPORT

The specified VIIs were mapped to ICs using the Information Item Mapper (Figure

7.4). VIIs and ICs were generally mapped one to one. However, several VIIs and ICs were

mapped many to many. Some VIIs, which were synonyms, were mapped to an IC. Some

VIIs, which were defined as one information item, but actually included several pieces of

information, were mapped to several ICs. An example of the latter is galvanized embed order

status. In order to keep track of the order status of a product or a part in terms of a data

management, we need to specifically know which item has been ordered, what is the

purchase order identifier, and so on. However, when such information is maintained in a

paper format, it is recorded informally and freely as one long note. Based on the data

recorded in galvanized embed order status, the galvanized embed order status was mapped to

several ICs as follows:

PIECE+MATERIAL*HARDWARE{;type;};

PIECE+MATERIAL*HARDWARE{;id;};

PIECE+MATERIAL*HARDWARE+PURCHASE_ORDER{;status;};

PIECE+MATERIAL*HARDWARE+PURCHASE_ORDER{;id;}

Some VIIs had a different meaning than what they seemed to mean. A VII rebar

schedule is a good example. rebar schedule is not a type of regular time-based schedule, but

is a common term in AEC that denotes a 2D abstract representation of bent rebar. In the

mapping process, some of ambiguous VIIs such as rebar schedule were mapped to ICs

 158

based on the definitions, data types, examples, references, and synonyms of the VIIs (the

right side of Figure 7.4).

The specified VIIs in information sets were automatically converted to ICs

according to the mapped relations between VIIs and ICs. Input and output information of

activities were specified using information sets as a target of information production. The

consistency of information flow was checked. As a result of these two modeling processes,

135 and 231 distinctive information constructs were collected respectively from the High

and the CTI models.

Figure 7.4 Mapping ambiguous terms based on the descriptions

In the beginning, there were some concerns about the possibility of the GTPPM

modeling process being too tedious and time-consuming because it requires very detailed

process and information flow modeling. It was important to measure the modeling hours

 159

because GTPPM would not be an appropriate substitute for the current modeling method

and process if it takes relatively too much time.

Table 7.2 The statistics of the High model

 Modeling Hours Statistics

Process modeling 3 days (24 hours)
11/25-27, 2002

Internal Detail: 98
External Detail: 13
Internal Highlevel: 9
External Highlevel: 13
Information Flow: 210
Feedback Flow: 14
Material Flow: 70
Dynamic Repository: 10
Static Information Source: 6
Continue: 84

VIIs modeling 12.5 hours Information Sets: 24
VDDs: 192 (non-distinctive)

Mapping VIIs to ICs, Revision of an IM 7.5 hours ICs: 135 (distinctive)

Total 44 hours

Table 7.3 The statistics of the CTI model

 Modeling Hours Statistics

Process modeling 3 days (24 hours)
12/18-20, 2002

Internal Detail: 96
External Detail: 29
Internal Highlevel: 7
External Highlevel: 29
Information Flow: 179
Feedback Flow: 9
Material Flow: 64
Dynamic Repository: 14
Static Information Source: 10
Continue: 42

VIIs modeling 3 hours Information Sets: 6
VDDs: 186 (non-distinctive)

Mapping VIIs to ICs 2 hours ICs: 231 (distinctive)

Total 29 hours

The modeling hours for the High and CTI models were recorded. Table 7.2 and

Table 7.3 show statistical data of the High and the CTI models. The whole RCM modeling

process took about 37 hours in average. 97 internal detail activities, 195 information flows,

and 15 information sets were defined in average. There was no significant difference

 160

between two models in terms of the number of process components or the number of

information constructs. 37-hour work is about 5-day (a week) work. It seemed pretty

reasonable if one could develop a product model within a week or even a month

considering some preparation and revision time before and after GTPPM modeling.

The automatically collected High’s and CTI’s information constructs were

normalized into two separate preliminary product models in EXPRESS. In order to

compare the results with the data structures of High’s current database management system,

the information constructs collected from High’s model were also normalized into a SQL

schema. In this process, a new SQL generation module was developed and used to show

referential relationships between TABLEs because the EXPRESS2SQL module does not

generate referential relations between TABLEs.

Figure 7.5 A SQL table structure of the High model with referential relations

Figure 7.5 graphically shows a SQL table structure of the High model with

referential relations. This diagram was sent to the information system (IS) manager of

 161

High with SQL code for review. The author visited High for the second time to interview

High’s IS manager.

Currently High’s ERP system is a federated database management system, which is

composed of several commercial and custom-built database management systems. High

was using an MS Access®-based estimation system, two Oracle®-based production

scheduling, shipping, inventory, purchase management systems, a legacy

accounting/costing system, an engineering/drawing management system, and a human

resource/payroll system. However, only limited sets of information can be exchanged

between different database management systems today. Currently High is developing a

central database that can integrate the dispersed databases and also that can acquire

geometric information and bills of materials (BOMs) directly from an advanced 3D CAD

system.

A one-to-one comparison between the automatically generated data model and

High’s data schemas was not possible for several reasons. First, the automatically

generated model was designed as one large schema, but High’s system was a federated

databases. Second, the automatically generated data model was based on an object-oriented

modeling approach (i.e., EXPRESS) whereas High’s systems were relational databases

using SQL. Conceptually SQL TABLEs are correspondent to Entities in EXPRESS.

However, because of lack of the inheritance mechanism in relational database and several

practical implementational reasons, data modelers in field (i.e., IT managers) tend to put as

many number of attributes in one TABLE as possible rather than to break down an entity

into an atomic level (i.e., a semantically indecomposable level). It is to achieve the

efficiency in table management and also to reduce the complexity of the JOIN operation in

 162

query. Third, the terms used to define TABLEs and attributes in High’s systems were

different from those used to define entities and attributes in the automatically generated

schema. Thus, it was very difficult to automatically or quantitatively compare the two

schemas. The evaluation had to rely on qualitative and subjective evaluation of the author

and the IS manager at High.

The automatically generated SQL model included thirty-nine TABLEs. Each

TABLE and its attributes were reviewed. After reviewing the TABLEs, High’s IS manager

and the author categorized TABLEs into three groups:

1) Over-defined: TABLEs that include more information than High’s current data

models

2) Adequate: TABLEs that define information about the same level as the current

High’s data models

3) Under-defined: TABLEs that lack necessary information

In overall, the automatically generated product model included more information

than what was maintained by the current database management systems. Currently only

little geometry, shipping, loading, constraints, and engineering information is managed by

database management systems. Also (concrete) mold information is not maintained

because mold design varies project by project and they thought that it was unnecessary to

keep track of mold information. The automatically generated model included quite a few

“over-defined” information items because the initial process model was developed based

on an assumption that High would adopt a new advanced 3D modeling system, which

would be equipped with many automated engineering and constraint checking functions.

 163

Table 7.4 Evaluation of the High Model

Over-defined Adequate Under-defined

ASSEMBLY
BIDDING
BOM
BUILDING_CODE
CONSTRAINTS
DIMENSTIONS
ENGINEERING
EQUIPMENT
ERECTION
GEOMETRY (2D, 3D)
MOLD
QC_CHECK
SHIPPING
SURFACE_TREATMENT
TRUCK_LOADS

DESIGN REQUIREMENTS
DOCUMENTAION
DRAWING
ERECTION_DRAWING
ESTIMATION
HARDWARE
HARDWARE_LIST
LABOR
MATERIAL
PIECE
PIECE_DRAWING
PIECE_LIST
PRODUCTION_AND_HANDLING
POUR
PRESTRESSING
PROJECT
REINFORCEMENT
SCHEDULE
SITE

BATCH (mix recipe)
CONCRETE (mix recipe)

On the other hand, the automatically generated model lacked the batch and concrete

information, especially the concrete mix design (a.k.a. “mix recipe”) information. In the

actual ERP system, the concrete mix design information was managed through a couple of

large TABLEs while the automatically generated model defined concrete mix information

simply as mix_specification.

ENTITY concrete

SUBTYPE OF (

material

);

mix_specification: string;

strength: string;

END_ENTITY;

It is because the mix design information is inputted directly from the field (i.e., a

batch plant) and the domain expert and the author, who modeled the process and

 164

information flow, had not had a chance to interview anybody related to the concrete mix

design. As a result, the concrete mix design information was only captured as a simplistic

form. This reconfirmed the fact that GTPPM can derive a product model only from the

specified scope and information requirements.

High’s IS manager evaluated that the automatically generated product model

generally reflected High’s information requirements well. According to the comparison

results, the RCM models and the LPM process have been modified. Currently GTPPM can

selectively collect information items that are actually stored and managed by a database

management system by using the Dynamic Repository shape.

7.4 PRODUCT MODELS FOR DESIGNING/DRAFTING

GTPPM was deployed for the third time to capture a precast concrete

“designing/drafting” process. Engineering and designing/drafting processes are not easy to

capture because of the domain expertise included in them and also because of the

complexity of the processes. Even for domain experts with more than 10 years of

experience, it is still not easy to describe engineering and modeling processes in a

systematic way unless they sit down and spend some time on thinking about them.

Fortunately, Unistress, a precast producer in Pittsfield, MA, provided detailed guidelines

for designing precast concrete pieces. Based on the guidelines, the designing/drafting

processes for double tees (Figure 7.6) and exterior columns were modeled.

Unlike the previous modeling processes, information items of each activity were

directly defined without using information sets. They were first defined as vernacular

information items (VIIs) and then mapped to information constructs (ICs) later.

 165

Figure 7.6 A stack of double tees

The major difference between a business management process and a

designing/drafting process in terms of information flow is that information flow in the

designing/drafting process is accumulative: i.e., a model of a precast concrete structure

behaves as a data repository. As soon as a designer adds one shape or texts to a precast

concrete model or to a drawing, they represent certain information. But such design

information does not only affect only the next activities, but also many other activities that

appear later in the process. Thus, a model of a precast concrete piece in this case study was

represented as a dynamic repository as shown in Figure 7.7.

Figure 7.7 A part of a double tee modeling process

 166

Even though “Drawings from Clients” cannot be changed by precast concrete

designers, they are also represented as a dynamic repository in Figure 7.7 because they can

updated by clients many times during a project. Figure 7.8 illustrates a process of

receiving drawings from clients.

Figure 7.8 Drawings from clients

Table 7.5 The difference in the PIECE definitions

The High model The Unistress model

ENTITY piece;

estimation: estimation;

piece_drawing: piece_drawing;

material: material;

mold: mold;

reinforcement: reinforcement;

geometry: geometry;

piece_mark: string;

product_unit_measurement: string;

product_size: string;

product_amount: string;

product_name: string;

product_code: string;

label: string;

surface_treatment:

hardware_list: hardware_list;

production_and_handling:

shipping: shipping;

END_ENTITY;

ENTITY piece

SUPERTYPE OF (ONEOF(

spandrel,

pc_column,

floor_piece)

);

piece_mark: string;

reinforcement: reinforcement;

blockout: blockout;

hardware_list: hardware_list;

connection: connection;

location_details: location_details;

production_and_handling:

drawing: drawing;

END_ENTITY;

Another difference between the previous High and CTI models and the Unistress

model is that the Unistress model includes specific types of products. For example, Table

7.5 shows the definitions of the piece entity, a main product of the precast concrete

 167

industry, in the High and the Unistress models. Since the High model focuses on the

management process, types of pieces are defined by generic information such as product

name or piece_mark whereas, in the Unistress designing/drafting model, types of pieces are

defined specifically as spandrel, pc_column, or as floor_piece. It is because, in order to design

a piece, designers need to know specifically which type of piece is connected to which type

of piece. By the same reason, even though we only focused on the processes of

designing/drafting double tees, the definitions of adjacent pieces and connections, whose

information is required to design a double tee, were also captured in the derived product

model. (See Figure 7.11 in the next section for an EXPRESS-G diagram of the expanded

piece and connection definitions.)

Table 7.6 The statistics of the Unistress model

 Modeling Hours Statistics

Process and VIIs modeling
for a double tee modeling
process

6 hours Internal Detail: 55
External Detail: 7
Internal Highlevel: 4
External Highlevel: 7
Information Flow: 160
Feedback Flow: 3
Material Flow: 0
Dynamic Repository: 21
Static Information Source: 2
Continue: 18

Process and VIIs modeling
for a column modeling
process

2 hours Information Set: 0

Mapping VIIs to ICs 2 hours IC: 85 (distinctive)

Total 10 hours

The Unistress model was about half size of previous models in terms of both the

number of process components and the number of distinctive information items because it

only dealt with a small portion of the design and engineering process. It took 10 hours to

 168

model the Unistress model. The Unistress model included 73 activities, 163 flows, and 85

information constructs. The automatically generated product model included 58 entities.

7.5 THE INTEGRATION AND EVALUATION OF AUTOMATICALLY GENERATED

PRODUCT MODELS

Information constructs collected from three models were integrated as one model

through the LPM process. The integrated model included 129 entities and modeling of the

three companies’ processes took 73 hours in total. For readers’ reference, CIS/2 LPM 6 has

731 entities and PCC-IFC Version 0.9 has 413 entities. The automatically generated

integrated models are provided in Appendix G.

The syntax of automatically generated integrated product models has been

validated using the syntax checkers embedded in a commercial tool EXPRESS Data

Management (EDM®) Supervisor Version 4.5 (Figure 7.9) and a shareware Expresso

Version 3.1.4. The automatically generated schemas could be successfully implemented as

physical data models both on MS SQL Server 2000® and EDM® as they were without

further refinement and modification.

In the integrated model, we could observe several problems. Figure 7.10 is a

hierarchy (called, an entity graph in Expresso) of MATERIAL generated by the Expresso Entity

Grapher. The entity graph shows a specialization hierarchy of entities. Even though we

were extremely careful to avoid the ‘nym’ issues, we can observe from Figure 7.10 that

reinforcement in the model was used in two meaning: reinforcement as an activity and also

as a material (object). It is because the information menu was initially defined violating the

‘nym’ principle. This problem was fixed later.

 169

Figure 7.9 EXPRESS code validation by EDM®

Figure 7.10 A hierarchy of MATERIAL generated by the Expresso Entity Grapher

On the other hand, the level of detail of the automatically derived model is

generally satisfactory. The model defined information at the level of detail that is required

for the targeted purposes: i.e., managing and designing pieces. Figure 7.11 illustrates an

 170

EXPRESS-G model of the integrated piece and connection definitions from the High, CTI,

and Unistress models. dt in the model represents the double tee entity. The direct

association relations between dt and two connection types dap and chord in Figure 7.11 can

be refined by the WHERE clauses in the manual modification process.

dt

floor_piece

piece

1

spandrel

xx_type

STRING

pc_column

exterior_pc_column

clearance

STRING

pocket

pocket

connection

1

cip_haunch

tieback
id

STRING

corbel

chord

dap

requirement
STRING

spacing
STRING

xx_type
STRING

id

STRINGcorbel

piece_mark
STRING

product_unit_measurement
STRING

product_size
STRING

product_amount
STRING

product_name
STRING

product_code
STRING

label
STRING

mobilization
STRING

connection

chord

dap
stem_spacing

STRING

Figure 7.11 Automatically generated PIECE and CONNECTION definitions

Figure 7.12 shows several other examples of entity hierarchies in the integrated

model.

 171

Figure 7.12 Several entity graphs of entities in the integrated model

A good benchmark of the integrated model might be the PCC-IFC model, a precast

concrete extension to an existing IFC model. As described earlier, IFC models are built

based on a conceptually modeling approach. As a result, they have a weak connection with

real use cases and are defined at a relatively high level. For example, Figure 7.13 shows an

entity graph of IFC Building Elements. The IFC entities that are corresponding to spandrels,

columns, and double tees in the integrated model (Figure 7.11) are ifcbeam, ifccolumn, and

ifcslab in (Figure 7.13).

Figure 7.13 An entity graph of IFC Building Elements

 172

Figure 7.14 is a partial EXPRESS-G model of these three IFC building elements.

As shown in Figure 7.14 and the following EXPRESS code, the PCC-IFC model only

defines the object names and do not have any attribute. It assumes that all the attributes

will be inherited from supertypes.

ifcslabtypeenum

(ABS)
ifcbuildingelement

1

ifcbeam ifccolumn*ifcslab

predefinedtype

Figure 7.14 A partial EXPRES-G model of IFC Building Elements

ENTITY IfcBuildingElement

 ABSTRACT SUPERTYPE OF (ONEOF(

 IfcBuildingElementProxy

 ,IfcBeam

 ,IfcColumn

 ,IfcCovering

 ,IfcCurtainWall

 ,IfcDoor

 ,IfcRailing

 ,IfcRamp

 ,IfcRampFlight

 ,IfcRoof

 ,IfcSlab

 ,IfcStair

 ,IfcStairFlight

 ,IfcWall

 173

 ,IfcWindow

-- Additional subtypes defined by ST-3

 ,IfcBuildingElementAssembly

 ,IfcFooting

 ,IfcPile

))

 SUBTYPE OF(IfcElement);

 INVERSE

 ProvidesBoundaries : SET OF IfcRelSpaceBoundary FOR RelatedBuildingElement;

 HasOpenings : SET OF IfcRelVoidsElement FOR RelatingBuildingElement;

 FillsVoids : SET [0:1] OF IfcRelFillsElement FOR

RelatedBuildingElement;

 END_ENTITY;

ENTITY IfcColumn

 SUBTYPE OF(IfcBuildingElement);

END_ENTITY;

ENTITY IfcBeam

 SUBTYPE OF(IfcBuildingElement);

END_ENTITY;

ENTITY IfcSlab

 SUBTYPE OF(IfcBuildingElement);

 PredefinedType : IfcSlabTypeEnum;

 WHERE

 WR2 : (PredefinedType <> IfcSlabTypeEnum.USERDEFINED) OR

 ((PredefinedType = IfcSlabTypeEnum.USERDEFINED) AND

EXISTS(SELF\IfcObject.ObjectType));

END_ENTITY;

TYPE IfcSlabTypeEnum = ENUMERATION OF

 (FLOOR,

 ROOF,

 LANDING,

 USERDEFINED,

 174

 NOTDEFINED);

END_TYPE;

Since the IFC model is still growing, it will not be valid to argue the goodness or

the badness of the model based on its level of details. And the intention of the comparison

is not to judge the goodness of the model. This comparison shows the level of details that

GTPPM can capture and the possibility of GTPPM to capture a more practical and realistic

set of data, which is sensitive to its use cases.

 175

CHAPTER 8

Conclusion

Product modeling is not art that depends only on intuition and subjectivity, but

science that depends on logical thinking and explicit procedures with clear objectives that

can be tested and improved upon. However, existing requirements collection methods of

product modeling rely solely on human review and suffer from a logical gap between their

Application Activity Model (AAM) and Application Requirement Model (ARM). The

existing methods have more significant problems when applied to large and heterogeneous

business environments. Any review process will get slower and collected information will

get more difficult to check because the number of information items will grow large. There

have been several research and development efforts to overcome these drawbacks, but

none provides any formal method and procedure to elicit and validate information items of

a domain and to (semi-)automatically derive a product model from collected information

requirements.

The author proposed a formal Requirements Collection and Modeling method

(RCM) and Logical Product Modeling (LPM). RCM enables modeling and domain experts

to capture the contents, scope, granularity, and semantics of information used in the

activities of a process. LPM provides the logic of integrating and normalizing information

constructs collected from RCM models into a preliminary product model.

 176

Figure 8.1. RCM Notation

The characteristics of RCM are that it 1) is information-specific so that it can

capture the information items used in the activities making up the process; 2) guarantees

the completeness of the product model data in relation to the process models defining the

UoD; 3) provides rigorous syntax and checking methods that can help modelers maintain

consistency (i.e., logical coherence) in their models; 4) allows modelers to express

heterogeneous business environments how each company deploys and uses information in

its business process. (The goal of the requirements collection method is to collect and

integrate information items within an industry-wide product model. However, this does not

necessarily require the definition of a unified process model); and 5) supports a step-by-

step modeling procedure that can guide domain and modeling experts to elicit

requirements and information and to transform them into a process and information-flow

model in a step-by-step manner. More generally, by making the process explicit, the

results from each step can be analyzed and criteria for success of each of the steps

developed, allowing a science of process-to-product modeling to be developed.

By allowing modelers to specify information in a process (in the context of its use)

step-by-step and providing a logical and dynamic consistency checking method, RCM

helps modelers to capture complete and realistic information.

 177

LPM defines nine design patterns to automatically integrate and normalize

information constructs. It decomposes, generalizes, and restructures a set of information

constructs into a preliminary product data model. We expect that the number of these

design patterns will grow in the future similar to the normal forms in database.

However, the GTPPM method is by no means complete. An automatically

generated product model will not include roles, data type, cardinality, and the WHERE,

DERIVE, and RULE clauses. Those should be added and modified manually. In the future,

the logic of further automating those processes can be provided. For example, it might be

possible to define the DERIVE relations between attributes using the functional

dependencies between input and output information defined in an RCM model.

GTPPM has been experimented with the precast concrete producers in the North

America. Through the application and evaluation of GTPPM, several drawbacks as well as

advantages are identified. GTPPM has been modified based on the findings. However,

some of those were left as the topics of future work.

By using GTPPM, a complete set of information items required for product

modeling for a medium or a large industry can be collected without generalizing each

company’s unique process into one unified high-level model. However, the use of GTPPM

is not limited to product modeling. It can be deployed in several other areas including:

• workflow management system (Jablonski and Bussler 1996; P. Lawrence (Ed.)

1997; WFMC 1999) or MIS (Management Information System) development:

Information required for processing an activity, passed to succeeding activities,

and returned back to previous activities for feedback can be defined. (See

Appendix H for details on workflow management systems.)

 178

• software specification development: A detailed definition of engineering

functions and processes can be developed, which will allow further

development of software in the engineering and design areas.

• business process re-engineering: A process model with specific information

items can be used for reengineering of an organization like other process

models.

Also any form of a data model defined in EXPRESS can be read into GTPPM as an

information menu. Using this function, GTPPM can be used to update or validate an

existing product model by reading in an existing product model as an information menu. It

can be also used to develop conformance classes (i.e., valid subset models) of an existing

model.

GT PPM has been implemented as a Microsoft Visio® Add-on. The tool has been

applied to fourteen companies of the North American Precast Concrete Software

Consortium (PCSC) and is being applied to three IT-related research projects at Purdue,

Carnegie Mellon, and Teeside University (UK). Experience to date indicates that GT PPM

holds the potential to improve and expedite product model development.

The author believes that a newly proposed process to product modeling method and

its supporting procedures provide the logic and a promising means to (semi-)automatically

derive a product model from collected process information.

 179

APPENDIX A

EARLY STANDARD PRODUCT MODELING EFFORTS

This appendix summarizes early standard product modeling efforts (Goldstein,

Kemmerer, and Parks 1998) (Bloor and Owen 1995):

Table 8.1 Chronology of development in product data
STEP STEP� DPI Initial

parts
 11.31

approved
Initial

release

US PDDI PDES
Initiation

 PDES
Inc�

IGES IGES
1.0

 IGES
2.0

 IGES 3.0 IGES
4.0

 IGES
5.0

IGES
5.1

 IGES 5.2

Subsets MIL-
D-

28000

 MIL-D-
28000A

 VDA-
IS 1.0

 VDA-IS
2.0

 Germany

 VDA-FS
1.0

 DIN VDA-
FS 2.0

France SET 1.1 afnor afnor

 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Europe ESPRIT� ESPRIT
II �

 ESPRIT
III�

Testing Autofact
�

 CTS� NAVFAC CTS-
2�

NEDO NEDO1 NEDO2

Graphics GKS CGM GKS-
3D

PHIGS CGI PHIGS-
PLUS
CGRM

EDIF EDIF
100

 EDIF
200

 EDIF 300

Modeling IDEF0-
2

NIAM IDEF1x IDEF3-
4

(Source: (Bloor and Owen 1995))

• the ANSI/X3/SPARC methodology: The X3/SPARC Committee of the American

National Standards Institute (ANSI) developed the three-layer (conceptual, internal,

external layers) architecture of information modeling.

• ANSI Y14.26 (Digital Representation for Communication of Product Definition

Data, 1970-1981): is an ANSI committee for standardization of a product model.

• CAM-I (1973-1984): the Computer-Aided Manufacturing – International Inc.

(CAM-I) organization significantly contributed to the formal description of

Boundary Representation (BRep).

 180

• IGES (1979-1981): IGES (Initial Graphics Exchange Specification) provided the

first practical solution for CAD data exchange with an exchange file format.

• the ICAM Program: The Integrated Computer Aided Manufacturing (ICAM)

program, funded by the U.S. Air Force, developed the IDEF method for process

and information modeling.

• AECMA Report of geometry data exchange study group: The European

Association of Aerospace Industries (AECMA) developed a standard data format

for exchanging surface geometry.

• the VDA in 1982: Flachenschnittstelle Des Verbandes Der Deutschen

Automobilindustrie (VDA-FS and VDA-IS) is German efforts to develop a

standard data model for exchanging drawing information, two- and three-

dimensional geometry, analytic and free form surfaces/curves required for the

automotive industry.

• the SET project in 1983: Pure geometric data models such as IGES has been

criticized for not being able to describe the full lifecycle of a product. The French

Standard d’Echange et de Transfert (SET) project has been continued by

Association GOSET, which became contributors to ISO 10303 and STEP

conformance testing services.

• the Product Definition Data Interface (PDDI, 1982-1987): The PDDI was a

research projected funded by the ICAM program to develop a method to exchange

and share geometric data among computer applications without human intervention

based on an thorough evaluation of IGES (ANSI: Product Definition Data Interface

1983).

 181

• NBS: National Bureau of Standards (NBS, currently NIST), sponsored by the U.S.

Department of Defense Computer-Aided Acquisition and Lifecycle Support

(CALS) program, led the development of IGES subsets. STEP’s concept of

application protocols (APs) and Conformance Classes grew from this and other

early work.

• ISO TC 184/SC4 Meeting (1984): International Organization for Standardization

(ISO) STEP (STandard for Exchanging Product (data) model) began in 1984.

• CTS (since 1985): The Conformance Test Suite (CTS) project is a project to

develop conformance-testing methods and to establish testing services ((Bloor and

Owen 1995) p.141).

• the Product Data Exchange Specification (PDES, 1984-1985): In 1984, the PDES

has been proposed as the next generation of IGES and as a response to the PDDI

and other European standardization efforts to support the full lifecycle of products

and more complex products and software environment.

• MIL-D specifications (1987): the subsets developed by the US Department of

Defense (DoD)

• ESPRIT: the EU information technologies program

(http://www.cordis.lu/esprit/home.html)

• US Harmonization of Product Data Standards Organization (1989): NIST was the

leader of the Harmonization of Product Data Standards (HPS) organization under

the Industrial Automation Planning Panel (IAPP) of ANSI. The intent of HPS was

to derive a harmonized Application Reference Model (ARM) from several U.S.

standards (e.g., IPC, IGES/PDES, IEEE, EIA) and to integrate them with STEP.

 182

APPENDIX B

THE FORMAL DEFINITION OF THE SEMANTIC UNION

A semantic union is different from a simple aggregation of data sets or a general

union. It can be formally defined as:

BA *∪)]*()[()(BABABA ∩−∩−+= +

*∪ : semantic union

+∩ : a set (or aggregation) of semantically equivalent entities

*∩ : semantic intersection

where A and B are respectively a set of data required by an application or a work

process.

If we use the same example from Section 3.1,

A ≡ {project_name, load, driver}

B ≡ {strucutre_name, load, frame}

BA + ≡{project_name, structure_name, load, load, driver, frame}

BA ∩ ≡{load}

BA ∪ ≡{project_name, load, driver, structure_name, frame}

Let project_name in Set A be a synonym of structure_name in Set B

load (truck load) in Set A is a homonym of load (structural load) in Set B

In such a case, the results of the semantic set operations of these two sets will be:

 183

BA + ≡{project_name, structure_name, load, load, driver, frame}

BA +∩ ≡{project_name, structure_name}

BA *∩ ≡{ Fsi(project_name, structure_name)}

where Fsi(x, y): returns an semantic intersection of elements x and y

Let fsi(project_name, structure_name) = project_name

BA *∩ ≡{ project_name}

)*()(BABA ∩−∩+ ≡{structure_name}

∴ BA *∪ ≡{project_name, load, load, driver, frame}

The definition of the semantic union can be simplified by introducing complement

intersection c∩ . The complement intersection c∩ can be defined as the subtraction of

semantic intersection from a set of semantically equivalent entities similar to the

complement set24:

BA c∩ =)*()(BABA ∩−∩+ or }*,|{ BAxBAxxBA c ∩∉∩∈≡∩ +

 Using the complement intersection, the semantic union can be redefined as a

subtraction of a complement intersection of semantic intersection of different native data

models from an aggregation of the data sets, similar to the definition of a general union25.

BA *∪)()(BABA c∩−+=

24 Complement Set of C, },,|{ SCCxSxxC c ⊆∉∈≡

25 Union Set)()(BABABA ∩−+=∪

 184

Since it is not possible that a software application can automatically recognize

homonyms or synonyms without any additional information, it is obvious that two

instances of ‘load’ in the above example should be replaced by distinguishable terms in a

practical model. For example,

D ≡{project_name, truck_load, structural_load, driver, frame}

 185

APPENDIX C

RESOURCES FOR PROCESS MODELING METHODS

A.1 OVERVIEW

This appendix summarizes resources for major process modeling techniques today.

A.2 A BRIEF HISTORY OF PROCESS MODELING

Even though some literatures claims that process management has existed since

prehistoric times, it is a general view to regard Frederick Taylor (1919) as a father of the

modern process management (Eastman and Shirley 1994; Osborne and Nakamura 2000).

The historic evolution of process modeling methods -from early Gantt charts (1955) and

PERT/CPM to modern structured analysis by Tome DeMacro (the 1980s) - are well

reviewed by Osborne (Osborne and Nakamura 2000, Ch 2). In the early 1990s, data-

centered, scenario-based, structural methods were synthesized into one modeling language,

which became the current United Modeling Language (UML).

A.3 RESOURCES FOR MODELING METHODS AND EXCERPTS FROM THEM

This section lists electronic resources for major process modeling methods and

provides a short excerpt on the modeling method from the webpage. Excerpts are in italic.

• IDEFØ:

http://www.IDEF.com

IDEFØ is a method designed to model the decisions, actions, and activities of an

organization or system. IDEFØ was derived from a well-established graphical language,

the Structured Analysis and Design Technique (SADT). The United States Air Force

commissioned the developers of SADT to develop a function modeling method for

 186

analyzing and communicating the functional perspective of a system. Effective IDEFØ

models help to organize the analysis of a system and to promote good communication

between the analyst and the customer. IDEFØ is useful in establishing the scope of an

analysis, especially for a functional analysis. As a communication tool, IDEFØ enhances

domain expert involvement and consensus decision-making through simplified graphical

devices. As an analysis tool, IDEFØ assists the modeler in identifying what functions are

performed, what is needed to perform those functions, what the current system does right,

and what the current system does wrong. Thus, IDEFØ models are often created as one of

the first tasks of a system development effort.

In December 1993, the Computer Systems Laboratory of the National Institute of

Standards and Technology (NIST) released IDEFØ as a standard for Function Modeling

in FIPS Publication 183.

• Petri Net

o Tutorial: http://worldserver.oleane.com/adv/elstech/petrinet.htm

o Petri Net World: http://www.daimi.au.dk/PetriNets/

o Tools: http://www.daimi.au.dk/PetriNets/tools/quick.html

o CPN: http://www.daimi.au.dk/CPnets/

o Dr. Carl Adam Petri:

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

(Excerpt from http://worldserver.oleane.com/adv/elstech/petrinet.htm)

Petri nets were introduced by C.A.Petri in the early 1960s as a mathematical tool

for modeling distributed systems and, in particular, notions of concurrency, non-

determinism, communication and synchronization. Their further development was

 187

facilitated by the fact that Petri Nets easy model process synchronization, asynchronous

events, concurrent operations, and conflicts or resource sharing. Petri Nets have been

successfully used for concurrent and parallel systems modeling and analysis,

communication protocols, performance evaluation and fault-tolerant systems.

• DFD

(a.k.a Yourdon)
o http://spot.colorado.edu/~kozar/DFD.html

o http://www.doc.mmu.ac.uk/online/SAD/T04/dfds.htm

o http://www.aisintl.com/case/drd.html

(Excerpts from http://spot.colorado.edu/~kozar/DFD.html)

Data flow diagrams are a network representation of a system. They are the

cornerstone for structured systems analysis and design. The diagrams use four symbols to

represent any system at any level of detail. The four entities that must be represented are:

o data flows - movement of data in the system

o data stores - data repositories for data that is not moving

o processes - transforms of incoming data flow(s) to outgoing data flow(s)

o external entities - sources or destinations outside the specified system boundary

Data flow diagrams do not show decisions or timing of events. Their function is to

illustrate data sources, destinations, flows, stores, and transformations. The capabilities of

data flow diagramming align directly with general definitions of systems. Data flow

diagrams are an implementation of a method for representing systems concepts including

boundaries, input/outputs, processes/subprocesses, etc.

 188

The data flow diagram is analogous to a road map. It is a network model of all

possibilities with different detail shown on different hierarchical levels. The process of

representing different detail levels is called "leveling" or "partitioning" by some data flow

diagram advocates.

• SSADM (Structured Systems Analysis and Design Methodology) Diagrams

 http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html
SSADM (in common with other structured methodologies) adopts a prescriptive

approach to information systems development in that it specifies in advance the modules,

stages and tasks which have to be carried out, the deliverables to be produced and

furthermore the techniques used to produce the deliverables. SSADM adopts the Waterfall

model of systems development, where each phase has to be completed and signed off

before subsequent phases can begin.

• STRADIS: (Structured Analysis, Design and Implementation of Information Systems)

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html

A methodology developed by Gane and Sarson (1979). The methodology is based

on the philosophy of top down functional decomposition and relies on the use of Data Flow

Diagrams.

• YSM: (Yourdon Systems Method,Yourdon, 1993)

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html

YSM is similar to STRADIS in its use of functional decomposition, however a

middle-out approach is dopted and slightly more emphasis is placed on the importance of

data structures.

 189

• MERISE: (Quang and Chartier-Kastler, 1991)

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html

The methodology is widely used in ISE in France, Spain and Switzerland. MERISE

consists of three ‘cycles’, the decision cycle, the life cycle and the abstraction cycle. The

abstraction cycle is the key, in this cycle both data and processes are viewed firstly at the

conceptual level, then the logical or organizational level and finally at the physical or

operational level.

• EUROMETHOD: (CCTA, 1994)

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html

Euromethod could be described as a framework for the integration of existing

european methodologies rather than as a methodology in its own right.

• The UML (Unified Modeling Language)

http://www.rational.com (or http://www-306.ibm.com/software/rational/)
http://www.omg.org/UML
http://uml.shl.com

 (Excerpt from http://www.omg.org/UML)

The OMG's Unified Modeling Language™ (UML®) helps you specify, visualize,

and document models of software systems, including their structure and design, in a way

that meets all of these requirements. (You can use UML for business modeling and

modeling of other non-software systems too.) Using any one of the large number of UML-

based tools on the market, you can analyze your future application's requirements and

design a solution that meets them, representing the results using UML's twelve standard

diagram types.

A.4 RELATIONS BETWEEN PROCESS MODELING METHODS

 190

• SADT (Structural Analysis and Design Techniques)

IDEFØ was derived from SADT.

• SSADM (Structured Systems Analysis and Design Methodology)

SSADM and SADT are not the same. (http://www.csci.csusb.edu/dick/methods.html)

• UML (Unified Modeling Languaage)

The UML was built on three major streams of modeling methods (Rosenberg and Scott

1999, Ch 1).

Table 8.2. Three major streams of the UML

Data-Centered Method Scenario-Based Methods Structural Methods

SADT
Shlaer/Mellor
Martin/Odell
Rumbaough’s OMT
ERDs
DFDs
State-Transition diagrams

Jascobson’s OOSE, Use-case
driven approach
ParcPlace – OBA
Alger/Goldstein – Scenario
based Method

OO Programming
Booch Method
Wirfs-Brock’s CRC Cards

The UML are composed of twelve standard diagrams (Booch, Rumbaugh, and

Jacobson 1999).

Table 8.3. Twelve standard UML Diagrams

Diagram Type Diagram Definition

Class Diagram shows a set of classes, interfaces, and collaborations
and their relationships.

Object Diagram shows a set of objects and their relationships.

Component Diagram shows the organizations and dependencies among a set
of components.

Structural
Diagrams

Deployment Diagram shows the configuration of run-time processing nodes
and the components that live on them.

 191

Table 8.3 Twelve standard UML Diagrams (continued)

Diagram Type Diagram Definition

Use Case Diagram shows a set of use cases and actors and their
relationship.

State Diagram
(Statechart Diagram)

shows a state machine, consisting of states, transitions,
events, and activities.

Activity Diagram shows the flow from activity to activity within a
system. An activity shows a set of activities, the
sequential or branching flow from activity to activity,
and objects that act and are acted upon.

Sequence Diagram is an interaction diagram that emphasizes the time
ordering of messages

Behavior
Diagrams

Collaboration Diagram is an interaction diagram that emphasizes the structural
organization of the objects that send and receive
messages. A collaboration diagram shows a set of
objects, links among those objects, and messages sent
and received by those objects.

Package A general-purpose mechanism for organizing elements
into groups

Subsystem A grouping of elements of which some constitute of a
specification of the behavior offered by the other
contained elements

Model
Management
Diagrams

Model A simplification of reality, created in order to better
understand the system being created; a semantically
closed abstraction of a system

The Unified Modeling Language (UML) literally includes most of major modeling

languages today and is still evolving. (http://www.omg.org)

• Petri Net

Colored Petri Net (CPN) is variation of the traditional Petri Net.

• Flowchart

The Flowchart method is an ANSI standard (ANSI-IEEE standard 5807-1985

(ANSI 1991; Osborne and Nakamura 2000, Ch 6)).

A.5 PROCESS MODELING TOOLS IN THE MARKET

Table 8.4 shows some of commercial process modeling tools available today and their

developers.

 192

Table 8.4. Process modeling tools

Name a.k.a Company/Developer

4Keeps 4Keeps, Inc (Former A.D. Experts)

ActiveModeler Kaisha-tec

AI0 Win60 KBSI

AllFusion (Process
Modeler)

BPWin Computer Associates (Former Plantinum)

ARIS Toolset IDS Scheer

Enterprise Modeller Business Integration Technologies

Hyperformix Workbench SES/workbench Hyperformix

iGrafx 2000 Micrografx

MooD Morphix

ProcessWise Workbench Fujitsu Teamware

SmartDraw SmartDraw.com

Arena Rockwell Software (Systems Modeling
Corporation)

BPD Lifecycle Manager Qualiware

Corporate Modeler Casewise

CRISP-DM CRISP 1.0 SPSS

iThink Cognitus

Metify ABM Armstrong Laing Group

Oracle Designer Oracle

ProcessModel http://www.processmodel.com/ ProcessModel

ProSim6.0 KBSI

SmartER KBSI

Visio Microsoft

WorkFlow Modeler Meta Software

A.6 ORGANIZATIONS RELATED TO PROCESS MODELING

Several non-profitable organizations exist to develop standards and integrate

process modeling efforts. The organizations and their self-introductions are as follows:

• Work flow Management Coalition (WfMC)

http://www.wfmc.org/

 193

The WfMC has over 300 member organizations worldwide, representing all facets of

workflow, from vendors to users, and from academics to consultants.

Subgroup: e-Workflow, http://www.e-workflow.org/

• Workflow and Reengineering International Association (WARIA)

http://www.waria.com/

The charter of the Workflow And Reengineering International Association (WARIA) is

to identify and clarify issues that are common to users of workflow, electronic

commerce and those who are in the process of reengineering their organizations. The

association facilitates opportunities for members to discuss and share their

experiences freely. Established in 1992, WARIA's mission is to make sense of what's

happening at the intersection of Business Process Management, Workflow, Knowledge

Management and Electronic Commerce and reach clarity through sharing experiences,

product evaluations, networking between users and vendors, education and training.

• The Business Process Modeling Language (BPMI)

http://www.bpmi.org/

BPMI.org (the Business Process Management Initiative) is a non-profit corporation

that empowers companies of all sizes, across all industries, to develop and operate

business processes that span multiple applications and business partners, behind the

firewall and over the Internet. The Initiative's mission is to promote and develop the

use of Business Process Management (BPM) through the establishment of standards

for process design, deployment, execution, maintenance, and optimization. BPMI.org

 194

develops open specifications, assists IT vendors for marketing their implementations,

and supports businesses for using Business Process Management technologies.

• The Association for Information and Image Management (AIIM)

http://www.aiim.org

A lot has changed since AIIM (The Association for Information and Image

Management) was founded in 1943 as the National Microfilm Association. But one

thing has remained remarkably consistent. Despite countless revolutions in

technologies, our core focus has remained the same -- helping users connect with

suppliers who can help them apply document and content technologies to improve their

internal processes. AIIM International is the industry’s leading global organization.

We believe that at the center of an effective business infrastructure in the digital age is

the ability to capture, create, customize, deliver, and manage enterprise content to

support business processes. The requisite technologies to establish this infrastructure

are an extension of AIIM's core document and content technologies. These Enterprise

Content Management (ECM) technologies are key enablers of e-Business and include:

Content/Document Management, Business Process Management, Enterprise Portals,

Knowledge Management, Image Management, Data Warehousing, and Data Mining.

Our focus over the next 3-5 years will be helping our members - both users and

suppliers – make this e-Business transition.

• BizTalk

http://www.biztalk.org/

 195

The goal of BizTalk.org is to provide resources for learning about and using Extensible

Markup Language (XML) for Enterprise Application Integration (EAI) and business-

to-business (B2B) document exchange, both within the enterprise and over the Internet.

On BizTalk.org you can learn how to use XML messages to integrate software

applications and build new solutions. The design emphasis is to use XML to integrate

your existing data models, solutions, and application infrastructure, and adapt them

for electronic commerce. You can also learn about the BizTalk Framework, a set of

guidelines for implementing an XML schema and a set of XML tags used in messages

sent between applications.

• ebXML

http://www.ebxml.org

To provide an open XML-based infrastructure enabling the global use of electronic

business information in an interoperable, secure and consistent manner by all parties.

• Object Management Group (OMG)26

http://www.omg.org/

The Object Management Group (OMG) is an open membership, not-for-profit

consortium that produces and maintains computer industry specifications for

interoperable enterprise applications. Our membership roster, about 800 strong,

includes virtually every large company in the computer industry, and hundreds of

smaller ones. Most of the companies that shape enterprise and Internet computing

today are represented on our Board of Directors. Our flagship specification is the

multi-platform Model Driven Architecture (MDA), recently underway but already well

26 The OMG is the official group which maintains the UML.

 196

known in the industry. It is based on the modeling specifications the MOF, the UML,

XMI, and CWM. OMG's own middleware platform is CORBA, which includes the

Interface Definition Language OMG IDL, and protocol IIOP. The Object Management

Architecture (OMA) defines standard services that will carry over into MDA work

shortly. OMG Task Forces standardize Domain Facilities in industries such as

healthcare, manufacturing, telecommunications, and others.

A.7 OTHER RESOURCES FOR PROCESS MODELING

• SODAN: http://www.sodan.co.uk/main.html?s=modeling

SODAN sells an overview of workflow and process modeling tool products and

suppliers (£375/each).

• Bart-Jan Hommes: http://is.twi.tudelft.nl/~hommes/toolsub.html

• A Glossary of Software Development Methods:

http://www.csci.csusb.edu/dick/methods.html

Dick Botting provides short definitions of over 100 software development methods

and terms.

• Evaluation of Systems Analysis Methodologies in a Workflow Context

http://computing.unn.ac.uk/staff/cgnr1/badensoft.htm

Fahad Al-Humaidan and B. Nick Rossiter compare OPM, SSADM, UML, Unified

Process, SSM, and WfMS in fourteen categories.

 197

APPENDIX D

REQUIREMENTS COLLECTION METHODS

Requirements collection activities rely on a variety of formalisms including

Flowcharts, UML Activity Diagrams, the Use Case diagrams, Data Flow Diagrams

(DFDs) (Osborne and Nakamura 2000), and IDEF0 (NIST 1993) schemas. Both

Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999)

are limited only to capturing sequences of activities and are not able to describe the

information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard

1992) which are a part of the UML methodology, define a set of sequences in which each

sequence represents the interaction of the things outside the system (its actors) with the

system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). Data flow

Diagrams (DFDs) (Osborne and Nakamura 2000) consists of several levels of diagrams.

The top-level DFD is called a context diagram. Details of information that is transferred

between processes and data storages is separately described and called a data dictionary.

However, DFDs do not show workflows, i.e., decisions or sequences of activities. DFDs

capture information required for ‘system’ design, but do not describe information flows in

a sequence of activities.

IDEF0 (Integration Definition of Function Modeling is a Federal Information

Processing Standard (FIPS) supported by ISO and is designed to define the “functions of a

system or subject area with graphics, text and glossary (NIST 1993).” As in DFD modeling,

IDEF0 models have a hierarchical structure and take a top-down approach. A unique

feature of IDEF0 is its ICOM codes (Input, Control, Output, and Mechanism arrows).

Although arrow types are categorized in detail, IDEF0 tracks information in chunks, but

 198

not in terms of individual information items. Detailed information can be defined

separately in IDEF1x (or IDEF1), but there is no direct link between the two modeling

techniques.

The above modeling methods are incorporated into a set of commercial tools (e.g.,

BPR®, Arena®, Rose®, and SmartDraw®). They have been further researched and enhanced

in several systems: (e.g., PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS

(Wilson et al. 2001), GPP (Wix and katranuschkov 2002), ISTforCE (Wix and Liebich

2000), ATLAS (Tolman and Poyet 1995), and ICCI (Katranuschkov et al. 2002)) have

been developed, to enhance or integrate existing modeling methods. Some commercial

CASE (Computer-Aided Software Engineering) tools for database design (such as Visio®,

AllFusion® (a.k.a. ERWin®, BPWin®, ModelMart®)), and Corporate Modeler®) are

capable of coupling DBMSs mostly with ARMs (e.g., IDEF1x, EXPRESS-G, and ER

diagrams) and sometimes with process models (AAMs). However, they do not provide any

formal method to elicit information from heterogeneous business environments and to

integrate the collected information into an industry-level product model.

Appendix C provides additional information and resources on process modeling

methods.

 199

APPENDIX E

NOTATION OF A CONTEXT-FREE GRAMMAR (CFG)

The context-free grammar (CFG) is a formal system to define how any legal

statement of a language can be derived by a set of axioms. The axioms are the rewrite rules

of a language. A syntax of the CFG is a duplex <B, R>, where B is the union of terminals

and non-terminals and R is the set of axioms or rules. For example, ‘W � χ’ denotes a

syntactic rule ‘W can be replaced by χ.’ The arrow (�) is called the rewrite arrow and

reads ‘is-a.’ Note that W � χ is different from χ � W. ‘W’ must always be a non-terminal

symbol and χ is a string of either a terminal or a non-terminal symbol. A terminal symbol

is a lexical item that cannot be split into smaller constituents of a language. Examples are

{a, black, cat, ran} in Figure 8.2. A non-terminal symbol is a non-lexical symbol that

represents a class of terminal symbols. Examples include {S (subject), NP (noun phrase),

VP (verb phrase), N (noun), V (verb), Det (determiner), Adj (adjective)} in Figure 8.2. ‘-’

denotes concatenation of symbols.

Figure 8.2. A linguistic example of a constituent structure tree

 200

The context-free grammar can be depicted as a breakdown structure. The structure

is called a constituent structure tree. The vertical breakdown denotes the is-a

categorization like the arrow (�) and the horizontal enumeration represents grammatical

relations of terminals and non-terminals such as subject-of, object-of, and modifier. Figure

8.2 is an example of a constituent structure tree of a sentence “A black cat ran.”

The given rewrite rules for ‘A black cat ran’ are as follows:

S � NP – VP

NP� Det – Adj – N

VP � V

Det � a

Adj � black

N � cat

V � ran

A � B | C denotes A � B or A � C.

In a context free grammar, the left side of a re-write rule is limited to a single non-

terminal. The right side can be replaced by a null value in order to accommodate

abbreviation or replacement phenomena.

W � NULL

For example, in English imperative, the subject “you” can be omitted:

 S � NP – VP

 NP � NULL

 VP � go away

 201

APPENDIX F

A PSEUDO CODE27 FOR DETECTING SEMANTICALLY EQUIVALENT
INFORMATION CONSTRUCTS

FUNCTION Is_Semantically_Equivalent_ICs

DIM x as information_construct

DIM y as information_construct

DIM UnabbreviatedIC as information_construct

DIM AbbreviatedIC as information_construct

IF len(x) = len(y) THEN

 IF x = y THEN

 Is_Semantically_Equivalent_ICs = TRUE

 Merge_the_attributes_of_x_and_y_into_x

ELSE

 Is_Semantically_Equivalent_ICs = FALSE

 END IF

ELSE

IF len(x) > len(y) THEN

 UnabbreviatedIC = x

 AbbreviatedIC = y

ELSE

 UnabbreviatedIC = y;

AbbreviatedIC = x;

END IF

 IF left(UnabbreviatedIC, len(AbbreviatedIC)+1) = “*” + _ AbbreviatedIC

 Is_Semantically_Equivalent_ICs = TRUE

 Merge_the_attributes_of_x_and_y_into_UnabbreviatedIC

 Delete_AbbreviatedIC_and_its_attributes

ELSE

 Is_Semantically_Equivalent_ICs = FALSE

 END IF

END IF

27 The pseudo code follows the Visual Basic grammar.

 202

END FUNCTION

SUB Merge_the_attributes_of_x_and_y_into_x

END SUB

SUB Merge_the_attributes_of_x_and_y_into_UnabbreviatedIC

END SUB

SUB Delete_AbbreviatedIC_and_its_attributes

END SUB

 203

APPENDIX G

AUTOMATICALLY GENERATED PRELIMINARY PRODUCT MODELS IN
EXPRESS

SCHEMA unihighcti_042704;

ENTITY documentation

SUPERTYPE OF (ONEOF(

drawing,

bom,

bidding_documents)

);

qc_check: qc_check;

report_date: string;

to_be_sent_to: string;

revision_no: string;

revised_date: string;

report_time: string;

revised_by: string;

received_date: string;

requirements: string;

id: string;

END_ENTITY;

ENTITY piece

SUPERTYPE OF (ONEOF(

floor_piece,

spandrel,

pc_column)

);

pack: pack;

windows: windows;

bowing: bowing;

design_requirements: design_requirements;

wythe: wythe;

 204

sample: sample;

estimation: estimation;

material: material;

mold: mold;

geometry: geometry;

surface_treatment: surface_treatment;

shipping: shipping;

piece_mark: string;

product_unit_measurement: string;

product_size: string;

product_amount: string;

product_name: string;

product_code: string;

label: string;

mobilization: string;

blockout: blockout;

hardware_list: hardware_list;

connection: connection;

location_details: location_details;

production_and_handling: production_and_handling;

drawing: drawing;

END_ENTITY;

ENTITY floor_piece

SUPERTYPE OF (ONEOF(

dt)

)

SUBTYPE OF (

piece

);

END_ENTITY;

ENTITY pc_column

SUPERTYPE OF (ONEOF(

exterior_pc_column)

)

 205

SUBTYPE OF (

piece

);

END_ENTITY;

ENTITY drawing

SUPERTYPE OF (ONEOF(

piece_drawing,

erection_drawing,

section_drawing,

plan_drawing,

detail_drawing,

elevation_drawing,

foundation_drawing)

)

SUBTYPE OF (

documentation

);

sealed: string;

created_date: string;

created_by: string;

destroyed_date: string;

engineering: engineering;

callout: string;

due_date: string;

END_ENTITY;

ENTITY assembly

SUPERTYPE OF (ONEOF(

floor_assembly)

);

dimensions: dimensions;

piece_list: piece_list;

grid: grid;

END_ENTITY;

 206

ENTITY connection

SUPERTYPE OF (ONEOF(

cip_haunch,

tieback,

corbel,

pocket,

dap,

chord)

);

requirement: string;

material: material;

light_pole: light_pole;

erection_sleeve: erection_sleeve;

reinforcement: reinforcement;

spacing: string;

xx_type: string;

piece_list: piece_list;

END_ENTITY;

ENTITY geometry

SUPERTYPE OF (ONEOF(

geometry_2d,

geometry_3d)

);

id: string;

constraints: constraints;

geometry_3d: geometry_3d;

dimensions: dimensions;

END_ENTITY;

ENTITY hardware

SUPERTYPE OF (ONEOF(

grout,

tieback,

handling_bolt,

bolt,

 207

handling_insert,

handling_leg,

erection_anchor,

custom_item,

cast_in_box,

curtainwall_insert,

shipping_frame,

temporary_bracing,

anchor,

plate,

lifting)

)

SUBTYPE OF (

material

);

surface_treatment: surface_treatment;

END_ENTITY;

ENTITY reinforcement

SUPERTYPE OF (ONEOF(

prestressing,

rebar,

mesh)

)

SUBTYPE OF (

material

);

youngs_modulus: string;

waste: string;

bpc_end_geometry: string;

crosssectional_area: string;

qc_check: qc_check;

location_details: location_details;

END_ENTITY;

ENTITY qc_check

 208

SUPERTYPE OF (ONEOF(

interference_check)

);

inspector_id: string;

id: string;

requirements: string;

inspector: string;

inspection_dates: string;

building_code: building_code;

results: string;

END_ENTITY;

ENTITY rebar

SUPERTYPE OF (ONEOF(

bent_bar)

)

SUBTYPE OF (

reinforcement

);

temperature: string;

diameter: string;

END_ENTITY;

ENTITY material

SUPERTYPE OF (ONEOF(

hardware,

caulk,

rigging,

handling,

offsite_staging,

erection_handling_frame,

gutter_system,

strongback,

brick,

stone,

electric_items,

 209

reinforcement,

retarder,

admixture,

pigment,

pc_aggregate,

form_panelization,

form_handling,

form_liner,

adhesive,

back_forming,

concrete)

);

purchase_order: purchase_order;

unit_price: string;

pattern: string;

id: string;

xx_type: string;

quantity: string;

END_ENTITY;

ENTITY production_and_handling

SUPERTYPE OF (ONEOF(

welding,

repair,

batch,

pour)

);

pour: pour;

equipment: equipment;

operation_details: string;

operation_cost: string;

cost: string;

production_cost: string;

production_per_hour: string;

weather: string;

yard_cost: string;

 210

electric_power_req: string;

manager: string;

concrete: concrete;

labor: labor;

schedule: schedule;

END_ENTITY;

ENTITY schedule

SUPERTYPE OF (ONEOF(

erection_schedule)

);

piece_list: piece_list;

approved_date: string;

schedule_date: string;

actual_start_date: string;

actual_pc_end_date: string;

required_duration: string;

planned_duration: string;

planned_start_date: string;

planned_pc_end_date: string;

END_ENTITY;

ENTITY erection_schedule

SUPERTYPE OF (ONEOF(

installation_schedule,

foundation_schedule)

)

SUBTYPE OF (

schedule

);

END_ENTITY;

ENTITY equipment

SUPERTYPE OF (ONEOF(

pretension_gun,

crane,

 211

roof_deck,

safety_cable)

);

unit_cost: string;

END_ENTITY;

ENTITY geometry_2d

SUPERTYPE OF (ONEOF(

crosssection)

)

SUBTYPE OF (

geometry

);

base_point: string;

END_ENTITY;

ENTITY grid;

y_axis_spacing: string;

x_axis_spacing: string;

END_ENTITY;

ENTITY dt

SUBTYPE OF (

floor_piece

);

qc_check: qc_check;

mesh: mesh;

pc_end: pc_end;

flange: flange;

recess: recess;

chord: chord;

dap: dap;

structural_analysis: structural_analysis;

stem: stem;

stem_spacing: string;

joint: joint;

 212

END_ENTITY;

ENTITY joint;

dimensions: dimensions;

END_ENTITY;

ENTITY dimensions;

depth: string;

total_length: string;

total_poured_length: string;

id: string;

floor_to_floor_height: string;

thickness: string;

xx_length: string;

height: string;

cast_length: string;

width: string;

END_ENTITY;

ENTITY exterior_pc_column

SUBTYPE OF (

pc_column

);

clearance: string;

rebar: rebar;

rebar_cage: rebar_cage;

pocket: pocket;

corbel: corbel;

geometry_3d: geometry_3d;

foundation_drawing: foundation_drawing;

elevation_drawing: elevation_drawing;

detail_drawing: detail_drawing;

geometry_2d: geometry_2d;

plan_drawing: plan_drawing;

END_ENTITY;

 213

ENTITY plan_drawing

SUBTYPE OF (

drawing

);

END_ENTITY;

ENTITY project;

site: site;

documentation: documentation;

shipping: shipping;

sales_representative: string;

phase: string;

job_number: string;

size: string;

owner_details: string;

name: string;

project_manager: string;

contact_information: string;

contractor_type: string;

contractor_list: string;

xx_type: string;

contract_details: string;

subctract_unit_cost: string;

job_manager: string;

approved_date: string;

accountant: string;

engineering_coorinator: string;

design_requirements: design_requirements;

estimation: estimation;

END_ENTITY;

ENTITY estimation;

total_bid_prodice: string;

unit_cost: string;

item_code: string;

item_description: string;

 214

item_quantity: string;

id: string;

unit_measurement: string;

estimator: string;

taxes: string;

total_loads: string;

schedule: string;

gross_margin: string;

total_markup: string;

END_ENTITY;

ENTITY location_details;

orientation: string;

base_point: string;

END_ENTITY;

ENTITY stem;

geometry: geometry;

mesh: mesh;

spacing: string;

END_ENTITY;

ENTITY section_drawing

SUBTYPE OF (

drawing

);

END_ENTITY;

ENTITY floor_assembly

SUBTYPE OF (

assembly

);

wash: wash;

pc_topping: pc_topping;

END_ENTITY;

 215

ENTITY pc_topping;

xx_type: string;

END_ENTITY;

ENTITY piece_list;

piece: piece;

xx_list: string;

quantity: string;

id: string;

END_ENTITY;

ENTITY structural_analysis;

start_date: string;

results: string;

END_ENTITY;

ENTITY dap

SUBTYPE OF (

connection

);

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY geometry_3d

SUBTYPE OF (

geometry

);

reinforcement: reinforcement;

weight: string;

volume: string;

bottom: string;

pc_top: string;

xx_type: string;

design: string;

END_ENTITY;

 216

ENTITY hardware_list;

hardware: hardware;

id: string;

END_ENTITY;

ENTITY lifting

SUBTYPE OF (

hardware

);

standard_details: string;

location_details: location_details;

END_ENTITY;

ENTITY chord

SUBTYPE OF (

connection

);

location_details: location_details;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY detail_drawing

SUBTYPE OF (

drawing

);

END_ENTITY;

ENTITY elevation_drawing

SUBTYPE OF (

drawing

);

END_ENTITY;

ENTITY foundation_drawing

SUBTYPE OF (

drawing

 217

);

END_ENTITY;

ENTITY corbel

SUBTYPE OF (

connection

);

blockout: blockout;

geometry_3d: geometry_3d;

rebar: rebar;

location_details: location_details;

END_ENTITY;

ENTITY spandrel

SUBTYPE OF (

piece

);

geometry_3d: geometry_3d;

xx_type: string;

END_ENTITY;

ENTITY recess;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY wash;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY surface_treatment;

id: string;

cleaning: string;

details: string;

END_ENTITY;

ENTITY flange;

 218

geometry: geometry;

connection: connection;

END_ENTITY;

ENTITY pc_end;

connection: connection;

END_ENTITY;

ENTITY mesh

SUBTYPE OF (

reinforcement

);

dimensions: dimensions;

END_ENTITY;

ENTITY blockout;

location_details: location_details;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY interference_check

SUBTYPE OF (

qc_check

);

END_ENTITY;

ENTITY pocket

SUBTYPE OF (

connection

);

id: string;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY erection_sleeve;

geometry_3d: geometry_3d;

 219

END_ENTITY;

ENTITY light_pole;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY tieback

SUBTYPE OF (

hardware,

connection

);

END_ENTITY;

ENTITY bent_bar

SUBTYPE OF (

rebar

);

spacing: string;

END_ENTITY;

ENTITY rebar_cage;

rebar: rebar;

END_ENTITY;

ENTITY plate

SUBTYPE OF (

hardware

);

END_ENTITY;

ENTITY nonprecast_element;

geometry_3d: geometry_3d;

END_ENTITY;

ENTITY anchor

SUBTYPE OF (

 220

hardware

);

anchor_details: string;

END_ENTITY;

ENTITY design_requirements;

id: string;

fire_rating_requirements: string;

access_requirements: string;

END_ENTITY;

ENTITY shipping;

project: project;

shipping_frame: shipping_frame;

schedule: schedule;

qc_check: qc_check;

truck_number: string;

packer: string;

truck_driver: string;

trailer_number: string;

cost: string;

traffic_control: string;

traffic_control_permit: string;

traffic_control_personnel: string;

crew: string;

orientation: string;

permits: string;

special_req: string;

instruction: string;

receiver: string;

notes: string;

truck_load: truck_load;

END_ENTITY;

ENTITY truck_load;

constraints: constraints;

 221

designer: string;

purchase_order_num: string;

qty: string;

id: string;

END_ENTITY;

ENTITY engineering;

qc_check: qc_check;

eng_date: string;

sealed: string;

END_ENTITY;

ENTITY building_code;

provision_reference: string;

END_ENTITY;

ENTITY erection_drawing

SUBTYPE OF (

drawing

);

END_ENTITY;

ENTITY labor;

xx_type: string;

rate: string;

hours: string;

END_ENTITY;

ENTITY site;

address: string;

map: string;

END_ENTITY;

ENTITY concrete

SUBTYPE OF (

material

 222

);

temperature: string;

strength: string;

mix: mix;

mix_specification: string;

END_ENTITY;

ENTITY erection;

safety_cable: safety_cable;

roof_deck: roof_deck;

hardware_list: hardware_list;

tolerance: string;

control_lines: string;

hoistbay_location: string;

crane: crane;

qc_check: qc_check;

cost: string;

schedule: schedule;

END_ENTITY;

ENTITY constraints;

min_length: string;

max_length: string;

average_length: string;

average_weight: string;

id: string;

END_ENTITY;

ENTITY pour

SUBTYPE OF (

production_and_handling

);

constraints: constraints;

bed: bed;

quantity: string;

status: string;

 223

area: string;

END_ENTITY;

ENTITY mold;

purchase_order: purchase_order;

back_forming: back_forming;

description: string;

xx_type: string;

id: string;

name: string;

adhesive: adhesive;

form_liner: form_liner;

form_handling: form_handling;

form_panelization: form_panelization;

schedule: schedule;

dimensions: dimensions;

END_ENTITY;

ENTITY bidding;

estimation: estimation;

bidders: string;

review: string;

xx_type: string;

END_ENTITY;

ENTITY bidding_documents

SUBTYPE OF (

documentation

);

END_ENTITY;

ENTITY bom

SUBTYPE OF (

documentation

);

created_by: string;

 224

END_ENTITY;

ENTITY batch

SUBTYPE OF (

production_and_handling

);

END_ENTITY;

ENTITY prestressing

SUBTYPE OF (

reinforcement

);

tolerance: string;

actual_elongation: string;

guage_pressure: string;

net_pull: string;

splice_chuck: string;

temperature_over_pull: string;

temp_adjustment: string;

dead_pc_end_seating: string;

live_pc_end_seating: string;

theo_elongation: string;

design_data: string;

xx_length: string;

temp_diff_btw_conc_strand: string;

yield_stress: string;

pretension_gun: pretension_gun;

tension: string;

END_ENTITY;

ENTITY piece_drawing

SUBTYPE OF (

drawing

);

issued_date: string;

END_ENTITY;

 225

ENTITY foundation_schedule

SUBTYPE OF (

erection_schedule

);

END_ENTITY;

ENTITY sample;

id: string;

req: string;

range: string;

size: string;

schedule: schedule;

END_ENTITY;

ENTITY structure;

erection: erection;

structural_analysis: structural_analysis;

END_ENTITY;

ENTITY installation_schedule

SUBTYPE OF (

erection_schedule

);

END_ENTITY;

ENTITY mix;

qc_check: qc_check;

material: material;

stregnth: string;

sheet: string;

sample: sample;

END_ENTITY;

ENTITY pc_aggregate

SUBTYPE OF (

 226

material

);

END_ENTITY;

ENTITY purchase_order;

status: string;

id: string;

END_ENTITY;

ENTITY pigment

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY admixture

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY retarder

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY form_panelization

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY form_handling

SUBTYPE OF (

 227

material

);

requirement: string;

END_ENTITY;

ENTITY form_liner

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY adhesive

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY back_forming

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY curtainwall_insert

SUBTYPE OF (

hardware

);

END_ENTITY;

ENTITY cast_in_box

SUBTYPE OF (

hardware

);

 228

END_ENTITY;

ENTITY electric_items

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY stone

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY brick

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY custom_item

SUBTYPE OF (

hardware

);

END_ENTITY;

ENTITY erection_anchor

SUBTYPE OF (

hardware

);

requirement: string;

END_ENTITY;

ENTITY wythe;

strongback: strongback;

END_ENTITY;

 229

ENTITY strongback

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY gutter_system

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY shipping_frame

SUBTYPE OF (

hardware

);

END_ENTITY;

ENTITY handling_leg

SUBTYPE OF (

hardware

);

requirement: string;

END_ENTITY;

ENTITY handling_insert

SUBTYPE OF (

hardware

);

requirement: string;

END_ENTITY;

ENTITY bolt

SUBTYPE OF (

hardware

 230

);

requirement: string;

END_ENTITY;

ENTITY handling_bolt

SUBTYPE OF (

hardware

);

requirement: string;

END_ENTITY;

ENTITY erection_handling_frame

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY offsite_staging

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY crane

SUBTYPE OF (

equipment

);

load: string;

location_diagram: string;

name: string;

location: string;

tower_crane_fillin: string;

hoist_bay_fillin: string;

mat_req: string;

communication_system: string;

hoist_req: string;

 231

END_ENTITY;

ENTITY handling

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY rigging

SUBTYPE OF (

material

);

requirement: string;

END_ENTITY;

ENTITY bowing;

adjustment: string;

END_ENTITY;

ENTITY temporary_bracing

SUBTYPE OF (

hardware

);

END_ENTITY;

ENTITY repair

SUBTYPE OF (

production_and_handling

);

END_ENTITY;

ENTITY welding

SUBTYPE OF (

production_and_handling

);

 232

END_ENTITY;

ENTITY caulk

SUBTYPE OF (

material

);

END_ENTITY;

ENTITY cip_haunch

SUBTYPE OF (

connection

);

END_ENTITY;

ENTITY grout

SUBTYPE OF (

hardware

);

requirement: string;

END_ENTITY;

ENTITY roof_deck

SUBTYPE OF (

equipment

);

req: string;

END_ENTITY;

ENTITY safety_cable

SUBTYPE OF (

equipment

);

req: string;

quantity: string;

END_ENTITY;

 233

ENTITY windows;

id: string;

END_ENTITY;

ENTITY curtainwall;

id: string;

END_ENTITY;

ENTITY bed;

id: string;

movement: string;

END_ENTITY;

ENTITY pretension_gun

SUBTYPE OF (

equipment

);

id: string;

END_ENTITY;

ENTITY pack;

num: string;

END_ENTITY;

ENTITY crosssection

SUBTYPE OF (

geometry_2d

);

polyline: string;

END_ENTITY;

END_SCHEMA; (* end of unihighcti_042704*)

 234

APPENDIX H

WORKFLOW MANAGEMENT

Workflow management is “the automation of a business process, in whole or part,

during which documents, information or tasks are passed from one participant to another

for action, according to a set of procedural rules (WFMC 1999).” It differs from pure

process modeling in that it includes ‘execution’ and ‘management’ of business processes

as well as their ‘specification’(Jablonski and Bussler 1996; Lawrence 1997; WFMC 1999).

Workflow management systems control data flows (more often, documents flows) and

specifies who is supposed to execute what action when. Examples include MQ Series

Workflow® (IBM), BizFlow® (HandySoft), Workflow® (W4), i-Flow® (Fujitsu

Software), and Staffware Process Suite® (Staffware). They are typically performed in

heterogeneous and distributed work environments. Thus, some of directly relevant research

areas naturally include distributed and mobile computing and data mining (such as OLAP

(On-Line Analytical Processing) and data warehousing) that can enable users to inquire

and view data from different points of view. Even though workflow management systems

are similar to our work in that they combine processes and information flows, we regard

workflow management as a separate vast area that deals with management and application

of business processes and information and will not coincide with the focus of this project.

We will, however, consider the formal workflow models that are mainly derived from

transaction management in databases (Chakravarthy et al. 1990; Rusinkiewicz and Sheth

1995; Weikum 1991)

 235

REFERENCES

Adachi, Y. (2002). Overview of IFC model server framework. ECPPM 2002, 367-372.

AISC. (2002). CIMSteel Integration Standards Release 2 (CIS/2). Available:

http://www.cis2.org/.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel.

(1997). A Pattern Language: Towns, Buildings, Construction.New York: Oxford

University Press.

Amor, R. (2001). Misconceptions about integrated project databases. ITcon, 6, 57-68.

ANSI. (1991). American National Standards for Information Processing - Documentation

Symbols and Conventions for Data, Program and System Flowcharts, Program

Network Charts and System Resources Charts.New York: American National

Standards Institute.

ANSI: Product Definition Data Interface. (1983). Teak-I: Evaluation and Verification of

ANSI Y14.26M:Booz-Allen and Hamilton, Inc.

Augenbroe, F. (2002, November 9-11). Integration direction (Keynote). Paper presented at

the European Conference for Process and Product Modeling (ECPPM), Slovenia.

Augenbroe, G. L. M. (1993). Combine: Final Report.Delft, Netherlands: Delft University

of Technology.

Augenbroe, G. L. M. (1995). Combine 2: Final Report.Delft, Netherlands: Delft

University of Technology.

Bakkeren, W., A. Zarli, P. Debras, K. Schulz, and S. Korsveien. (1996). D103a - A Model

of Workflow: Specification of a Model for the Definition of Workflows in Virtual

LSE Enterprises (ESPRIT 20408 - VEGA).

 236

Banerjee, J., W. Kim, H. Kim, and H. Korth. (1987). Semantics and implementation of

schema evolution in object-oriented databases. Paper presented at the Proceeding

of ACM SIGMOD Annual Conference, 311-322.

Beeri, C., P. A. Bernstein, and N. Goodman. (1978). A sophisticate's introduction to

database normalization theory. Paper presented at the International Conference on

Very Large Data Bases, West Berlin, Germany, 113-124.

Benwell, G. L., P. G. Firns, and P. J. Sallis. (1991). Deriving semantic data models from

structured process descriptions of reality. Journal of Information Technology, 6(1),

15-25.

Berners-Lee, T. (1994). W3C: World Wide Web Consortium. Available:

http://www.w3.org/ [2004, Feb 23].

Bernstein, P. A., S. Pal, and D. Shutt. (2000). Context-based prefetch an optimization for

implementing objects on relations. VLDB Journal, 9(3), 177-189.

Bjork, B.-C. (1989). Basic structure of a proposed building product model. Computer-

Aided Design, 21(2), 71-78.

Bloor, M. S., and J. Owen. (1995). Product Data Exchange:UCL Press.

Booch, G., J. Rumbaugh, and I. Jacobson. (1999). The Unified Modeling Language User

Guide.Reading, MA: Addison Wesley Longman, Inc.

Chakravarthy, S., S. Navathe, K. Karlapalem, and A. Tanaka. (1990). Meeting the

cooperative problem solving challenge: A database-centered approach. In S. M.

Deen (Ed.), Cooperating Knowledge Based Systems:Springer-Verlag.

Chandrasekaran, B. (1994). Functional representations: A brief historical perspective.

Applied Artificial Intelligence, 8, 173-197.

Chen, P. (1976). The entity relationship mode - Toward a unified view of data. TODS, 1(1,

March).

 237

Chomsky, N. (1965). Aspects of the Theory of Syntax.Cambridge, MA: MIT Press.

Christiansson, P., and H. Karlsson. (1988). CIB W74 + W78 1988 Proceeding. Paper

presented at the CIB W74 + W78, Lund, Sweden, 165-178.

CIMSteel Integration Standards Release 2. (2002). http://www.cis2.org/.

Codd, E. F. (1970). A relational model of data for large shared data banks. CACM, 13(6),

377-387.

Codd, E. F. (1972). Further normalization of the data base relational model. In R. Rustin

(Ed.), Data Base System (Vol. 6, pp. 33-64). Englewood Cliffs, N. J.: Prentice-Hall.

Codd, E. F. (1979). Extending the data base relational model to capture more meaning.

ACM Transactions on Database Systems (TODS), 4(4), 397-434.

Coplien, J. (1999). History of Patterns http://c2.com/cgi-bin/wiki?HistoryOfPatterns [2003,

September 23].

Cover, R. (1999). XML.org. OASIS (Organization for the Advancement of Structured

Information Systems). Available: http://www.xml.org [2004, Feb 24].

Crowley, A. (1998). The Development & Implementation of a Product Model for

Constructional Steelwork. University of Leeds, Leeds.

Crowley, A. (1998). The development and Implementation of a product model for

constructional steelwork. Unpublished Doctoral, University of Leeds.

Crowley, A. (2000, Jan 27, 2000). The Logical Product Model (LPM) 5 EXPRESS Schema.

Available: http://www.cis2.org/download/lpm500.exp.

Crowley, A. J., and M. A. Ward. (1999). CIS/2 (AP230) IDEF0:SCI.

CSTB. (2004). The European Research Projects (http://cic.cstb.fr/ILC/html/ecprj.htm).

Danner, W. F. (1997). Developing Application Protocols (APs) using the architecture and

methods of STEP (STandard for the Exchange of Product data): Fundamentals of

 238

the STEP methodology (NISTIR 5972). Gaithersburg, MD: National Institute of

Standards and TEchnology.

Dereli, T., and H. Filiz. (2002). A note on the use of STEP for interfacing design to process

planning. Computer-Aided Design, 34, 1075-1085.

Eastman, C., and N. Fereshetian. (1994). Information models for product design: a

comparison. Computer-Aided Design, 26(7), 551-572.

Eastman, C. M. (1996). Managing integrity in design information flows. Computer-Aided

Design, 28(6-7), 551-565.

Eastman, C. M. (1999). Building Product Models: Computer Environments Supporting

Design and Construction.Boca Raton, FL: CRC Press.

Eastman, C. M. (1999). Ch 5. ISO-STEP, Building Product Models: Computer

Environments Supporting Design and Construction.Boca Raton, FL: CRC Press.

Eastman, C. M. (1999). Ch 8. Building Framework Models, Building Product Models:

Computer Environments Supporting Design and Construction.Boca Raton, FL:

CRC Press.

Eastman, C. M. (1999). Ch 11. Modeling language Issues, Building Product Models:

Computer Environments Supporting Design and Construction.Boca Raton, FL:

CRC Press.

Eastman, C. M., S. Chase, and H. Assal. (1993). System architecture for computer

integration of design and construction knowledge. Automation in Construction,

2(2), 95-108.

Eastman, C. M., and T. S. Jeng. (1999). A database supporing evolutionary product model

development for design. Automation in Construction, 8(3), 305-323.

 239

Eastman, C. M., G. Lee, and R. Sacks. (2002). Deriving a product model from process

models. Paper presented at the ISPE/CE2002 Conference, Cranfield University,

United Kingdom.

Eastman, C. M., G. Lee, and R. Sacks. (2002, June 12-14). A new formal and analytical

approach to modeling engineering project information processes. Paper presented

at the CIB W78, Aarhus, Denmark, 125-132.

Eastman, C. M., and G. V. Shirley. (1994). Management of Design Information,

Management of Design.

Eckholm, A., and S. Fridquist. (1996). Modeling of user organizations, buildings and

spaces for the design process. Paper presented at the Construction on the

Information Highway: Proceedings of the CIB W78 Workshop, Bled, Slovenia.

Ekholm, A. (1996). A Conceptual Framework for Classification of Construction Work.

ITcon http://www.itcon.org/1996/2, 1, 25-50.

Ekholm, A., and S. Fridquist. (1996). Modeling of user organizations, buildings and

spaces for the design process. Paper presented at the Construction on the

Information Highway: Proceedings of the CIB W78 Workshop, Bled, Slovenia.

El-Mehalawi, M., and R. A. Miller. (2001). A database system of mechanical components

based on geometric and topological similarity: Part 1: representation, and Part 2:

Indexing, retrieval, matching and similarity assessment. Computer-Aided Design,

83-94 and 95-105.

Elmasri, R., and S. Navathe. (2000). Ch.2 Database system concepts and architecture,

Fundamentals of Database Systems (Third ed.). Reading, MA: Addison Wesley

Longman, Inc.

Elmasri, R., and S. Navathe. (2000). Fundamentals of Database Systems (Third ed.).

Reading, MA: Addison Wesley Longman, Inc.

 240

Elmasri, R., and S. Navathe. (2004). Fundamentals of Database Systems (Fourth ed.).

Reading, MA: Addison Wesley Longman, Inc.

EUREKA. (1987-1997). EUREKA E!130-CIMSteel (Computer-Integrated Manufacturing

For Constructional Steelwork). Available: http://www.eureka.be/ifs/files/ifs/jsp-

bin/eureka/ifs/jsps/projectForm.jsp?enumber=130 [2003.

Feng, S. C., and E. Y. Song. (2000, November). Information modeling of conceptual

design: integrated with process planning. Paper presented at the Symposia on

Design For Manufacturability, International Mechanical Engineering Congress and

Exposition 2000, Orlando, Florida.

Fenves, S. L. (2001). A Core Product Model for Representing Design Information, NIST

Internal Report 6736:National Institute of Standards and Technology.

Fischer, M., and C. Kam. (2002). PM4D Final Report (143): CIFE, Stanford University.

Fowler, J. (1996, September 16-20, 1996). Information units and views in STEP. Paper

presented at the the Interpretation Guidelines workshop, SCRA, Charleston SC.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software:Addison Wesley.

Garg, P. K., and M. Jazayeri. (1996). Process-Centered Software Engineering

Environments.Los Alamitos, CA: IEEE Computer Society Press.

Giannini, F., M. Monti, D. Biondi, F. Bonfatti, and P. Monari. (2002). A modelling tool for

the management of product data in a co-design environment. Computer-Aided

Design, 34, 1063-1073.

Gielingh, W. (1988). General AEC Reference Model (ISO TC184/SC4/WG1 doc 3.2.2.1,

TNO report BI-88-150).

Gielingh, W. (1988). General AEC Reference Model (GARM). Paper presented at the CIB

W74 + W78, Lund, Sweden, 165-178.

 241

Goldstein, B. L. M., S. J. Kemmerer, and C. H. Parks. (1998). A Brief History of Early

Product Data Exchange Standards (NISTIR 6221 WERB). Gaithersburg, MD:

National Institute of Standards and Technology (NIST).

Hammer, M., and D. McLeod. (1981). Database Description with SDM: A Semantic

Database Model. ACM Transactions on Database Systems, 6(3), 351-386.

Hardwick, M., K. C. Morris, D. L. Spooner, T. Randoc, and P. Denno. (2000). Lessons

learned developing protocols for the industrial virtual enterprise. Computer-Aided

Design, 32, 159-166.

IAI.The EXPRESS Definition Language for IFC Development. Available: http://www.iai-

international.org/iai_international/Technical_Documents/documentation/The_EXP

RESS_Definition_Language_for_IFC_Development.pdf [2004.

IAI.IAI North American Members. Available: http://www.iai-

na.org/membership/members.php.

IAI. International Alliance for Interoperability. http://www.iai-

international.org/iai_international/.

IAI. (2000). Industry Foundation Classes Release 2x: IFC Technical Guide:International

Alliance for Interoperability.

IAI. (2003). Industry Foundation Classes IFC2x Edition 2. Available: http://www.iai-

international.org/iai_international/Technical_Documents/R2x2_final/index.html.

IAI. (2004). A Short History of the IAI and the IFC Information Model. Available:

http://www.iai-international.org/iai_international/Information/History.html.

International Organization for Standardization. (1994). ISO 10303-11:1994, Part 11:

Description methods: The EXPRESS language reference manual.

 242

ISO JTC 1/SC 32. (2003). ISO/IEC 9075-1:2003 Information technology - Database

languages - SQL - Part 1: Framework (SQL/Framework) (ISO/IEC 9075-1:2003):

ISO.

ISO TC 184/SC 4. (1994). ISO 10303-1:1994 Industrial automation systems and

integration - Product data representation and exchange - Part 1: Overview and

fundamental principles:International Organization for Standardization.

ISO TC 184/SC 4. (1994). ISO 10303-11:1994 Industrial automation systems and

integration - Product data representation and exchange - Part 11: Description

methods: The EXPRESS language reference manual:International Organization for

Standardization.

ISO TC 184/SC 4. (1996). ISO/DIS 10303-213:1996 Industrial automation systems and

integration - Product data representation and exchange - Part 213: Application

protocol: Control Process Plans For Machined Parts.1rue de Varambe, Case

Postale 56, CH-1211 Geneva, Switzerland: International Organization for

Standardization.

ISO TC 184/SC 4. (1998). ISO/CDC 10303-217 Industrial automation systems and

integration - Product data representation and exchange - Part 217: Application

protocol: Sheet piping.1rue de Varambe, Case Postale 56, CH-1211 Geneva,

Switzerland: International Organization for Standardization.

ISO TC 184/SC 4. (1999). ISO 10303-14: EXPRESS-X Language Reference Manual

(Working Draft):International Organization for Standardization.

ISO TC 184/SC 4. (1999). ISO 10303-207:1999 Industrial automation systems and

integration - Product data representation and exchange - Part 207: Application

protocol: Sheet metal die planning and design.1rue de Varambe, Case Postale 56,

CH-1211 Geneva, Switzerland: International Organization for Standardization.

ISO TC 184/SC 4. (1999). ISO 10303-225:1999 Industrial automation systems and

integration - Product data representation and exchange - Part 225: Building

 243

elements using explicit shape representation.1rue de Varambe, Case Postale 56,

CH-1211 Geneva, Switzerland: International Organization for Standardization.

ISO TC 184/SC 4. (2000). ISO 10303-41: 2000, Integrated generic resource:

Fundamentals of product description and support:International Organization for

Standardization.

ISO TC 184/SC 4. (2001). ISO 10303-210:2001 Industrial automation systems and

integration - Product data representation and exchange - Part 210: Application

protocol: Electronic assembly, interconnection, and packaging design.1rue de

Varambe, Case Postale 56, CH-1211 Geneva, Switzerland: International

Organization for Standardization.

ISO TC 184/SC 4. (2001). ISO 10303-227:2001 Industrial automation systems and

integration - Product data representation and exchange - Part 227: Application

protocol: Plant spatial configuration.1rue de Varambe, Case Postale 56, CH-1211

Geneva, Switzerland: International Organization for Standardization.

ISO TC 184/SC 4. (2004). About SC4 Standards. Available: http://www.tc184-

sc4.org/About_TC184-SC4/About_SC4_Standards/.

Jablonski, S., and C. Bussler. (1996). Workflow Management: Modeling, Concepts,

Architecture and Implementation:International Thomson Computer Press.

Jacobson, I., M. P. Jonsson, and G. Overgaard. (1992). Object oriented software

engineering: A use case driven approach:Addison-Wesley.

Jurafsky, D., and J. H. Martin. (2000). Context-free grammar for English. In D. Jurafsky &

J. H. Martin (Eds.), Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics, and Speech Recognition (pp.

323-256). Uppper Saddle River, NJ: Prentice-Hall.

Jurrens, K. (1991). Test Plan for Validating a Context Driven Integrated Model (CDIM)

for Sheet Metal Die Design.Gaithersburg, MD: National Institute of Standards and

Technology.

 244

Kahn, H., N. Filer, A. Williams, and N. Whitaker. (2001). A generic framework for

transforming EXPRESS information models. Computer-Aided Design, 33, 501-510.

Karstila, K. (2001). Precast Concrete Constructions IFC-project (PCC-IFC) Version

1.0:unpublished working document, EuroSTEP/RTT.

Karstila, K., A. Laitakari, M. Nyholm, P. Jalonen, V. Artoma, T. Hemio, and K. Seren.

(2002). Ifc2x PCC v09 Schema in EXPRESS:PCC-IFC project team, IAI Forum

Finland.

Karstila, K., and A. Suikka. (2001). Precast Concrete Constructions IFC - Project (PCC-

IFC): Project Summary Version 1.1:EuroSTEP/RTT.

Katranuschkov, P., J. Wix, T. Liebich, and A. Gehre. (2002). Collected end user

scenarios:Deliverable D11, EU Project IST-2001-33022 ICCI "Innovation co-

ordination, transfer and deployment through networked Co-operation in the

Construction Industry".

Kogelnik, A., M. Lott, M. Brown, S. Navathe, and D. Wallace. (1998). MITOMAP: A

human mitochondrial genome database. Nucleic Acids Research, 26(1).

Lawrence, P. (1997). Workflow Handbook.New York: Wiley.

McKay, A., A. de Pennington, and J. Baxter. (2001). McKay, A., de Pennington A, and J.

Baxter [2001], Requirements management: a representation scheme for product

specifications, Computer-Aided Design, (33, June 2001), pp. 511-520. Computer-

Aided Design, 33, 511-520.

Nijssen, G. M., and T. A. Halpin. (1989). Conceptual Schema and Relational Database

Design: A Fact Oriented Approach.New York: Prentice Hall.

NIST. (1993). FIPS Publication 183: Integration Definition of Function Modeling

(IDEF0):National Institute of Standards and Technology.

 245

NIST. (1993). FIPS Publication 184: Integration Definition of Information Modeling

(IDEF1X):National Institute of Standards and Technology.

NIST. (2002). What is STEP. http://cic.nist.gov/plantstep/stepinfo/step_def.htm.

OMG. (2003). Object Management Group (OMG) http://www.omg.org [2003, September

23].

Osborne, L. N., and M. Nakamura. (2000). Systems Analysis for Librarians and

Information Professionals (2nd ed.). Englewood, Colorado: Libraries Unlimited,

Inc.

P. Lawrence (Ed.). (1997). Workflow Handbook.New York: Wiley.

Pahl, G., and W. Bietz. (1998). Engineering Design: A Systematic Approach:Springer-

Verlag.

Palmer, M. E., and K. Reed. (1990). 3D Piping IGES Application Protocol version

1.0:National Institute of Standards and Technology, Interagency Report 4420.

Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow. Paper

presented at the IFIP Congress, North Holland, 386-390.

Renssen, I. A. v. (1997). ISO CD 10303 Guide on STEPlib: Guide for the creation and

maintenance of Standard Data for Process Plants (Ver. 1.8) (ISO

TC184/SC4/WG3/N424). The Hague, The Netherlands: Shell International Oil

Products B.V.

Ronneblad, A. (2003). Product models for concrete structures: standards, applications

and implementations. Unpublished Licentiate Thesis, Lulea University of

Technology, Sweden.

Rosenberg, D., and K. Scott. (1999). Robustness Analysis, Use Case Driven Object

Modeling with UML: A Practical Approach (pp. 61-79). Reading, MA: Addison

Wesely Longman, Inc.

 246

Rosenberg, D., and K. Scott. (1999). Use Case Driven Object Modeling with UML: A

Practical Approach.Reading, MA: Addison Wesely Longman, Inc.

Rusinkiewicz, M., and A. Sheth. (1995). Specification and execution of transactional

workflows. In W. Kim (Ed.), Modern Database Systems: the Object Model,

Interoperability, and Beyond (pp. 592-620): ACM Press.

Sacks, R., C. M. Eastman, and G. Lee. (2004). Process model perspectives on management

and engineering procedures in the North American Precast/Prestressed Concrete

Industry. the ASCE Journal of Construction Engineering and Management, 130(2),

206-215.

Schenk, D. A., and P. R. Wilson. (1994). Information Modeling the EXPRESS

Way.NY:Oxford U. Press.

Shipman, D. W. (1981). The functional data model and the data languages DAPLEX.

ACM Transactions on Database Systems (TODS), 6(1), 140-173.

Smith, G. L. (2002). Utilization of STEP AP 210 at the Boeing Company. Computer-Aided

Design, 34(14), 1055-1062.

Smith, J. M., and D. C. P. Smith. (1977). Database abstractions: aggregation and

generalization. ACM Transactions on Database Systems (TODS), 2(2), 105-133.

Smith, J. M., and D. C. P. Smith. (1997). Database abstractions: aggregation.

Communications of the ACM, 20(6), 405-413.

Smith, N., and D. Wilson. (1979). Modern linguistics: The results of Chomsky's

revolution:Penguin.

Spooner, D. L., and M. Hardwick. (1997). Using views for product data exchange. IEEE

Computer Graphics and Applications, 17, 58-65.

Stouffs, R., R. Krishnamurti, and C. M. Eastman. (1996, 16-18 September 1996). A formal

structure for non-equivalent solid representations. Paper presented at the

 247

International Federation for Information Processing (IFIP) WG 5.2 Workshop on

Knowledge Intensive CAD II, Pittsburgh, Pa, 269-289.

Szykman, S., S. Fenves, W. Keirouz, and S. Shooter. (2001). A foundation for

interoperability in next-generation product development systems. Computer-Aided

Design, 33, 545-559.

Tari, Z., J. Stokes, and S. Spaccapietra. (1997). Object normal forms and dependency

constraints for object oriented schemata. ACM Transactions on Database Systems,

22(4), 513-569.

Tolman, F. P., and P. Poyet. (1995). The ATLAS models. Paper presented at the Product

and Process Modelling in the Building Industry, Rotterdam.

Turner, J. A. (1988). AEC Building Systems Model (ISO TC184/SC4/WG1 doc 3.2.2.4).

Turner, J. A. (1988). A systems approach to the conceptual modeling of buildings. Paper

presented at the CIB W74 + W78, Lund, Sweden, 179-194.

VTT. (2004). Extension Projects for IFC (http://ce.vtt.fi/iaiIFCprojects/).

VTT Building and Transport. (2002). Construction IT Glossaries.

http://cic.vtt.fi/links/glossary.html.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction

management. ACM Transaction on Database Systems, 16(1), 132-180.

WFMC. (1999). Workflow Management Coalition Terminology & Glossary (WFMC-TC-

1011). Hampshire, UK: WFMC.

Wilson, I., S. Harvey, R. Vankeisbelck, and A. S. Kazi. (2001). Enabling the construction

virtual enterprise: The OSMOS apprach. ITcon, 6(Information and Communication

technology advances in the European construction industry), 83-110.

Wilson, I., S. Harvey, R. Vankeisbelck, and A. S. Kazi. (2001). Enabling the construction

virtual enterprise: The OSMOS apprach. ITcon, 6, 83-110.

 248

Wix, J., and P. katranuschkov. (2002, June). Defining the matrix of communication

processes in the AEC/FM industry: Current developments and gap analysis. Paper

presented at the CIB w78 Conference, Aahus School of Architecture, Denmark.

Wix, J., and T. Liebich. (2000). Information flow scenario:Deliverable D4, EU Project

IST-1999-11508 ISTforCE, "Intelligent Services and Tools for Concurrent

Engineering".

Wix, J., and T. Liebich. (2000). Information flow scenario: Deliverable D4, EU Project

IST-1999-11508 IST-forCE(Intelligent Services and Tools for Concurrent

Engineering).

Wyke, R. A., and A. Watt. (2002). Ch. 10 Bringing the Parts Together, XML Schema

Essentials (pp. 305-346). New York, NY: Jony Wiley & Sons, Inc.

Yang, D., S. You, F. Wang, C. M. Eastman, and J. Lee.CIS/2 @ Georgia Tech. Available:

http://www.arch.gatech.edu/~aisc/.

You, S.-J. (2003). File merging for avoiding import-time data loss in a file-based STEP

implementation. Qualifying paper (unpublished), College of Architecture, Georgia

Institute of Technology, Atlanta GA, USA.

You, S.-J., D. Yang, and C. M. Eastman. (2004, May 2-7, 2004). Relational DB

Implementation of STEP based product model. Paper presented at the CIB World

Building Congress 2004, Toronto, Ontario, Canada.

 249

VITA

Ghang Lee received a bachelor’s degree in architectural engineering and a master’s

degree in architectural design both from Korea University respectively in 1993 and 1995.

After graduation, he worked at Kumho, a large-scale construction company in Korea, for

about five and a half years as an architectural designer, researcher, software developer, and

later as an assistant manager. While working at Kumho, he and his team received a Medal

of Merit from the President of Korea in quality management of apartment complex design

and construction for research-oriented apartment complex design.

He began his Ph.D. study at Georgia Tech in 2000. During his stay at Georgia Tech,

he was involved in various advanced CAD system development projects and data

modeling (e.g., ISO-STEP, IFC, CIS/2) projects and taught a graduate-level course on

parametric modeling. Through the various research projects, he worked with a wide range

of organizations and companies such as the North American Precast Concrete Software

Consortium (PCSC), Teka Oy, the Sustainable Facilities & Infrastructure (SFI) group at

Georgia Tech Research Institute (GTRI), the Design in the Classroom (DITC) group at

College of Computing, and the Southern Staircase.

He has published twenty refereed journal and conference papers and ten project

reports since 1996. One of them was a keynote at the European Conference on Process and

Product Modeling (ECPPM) in 2002. He has served as a session chair at international

conferences such as CIBw78 and ECPPM and as a conference organizer (“BFC05: the first

conference on the Future of the AEC Industry”). He developed two licensed software

applications and several interactive websites.

