A NEW FORMAL AND ANALYTICAL PROCESSTO
PRODUCT MODELING (PPM) METHOD AND ITS
APPLICATION TO THE PRECAST CONCRETE
INDUSTRY

A Dissertation
Presented to
The Academic Faculty

By

Ghang Lee

In Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy in the
College of Architecture

Georgia Institute of Technology
December, 2004

Copyright © Ghang Lee, 2004

A NEW FORMAL AND ANALYTICAL PROCESSTO
PRODUCT MODELING (PPM) METHOD AND ITS
APPLICATION TO THE PRECAST CONCRETE
INDUSTRY

Approved by:

Charles M. Eastman, Advisor
College of Architecture, Georgia Tech

Godfried Augenbroe

College of Architecture, Georgia Tech

Dr. Shamkant B. Navathe
College of Computing, Georgia Tech

Dr. Martin Hardwick
Computer Science, RPI

Dr. Rafael Sacks

Civil Engineering, Technion

June 14, 2004

Product modeling is science, not art.

Chuck Eastman

ACKNOWLEDGEMENTS

This dissertation would not have been written without the support and feedback of
many people. First and foremost, | would like to thank Chuck Eastman, my advisor and
mentor. He is a warm-hearted advisor as well as a passionate and creative scholar.
Without his feedback and support, | would not be able to begin and finish my Ph.D. study.
This thesis was initiated by his question during a class. While developing GTPPM
described in this dissertation, there were many intellectual challenges. His insight,
experience, and advice helped me a lot in finding some possible answers. | aso would
like to thank hiswife, Mary Claire Eastman for her kindness and caring for my family.

Thanks to my thesis committee members for helping me structure and further
develop this thesis. | am much honored to have very renowned scholars in product
modeling as my thesis committee members. Prof. Fried Augenbroe in Building
Technology was my co-advisor. His knowledge in process and information modeling and
experience broadened my view towards process and product modeling. Dr. Sham
Navathe in Computer Science at Georgia Tech was my minor advisor. His lectures on the
fundamental database theories helped me clarify many data modeling issues. Dr. Rafael
Sacks, an external reader, is a senior lecturer of Civil and Environmental Engineering at
Technion Israel Ingtitute of Technology. He's been deeply involved in the development
of GTPPM since 2001. Without his feedback and encouragement, | would not be able to
work constantly on this research topic for several years. Dr. Martin Hardwick is a

professor in Computer Science at the Rensselaer Polytechnic Institute and the CEO of

STEP Tools. | thank him for his interest and detailed feedback and also for sparing his
busy time to attend my thesis defense from Troy, NY.

There are severa people that | owe acknowledgements for giving me thoughtful
and sincere comments on my work. Thanks to Robert Amor and Anders Ekholm.

In paradlel to my thesis, | worked on a project to develop an intelligent 3D
parametric CAD system for the North American precast concrete industry. The project
was called the PCSC (Precast Concrete Software Consortium) project. Through the PCSC
project, | was able to test and evaluate my new “process to product modeling (PPM)”
method, which is my thesis topic. | am indebted to the PCSC (Precast Concrete Software
Consortium) members and Tekla for their support, help, and collaboration. | was very
impressed by their passion for the project. | am especially thankful to Hans Klohn, Mark
Aho, David Orndorff, Lee Tanase, Dave Mahaffy, Mike Hutchinson, Skip
Wolodkewitsch, Karen Laptas, David Campbell, Dave Bosch, and David Fiedler from the
PCSC, Jason Lien and Harry Gleich, the former members of the PCSC, and Ragnar
Wessman and Pertti Alho at Tekla. Bill Heeps, Information System Manager at High
Concrete was not a member of the PCSC. But without his help, | would not be able to
evaluate my method.

In 1995, while | was working a Kumho, | was fairly ignorant about Design
Computing as a field of study. | am grateful to Dr. Hyuk Song and Hanmin Lee, my
former bosses at Kumho, for introducing Design Computing to me and giving me a
chance to build my career in this area. | aso thank Dr. Sungsuk Go, Dr. Jongsung Im,

Rakgi Choi, Jungkyu Lee and other colleagues at Kumho for their support.

| thank Dr. Ji-Hyun Lee at NYUST, Taiwan (previously at Carnegie Mellon) for
directing me to Chuck Eastman at Georgia Tech when | was looking for the best place to
pursuit my Ph.D. study.

| am also thankful to my former advisors at Korea University, Dr. Jungduk Lee,
Dr. Namchul Ju, and Dr. Kyungin Kang for their advice and consistent support even ten
years after | left school.

| aso like to thank the Ph.D. Program at Georgia Tech. First of al, I'd like to
thank Tom Galloway, Dean of College of Architecture, and Chuck Eastman (again),
Director of the Ph.D. Program. Thanks to their support, | was able to attend many
conferences while | was staying at Georgia Tech and was extremely lucky, as a Ph.D.
student, to become a keynote speaker and a session chair at a couple of conferences.

However, without good friends, | would not have been able to enjoy my life at
Georgia Tech. | thank Frank Wang (and Liyen), Fehmi Dogan (and Jenny), David Craig,
Seokjoon Y ou (and Saetbyul), Donghoon Y ang (and Eunyoung), Jaemin Lee (and Nan-a),
Saleem Mokbel, Weiling He, Elif Sezen Yagmur, Yan Zhang, Hyeonjoon Moon (and
Eunkang), Cheolsoo Park (and Sujin), Pegah Zamani, Mahbub Rashid, and others for
their feedback and friendship.

| usually don't like Hollywood stars listing names of their friends and sponsors at
an Academy Award. But | cannot just skip people who keeps reminding me that the earth
is a wonderful place to live: Kyuman Park, Y u-kyung Bae, Giyoung Kim, Jung-a Kim,
Byungho Kang, Jung-a Lee, Hannui Lee and Barbara, Youngjoon Simon Lee, Donggi
Namgung, Seung-Jong Park and Youngjin Chon, Hyeonjoo Park, Jooyun Chung,

Seungyun Gong and Y ujin Lee, Jaesung Ryu and his family, Yum Park and Y ounkyung

Y

Lee, Seong-Hyeak Won and Seungwon Shin, Jeehoon Park, Hyunghoon Kim, Hun-Hee
Cho, Youngchel Yum, Sanghyuk Son, Sejin Chon, Sujin Jang, Hokyu Hahn, Namho Park,
Hyungchang Lim, Shinho Kim, Kanghee Lee, Heesuck Henry Lee, Woong Lee,
Y oungjoon Oh, Y oungjoon Park, Kyoungwook Seo, Marim Kim, Y oungjae Kim, Jinsoo
Lee, and many others.

| also thank my middle school teacher and mentor, Soonjae Lee for her over
twenty years of support.

Many thanks to my parents, Professor Kiyong Lee and Director Jungja Ha, for
always trusting my decisions and for raising me as a positive and optimistic person.
Thanks to my sisters, Sue-en and Juen, for aways being my friends and supporters.
Thanks to my parents-in-law, Mr. Mooyoung Park and Mrs. Chunja Kwak, for raising
their daughter as a beautiful and wise lady.

| cannot thank enough my wife, Sungjin Park for her patience and support, and
Gio and Gia for reminding me how beautiful and delightful the world is. Sungjin, Gio,

and Gia have aways been the motivation of my life and they will be.

Vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.......ootitiitirierieieieese ettt iv
TABLE OF CONTENTS.....ootiiiteiieieieeste s steseesaeeeeese et ssessessesessesessessessessnssessnnsenens viii
LIST OF TABLES.......o oottt saesaenaeannens Xii
LIST OF FIGURES........ooi ittt sttt ene st st neens Xiii
SUMMOARY ettt ettt ettt te st et e e et et e neeRenreebentenae e et eneeneane XViii
CHAPTER 1 INtrOTUCTION ...ttt s ee e 1
11 What iSaProduct MOGE!coeeiriiininieeeeesese e 1
12 A Standard Method for Product Modeling and its Drawbacks............... 2
13 A Basic Approach and Primary GOalS.........ccccvvvieveiinieeneseeie e 6
14 Research Questions and the SCOPEccoerererieieiieeese e 10
15 GlOSSANY ...t e e ne s 13
CHAPTER 2 BaCKgrOUNG..........ocouiiieciieieeiieesie et siee s sseeseesseessae s snassnaesnsesneas 18
21 (@ Y SRR 18
22 Needs for Standard Product Models............coooeiiiiiiininieeeeeeee 18
2.3 Early Building Product MOEIS ..o 24
24 (O IS0 o N | 28
25 Other Building Product Models & Relevant Projects..........ccccvevennenee. 31
2.6 Other Studies on Product Modeling...........ccoveennnenneneneeneseeeeee 33
CHAPTER 3 A New and Formal Process-Centric Product Modeling Approach 35
31 Two Approaches to Develop a Product Model for Data Exchange...... 35
32 The Application-Centric Modeling Approach...........ccccceveverenenennene 36

viii

33 The Process-Centric Modeling Approach..........cccecevevercenencesienine 41
34 The Completeness of aProduct Modelcccceveevvniececcc e, 42
35 The Architecture of GTPPM.......coooiiiiiieeeeee e 44
CHAPTER 4 Requirements Collection and Modeling (RCM)........ccccoeieneneneneniennene 48
4.1 INEFOAUCTION. ...t 48
4.2 The GTPPM RCM LaNQUAEGEcccorirrieieiieniesiesieeee e sresee e ssee e e 50
4.3 ACHVITIES. ...ttt 51
4.4 Flows, Transitions, and DePendencCiesc.ccovvveevereseerieseseenieneens 53
4.5 Other Process-modeling Components and Notation............ccoceeeeeenee. 55
451 Initial and Final StALESc.oovieeiieeeeeee e 55

452 Static INformation SOUICES............corererienierieieeesese e 55

4.5.3 Dynamic Information REPOSItONES.........cccoreeieererieiieneeieee 56

454 CONLINUE.......couiitiriesierie ettt 57

455 D<ot S Lo o SR UR R 58

4.5.6 The Process Components and Their Attributes..............c......... 58

4.6 A Grammar for Product Information...........c.ceccevinenenenienenceene 59
4.6.1 Product Information Structure and Grammarcccceeeenene 65

4.6.2 Categorization of product informationc.ccecevvevvneerinnnene 70

4.6.3 Syntactic rules for product information............cccceeevereeiennnnne 73

4.6.4 Styles of Product MOdElS..........cccoevirieninireneee e 81

4.7 Relations between Information Categoriesin GTPPMccccceeeae. 86
4.8 Dynamic Consistency Checking..........cccovvveeieieiiieieceseecece e 89
4.8.1 Notation of Dynamic Information Consistency Check............. 90

482 Basic Logic of Dynamic Information Consistency Check 91

4.8.3 Extended Logic of Dynamic Information Consistency Check . 95

484 Practical Refinement of the Extended LOgIC.........cccocvveenennee. 101

4.85 Application & Limitations of the Dynamic Consistency

Checking Method..........ccoviiiiieieiicece e 104

4.8.6 Comparing RCM with Other Requirements Collection methods
.. 105
CHAPTER 5 Logica Product Modeling (LPM)cooiiiiiieeeereeee e 109
51 INEFOTUCTION. ...t 109
52 Schemas Mapping, Integration, Design Patterns, and Normalization 109
5.3 Integration of Collected Informationin GTPPM..........cccoeviinenienne. 113
54 Normalization in GTPPMcoiiiiniieneeeeeeese s 115
55 Logical Product Modeling in GTPPM ... 116
5.6 Step 1: Unionizing Information CONSIIUCES........ccccveveeveiienieseeiennns 117
5.7 Step 2: Decomposition of Information Constructs...........ccccevveeceeneene 121
5.8 Step 3: Merger of Semantically Equivalent ICS..........ccocceevviviciennne 123
59 Step 4: Resolving Conflicts between Attribute Types.........cccoeevneee. 124

5.10 Step 5: Resolving Conflicts between Attributes of a Supertype and its
INherited ArDULES........ooeeeeieee s 126
511 Step 6: Generalization/Speciaization in GTPPMcccccevvneniiennene 127

5.12 Step 7: Resolving Conflicts between Attributes, Supertypes, and

SUDEYPES. ..ttt st e e sb e e e e e 132
5.13 Step 8: Limitations of GTPPM & Refinement of aModel................. 134
CHAPTER 6 IMplementation...........ccocueieieneeienieseeie e e sieses st seeseesseeseessesseessens 137
6.1 An Assumed Modeling Procedure and Implementation..................... 137
6.2 The Requirements Collection and Modeling (RCM) process............ 138
6.3 The Logical Product Modeling (LPM) Process.........cccooeeverencncennne. 147
CHAPTER 7 Application & BEValUalion..........cccccuiiiinerieeneseeiesie e 150

7.1 OVEIVIOW ..ot e e e e et et e e e e eeeeeeeeeeeeeeeeeeeaaaaeaeannnnnns 150

7.2 Process Model Perspectives on Management and Engineering
PrOCEAUIES........oouiiiiiieie ettt 151
7.3 Product Models for Managing Estimation, Scheduling, and Shipping
INFOMMELTION ... e e 153
74 Product Models for Designing/draftingcccceeveerceeneenieesee e, 164
75 The Integration and Evaluation of Automatically Generated Product
MOGEIS ... e 168
CHAPTER 8 CONCIUSION......ueiiiiiiieiesiieiesie ettt sttt ee s seassesneennens 175
APPENDIX A Early standard product modeling efforts..........ccoooverveninenininneeeee, 179
APPENDIX B Theformal definition of the semantic union............c.ccooeveriinineenne. 182
APPENDIX C Resources for Process Modeling Methods...........ccooeveiineniennncceene. 185
APPENDIX D Requirements collection methods.............ccoereniiinienineeeseeeee, 197
APPENDIX E Notation of a Context-Free Grammar (CFG)ccccccevvvveveieseeinenne. 199

APPENDIX F A pseudo code for detecting semantically equivalent Information
(60] 015 1 £ U o K= TP URTRPRN 201

APPENDIX G Automatically generated preliminary product modelsin EXPRESS.... 203

APPENDIX H Workflow management............cccceeeierinieennneseesie e 234
REFERENGES ...ttt ettt nae e sae e e s s e e e nae e snseesneeeneeennes 235
VITA 249

Xi

LIST OF TABLES

Table 1.1 Mapping between the STEP models and the three-level database architecture. 5
Table 2.1 IFC eXtenSiON PrOJECEScoovriririireirieseeie ettt sne e 30

Table 4.1. Mapping between vernacular information items and information constructs. 67

Table 4.2 Information constructs and entitiesin a product model.............ccocevvverinnene. 87
Table 4.3. RCM and other modeling Methods. ..o 106
Table 4.4. Comparison of PISA and RCM ..o 108
Table 5.1 Decomposition of |Cs with the decomposition/association relations............. 122
Table 7.1 The degree of information dependence between activities by model type..... 153
Table 7.2 The statistics of the High model ..o, 159
Table 7.3 The statistics of the CTI MOdE]cccooiiiiiiiece e 159
Table 7.4 Evaluation of the High MOdElccoooeeiiiiiieieese e 163
Table 7.5 The difference in the PIECE definitions...........coooviieineincineiseceseneeee 166
Table 7.6 The statistics of the UnistressS model ..o 167
Table 8.1 Chronology of development in product data............ccecveveeieeveeseeseeseeniens 179
Table 8.2. Three major streams of the UMLcooiiiiiiiiieeeeee e 190
Table 8.3. Twelve standard UML Diagramsccccooeeeeieerenieeniesiesieesee e see e sieeee e 190
Table 8.4. Process MOdeling tOOIS........coiuiiieiiecieeie et 192

Xii

LIST OF FIGURES

Figure 1.1 A partial IDEFO model of 1SO STEP Part 225cccccovvvinieieneneeieseseeen 8
Figure 1.2 Traditional & proposed product data modeling methods..............ccoeeeieeenienne. 9
Figure 1.3 ReSearCh QUESHIONSooiiiiiiee e 11
Figure 2.1 A timeline of product modeling efforts..........cccooverieniiinieneeee 18
Figure 2.2. Data exchange between different applications............ccoceeeiiererienesceienene 19
Figure 2.3. Internal and external data exchange in practiCe...........ccoeeceiereriescneeceennene 22

Figure 2.4 The attribute properties model of the Building System Model in EXPRESS. 25

Figure 2.5 The PDU entity and its subtypesinthe GARMc.cccoeveevieevininninnie s, 26
Figure 2.6 A hamburger diagram..........ccoviieieiicieie e 27
Figure 2.7 The RATAS building kernel model, defined as an abstraction hierarchy....... 27
Figure 2.8 A timeline of major product modeling effortsin AEC..........cccoccevvvvneeiiennene 32
Figure 3.1 The architeCture 0f GTPPMcccccoviiiiiiiiniesie s 45
Figure 4.1. The hierarchy Of aCtiVITIES.........ccoieiiiiriee e 52
FIQUIE 4.2 ACHIVITIES. ...ttt et b ettt eenne e 52

Figure 4.3. A basic mapping concept between process models and an information itemsb3

FIQUIE 4.4 FIOWS ...ttt et b st s r e e nae e 54
Figure 4.5 Initial and final STaES.......ccueiieiieiiesie e 55
Figure 4.6 Static infOrmMation SOUMCE.........ccueiieiiriieeieeiteseeetesteeste e e e e sseesseesseesneesseens 55
Figure 4.7 DynamicC infOrmation SOUMCE..........ccceiuerieiieeiesieseesee e s eee st ese st e e sne e 56

Xiii

Figure 4.8 A pair Of CONLINUESc.coiiiieieiieie ettt sae e 57

Figure 4.9. A continue shape and adummy flow between activities at different levels.. 58

FIQUIE 4.10 DECISION.....c.eiiiiiieiieeeerie ettt sttt se e s bt e be b e e e e sbe e st e b e b e eneeeesae e 58
Figure 4.11 Process-modeling components of RCM and their attributes......................... 59
Figure 4.12 An information menu and information CONSLIUCES..........cccevverieieesieniennennns 66
Figure 4.13. A hierarchical structure of RCM product information in EXPRESS-G....... 73
Figure 4.14. The basic constituent structures of an information construct....................... 73
Figure 4.15 Product information as an access point to other information types............... 75
Figure 4.16. Abbreviation of specialized products............cccovveeveiinirieneneeese e 75

Figure 4.17. Concatenation of specialized products (SP) from different decomposed

PrOAUCES (DP) ...ttt 78
Figure 4.18 Abbreviation of decomposed products (DP)cccccevviiriinenenieneneeeeee 79
Figure 4.19. Abbreviation of specialized modifier entities (SME).......ccccvvvvvrineeiienene 80
Figure 4.20 A partial EXPRESS-G diagram of ISO STEP Part 41..........cc.ccocvviiiennenene 83
Figure 4.21 The DRP_Object structure of the core representation...........cccccevveviveiieennns 85
Figure 4.22. An example of constructing product informationccceevveeveesieesieennnns 86
Figure 4.23. Information structure 0f RCMccccoviiiiieni it 88
Figure 4.24 A source activity, atarget activity, and aflowcccoeveeeveveniiiiniece, 90
Figure 4.25 Upstream and downstream aCtiVitieS.........ccocvevevenieiesiniie e 91
Figure 4.26 An example of "Calculate tire strength”ccoceveiineeinneneese e 92
Figure 4.27 The DaSiC IOQIC.ciieieieieie e 93

Xiv

Figure 4.28 Thefirst interface for checking the information consistencyccccue...... 94

Figure 4.29 Types of activity iINfOrmMation............cccoviiirienineneeeee e 96
Figure 4.30 The second interface for checking the information consistency 99
Figure 4.31 A practical approach to checking the information consistency................... 103
Figure 5.1 Four possible information integration methodsin GTPPMcccccevveneen. 114
Figure 5.2 Roles of propertieSin GTPPMcoooieiiieiese e 118
Figure 5.3 Conflicting attribDULES..........cccoiviiieecice s 119
Figure 5.4 Unionization of Information CONSLIUCES.........c.cccveeeiereieeiieseseeee e 119
Figure 5.5 Conflicting attribute (rol€) NAMESccoviirieiee e 120
Figure 5.6 Properties associated with the same entityccoceeeverenvenienience e, 120
Figure 5.7 An example of two different properties associated with the same entity....... 121
Figure 5.8 Semantically equivalent information CONSLIUCESccceeverererieeneseeeeen 124
Figure 5.9 Merged entitiesin the specialization relation............ccccoereeienienieneneeseeeen 124
Figure 5.10 A conflict between an entity type and asimpletype........cccoovvevenenieeneene. 125
Figure 5.11 A resolution for the attribute data type conflict...........cccocvveeiniinnieieennen, 125
Figure 5.12 A conflict between SIMPIetYPES........ccevviieieri e 126
Figure 5.13 A resolution for the simple attribute data type conflict...........cccccovvrvennee. 126
Figure 5.14 A conflict between attributes of a supertype and inherited attribute........... 127
Figure 5.15 Deletion of inherited attribULES...........cooviieieiesenese e 127
Figure 5.16 Common attributes Of SUDLYPES.........ccevveeririrerieneee e 128

XV

Figure 5.17 Generalization iN GTPPMcoooiiiiiiiinine e 128

Figure 5.18. Thefirst iteration of specialization...........cccceveierienenirieeeee e 130
Figure 5.19. The second iteration of Specializationcccoeeeeeiererieene s 131
Figure 5.20 A conflict between an attribute and a subtype..........ccoooeeveienieiininceneee. 133
Figure 5.21 A resolution for the subtype and attribute conflict...........cccccvvvviviieiienen. 133
Figure 5.22 An additional [C........coviiiiiiicee e 133
Figure 5.23 A duplicate subtype relation...........ccecveveieeieese s 134
Figure 5.24 A resolution for a duplicate subtype relationcccceeevevenieeienesceeseene, 134
Figure 6.1 An assumed GTPPM modeling proCedure............coveveieeeenesenieesiesensee e 137
Figure 6.2. A part of aGT PPM model prepared by a precast concrete company 138
Figure 6.3 Entity PIECE defined in an Information Menu (IM)ccocvvvninenenenienne 139
Figure 6.4. A GT PPM Information Menu Interface (the IC Editor)........cccocevvrerenen. 140
Figure 6.5 Information Sets defined in aVernacular Data Dictionary (VDD)............... 141
Figure 6.6 Vernacular information items (V11s) defined in aVDDcccooiiiieeienee. 142
FIQUre 6.7 The VI UPGELEScceeiiieie ettt s 142
Figure 6.8 The Vernacular Information Item (V1) (or VDD) editorcccccevvevenennn. 143
Figure 6.9. A part of aGT PPM model with information SetS..........cccccevvvvieeienvseecien, 143
Figure 6.10 The Information Set EditOr..........ccovviieiiiieiere e 144
Figure 6.11. The GT PPM Activity Information EQitorccccovvveevenenieninneseeieen 145
Figure 6.12. The GT PPM Information Mapperccceoerirerienieneeieeine s 146

XVi

Figure 6.13. Exported INformation [tEMSccoeeiireniere e 148

Figure 6.14 The EXPRESS CO0E GENEIELOLcceeiuiriereerieeieeee e sieeee e 149
Figure 6.15 GT EXPRESS2SQLcc.coiiiiiiiierieree ettt 149
Figure 7.1 Generic top-level processmodel ..o 151

Figure 7.2 A round table discussion at High Concrete before one-on-one interviews... 154

Figure 7.3 ACQUITE PrOJECE.........ccueiiiiiciie ettt sttt 154
Figure 7.4 Mapping ambiguous terms based on the descriptions............ccccceevvieecnenne. 158
Figure 7.5 A SQL table structure of the High model with referentia relations............. 160
Figure 7.6 A stack of dOUDIELEES.........cceiviiieiecce s 165
Figure 7.7 A part of adouble tee modeling ProCESS........ccovierriereseeiee e 165
Figure 7.8 DrawingS from ClIENES ..o 166
Figure 7.9 EXPRESS code validation by EDM®ccooiieieeomeeeeeeieeeessessessessesenenn, 169
Figure 7.10 A hierarchy of MATERIAL generated by the Expresso Entity Grapher...... 169
Figure 7.11 Automatically generated PTECE and CONNECTION definitions............... 170
Figure 7.12 Severa entity graphs of entitiesin the integrated modec.ccoeeeeneenee. 171
Figure 7.13 An entity graph of IFC Building Elements...........ccccoiiiniinniniineneeee 171
Figure 7.14 A partial EXPRES-G model of IFC Building Elements.........ccccocoieeenee. 172
Figure 8.1. RCM NOLBLIONcccuiiieiieeieeieesieesieesieesieesteesseesseessesssessresssessseessesssessnessnens 176
Figure 8.2. A linguistic example of a constituent structure tree..........ccvevveeeeenvcceecnenne, 199

XVii

SUMMARY

A product (data) model is a formally structured schema of some subset of the
information that is generated, modified and deleted throughout a product’s lifecycle.
Product models are being developed in many manufacturing, construction and industrial
domains to facilitate automation of activities, electronic communication and re-
engineering of engineering processes. The current standard product (data) modeling
process relies on the experience and subjectivity of data modelers who use their
experience to eliminate redundancies and identify omissions. In order to ensure
correctness, their decisions are validated via a time-consuming process of national and
international voting, e-mail and face to face meetings. As a result, product modeling
becomes a social activity that involvesiterative review processes of committees.

This study aims to develop a new, formal method for deriving product models
from data collected in process models of companies within an industry sector. The
theoretical goals of this study are to provide a scientific foundation to bridge the
requirements collection phase and the logical modeling phase of product modeling and to
formalize the derivation and normalization of a product model from the processes it
supports. The long term practical goal is to greatly reduce the time and cost of producing
a product model from the current 5 to 10 years to 1.5 years or less. Another practical
benefit will be to alow companies to better plan and integrate their operations using the
resulting product model. To achieve these goals, a new and forma method, Georgia Tech

Process to Product Modeling (GTPPM), has been proposed. The basic approach is to

XViii

bind process and product data modeling together and to develop a product data model
that is senditive to its various applications (processes).

This method eventually intends to support the ISO STEP effort. ISO STEP
(STandard for Exchanging Product data) is an international effort to develop standard
product models. The equivalent concepts to process and product models of SO STEP are
respectively Application Activity Models (AAMs) and Application
Reference/Requirements Models (ARMs). Currently EXPRESS is the standard SO
STEP data modeling language and IDEFO is the standard AAM language. However, an
AAM and an ARM are linked implicitly and abstractly. In order to provide a mechanism
to tightly bind them together, several research questions should be answered. The
research questions are:

1) What is the process semantics that is required to elicit processes and

information necessary and sufficient to derive a product model?

2) How to specify required information in a machine-readable format

3) How to resolve the naming issues (a.k.a. the ‘nym’ issues. e.g., synonyms and

homonyms) and the conflicts between company-specific vernacular terms and
aconsistent machine-readable terms

4) How to validate the consistency of information captured in a process

5) How to derive a product model from the collected process information

6) How to validate the well-formedness of the derived product model and

normalize the derived product model

XiX

7) How to integrate (or harmonize) product models into one unified model when
severa different product models are derived from different processes about
the same product.

GTPPM consists of two modules. The first module is called the Requirements
Collection & Modeling (RCM) module. It provides semantics and a mechanism to define
a process model, information items used by each activity, and information flow between
activities. Thirteen process-modeling components have been defined for capturing
process semantics and information flow. In order to specify information items used by
each activity, a mechanism, called an information menu, has been developed. It structures
and restricts a way to specify information constructs (1Cs) based on rules defined using a
context-free grammar (CFG). Information constructs (ICs) are formally defined
information items and represents domain semantics. The logic to dynamically check the
consistency of information flow within a process also has been devel oped.

The second module is called the Logical Product Modeling (LPM) module. It
integrates, decomposes, and normalizes information constructs collected from a process
model into a preliminary product model. Nine design patterns are defined to resolve
conflicts between information constructs (1Cs) and to normalize the resultant model.

These two modules have been implemented as a Microsoft Visio® add-on. The
tool has been registered and is also called GTPPM®. The method has been tested and
evaluated in the precast concrete sector of the construction industry through several
GTPPM modeling efforts. The GTPPM was first deployed by fourteen precast producers
in the North America in analyzing the sales, design, engineering, production, and

shipping processes and information flow in the precast concrete industry. Based on the

XX

analysis results of the first attempt, three more test case models were developed. Three
product models and one integrated product model were automatically derived from the
three GTPPM models. One product model of a company was compared with the existing
Enterprise Resource Planning (ERP) system of the same company. The integrated model
was evaluated using the precast concrete extension of an existing standard product model
(i.e., PCC-IFC) as a benchmark.

A product model generated by the current GTPPM method is by no means
complete. An automatically generated product model will not include roles, data type,
cardinality, and the WHERE, DERIVE, and RULE clauses. Those should be added and
modified manually. The logic for automating those processes can be developed further in
the near future.

By using GTPPM, a complete set of information items required for product
modeling for a medium or a large industry can be collected without generalizing each
company’s unigue process into one unified high-level model. However, the use of
GTPPM is not limited to product modeling. It can be deployed in several other areas
including:

e workflow management system or MIS (Management Information System)
development: Information required for processing an activity, passed to
succeeding activities, and fed back to previous activities can be defined.

o software specification development: A detailed definition of engineering
functions and processes can be developed, which will alow further

development of software in the engineering and design aress.

XXi

e business process re-engineering: A process model with specific information
items can be used for reengineering of an organization like other process
models.

Also any form of a data model defined in EXPRESS can be read into GTPPM as
an information menu. Using this function, GTPPM can be used to update or validate an
existing product model by reading in an existing product model as an information menu.
It can be also used to develop conformance classes (i.e., valid subset models) of an
existing model.

We hope that this work will impact American and international standardization
activities (e.g., 1SO efforts) to develop product models. By developing new formalisms
for product modeling, the proposed method is intended to build a formal and scientific

foundation for work in afield that is currently a craft, allowing systematic improvement.

XXii

CHAPTER 1

INTRODUCTION

11 WHAT ISA PRODUCT MODEL

The information involved in design, engineering and manufacturing of each
product class involves many specialized entities, various types of aggregation, attributes
with specialized meaning and functional relations. A product (data) modelis a formally
structured schema of such product information that is generated, modified, and deleted
throughout a product’s lifecycle. Defined as an integration and exchange standard, it is an
electronic medium to share and exchange product information among heterogeneous
systems within an organization, or more widely within/across industries. A product model
has distinctive characteristics from other data models:

1) It includes complex geometric information, defining the shape of each
component of the product, and also the shapes of different levels of component
composition.

2) The geometry is partially derived by the product’s intended functions. These
functions of the product are represented along with the topologies that enable
them, as well as the behavioral anaysis results used to determine properties of
the product, partially capturing the product’s intent and rationale.

3) A product is manufactured or constructed. The information required to

fabricate, assemble, test, and manage the product are also included.

Y Inthisthesis, the terms a‘ product model’ and a ‘ product data model’ are used interchangeably. Also a*‘datamodel’ and
a‘(data) schema are used interchangeably.

To date, over 30 product data models have been developed within the International
Standards Organization - Standard for Product Data Exchange (ISO-STEP 10303)
standards (ISO TC 184/SC 4 1994) and there are a growing number of industry-based
product models developed outside of the SO organization, but using the same technol ogy,
tools and procedures (CIM Steel Integration Standards Release 2 2002; 1Al).

Product model schemas are large and multifaceted, reflecting multiple complex
semantic domains. For example, the CIMsteel product model used in the structural steel
industry (Crowley & Watson, 1999) has 731 entity types and a scope covering the design,
analysis, shop detailing and fabrication of steel structures for buildings. Currently, it is
supported by twelve applications. Other example domains for which product models have
been developed include NC tooling (1SO TC 184/SC 4 1996), sheet metal design processes
(1SO TC 184/SC 4 1999; Jurrens 1991), piping (1SO TC 184/SC 4; Paimer and Reed 1990),
process plant spatial layout (1ISO TC 184/SC 4 2001), electronic assembly and packaging
design (ISO TC 184/SC 4 2001) etc. While significant effort has already been applied to
the development of product models, many engineering and production domains are still
evolving their IT infrastructure and have not yet developed corresponding product models.
Also, product models are live, not static, and require updating as new technologies and
concepts are integrated into a manufacturing or design domain. Thus the benefits of

improving the methods used in product modeling would have significant impact.

12 A STANDARD METHOD FOR PRODUCT MODELING AND ITSDRAWBACKS

The current method employed in all current product modeling efforts is based on
the 1SO-10303 STEP languages and methods (NIST 1993, 1993). The STEP name for a

product model of each domain is an Application Protocol (AP). The STEP includes

standard procedures that correspond to the ANSI/SPARC three-level database architecture:
i.e., aview, alogical model, and a physical model. The procedures begin by defining the
scope and processes to be supported, by defining a process model of the domain of
discourse, (called an Applications Activity Model (AAM)). STEP uses IDEFO (Integration
Definition of Function Modeling) to define the AAM. It shows “the engineering process
context in which an AP will be used (VTT Building and Transport 2002)”. From the AAM,
aview of the information domain (called an Application Requirements Model (ARM)) is
defined using one of a set of conceptua modeling tools. (ISO STEP currently endorses
NIAM (Nijssen and Halpin 1989), IDEF1x (NIST 1993) and EXPRESS-G (ISO TC
184/SC 4 1994).) An Application Requirements Model is then refined and elaborated into
an Application Interpreted Model (AIM, which is a logical model of the information
domain). EXPRESS is the product modeling language universally used in such efforts
(ISO TC 184/SC 4 1994; Schenk and Wilson 1994; VTT Building and Transport 2002).
The initial AIM is then refined to integrate standard data model resources for representing
standard, cross-discipline concepts, such as geometry, units and measurements,
organizations, and so forth. The product model must support a variety of uses, centered
around queries, access, and management. These often require data about the data, or
metadata, needed for data management uses. Later, AIM can be implemented as a physical
model through the Standard Data Access Interface (SDAI) (1ISO 10303 Part23, 2000).
Table 1.1 on the next page maps the STEP models and the ANSI/SPAC three-level data
structure based on Andrew Crowley’s five-level structure on p. 40 of (Crowley 1998) and
other references (Eastman 1999; Elmasri and Navathe 2000; 1SO TC 184/SC 4 1994; NIST

2002).

Product models are currently developed as a joint undertaking of domain experts
and product model experts, relying on committee reviews and convergence. The domain
experts rely on natural language to describe their requirements. The product model experts
first use process modeling languages and tools to define the scope of the domain (the
AAM) and then conceptual modeling tools to define the concepts in the domain and their
structure (the ARM). These two representations are separate and unrelated. They are
initially based on subjective and ad hoc interpretations of the expert’s knowledge. Because
the representations are new and complex to the domain experts, they are not easily checked
and require many cycles of iteration to converge to a meaningful result. Later the ARM is
elaborated and translated by the modeling experts to a full product model (or AIM) based
on the SO STEP integrated generic resources (IRs)?. The IRs define “a generic ontology
for product data and provide the context of the AP domain ontology (Danner 1997).” The
product modeling process is iterative and converging between the modeling and domain
experts. It typically takes at least five years to complete the specialization and approval of
a product model. Some efforts have taken more than ten years. Throughout later stages,
application developers within the domain are engaged and trand ators to/from the product
model are developed. A product model specification is implementation-free; it can be
mapped into a text file format, an XML Document Object Model (DOM) or an XML
schema, a relational or object-oriented database schema, or object model direct mapping
interfaces. Initial interfaces typically involve file-based exchange, with database
implementations following. The STEP method using IDEFO has been adopted by many

organizations such as US Air Force, |Al, and a number of projects carried out under the

2 |SO STEP Parts 41 to 56 define IRs.

auspices of the European Union (CIM Steel Integration Standards Release 2 2002; Karstila

2001).

Table 1.1 Mapping between the STEP models and the three-level database ar chitecture

Layer Model L anguages STEP Modd
External or view External Schemaor View IDEFO AAM* ARM
level IDEF1x *An AAM is primarily an activity
NIAM / process model, but also
EXPRESS-G represents information flow in a
EXPRESS process at ahigh level (eg.,
IDEFO ICOM).
Conceptual Level | Conceptual or Logical Schema EXPRESS AIM
Internal Level Internal or Physical Schema C++ STEP only provides an interface
(Examplesinclude internal data Java (i.e, SDAI) to the physical
models of CAX3 and other applications | XML schema
aswell as database management (SQL)

systems.)

While the ISO-STEP methodology has been a significant step forward and has

allowed integration to be realized that could not have been achieved by earlier file-format

technologies, it suffers from a number of drawbacks:

1) The ISO-STEP product modeling process is a social process that involves

iterative review processes, rather than a rigorous collecting and processing of

strategic information (Eastman, Lee, and Sacks 2002). It relies on intuition,

tacit expertise and craftsmanship of the product modeling committee. Product

modeling needs to be put on a more rigorous scientific foundation, based on a

more formal and thus a systematically improvable process.

2) Current methods rely exclusively on human review for validation. While human

review is necessary for capturing semantic fallacies, consistency conditions

regarding information use within a process and product model can be identified

% Application types starting with the phrase “ Computer-Aided (CA)”: e.g., Computer-Aided Design (CAD), Computer-
Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE)

(Lee et a, 2002). These define logical propositions supporting automatic
validation checking, reducing the range of manual checking required.

3) Inamost al industry-wide product modeling efforts, IDEFO models are built as
single unified models to represent idealized industry-wide processes, defined by
consensus among multiple stakeholders (Katranuschkov et al. 2002; NIST
1993). In this approach, any company level interest in planning its integration
with the product model must be carried out separately from the communal
activities. There is no means to include these variations in the modeling effort
or to validate that the product model developed supports current or anticipated
individual corporate processes.

4) Current product data models are defined as static structures, defined more as
archives of data rather than as support for strategic workflow processes. The
developmental and evolutionary aspects of product development and
production planning are not well supported (Eastman and Fereshetian 1994). If
product models are to truly support process re-engineering and integration,
closer linkage with the workflow characterization of a product domain is
required, to explicitly incorporate the developmental aspects of engineering and

design.

13 A BASIC APPROACH AND PRIMARY GOALS

Process modeling and product modeling are currently two different modeling
methods with different purposes for representing a domain. A process is a series of
activities that are “a piece of work that forms one logical step within a process’ (WFMC

1999). On the other hand, a product model describes the definition, structure, and relation

of information required to design, engineer, produce, and manage a product. Product
modeling serves information structure analysis, software development, database design,
and also organizational knowledge management and learning (Bernstein, Pal, and Shutt
2000). These two different modeling methods are related to each other by information.
Even though information used in a process is not directly depicted in most process
modeling methods, conceptually all the activities require input information to perform their
tasks and produce output information. The activity—specific information is closely alied to
the task-specific software applications developed to support an industry, so there is a
strong correspondence between the activity flows and application-specific data exchange
requirements. Since the exchange requirements are precisely the purpose of a product data
model, the process model can serve as an excellent source to identify many of the semantic
constraints applied in devel oping a product model.

The primary goa of this study is to develop the logic and procedures supporting a
formal method for product modeling, based on process-model-derived data. The basic
approach is to interweave (or to map) process modeling with product modeling. It aims to
provide a scientific foundation to elicit and collect information and domain knowledge
through process modeling that is sufficient to replace more traditional modes of conceptual
modeling and to (semi-) automatically derive and normalize a product data model from the
collected information (Figure 1.2, b). Some requirements collection and modeling methods
such as IDEFO and DFDs allow users to define input and output information at a high level

as shown in Figure 1.1 (1SO TC 184/SC 4 1999) or even at a detail level®. However, there

4 In DFDs (Data Flow Diagrams), detailed information transferred between systems can be specified in a separate data
dictionary.

is no logic or procedures yet to automatically derive a product model from the specified

input and output information without human intervention.

*Building standards
and codes

Design change

requests

Y

Approved preliminary . Detailed building
building design Produce detailed design

—_—» design

1

Figure 1.1 A partial IDEFO model of SO STEP Part 225

Another goa of this study is to provide the logic to integrate information
requirements collected from multiple AAMs into an ARM (Figure 1.2). As discussed
earlier, most standard product models today are developed based on a single
unified/integrated process model (AAM). And the single unified AAM is used only as a
means to define the scope and the context of a product model at a high level. It is not
because an AAM method is prohibiting multiple AAM generation or encouraging a single
unified AAM development. It is because there has not been a rigorous theory to integrate
information requirements specified in multiple AAMs into an ARM and, thus, it is only
time-consuming to produce multiple AAMSs.

The theoretical goal of thiswork isto provide aformal structure to the information
collection, mapping, and structuring activities that are now used in an ad hoc way in
product modeling activities so that product modeling has a more scientific basis, rather
than only a social, information standardization basis.

The practical far-reaching goal of this work will be in reducing development time
of product models from the current 5 to 10 years to 1.5 years or less by minimizing the

committee review cycles, automating the product-modeling processes, and providing a

logical foundation to check the validity. Reducing the development time is essential if
product modeling isto facilitate future re-engineering and automation in various industries.
It will become more critical as more standard product models are developed to support data
sharing between heterogeneous business and application environments. In the future, if a
product model cannot satisfy rapidly changing business and software environments, it will

become arestriction on design and manufacturing innovation.

Long Modeling Time (5-10 years)

7
o

No rigorous method to check
the completeness of an ARM

A single ,__x‘\\
integrated AAM Ve g Y

review referencing,
date,
model XL . . .
Integrated \ | weak link mapping implemenation Physical
AAM static modeling Database

o . Application Requirements Model
Application Activity Model "
e.g., IDEFO, UML Activity Diagram &9~ IDEF1X, EQ,'?!Z‘;’?"“‘ Express-G

feedback & updates

Application Interpreted Model
e.g., Express

a) Traditional Product Modeling Methods

Shortened Modeling Time (1-1.5 years)

k
~

o

feedback & updates
referencing

Integrated \ 7aPPing implemenation/" Physical
ARM Database
Application Interpreted Model

Application Requirements Model e.g., Express
e.g., IDEF1x, ER Diagram, Express-G
Express

‘ Information
strong %ond Constructs
dynamic odelin

i

automated &
direct derivation
and integratiol

g

Information
Constructs

Process and Information Flow Modeling

b) A Proposed Product Modeling Method

Figure 1.2 Traditional & proposed product data modeling methods®

® The diagramsin grey are outside of the scope of this study.

1.4 RESEARCH QUESTIONSAND THE SCOPE

Derivation of a product model from process information is not just a simple process
of adding information items to each activity and aggregating them back. First, process
infformation must be constructed as machine-readable information items having a
corresponding semantic representation in a product model. And the semantic concepts
identified in the process model should be mapped to product data model constructs.
Theoreticaly, the mapping from the captured process information to product data model
constructs is similar to the mappings from a data dictionary (a collection of data) to a
logical model, and eventually into a physical model. The information items arbitrarily
defined in natural language are not adequate for automating the mapping process. Formal
methods to define information constructs in a machine-readable format and to
incrementally structure the information constructs into a targeted data schema should be
provided. In this process, a resultant data schema should be normalized (decomposed and
restructured) in a logical form. Also appropriate schema integration methods to compose
the mapped product model constructs into an overall schema consistent with all the
constructs should be developed. While workflow systems® have been able to achieve this
kind of synthesis for business data, it has not been possible for complex engineering data.

These research questions can be summarized as follows:

® See Appendix E for a short review on workflow management systems.

10

1)

2)

3)

4)
5)

6)

7)

Process semantics Validation of a process model

& its information flow
U Normalization

4 A
\ J Derivation of a non- y

normalized ARM

Information

,» Constructs
’ °

Specification of 3 _,J" Integration
required information _ .
he ‘nym’ issues and the

conflicts between
vernacular terms

Information
Constructs

Figure 1.3 Resear ch questions

What is the process semantics that is required to elicit processes and

information necessary and sufficient to derive a product model ?
How to specify required information in a machine-readable format

How to resolve the ‘nym'’ issues (e.g., synonyms and homonyms) and the
conflicts between company-specific vernacular terms and a consistent machine-

readable terms
How to validate the consistency of information captured in a process
How to derive a product model from the collected process information

How to validate the well-formedness of the derived product model and

normalize the derived product model

How to integrate (or harmonize) product models into one unified model when
several different product models are derived from different processes about the

same product.

11

The scope of this study is limited to the development of an integrated ARM. A
theoretical foundation for automating the mapping between an ARM and an AIM is
outside of the scope of this study.

Chapter 2 briefly reviews the history of product modeling and the existing product
modelsin the Architecture, Engineering, and Construction (AEC) domain’.

Chapter 3 provides formal definitions of two product modeling approaches: i.e., the
application-centric approach and the process-centric approach. It aso formally defines the
relationship between a process model and a product model.

Chapter 4 introduces the Requirements Collection & Modeling (RCM) phase of the
proposed method. It discusses process semantics required for deriving a product model
from collected information requirements and describes a grammar for product information
using a Context-Free Grammar (CFG). Also it describes the logic for checking the
consistency of information flow within a process.

Chapter 5 discusses the Logical Product Modeling (LPM) phase of the proposed
method and proposes nine design patterns to integrate and normalize collected information
requirements into an ARM.

Chapter 6 explains how the proposed method has been implemented based on an
assumed product modeling process.

Chapter 7 reviews and evaluates the method. The proposed method were
experimented with fourteen precast producer members in the US and Canada. Three
product models and an integrated product model have been automatically generated from

collected information requirements through the proposed product modeling process. The

" The facility management (FM), real estate, infrastructure industries are often treated as separate industries from the
AEC industry. However, this paper uses “the AEC industry” as aterm, which also includes all other relevant industries.

12

results were compared with a data schema of an existing ERP system and with the precast

concrete extension of an existing standard product model (i.e., PCC-1FC).

15 GLOSSARY

e activity: alogica step within a process (WFMC 1999) (Section 1.3) From a
product-modeling point of view, an activity of a process can be defined as an
act of processing information items (Section 3.4)

e application activity model (AAM): 1) the engineering process context in which
an AP will be used (VTT Building and Transport 2002)” (Section 1.2); 2) a
model that describes an application in terms of its processes and information
flow (1ISO JTC 1/SC 32 2003)

e application context: the intended use of product data within an application (ISO
JTC 1/SC 32 2003)

e application interpreted model (AIM): 1) a logical model of the information
domain (Section 1.2); 2) an information model that uses the integrated
resources necessary to satisfy the information requirements and constraints of
an application reference model (1SO JTC 1/SC 32 2003)

e application protocol (AP): 1) The STEP name for a product model of each
domain is an Application Protocol (AP) (Section 1.2); 2) a part of the ISO
STEP standard that describes the use of integrated resources satisfying the
scope and information requirements for a specific application context. (1SO
JTC 1/SC 32 2003)

e application reference model (ARM): 1) a view of the information domain

(called an Application Requirements Model (ARM)) (Section 1.2); 2) an

13

information model that describes the information requirements and constraints
of a specific application (1ISO JTC 1/SC 32 2003)

application: a group of one or more processes creating or using product data
(ISO JTC 1/SC 32 2003)

flow: relation (e.g., transition) between activities. (Section 3.4)

Georgia Tech process to product modeling (GTPPM): the process-centric
product modeling approach, which consists of the Requirements Collection and
Modeling (RCM) module and the Logical Product Modeling (LPM) module
(Section 3.5)

information construct (IC): 1) aformally defined information item used within
a process. (Section 3.5); 2) a concatenation of tokens, which conforms to the
product information specification (PIS) grammar (Section 4.6.1)

information item: aminimum expression of product information. (Section 3.4)
information menu (IM): 1) a collection of tokens possibly used in a UoD with a
classification structure. It restricts the ways in which tokens can be strung
together in constructing information item. (Section 3.5); 2) a collection of
tokens that forms a minimum expression (or phrase) of product information
(Section 4.6.1)

information unit: a grouping of relating constructs (entity data types, attributes
and relationships) that together represent one of the high level concepts of the
STEP data architecture (Fowler 1996)

integrated resource: a part of the ISO STEP standard that defines a group of

resour ce constructs used as the basis for product data (1SO JTC 1/SC 32 2003)

14

logical product modeling (LPM): an algorithmic process to derive a product
model from collected information constructs (Section 3.5)

model: an abstract representation or description (1SO JTC 1/SC 32 2003)
normalization: 1) an activity of using the known semantics of data in the form
of dependencies that may be a cause for potential “update anomalies’ requiring
unnecessary duplicate work as well as causing potential inconsistencies in a
database. (Section 5.2); 2) decomposition and restructuring of a data structure
to anormal form (Section 5.4)

production information specification (PIS) method/mechanism: a method to
specify product information in a consistent, extensible, generative, analyzable,
and accessible manner (Section 4.6)

process model: a model that describes how activities within a process are
connected, ordered, and structured, and represents a use case of information.
(Section 3.3)

process. a series of activities

product data: a representation of facts concepts, or instructions about a product
or set of productsin aforma manner suitable for communication, interpretation,
or processing by human beings or by automatic means (1SO JTC 1/SC 32 2003)
product information: 1) the information generated, used, and maintained
throughout a product's lifecycle. (Section 4.6) 2) facts, concepts, or instructions
about a product or set of products (1SO JTC 1/SC 32 2003)

product model (or product data model): 1) aformally structured schema of such

product information that is generated, modified, and deleted throughout a

15

product’s lifecycle (Section 1.1); 2) a model that describes the definition,
structure, and relation of information required to design, engineer, produce, and
manage a product. (Section 1.3)

product: 1) athing or substance produced by a natural or artificial process (1SO
JTC 1/SC 32 2003); 2) the identification and description, in an application
context, of a physically realizable object that is produced by a process (Fowler
1996)

requirement collection & modeling (RCM): a graphica Requirements-
Collection-and-Modeling language for capturing information in the context of
its use (Section 3.5)

resource construct: the collection of EXPRESS language entities, types,
functions, rules, and references that together define a valid description of
product data (1SO JTC 1/SC 32 2003)

semantic intersection: a set of information itemsin two different data sets that is
semantically equivalent. (Section 3.2)

state: A state (S) is a mode of a project. The state of a project is changed by a
set of activities (A). A project cannot autonomously change its state. (Section
3.4)

supertype: a set of least common attributes of its subtypes (Section 4.6.1)
token: a non-decomposable meaningful lexical element (1SO TC 184/SC 4

1994) (Section 3.5) (Section 4.6.1)

16

e vernacular data dictionary (VDD): a data dictionary of vernacular information
items (VIIs), which includes VII names, definitions, data type, examples,
references, and synonyms (Section 6.2)

e vernacular information item (VI11): a company-specific local nomenclature and
definition for product information (Section 3.5)

e view: a semantic subset of its superset similar to the concept of semantic

intersection; a derivable subset from its superset. (Section 3.5)

17

CHAPTER 2

BACKGROUND

21 OVERVIEW

This chapter discusses why a standard product models is required and briefly
reviews the early product modeling efforts and product models in Architecture,

engineering, and construction (AEC).

22 NEEDSFOR STANDARD PRODUCT MODELS

The merger of PDES into ISO STER1991)

HPS: (1989) Harmonization of Product Data
Standards Organization
PDES (1984-1985): IGES, PDDI, STEP

STEP (1984): STandard for ExchangingProduct (data) model
PDDI (1982-1987): ANSI Product Definition Data Interface
SET(1983): FrenchStandard d’Echange et de Transfert(GOSET)

IGES (1979-1981): First practical solution
CAM-| (1973-1984): BRep
ICAM: IDEF

AECMA: European Aerospace Industry

VDA (1982): German Automobile Industry
ANSI Y14.26(1970-1981): ANSI committee for standardization of a product model

ANSI/X3/SPARC Threelevel data model architecture

1970 1980 1990 2000

Figure 2.1 A timeline of product modeling efforts

The (standard) product modeling efforts first began as an effort to exchange a set of
geometric data between different CAD systemsin the 1970s. Even at that time, when there
were only a few CAD systems with any significant market penetration, the demands for

standard geometry and topology to exchange data between different CAD systems were

18

very well recognized (Goldstein, Kemmerer, and Parks 1998). Over the time, the scope of
product information, which can be managed electronically, has been broadened and so
does that of product models and the number and types of software applications. Figure 2.1
is a timeline of those product modeling efforts. A brief summary of each project is
provided in Appendix A. Detailed and good descriptions on each project are available in
(Bloor and Owen 1995; Eastman 1999; Goldstein, Kemmerer, and Parks 1998).

Figure 2.2 is a well known diagram that illustrates the needs of a standard product
model in terms of the number of translators required for exchanging data between n
numbers of software applications with and without a standard product model. Figure 2.2
(@) illustrates a case where there are n numbers of applications but without a standard

product model and Figure 2.2 (b) a case where there is a standard product model.

L N
- PANS S |
ChH 0 ¢ O
,l,1 W 7_‘,s:—::;:'/ \\ AN |
AN S N
Cf-2- -1 F----30-----0
R o R
AT <\ |
CEcoi-r A0 O @ O
N Al [}
]
(a) Direct data exchange (b) Data exchange
between applications through a single standard
data model
[1: software application 3 : astandard product model

- - -- : data exchange (information flow)

Figure 2.2. Data exchange between different applications

Each application needs at least two translators to import and export data to another
application in both cases. The number of translators required for exchanging data between
applications in Case (8) is2* n* (n - 1) or 2n* — 2n and in Case (b) 2n. The difference

increases exponentially as the number of applications increases. Since more and more

19

software applications with various functions and formats are released to the market every
year, the standard data model approach seems very cost-effective and time-saving
compared to the direct data exchange approach. However, this comparison has been
criticized for being too idealistic. Some of the criticisms® are as follows: (See Figure 2.3
for an example)

e A company or aproject does not use all the software applications available in the
market (Figure 2.3), but only a small subset of the software applications available
in the market (Figure 2.3).

e Not all the software applications used by a company need to talk to each other. For
example, usually there is no data exchange between a CNC machine and a
structural analysis system (Figure 2.3).

e Through the last twenty or thirty years, software applications became versatile. One
application or a bundle of applications by one software vendor can support the
broad range of product design, engineering, and production activities.

e Some applications have embedded direct links between themselves and different
applications devel oped through Application Programming Interfaces (APIs) (e.g., a
CAD system and a structural analysis system in Figure 2.3). Some relevant
technologies are the middleware (e.g., ODBC), the Dynamic Link Library (DLL),

and the Component Object Model (COM) technologies.

8 This criticism is based on a survey on the use of software applications in the precast concrete industry, interviews with
architects, discussions with software developers, Fried Augenbroe's presentation at ECPPM 2002 (Augenbroe 2002).
Another set of discussions on a standard product model can be found in (Amor 2001). Rober Amor discussed twelve
common misconceptions (or misbelieves) about standard product models and integrated project databases. Those are:
1) OO provides the complete solution; 2) The single data model will appear; 3) We represent reality; 4) User views are
reconcilable; 5) Mapping is easy; 6) The Internet solves the communication problem; 7) XML solves the
representation problem; 8) Documents will disappear; 9) CAD is the center of an integrated project database (IPDB);
10) IPDB solves information ownership problems; 11) IPDBs guarantee coordinated and consistent information; and
12) Theindustry isready for |PDBs.

20

Some applications are dominant in a certain domain (e.g., AutoCAD in AEC). And
their data formats are often used as de facto standard data models for certain types
of applications (e.g., DWG or DXF). They are limited in many ways, but still
usable.

Even if thereis a standard data model, only a selected set of data can be exported or
imported between different types of applications. For example, usualy an
Enterprise Resource Planning (ERP) system may not read in all the geometric data
from a Computer Aided Design (CAD) system and a CAD system will not read in
managerial datafrom an ERP system.

Sometimes unidirectional dataexchangeis preferred by companies. For example,
many architectural firms are very reluctant to give electronic copies of their
projects to third parties unless they have a strong business relationship or are forced
to share information by building codes because 1) they do not want reveal their
business secrets and design esoterics; 2) there are always potential legal issues; and
3) technology is not there yet: e.g., the exchange process often loses or alters data.
And there is no rigorous method to keep track of changes or to validate an
exchanged model yet. For this reason, many AEC companies today do not read in
an electronic model from another party asit is, but rather incorporate changes into
their own model one by one manually.

Also many software vendors are not willing to make their applications
interoperable because they believe that they will lose competitiveness in the market
by supporting data exchange between theirs and other applications (Szykman et al.

2001).

21

|

|

|

| ERP Some other

OA systems
S [J<emneeee[]
1 ~ = (e.g., Excdl)
| d

! API &

! Middleware
CAstD giiange | /1 Standard Machines
Sysem AN ! 7 Geometric Model

4 Vo (eg. DXF)

|
1
1~ CAD -
Another | > System E :
- 1
_--"7 b Structural” =~

|
1
|
|
|
1
|
|
. e . | I 7z
Another Unidirectiongl :___i (e.g.! ODBC) @:---------.>|:| CNC :
|
|
1
1
|
gfstDem I:Ié—" I irect Link :
1
|

Analysis
Bi-directignal System
Data
ExchangeI
______________________ o4
External Data Internal Data Exchange within a
Exchange Company

Figure 2.3. Internal and external data exchangein practice

Although the benefits of a standard product model are not as great as they arein an
ideal situation, there are still several reasons to develop standard product models:

e Firdt, different projects or companies use different sets of software applications.
Thus, software vendors need to support not one set of applications as shown in
Figure 2.3, but multiple sets of data exchange scenarios. Not all the applications
need to talk to each other as shown in Figure 2.2, but the exchange scenario can
still be pretty complex as reported in (Fischer and Kam 2002).

e Theabove argument is more true to the AEC industry than to the manufacturing
industries (including the automobile and the aerospace industries) because, unlike
them, companies in the AEC industry work like atemporary consortium a project
by a project (more like the movie industry) or aregion by aregion. There can be a
fixed set of software applications within a company, but not across companiesin

the AEC industry.

22

e Each application has a proprietary internal data structure. Even though many
software applications provide an open Application Programming Interface (API)
today, it is still not an easy job to understand the internal data structures of al the
targeted applications and develop and update translators between them.

e Software applications and their internal data structures are usually updated every
year or two. Even if a software application supports data import/export functions
only for asmall number of applications, it will be time-consuming and expensive to
update tranglators every year.

e Some software vendors do not want to reveal the internal data structure of their
applications. In such cases, the transator development entails code-hacking and can
possibly lead to alegal dispute as aresullt.

e Astheinterest in the concept of acentral product model repository (PMR)® asa
means of product/project lifecycle management (PLM) and as a substitute for file-
based data exchange issues (Y ou 2003) increases, the importance of a standard
product model especially in a collaborative work environment has further
emphasized by many studies (Adachi 2002; Amor 2001; Augenbroe 2002;

Hardwick et al. 2000; You, Yang, and Eastman 2004).

Industries, in fact, squander billions of dollars due to poor interoperability between
software applications (Szykman et al. 2001). A standard product model is an open public
data schema and can eliminate or reduce most of the issues described above. However,

there will be still many other technical and cultural issues in interoperability (e.g., the

® ak.a. an Integrated Project DataBase (IPDB,(Amor 2001)) and a Virtual Enterprise Product data Repository (VEPR,
(Hardwick et al. 2000)) .

23

concurrent engineering issues; the change propagation and management issues) that a
standard product model cannot resolve. In any case, if a standard product model cannot be
delivered to the software developers in time, al these discussions are meaningless even in
the first place. An efficient and scientific product modeling method, which can generate a
rigorous and practical product model in a short period of time, is critical in the success of
the standard product modeling effort. This study aims to develop such a product modeling

method.

23 EARLY BUILDING PRODUCT MODELS

There have been many efforts to develop building product models. Early building
product models include Jim Turner’s Building System Model (BSM) (Turner 1988, 1988),
Gielingh's General AEC Reference Model (GARM) (Gielingh 1988, 1988), the Finnish
RATAS project (Bjork 1989), and the Construction Integrated Manufacturing for Steel
Structures (CIMstedl or CIS)(AISC 2002; EUREKA 1987-1997).

Wim Gielingh was the chairman of the ISO-STEP AEC committee at that time and
both the BSM and the GARM were working STEP documents. The subcommittee was
called TC184/SC4 WG1™. The BSM decomposed a building project into a single site, a
building, and a collection of (sub-) systems (Turner 1988). It used NIAM as a modeling
language. An interesting aspect of the BSM is that it initially proposed, so called, a
“shotgun” approach: i.e., exchanging data through generic OBJECT, ATTRIBUTE, and
VALUE objects (Figure 2.4™) (Turner 1988) instead of exchanging data through building-

industry specific objects and attributes (e.g., an object DOOR has attributes MATERIAL,

10 TC: Technical Committee, SC: Sub-Committee, WG: Working-Group
™ A model in NIAM is provided in Appendix B.

24

COLOR, STYLE). In a sense, this approach is similar to the late binding approach in
computer programming. But this approach does not work especially for exchanging data
between object-based CAx systems because there is no guideline to determine what
information means what: e.g., ‘tread width’ in one system can mean ‘tread length’ or
‘tread_depth’ in other systems. In order to avoid any misinterpretation, there should be a

separate standard data model to define the domain-specific objects and attributes.

Attribute Ojbect has .
Value Triplet Object
has
i . has
Attribute Value Pair————————— Value
has
has [1:7] has
Attribute List —— Attribute ! Attribute Name |

has
———a Attribute Type |

must agree with

has ey
—9 Attribute List Type | has

has)
L 4 Sequence Numer |

Figure 2.4 The attribute properties model of the Building System Model in EXPRESS

GARM was initially proposed as a generic data model to integrate various models
developed within AEC and other models in STEP/PDES (Gielingh 1988). It included the
Product Definition Unit (PDU) entity and severa subtypes (e.g., the Functional Unit (FU)
entity and the Technical Solution (TS) entity) (Figure 2.5). PDUs in AEC are Building,
Plants, Ships, and Civil Engineering. GARM does not predefine what a PDU is: it can be a
system, a sub-system, a component, a part, a feature, a space, or a joint. A Function Unit

(FU) represents a requirement for a PDU. A Technical Solution (TS) is an answer to the

25

requirement. Such relations between FUs and TSs are described in, so called, a hamburger

diagram. Figure 2.6 illustrates an example of the hamburger diagram.

Product Definition has specifies
Unit (PDU) Characteristics p——— Aspect

1 by stage

! I !

Required Expected Measured
Characteristics Characteristics Characteristics

by stage

Planned Unit Physical Unit Oprerational Unit Alteration Unit Demolition Unit

Functional Unit Technical Solution

(FU)

Functional Unit is defined by Regruirements,

’—C (FU) ¢ Constraints

N defines requirements and constraints for
may contain
(INV) may be used to serve

Technical Solution has

(T8)

Characteristics

Figure 2.5 The PDU entity and its subtypesin the GARM

The GARM and the BSM were followed by the Building Construction Core Model
(BCCM) I1SO STEP Part 106 by Jeffrey Wix in 1994. The BCCM was regarded as a
framework model and lacked detailed definitions of objects (Eastman 1999). It was later
withdrawn from the | SO STEP Integrated-application Resources (IR) list.

The RATAS project was led by Bo-Christer Bjork at VTT in Finland (Bjork 1989).
RATAS categorized a building into five levels: building, system, sub-assembly, part, and
detail. One of interesting aspects of the RATAS model is that it categorizes SPACE and

JOINT asanindividual entity, not as an attribute or arelation (Figure 2.7) (Eastman 1999).

26

Motor Car Body Electric System

Renault B14.3E TS 340/84 TS 340/84
Body Electric
Design System
Layout
Carburetormsmner m
Figure 2.6 A hamburger diagram
site_and_building
includes ‘ ‘ includes S[0:?7]
site buiding
l includes S[2:7)
buiding_system
l includes S[1:2)
sub-system
l includes S[1:2)
part_level_entity
| Includes S[0:?]
'l connects J’ J)
building_part joint space
T connects T T
includes S[0:2) includes S[0:7) includes S[0:2]
detail_level_entity
part_detail joint_detail subspace

Figure2.7 The RATAS building kernel model, defined as an abstraction hierarchy

These models were framework models and have not been broadly accepted by
software vendors. On the other hand, the CIMsteel (CIS in short)(Crowley 2000; Crowley

and Ward 1999) and the Industry Foundation Classes (IFC) (IAl) models are the only two

27

models that are practically and widely deployed by the AEC industry for exchanging data

today. These two models are compared and reviewed in the next section.

24 CISANDIFC

The CIS (CiMsteel) model was initially developed by Andrew Crowley and
Alastair Watson at the University of Leeds (Crowley 1998) as part of the EU EUREKA
project (EUREKA 1987-1997). The current version of the CIS model is CIS/2 LPM6 and
is still maintained by Andrew Crowley supported by the American Institute of Steel
Construction (AISC).

The IFC model has been developed and maintained by the International Alliance
for Interoperability (IAl) since 1994. The current version of IFC is IFC2x2. And there are
thirteen completed extension projects and seven ongoing extension projects as of March 30,
2004. A short history of the Al and the IFC isavailable at (1Al 2004).

The commonality between the CIS and IFC models is in that both of them are
industry-driven efforts even though the CIS project was initially an academe-led project
with support from a large industry team. The success of both models may be attributed by
this industry-level support. Currently there are nineteen software companies including
AutoDesk, Bentley, and Graphisoft that are involved in the IFC projects (IAl) in the North
America. And twelve software companies including Tekla, Intergraph, and Bentley are
involved in the CIS project (Yang et al.). Nevertheless, while IFC2x2 is adapted still in a
limited manner in real projects, the American Ingtitute of Steel Construction (A1SC)
informally reported that over 50% of the AISC steel fabricators is exchanging data using
CIS/2. A clear reason that IFC2x2 is deployed only in the limited scope of a project is that

it still lacks detailed object definitions, which are essential for exchanging information of

28

real construction projects. This difference is due to IFC’'sand CIS' different goals, scopes,
modeling approaches, and styles. First, the goal of IFC is to develop a core high-level
model to which AEC-specific extensions can be added later (IAl 2000). 1Al explains that,
if there is a huge model that contains all the information in the AEC, the model would be
“high complex and difficult to understand and virtualy impossible implement.” The
domain-specific definitions are assumed to be added as a “leaf node (extension)” to the
core IFC model. Currently IAl is supporting many extension modeling efforts. The current
and completed IFC extension projects are listed in Table 2.1 as of March 30, 2004.

Thus, the structure of the IFC model is conceptual and generic. The backbone
entities of IFC2x2 stems from the 1rcroot entity. recroot iS subcategorized into three
conceptual entities. 1fcobject, IfcPropertyDefinition, &N Tfcrelationship SiMilar to the
basic three components of the Relationa database approach: i.e., Entity, Property

(Attribute), and Relation:

ENTITY IfcRoot
ABSTRACT SUPERTYPE OF (ONEOF
(IfcObject
, IfcPropertyDefinition
,IfcRelationship)) ;
GlobalId : IfcGloballyUniqueId;
OwnerHistory : IfcOwnerHistory;
Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
UNIQUE
UR1 : Globalld;

END_ENTITY;

On the other hand, the CIS model targeted a very specific domain (i.e., the steel

construction industry) and is structured according to four high-level processes in the

29

construction steel industry™® Design, Analyze, Return Analysis Results, Modify Design,
and Manufacture. This process is described in detail in (Crowley and Ward 1999) as an
IDEFO model. Information used in the four processes are modeled as four subset models
called the analysis model, the anaysis result model, the design model, and the
manufacturing model accordingly. The distinction between these subset models has been
blurred while the conflicts between models were resolved through updates. However, the
initial modeling philosophy is still well integrated into the current model.

Beyond the overall structure, the CIS and the IFC models have minor differences.
In terms of a modeling style, the CIS model uses the ANDOR constraint, which causes
many problems in implementation, while the IFC model excludes the ANDOR constraint
(IAl). Entitiesin the IFC model are all named starting with “1fc”, which makes reading and

sorting of entity names difficult.

Table 2.1 IFC extension projects

Completed Projects Ongoing Projects
1) HVAC Performance Validation [BS-7*] 1) Early Design[AR-5]
2) HVAC Modeling and Simulation [BS-8] 2) Bridge[CI-2]
3) Network IFC: IFC for Cable Networksin Buildings | 3) Industry Foundation Classes for GIS (IFG) [CI-3]
[BS-9] 4) Electrical Instalationsin Buildings (EL-2) [EL-2]
4) Code Compliance Support [CS-4] 5) Portfolio and Asset Management - Performance
5) Electrical Installationsin Buildings [EL-1] Requirements (PAMPeR) [FM-9]
6) Engineering Maintenance [FM-1] 6) Structural Timber Model [ST-5]
7) Costs, Accounts and Financial Elements [FM-8] 7) Harmonization of 1SO 12006 Part 3 with IFC [XM-
8) Material Selection, Specification and Procurement 7]
[PM-3]

9) Steel Frame Constructions[ST-1]

10) Reinforced concrete structures and foundation
structures [ST-2]

11) Precast Concrete Construction (PCC)** [ST-3]

12) Structural Analysis Model and Steel Constructions
[ST-4]

13) IFC drafting extension [XM-4]

* The numbersin parenthesis are extension identifier numbers
** The ST-3 project is also known as the PCC-IFC project.

12|t is also possible to say that the CI'S model is modeled depending on four different application functions.

30

Every model has a different style depending on its purpose and assumptions. IFC
and CIS also have different styles based on their different goals. Thus, it might not be valid
to judge which one is better over another. However, the method, which this study aims to
develop, should be able to allow various data modeling style. This issue is discussed in

detail in Section 4.6.4.

25 OTHER BUILDING PRODUCT MODELS& RELEVANT PROJECTS

Figure 2.8 summarizes major product modeling effortsin AEC. As shown in Table
2.1, IFC recently added the cast-in place (CIP) concrete extension (ST-2), the precast
concrete extension (ST-3) (Karstila et a. 2002) and the construction steel extensions (ST-1
and ST-4). Since these were all driven by the European Union, the resultant models do not
satisfy some of the demands of the North American AEC industries. In paralel to these
efforts, Chuck Eastman at Georgia Tech is leading a project to develop a product model for
the North American precast concrete industry for the last three years. The mode is
tentatively called a Precast Concrete Product Model (PCPM). It is clear that the mapping
and harmonization between product models will be a critical issue in the near future. And
thereis aready a movement to respond to such issues.
Other building product models and relevant projects include:
e Building Elements (1994) Wolfgang Haas, STEP Part 225;
e BSAB (Ekholm 1996; Ekholm and Fridquist 1996);
e Building Lifecycle Interoperable Software (BLIS, http://www.blis-

project.org);

31

e Architecture, Methodology and Tools for Computer-Integrated Large-Scale
Engineering (ATLAS) (Tolman and Poyet 1995);

e Virtua Enterprise using Groupware tools and distributed Architecture
(VEGA); VERA a VTT (1997-2002);

e Computer Models for the Building Industry in Europe (COMBINE | &
[1)(Augenbroe 1993, 1995);

e the Engineering Database Model (EDM) project (Eastman, Chase, and
Assal 1993);

e the Intelligent Services and Tools for Concurrent Engineering (1STforCE)
project (Wix and Liebich 2000);

e OSMOSIST-1999-10491 (Wilson et al. 2001);

e Electronic Business in the Building and Construction 1ST-1999-10303 (E-

Construct).

PCDM (2004-), Eastman, US
PCC-IFC (VERA 1997-2002) Kari Kastila, Finland

Industry Foundation Class (IFC) (1994-)
EDM (1993) Charles Eastman
COMBINE | & Il (1990-1995): Augenbroe, EU
Building Elements (1994) Wolfgang Haas STEP Part 225
il > BCCM (1994): Jeffrey Wix, STEP Part 106
} BSAB (1990s): Anders Ekholm, Sweden
} RATAS (1980s): Bo-Christo Bjork, Finland
i CIMSteel (E!M130 1987-1997), Crowley & Watson, UK, ARP230
{-- GARM (1988): Wim Gielingh, US
- BSM (1988): Jim Turner, US
| | |

\ \ \
1980 1990 2000

Figure 2.8 A timeline of major product modeling effortsin AEC

Summaries and reviews on some of these models and projects are available in

(Christiansson and Karlsson 1988; CSTB 2004; Eastman 1999; Ronneblad 2003). Among

32

these, the EDM project (Eastman and Jeng 1999) was unique in that it attempted to
develop an evolvable product model through the lifecycle of a product instead of defining a
static product model that can only support the predefined scope of product information.
Many advanced engineering database issues such as incremental schema evolution,
concurrent engineering, selective updates, and integrity maintenance were identified and
discussed through the project. As a result, a data model and implementation language
EDM-2 has been developed and a small case has been implemented on top of UniSQL®.
However, the project has been discontinued and the approach has not been rigorously

evaluated yet.

26 OTHER STUDIESON PRODUCT MODELING

Much of the literature in product models involves case studies on their application
and expected benefits (Giannini et al. 2002; Smith 2002; Szykman et al. 2001). Others
focus on new developments of product models that extend their use and support new
engineering applications, such as the development of product catalogs (Peak, 2001),
support for feature-based design (Dereli and Filiz 2002), and made-to-order products data
exchange using parametric models (1SO TC 184/SC 4 2001). In addition, there have been
some efforts to define a common set of abstract concepts and relations for product models
(Bjork 1989; Eckholm and Fridquist 1996), especially based on function-structure-
behavior trichotomy (Fenves 2001). Work has begun to address the prescriptive definition
of a product model with linkages to a process model, so that the interactive effects of
design changes on processes can be better identified (Feng and Song 2000). Other work

has used STEP-models to identify product groups (El-Mehalawi and Miller 2001).

33

Work has aso focused on development of extensions to the basic STEP methods.
These include languages for mapping between EXPRESS models (Spooner and Hardwick
1997) and the development of incremental evolution of EXPRESS models (Kahn et al.
2001) and analysis of abstraction level (Mannisto et al, 2001). An effort somewhat related
to this study was to develop an EXPRESS product specification schema (McKay, de
Pennington, and Baxter 2001). This work builds upon product specification concepts of
(Pahl and Bietz 1998) to capture the requirements for made-to-order products. The

requirements are for the product, however, not a product model.

CHAPTER 3

A NEW AND FORMAL PROCESS-CENTRIC PRODUCT MODELING
APPROACH

31 TWO APPROACHESTO DEVELOP A PRODUCT MODEL FOR DATA
EXCHANGE

All product models are developed through a conceptual thinking process. Modeling
by decomposition is a good example of conceptual modeling: e.g., A BUILIDNG consists
of SUBSYTEMs. A SUBSYSTEM consists of building PARTs. A PART consists of
SUBPARTSs and so on. But, if a product model is to be developed only depending on a
conceptual thinking process, there will be no constraint or reference to determine the scope
of a product model. Also, there might be a gap between the resultant product model and
actual user requirements. Thus, a product model should be defined in a certain context or
within a specific scope.

The scope or context of a product model for data exchange can be defined generally
by two ways: i.e, by native data structures of software applications of interests or by
activities and processes of interests. These approaches can be respectively caled an
application-centric approach and a process-centric approach. Since applications also
operate to support a process, these two approaches are not mutually exclusive. However,
these two approaches are taking theoretically different approaches to automate/rationalize
data modeling processes. The following two subsections formally define and compare

these two approaches introducing new semantic set operations. The last section of this

35

chapter introduces and overviews the architecture of a new and formal process-centric

product modeling approach proposed in this thesis.

3.2 THEAPPLICATION-CENTRIC MODELING APPROACH

Not all the data in two applications can be exchanged. But more than a
mathematical intersection of the two native data sets can be exchanged. We call the set of
data, which can be exchanged between two data models, a semantic intersection. A
semantic intersection is a set of information items in two different data sets that is
semantically equivalent. For example, let’s assume that A is a set of information required
by a delivery management system or corresponding process, and that B is a set of
information required by a structural analysis system or corresponding process.

A= {project_name, load, driver}

B = { strucutre_name, load, frame}

The results of regular set operations™ of these two setswill be:
A+ B={project_name, structure_name, load, load, driver, frame }
A~ B={load}

Au B ={project_name, load, driver, structure_name, frame }

However, it is very unlikely that data models of two different applications use the
same terms or the same data structure to define their native data structure. Thus, let us

assume that project_name in Set A is a synonym of structure_name in Set B and that load

%3 The regular set operations assume that there is no homonym and synonym in any set.

36

(“truck load”) in Set A isahomonym of load (“structural load”) in Set B. In such a case, the
results of the semantic set operations of these two setswill be:
Let M. aset (or aggregation) of semantically equivalent entities
M* : semantic intersection
fs(x, y): a function, which returns either one of semanticaly equivalent
information items x or y; x and y can be also expressed in terms of

functions: e.g., f(x) and f(y)

AN B={project_name, structure_name}

An*B={ f4(project_name, structure_name)}

If fs(project_name, structure_name) = project_name,

An*B={project_name}

(The definition and an example of the semantic union (U*) are provided in

Appendix B.)

In this case, only project_name and structure_name can be exchanged between two
systems. Others will be lost in the data exchange process. The definition of semantically
equivalent items is not limited to synonyms. The entities in driving and driven relations
can be also regarded as semantically equivalent items. For example, a CAD system usually
does not carry “surface_area’ in a native data model because the surface area of a shape

can be calculated based on other geometric information. On the other hand, an estimation

37

system often includes “product_surface ared’, but does not manage detailed geometric
information of a product. For example, let's assume that we are interested in
“wall_surface ared’. Let A be a set of information in a CAD model. Let B be a set of
information in an estimation system. “->” denotes a functiona dependency. A>B
denotes “if A then B” or “B isderived from A”.

A= {wall_width, wall_height}

B = {wall_surface area}

(wall_width, wall_height) > (wall_surface area)

An*B={ fg(wall_width x wall_height, wall_surface area)}

={ fy(wall_surface area, wall_surface area)}

In generd, if there are driving and driven items, driven items should be regarded as
a semantic intersection of driving and driven items because it is usually possible to derive
driven items from driving items, but not vice versa. Therefore, the semantic intersection of
Applications A and B in the above exampleis:

An*B={wall_surface area}

However, if the relationship between itemsis bidirectiona (i.e., an item can be both
a driving and a driven item of the other item at the same time), al the items should be
included.

If ae A, be B, a>b, b—>4a, then

An*B={a, b}

14 The same symbol is used in alater section to show a rewrite rule in the Context-Free Grammar.

38

eg.,

A= {wall_width, wall_height}

B={wall_height, wall _surface area}

An*B={wall_height, fs(wall_width x wall_height, wall_surface area),
fs(wall_width, wall_surface area+ wall_height)}

= {wall_height, wall_surface area, wall_width}

In many cases these relations are not apparent and are difficult to define. (Stouffs,
Krishnamurti, and Eastman 1996) is a good example of showing the complexity of
mapping different solid representations.

This definition implies two apparent, yet important facts about data exchange
between two systems:

1) Theoretically as well as practically, there cannot be lossless data exchange
between two applications.
2) The more similar two application types are, the more information they can

exchange.

If there are more than two applications, a product model will be the grand union of
all the semantic intersection of al the applications:
Let Aj and A; : an application

n: the number of applications

Product Model D =UJ (Zn:A m*zn: A)

i=1 j=1

39

This definition is important because it provides an algorithmic definition of a
product model and opens up a possibility of automating the development of a translator or
a data model: i.e., theoreticaly, if a semantic intersection of all the native data models of
interest can be identified, a product model to support data exchange between the native
data models can be automatically derived from the identified semantic intersection.
Identification of a semantic intersection of two data models basically undertakes the same
process as schema mapping. As Robert Amor pointed out (Amor 2001), mapping is not
easy and there is much work to be done to make automated translator or product model
development possible.

However, the application-centric product modeling approach aso has severd
drawbacks. A product model often includes non-existing software applications that users
wish to include in their data exchange scenario in the near future. But, based on the above
definition, a product model cannot be defined if the data structures of targeted software
applications are not predetermined. Also a product model can be used as a standard data
schema not only for data exchange between different applications, but also for a central
project/product management system (PMS) to support a collaborative work environment.
The application-centric approach is not suitable for developing a data schema for a central
project/product management system (PMS) because it cannot capture additional
information that is required for managing project/product information (which are usually
not included in application data structures). On the other hand, the process-centric

modeling approach has the strength over the application-centric approach in this regard.

40

3.3 THE PROCESS-CENTRIC MODELING APPROACH

Process models aim to describe a process in terms of (who-) what-when: e.g., what
are the tasks?, what first?, what next?;, what are the precedences among activities?, what
if?, and sometimes who did what? A process model describes how activities within a
process are connected, ordered, and structured, and represents a use case of information. A
process-centric data modeling method is a data modeling method that uses a process model
as a means to collect user requirements. Many modern data modeling methods are taking
the process-centric approach including the IDEF (NIST 1993) and the UML (Booch,
Rumbaugh, and Jacobson 1999), and some ER data modeling15 methods. (See Appendix
C and Appendix D for more review on requirements collection methods.)

The advantages of a process-centric and use-case-driven data modeling approaches
have been discussed by many studies (Augenbroe 2002; ElImasri and Navathe 2000, 2004,
Garg and Jazayeri 1996; Rosenberg and Scott 1999, 1999). Some of them are as follow:

e |t represents complex and specific user requirements in a visible and formal
description.

e |t provides ameansto formally review, validate, and improve the requirements.

e |t clearly defines the scope of a product data model.

e These capabilities are crucial especialy for alarge-scale development project.

e The captured requirements can be reused in the update or in similar projects.

%% In ER data modeling, Data flow Diagrams (DFDs) are often employed rather than a process model. Strictly speaking
the DFD method is not a process modeling method because it represents data flow between systems, not between
activities.

41

In addition, if a product data model can be derived directly from collected process
information, theoretically the completeness of a product model can be guaranteed. The
next section formally defines the relationship between a process model and a product

model.

34 THE COMPLETENESSOF A PRODUCT MODEL

The basic process-modeling elements include states, activities (tasks or functions),

and flows (relations or transitions).

e An activity (A) is a logical step within a process. An activity processes
information.

o A dtate (S) is a mode of a project. The state of a project or information
processing is changed by a set of activities (A). A project cannot autonomously
change its state.

{Ao, A, A2 ..}(S) 2 S«
where Si is the current state of a project or information processing and S.1 is
the next state

e Flowsdefinerelations (e.g., transitions) between activities.

The relation between a process model and a product model can be formally defined.

All the activities in a process require input information to perform their tasks and yield
output information. From a product-modeling point of view, an activity of a process can be
defined as an act of processing information items (Eastman 1996). An information itemis
a minimum expression of product information. An activity can be formally defined as

follows:

Def. 1: A={(i,f) |iel AfeF A 3IJcl A I=H(i))}

42

where A is an activity, | isaset of information of a Universe of Discourse (UoD), J
is a subset of I, and F is a set of non-decomposable functions or acts of processing
information. F produces a new set of information J and receives, generates, updates,
deletes, or distributes an information item.

Def. 1a: F = {receive, generate, update, delete, distribute}

Similarly, in this perspective, a process is a set of activities, states, and their
relations. A relation (i.e., flow) can only connect either an activity and another activity, or
an activity and a state at atime.

Def. 2. P={(a, s, r) |acAAscSanreRA Jbdt(be Arte RA (r(a, b) v t(a, 9)))}

where P is a process, R is a set of relations (or flows) between an activity and an
activity or between an activity and an activity, A isaset of activity, and Sis a set of states

By replacing activitiesin Def. 2 with sets of information in Def. 1, a process can be
characterized by the collection of information processed by its activities.

P={((i,f),sr)|iel nfeFAssSATeR}

A product data model is a set of information items and their relations. Note that
information items of a product model have different relations (or a structure) from those of
a process model. However, if they are describing the same UoD, then the collection of
information items should be the same.

Def. 3: D={(i,q) |iel Ajel Aqe Q A Jj(q(i,)}

where D is a product data model, | is a set of information in a Universe of
Discourse (UaoD), Q is a set of relations between information items in a product model.

If the UoD includes multiple processes, information items in a product model will

be equal to the union of every information item in each process.

43

lg={i|iePoviePiv ...iePy}

where |4: = aset of information in a product model D, P, is a process

By restructuring (or normalizing) the information collected from each process of
the UoD, theoretically a product model can be derived. When one can capture all the
activities within a process and information items processed by each activity, a product
model derived from the collected information can be said to be complete. Thus, if a certain
set of information is not included in a product model, it is either because the process model
is not properly defined or because the information required by each activity has not been

properly specified.

35 THEARCHITECTURE OF GTPPM

This study takes the process-centric product modeling approach because it has
many advantages as described earlier and also because it is a standard approach. The new
process-centric product modeling method proposed in this thesis is called Georgia Tech
Process to Product Modeling (GTPPM). GTPPM consists of two modules: the
Requirements Collection and Modeling (RCM) module and the Logical Product Modeling
(LPM) module (Figure 3.1).

RCM is a graphical Requirements-Collection-and-Modeling method for capturing
information in the context of itsuse. A RCM model consists of three parts:

e process modeling: Different users (or companies, applications) may use
information in different ways. GTPPM (RCM) encourages domain experts
to generate a process model based on their current or envisioned work

process without compromising other processes.

e vernacular information items (VII) specification: Domain experts may
specify information used by each activity in their local terms. This task is
optional.

e information constructs (IC) specification: Information constructs (1Cs) are
formally defined information items used within a process. Modelers can
specify information used by each activity in a forma and standardized
(machine-readable) way using ICs. Or they can define Vs first and then
map VlIs to the equivalent ICs. Whatever the case, information items
should be defined as ICs in the final collection of information items to

support automation of the analysis process.

Process Vernacular Information

Model nformation Item Constructs
Process Model 1 View 1 View 1 Information Menu

Process Model 2 View 2 View 2 J
A product model
R N
Re %Q U \j/
Process Model 3 View 3 View 3

Figure 3.1 Thearchitecture of GTPPM

An information menu is a collection of tokens possibly used in a UoD with a

classification structure. It restricts the ways in which tokens can be strung together in

45

constructing information item. A token is a “non-decomposable meaningful lexical
element (1ISO TC 184/SC 4 1994)". Tokens in an information menu should be defined
following the ‘nym’ principle: ‘no synonyms, no homonyms' (Schenk and Wilson 1994).
A set of rulesfor developing an information menu has been proposed in Section 4.6.

An information menu and a traditional data dictionary are similar in that both
define tokens and their definitions and relations. However, an information menu is
different from a data dictionary in severa ways. While a traditiona data dictionary is a
collection of definitions of an existing data model, an information menu is not. An
information menu carries only tokens and all the logically possible relations between them
where as traditional data dictionaries carry details of entities in a final data model and,
sometimes, fixed relations between them. For example, atoken “door” can be defined as an
attribute as well as an entity in an information menu as far as it means the same thing. Also
the relationship between tokens is not predefined. The token “door” and another token can
be defined as the association relation and also as the specialization relation. Conflicts
between the relations and the data types should be resolved in the LPM phase. Another
difference between an information menu and a data dictionary is that only a subset of
tokens defined in an information menu is included in a product model whereas the set of
tokensin adata dictionary is equal to the set of tokensin its data model.

A collection of information constructs or vernacular information items is a view,
not a subset of a final product model (Figure 3.1). The definition of a view is consistent
with that of a view in data modeling. A view can be formally defined as a semantic subset
of its superset similar to the concept of semantic intersection: i.e., a view is a derivable

subset from its superset.

46

For example,
Let S be aset of information.

T beasubset of S

V beaview of S
If S={product_id, product_name, product_volume, product_density},

and T ={product_id, product_volume}
then,
V= {product_id, job_name, total_number_of product, product_weight}
where job_nameis product_name,
total_number_of product isthetotal count of product instances,

prouct_weight = product_volume x product_density

ICs collected through the RCM phase will be analyzed, integrated, and converted
into a product model through the Logical Product Modeling (LPM) phase. LPM is an
algorithmic process to derive a product model from collected information constructs. This
process is often hidden from users. It's composed of several steps:

e Integration of information constructs (ICs) from severa RCM models
e Normalization of collected information constructs into a formal product
data model

The next two sections provide detailed descriptions on the RCM and the LPM

modules.

47

CHAPTER 4

REQUIREMENTSCOLLECTION AND MODELING (RCM)

41 INTRODUCTION

Without clear definition of the required information collected in requirements
analysis, adata model cannot be designed to perform its targeted functions. For this reason,
in order to facilitate the participation of end-users at an early stage of data model
development, techniques such as Joint Application Design (JAD) and Contextual Design
(Beyer et d., 1997) have been proposed. Also, several data collecting methods, including a
Use Case Driven Approach (Jacobson, Jonsson, and Overgaard 1992), Data flow Diagrams
(DFDs), and Upper Case tools are often deployed. However, it is still very difficult to
capture a complete set of required information for amodel for the following reasons:

e Aserror-prone human beings, modelers are apt to miss certain requirements.

e Natural language is ambiguous. In a large modeling effort, it is not rare to
see one modeler use a term in one way, and another modeler use it in a
different way.

e Specific methods to check the consistency and completeness of collected
information at an information-level have rarely been introduced. Some
methods, including Jacobson's Robustness Analysis (Rosenberg & Scott,
1999), include consistency checking of a model, but they are mostly based

on the logic and syntax of diagrams — e.g., a certain shape can be connected

48

to a shape, but not to the others - rather than on the captured information

itself.

Methods that can improve the quality of information generated in the requirements

stage can result in higher quality software development. The author proposes a new

Requirements Collection and Modeling (RCM) method. The RCM aims to achieve the

following goals:

to model the functional and procedural requirements of a domain for

enterprise reengineering and software engineering, using process modeling,

to systematically collect the rich set of information required for a product

model in the context of its use-case scenarios, i.e., a process (Eastman, Lee,

and Sacks 2002). The rich set of information should help product-modelers

gain in-depth understanding of an industry by:

O

O

O

O

providing accurate definitions of terms

providing a complete set of information required for product
modeling. By the completeness of a product model, we mean full
support and coverage of the Universe of Discourse (UoD)

making the semantic differences between terms used in different
companies explicit

identifying groupings of information used

exposing differences in the business practices of different companies

supplying various information-use scenarios of each company

to automatically validate the consistency of the information collected

49

e to capture the heterogeneous processes of multiple companies within an
industry domain
e and to generate a standard product model without losing the unique features

of each company’ s process.

42 THE GTPPM RCM LANGUAGE

Like any other graphical modeling language, the RCM has semantics, syntax, and
shapes (symbols). Process semantics dictate the ‘meaning of process-modeling
components while process syntax dictates the ‘ structure of process-modeling components'.
A shape is the ‘geometric configuration of process modeling concept’. RCM’s notation,
syntax, and semantics are based on those of current process-modeling-language
conventions so that users can minimize their learning curve and errors. They are basically
similar to the definition of traditional workflow (ANSI - IEEE standard 5807-1985, ANSI,
1991) and UML Activity Diagrams. However, the RCM has some unique concepts and
syntactic rules in order to alow users to explicitly (and sometimes implicitly) specify
information items used in a process.

As defined in Def. 2 of Section 3.4, a process model is composed of activities,
states, and relations between them:

P={(a,s r)|acAArsesSrreRAJbAt(be Arte RA (r(a, b) v t(a, 9)))}

RCM has four types of activities (A), three types of flows (R), and two types of
states (S). In order to enrich the process semantics, two variations of an activity (i.e., static
information source and dynamic information repository) that represent information storage

and two information flow controls (i.e.,, decision, continue) are added. The following

50

sections describe RCM components, their syntactic rules, and relations with information in

detail.

43 ACTIVITIES

An activity represents a discrete task. In RCM, activities are categorized by two
axes. Activities can be distinguished first as internal activities or as external activities.
Internal activities represent activities that are within a UoD while external activities
represent activities that are outside of a UoD. Many requirement engineering methods
focus only on internal activities and often ignore external activities. However, in order to
check the consistency of information flow between external and internal activities as well
as between internal activities, external activities that are interfacing with internal activities
and their information items should also be specified. (See Section 4.8 for details on the
consistency checking of information flow.) Thus, external activities are explicitly defined
separately from internal activitiesin GTPPM.

In addition to the externa and internal concept, activities can be categorized as
high-level activities or as detailed activities. High-level activities are a relative concept to
detailed activities. High-level activities are aggregations of other high-level activities
and/or of detailed activities. The hierarchical structure of activities provides a context of
the overall model and helps modelers to elaborate a process step-by-step from high-level
activities to detailed activities without missing any critical aspects of a model. Among
high-level activities, the highest activities are called top-level activities (Figure 4.1). A top-
level model, composed of top-level activities, is similar to a context diagram in a DFD

(Data flow Diagram) and a top-level context diagram in IDEFO. Note that there is no

51

separate notation for a top-level activity because top-level activities are merely a type of

high-level activity and behave in the same way (Figure 4.1).
_ Top-level Z

Figure4.1. The hierarchy of activities

The notation for the combinations of the two distinctions (external/internal and
high-level/detailed) is presented in Figure 4.2:
A = {interna highlevel activity, internal detail activity, external highlevel activity,

internal detail activity }

D D

Internal Highlevel Activity Internal Detail Activity
P L %% T O ———
4 .
] []
[y ’
A eseocccccccas s
External Highlevel Activity Internal Detail Activity

Figure 4.2 Activities

Figure 4.3 illustrates the basic mapping concept between activities and information
items. Each activity uses a certain set of information items. Some information items may
be used repeatedly, but some may not be used at al. Information items in detailed activities
are explicitly defined, but no information items are specified for high-level activities

Figure 4.11 for details). This avoids redundancy and potential conflict between the

52

information recorded in a high-level activity and that detailed in its constituent detailed
activities. Instead, the information used in high-level activities can be derived by

aggregating the information of their constituent detailed activities.

Process Models

Generic Top-level Activities

(Middle-level Activities)

Detailed Activities

Interface

Information Items. @

A Set of Information

Figure 4.3. A basic mapping concept between process models and an information items

44 FLOWS TRANSITIONS, AND DEPENDENCIES

A flow represents the movement of information and objects between activities. In
RCM, flows are categorized into information, material, and dummy flows by the
information type that they transfer and into forward and feedback flows by the direction of
information flow.

A material flow represents a flow of physical objects and information that describes
them. An example is a product marked with a bar code carrying encoded data from a plant
to storage. Other flows that carry information are information flows. Information flows that

do not carry explicitly-specified information items are called dummy flows. Information

53

flows between external activities or between activities at different levels of detail are

dummy flows:

——M-> < FB-.—

Information Flow Material Flow Feedback Flow

Figure 4.4 Flows

Most modeling methods allow feedback, but they do not generaly distinguish
feedback from forward flows. However, if workflows are defined at an information level, it
is important to distinguish feedback from forward flows because they imply cyclica
repetition of activities.

The following four syntactic rules apply to al types of flows:

Rule 1: A flow can link any shapes except for flows.

Rule 2. A flow must be from one shape to another; it must link exactly two

different shapes.
Rule 3: A flow must have two distinctive ends to indicate a direction.

Rule 4: Flow arrows can connect activities at any level of detail. However, a flow
between activities at different levelsis by definition adummy flow. In order to
explicitly describe an information flow between an internal detail activity and
any type of high-level activity, a flow must exist between the detailed activity
and a constituent detailed activity of the high-level activity in addition to the

original dummy flow between activities at two different levels (Figure 4.9).

Feedback flows must conform to the following syntactic rule:

Rule 5: Feedback flows must always participate in the formation of a cycle within a

process.

45 OTHER PROCESS-MODELING COMPONENTSAND NOTATION

The concepts of the remaining RCM process-modeling components (Figure 8.1) are

summarized in the subsections bel ow.

451 Initial and Fina States

o ®

Initial State Final State

Figure 4.5 Initial and final states

Initial and final states represent the starting and ending points of a process. A
process embedded in a complex context may have multiple starting and ending conditions,
with multiple initial and final states. The state of a process or project is regarded as “in
process’ if the state of project is omitted between activities. (See Section 3.4 for a formal

definition of the relationship between activities and states.)

]

Static Information Source

45.2 Static Information Sources

Figure 4.6 Static information sour ce

Static information sources are sets of predefined information of an organization

outside of a project. Examples are regional codes, regulations, standards, manuals, etc. A

55

static information source does not receive, update, delete, or generate information within
the context of a project, but only distributes information to descendent activities:
Fs = {distribute}

where Fsis afunction of Static information sources

cf. Def. 1a F = {receive, generate, update, delete, distribute}

where F isafunction of Activities.

4.5.3 Dynamic Information Repositories

_

Dynamic Information Source

Figure 4.7 Dynamic information source

Dynamic information repositories represent information reservoirs such as project-
specific database management system (DBMS) or a schedule board that allow dynamic
storage and retrieval of information within a project. Note that only a portion of the
information generated and used in a process, is stored in a database and managed. A
dynamic information repository only receives, updates, deletes, or distributes information,
but does not generate information:

Fd = {receive, update, delete, distribute}

where Fd isa set of functions of Dynamic information sources (cf. Def 1a)

56

454 Continue

102

% 102

Continue

Figure 4.8 A pair of continues

A continue represents the continuity of flow. The main function of a continue shape
is to increase readability by interrupting an information flow between two activities, to
allow reference across pages or across areas of a model that contains dense graphics. The
software aids the user in ensuring that:

e Continue shapes exist in pairs; an “out” and an “in” continue shape. There
cannot be multiple flowsin or out of a continue shape.

e Each pair of continues must have a unique identifier. And an “in” and “out”
pair of continues must use the same identifier.

e Pairs of continue shapes transfer information only between detailed
activities.

e When aflow connects an internal detail activity and any type of high-level
activity, a continue shape must be placed between two activities to redirect
the flow from a dummy flow to an information flow (See Rule 4 for flows
and Figure 4.9). In Figure 4.9, an information flow is represented as a thick

line to help readers to better understand the diagram

57

Design & Engineering

an actual information flow

a dummy flow 23: Create 3D ./

... Model 7
Create 3D Model }— ' : Export Static Load

Create 3D Model (detailed model)

23: Structural
Analysis

Define Static Load

an actual information flow

Figure 4.9. A continue shape and a dummy flow between activities at different levels

455 Decision

A decision (control) defines a condition (C) of flows (R: relations) between
activities and/or states. Semantically, decisions represent an (exclusive) OR-transition and
support what-if scenarios (e.g., “if approved” or “if x > 1”). An OR-transition in RCM

includes a decision component, which represents the conditions of the transition.

Accepted?

yes—>

no——>

Decision

Figure 4.10 Decision

4.5.6 The Process Components and Their Attributes

Each process-modeling component carries certain information. The process components
and their attributes are illustrated in Figure 4.11 on the next page using EXPRESS-G. Note
that only detail activities, information repositories, and information flows explicitly carry

product information. Examples of RCM models are presented in Section 5 Implementation

and Examples.

58

External Highlevel
Highlevel Activity Activity
(ABS)Activity 1

" . o Internal Highlevel
2
assomated_dfalI_acnvny S[1:7] Activity
name—# STRING
. Pyl External Detail
Detail Activity 7 Activity
~-aetor———-—-d STRING I Internal Detail
Activity

—-activity_duration-—q INTEGER
——-activity_cost-———q NUMBER

i .o1—
input S[0:7] Information

Construct (IC)

output S[O:’?]‘C

input2 S[0:7] Vernacular
Information Item
. (Vi)
output2 S[0:?]

information_source_type [1:?]

Sttotnfomaton | — iomation soue_pe | |
(ABS)Information | Source
Repository 1 X .
International Organization
Regional Organization
Dynamic Industry
hame- ’I Information Company
Repository Supplier

Others

nformation

17
output S[0:7]-4 Construct (IC)

NG N

O

‘ Vernacular

| ; . Vernacular

L—output2 S[0:?]—d Information Item t——input2 S[0:?]-—d Information Item
() (Vi)

information_sets S[0:?]

(ABS)Flow Ir ion Flow

L.) Information
input S{1:7— Construct (I(D

Initial State
(ABS)State - ”
process_components
Activity [Feedback Flow |
Continue name Final State

Decision

name-d STRING I
begin_with ends_with — Material Flow

Info Repository

State Led sTRING I

< Dummy Flow

Continue

—decision_topic d STRING I
Decision
—decision_maker g STRING I
*linked_continue[1:1]

Figure 4.11 Process-modeling components of RCM and their attributes'®

46 A GRAMMAR FOR PRODUCT INFORMATION

The ultimate goal of RCM is to capture “information” requirements for product
modeling through process modeling. Product information is the information generated,

used, and maintained in the processes of design, engineering, manufacturing, delivery, and

18 Refer to the GT PPM (Lee, Sacks, and Eastman 2002b) for details. The same component names (without underbars or
abbreviation) as those in the texts have been used to help readers to better map them)

59

maintenance. Examples of product information in the building industry are building type,
building identifier, owner first name, and so on. When product information is formally
structured, the structured schema of product information is called a product data model (or
a product model). (Note that we use two terms a product data model and a product model
interchangeably in this paper.) A product model consists of attributes with specialized
meaning, special entities and features with technical functions, and aggregations across
specialized classes.

This section describes a method to allow domain experts to capture and specify
product information in a consistent and analyzable format. We call the proposed method
the Product Information Specification (P1S) method or mechanism. A long-term goal is to
(semi-)automatically derive a data model out of the product information specified by
domain experts, who know the domain best. However, product information is difficult to
capture because of the following reasons:

a) Tacitness. Product information is tacit. Even domain experts, who use product
information everyday, cannot easily articulate product information required
without a specific context.

b) Enormousness. Product information has an enormous volume. It not only
includes direct geometric and material descriptions, but also all kinds of other
information such as that on their design, engineering, manufacturing, and
management processes. (For example, the CIMsteel product data model used in
the structural steel industry has over 731 entity types covering the design,

analysis, shop detailing and fabrication of steel structures for buildings (A1SC

60

d)

2002)). Such a huge amount of product information is very difficult not only to

capture, but also to depict in an unambiguous, consistent, and analyzable form.

Informality: Information can be managed and learned with great ease and

efficiency when it is well structured. However, it is not easy to categorize

information in an easily recognizable and universally applicable structure when

it relies on agrammar of a natural language.

Ambiguities: When information items are described in a natural language, the

collected information will yield lexical and structural ambiguities. Examples of

the lexical and structural ambiguitiesin product information are:

Lexical ambiguity: Even within an industry that produces the same products,
different terms are often used by different people to refer to the same
concept or object. For example, in the precast concrete industry, ‘control
number’ is used differently in different companies. In some, it refers to a
‘product number’, ‘production serial number’, ‘serial number’ and so on,
which is assigned to a piece after it is fabricated. In others, it is used quite
differently, as an ‘assembly location number’ or ‘erection control number’,
which is used to schedule detailing, production and erection sequences. The
lexical ambiguity is also called the ‘nym’ problems (i.e,, homonyms and
synonyms) (Schenk and Wilson 1994).

Structural ambiguity: Often product information is not a single word, but a
combination of several words like a phrase in natural language. Information
items can be constructed in various ways. However, often the richer the

expressions are, the subtler the differences between the expressions.

61

Sometimes subtle differences in the order of terms can make a significant
semantic difference. For example, ‘concrete finish’ signifies ‘finishing
applied to a concrete surface’ while ‘finish concrete’ signifies ‘a specia
concrete used as atype of finish for apiece.’

In order to overcome these difficulties, many formal knowledge specification
methods and languages have been proposed and developed, especiadly in knowledge
representation (KR) and data modeling. Examples of the formal specification languages
for knowledge-based systems (KBS) include DESIRE, FORKADS, KbsSF, (ML)2,
MODEL/KADS, MoMo, OMOS, QUL, and KARL. Some formal approaches for data
modeling are the Relational Model (Codd 1970), the Entity-Relationship Model (Chen
1976), the Functional Data Model DAPLEX (Shipman 1981), the SDM (Hammer and
McLeod 1981), the Object-Oriented Model (Banerjee et al. 1987) and other semantic
models. These methods gave birth to severa (standard) data modeling languages such as
SQL (ISO JTC 1/SC 32 2003), IDEF1x (NIST 1993), XSD/XML (Berners-Lee 1994;
Cover 1999), and a standard product data modeling language EXPRESS (1SO TC 184/SC
4 1994; Schenk and Wilson 1994). The data modeling languages listed above have been
refined over decades and have their strong adherents. Nevertheless, we found that existing
former data modeling and KR methods are not suitable for our purpose (i.e., specifying
product information in a simple, yet consistent and anayzable form) because of the
following reasons.

e Specialized product information is often carried as implicit knowledge in
natural language through everyday conversation by domain experts. We

believe that domain experts are the best persons to describe product

62

information required for their tasks. But many formal modeling languages
are not generally accessible by domain experts. Some modeling languages
are even close to mathematical descriptions.

e Modeling languages such as XSD or XML may be simple enough to be
used by domain experts even in the very early data modeling phase: i.e., the
requirements collection phase. However, they <ill do not provide a
mechanism to maintain the consistency (i.e., the lexical clarity) of an
enormous amount of terms used in a UoD. (The limitation of XSD and
XML in expressing the semantics of the specialization (inheritance) relation
is another issue here.)

Note that the PIS method, we are proposing in this paper, is not to develop a
generic structure of product models such as ISO STEP Part 41 (ISO TC 184/SC 4 2000)
and the Generic Core Representation of product information (Szykman et al. 2001). Also
its goal is not to define a data dictionary for product information such as the STEP Library
(Renssen 1997) or to propose another data modeling language, which can replace XSD or
SQL. The proposed protocol is independent of data modeling languages and can be
implemented in XSD (XML), SQL, EXPRESS, or any other data modeling languages | ater
albeit we chose EXPRESS as a main target because EXPRESS is an international standard
product data modeling language by the 1SO - Internationa Organization for
Standardization (ISO TC 184/SC 4 1994). Rather, it aims to develop a high-level product
information categorization and a grammar that can allow domain experts to easly,

efficiently, and clearly specify product information in an analyzable form so that the

63

collected information can be analyzed and transformed into a product data model in the
later stage. The criteriafor the PIS method can be summarized as follows:

1) consistency between terms. There should not be the ‘nym (homonyms and
synonyms)’ problems and ambiguities in the definitions of terms.

2) generativity & extensibility: The list of product information should be
extensible and editable, and not fixed. Domain experts should be able to
generate and add new information constructs as many as possible.

3) analyzability: Information constructs built from an information menu
should be analyzable and transformable to aform of a product model.

4) accessibility: An information menu should be structured in a way that
domain experts (non-data-modeling experts) can easily navigate and
maintain a large amount of product information.

The following sections describe the concept of the PIS mechanism in more detail.
And they also discuss how to construct a system of rules that both analyze and generate
structured product information.

Product information is basically a concatenation of tokens (or words). A token is a
“non-decomposable meaningful lexical element (ISO TC 184/SC 4 1994)” of a UoD.
Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’. A token per se (e.g., ‘typ€e’)
has a certain meaning, but often is insufficient to represent product information. On the
other hand, if several tokens are concatenated in a logical way, the chain of tokens can
represent meaningful product information (e.g., ‘finish-material-type’, ‘engine-type’). This
paper explores and defines grammatical rules for specifying product information by

concatenating tokens in a consistent and analyzable form, similar to grammatical rules for

generating syntactically and, sometimes, semantically meaningful sentences (or phrases) in
a natural language. The following sections describe the concept of the PIS mechanism in
more detail. And they discuss a system of rules that both analyzes and generates structured
product information.

This study takes a linguistic approach in defining the structure and the syntactic
rules for defining product information. A linguistic approach (i.e., the context-free
grammar (CFG)) is taken because (1) a data model is essentially a representation of the
universe of discourse (UoD) based on a language; and (2) even 40 years after the CFG was
first introduced by Chomsky, it is still an effective and efficient means to analyze and
define grammatical rules for generating meaningful expressions. The proposed system will
be a duplex <B, R> consisting of a set B of basic elements and a set R of context-free
rewrite rules each of which defines a minimal hierarchical structure, called a local tree
(Chomsky 1965, Ch 1-2; Smith and Wilson 1979). Appendix E provides a brief summary
of notation of a context free grammar (CFG). Some notational rules are revised or added

to suit the characteristics of product information and the purpose of this study.

4.6.1 Product Information Structure and Grammar

The RCM PIS method categorizes product information at three levels, namely
tokens, information items and information sets and provides a grammar for defining
product information.

As stated earlier, atoken is a “non-decomposable meaningful lexical element (1SO
TC 184/SC 4 1994)” of a UoD. Examples of tokens are ‘width’, ‘job’, ‘height’, and ‘color’.
A token per se (e.g., ‘type’) has a certain meaning, but often is insufficient to represent

product information. On the other hand, if several tokens are concatenated in alogica way,

65

the chain of tokens can represent meaningful product information (e.g., ‘finish-material-
type’, ‘engine-type’). We call the concatenation of tokens an information construct (I1C).
The definition and the structure of tokens are recorded in an information menu. An
information menu is a collection of tokens that forms a minimum expression (or phrase) of
product information. The differences between an information menu and a traditional data
dictionary are discussed in Section 3.5. Figure 4.12 illustrates how product information can
be defined using tokens in an information menu. Let us assume an information item “an
identifier of a beam, which is akind of (precast concrete) piece” is required by an activity
“Prepare Initial Quotation”. It can be defined as piece*beam{ia} USING three tokens piece,

veam, and ig in an information menu.

Information Constructs

A list of information items required
by “Prepare Initial Quotataion”

- [> _piece*beam {id)
rebar || :

geomistry piece {type}//"
piece*column {type}
beam! id B e T
column type
] Prepare Initial
Information Menu Quotation

Activity

Figure 4.12 An information menu and infor mation constructs

As briefly described earlier, it is assumed that RCM will include two groups of
experts, which have expertise in different domains. The two groups are domain experts
(representatives of an industry of a company) and modeling experts (or mediators; process
and product modeling experts). Information is classified in away that can help each group
to contribute what it knows best. The product information can be expressed in two ways:

either as vernacular information items (V1Is) or as information constructs (ICs). Domain

66

experts, who may not be familiar with the structure of an information menu and ICs, can
define product information as vernacular information items (VI1s) as far as they provide a
definition of the VIIs in their own data dictionary. Later, modeling experts can map 1Cs
and VIls based on the definitions of VIIs specified by domain experts. Table 4.1 lists
examples of mapping between Vlls and ICs. Company A may cal an identifier of a
(precast concrete) piece “Piece Mark.” Company B may call the same thing “Mark
Number.” The Vlls are synonyms and can be mapped to an IC “p1rce{ia}”, Which is a

concatenation of two tokens, i.e., piece and ia.

Table4.1. Mapping between vernacular information itemsand information constructs

Company A Vlls Company B Vlls ICs

Site name Construction site name SITE{ name}

Site address Construction site location SITE{ address}

Estimated weight Load PIECE+LOADS{weight, unit}
Piece mark Mark number PIECE{id}

Serial number Control number PIECE{ control_id}

The specified information items (both VIIs and ICs) can be grouped as an
information set. An information set is a user-defined grouping of information items that
flow from one activity to another. Examples are forms, work order, bills of materials, and
specific drawings. Information sets play the following rolesin RCM:

1) Ineveryday life, domain experts do not deal with their work at an information-
item level but at an information-set level (e.g., forms, work orders). Grouping
information items in sets provides a cognitive bridge between what they
actually deal with (information sets) and what they unconsciously process

(information items).

67

2) Information sets can be considered as milestones of information production in a
process. An information set implies that its subsumed information items are
required in order to proceed to the next activities.

Tokens are further categorized into types and entities. A type and an entity in this
paper are the same as those defined in EXPRESS. A type is a “representation of a domain
of valid values (International Organization for Standardization 1994)” and an entity is a
“type which represents a collection of conceptual or real-world physical objects which
have common properties (International Organization for Standardization 1994).” A set of
entities that describes the main physical objects of a domain forms the backbone of an
information grammar. For example, structures, assemblies, pieces, reinforcement and
embeds are the main products or parts of the Precast Concrete Industry.

The structures and relations of different types of tokens are defined in an
information menu. Modelers are restricted to select information from the limited number of
possible tokens that can be linked in an information menu based on context-free rewrite
rules (Chomsky 1965; Jurafsky and Martin 2000) defined for product information.

The approach in this study defines tokens used in a universe of discourse (UoD) by
four general abstraction mechanisms of knowledge representation (KR): i.e., classification
& instantiation, aggregation & decomposition, generalization & specialization, and
association (Eastman 1999; Elmasri and Navathe 2000; Smith and Smith 1977; Smith and
Smith 1997).

Some early papers (Codd 1979; Smith and Smith 1977) categorize both
instantiation and subtype as a form of specialization, but this paper uses the term

specialization only to represent the subtype-supertype relationship. For example, ‘bolt” and

68

‘weld’ are specialized types of ‘fastener.” Generalization is the inverse of specialization.
Instantiation represents the is-an-instance-of relationship. If twelve ‘C8' chairs are placed
in an office, each individual chair is an instance of the chair type ‘C8." Note that an
instance of a class (i.e., the twelve ‘C8' chairs) can be either a class or a value of an
attribute depending on a modeler’s intention. Classification is the inverse of instantiation.
Decomposition represents the is-a-part-of relationship. The inverse is aggregation and
represents the has relationship. A ‘table’ has four ‘legs and a ‘tabletop.” Association
represents other attributive and referential properties. For example, ‘color’ and ‘width’ can
be properties of a ‘tabletop.” The difference between aggregation and association is that
when an instance of a higher-level entity in an aggregation relationship is deleted, in some
cases its lower-level instances are aso deleted: i.e., an aggregation relationship often
represents a semantic dependency between two entities. For example, if an instance of a
‘table’ is deleted, the instances of its ‘legs and its ‘tabletop’ should aso be deleted.
Entities in an association relationship, on the other hand, do not need to be deleted even
when their associated entities are deleted. Identification, “the abstraction process to define
whereby classes and objects are made uniquely identifiable by means of some identifier”
(Elmasri and Navathe 2004) can also be added to these four abstraction concepts.

Currently EXPRESS is a standard language for specifying a product data model
(ISO TC 184/SC 4 1994). Since the eventual goal of GTPPM is to develop a product
model in EXPRESS, the RCM PIS method should comply with the structure of EXPRESS.
EXPRESS supports the three abstraction mechanisms (i.e., instantiation, specialization,
and association). EXPRESS does not distinguish the aggregation & decomposition relation

from the association relation. EXPREES takes an object-oriented approach. Naturally, the

69

classification & instantiation relation is embedded in EXPRESS. However, in EXPRESS,
the term instantiation is used generaly to represent data population similar to the
instantiation concept in object-oriented programming language. EXPRESS does not
distinguish the instantiation relation between classes from subtyping. Both the instantiation
relation between classes and subtyping are regarded as a type of specialization. The
generalization & specidization relationship is defined by the SUBTYPE OF and
SUPERTY PE OF constraints in EXPRESS. And the classes and their instances are defined
as the ENTITY and ATTRIBUTE constructs and their values. The association relation
includes al other relations between ENTITIES and ATTTRIBUTES. Although EXPRESS
does not distinguish the decomposition relation from the association relation, the proposed
method classifies entities in the decomposition relation differently from those in the
association relation.

EXPRESS has four existence constraints: BAG, LIST, SET, and ARRAY and the
cardinality ratio (or arity): e.g., LIST [0:7] OF and SET [1:7] OF. These can be imposed
between ENTITIES with the association relationship. In data modeling, the existence
constraints (esp. cardinality ratio) and other types of constraints (e.g., RULES) are often
defined in the late phase of logical data modeling. This PIS method focuses on the early
requirement collection phase of data modeling and, is therefore relatively unconcerned

with detailed level constraints (e.g., the existence constraints) between information items.

4.6.2 Categorization of product information
We first categorized product information in a fashion similar to categorization of
parts of speech such as nouns, objects, and adjectives in natural language before

establishing rules for specifying consistent and analyzable product information.

70

By the definition of product model, constituents of any product model well
accepted today (e.g., 1ISO STEP (1ISO TC 184/SC 4 2004) and IFC (1Al 2003)) can be
categorized into information that directly represent products and information that qualifies
products. We call the former product entities (P) and the latter modifiers (M). Based on
this distinction, tokens, which compose a product information item, are first categorized
into two major abstract constituents: product entities (P) and modifiers (M). The definition
of entity in ‘product entities' is compliant to that of 1SO 10303 (International Organization
for Standardization 1994): an entity is a “type which represents a collection of conceptual
or rea-world physical objects which have common properties’ and a type is a
“representation of a domain of valid values.” An entity without properties is called an
empty entity. The definition of empty is identical to that in mathematical set theory: i.e, a
set without an element. An entity cannot be empty and must have a property:

Rule 1. Unless an entity inherits properties from its higher-level entities, an entity

must not be empty.

Product entities (P) literally represent entities describing the products of an industry.
A modifier (M) is either an entity or an attribute that “qualifies’ product entities (P) or
other entities. The “qualification” relation between a Product entity (P) and a modifier (M)
is often represented as the association relation, but sometimes can be represented as the
specialization relation. (An example is provided in the next section.) An attribute is a trait
or property of an entity. Modifiers (M) describe the design, engineering, manufacturing,
and management information of products. Modifiers are subcategorized into Modifier

Entities (ME, an entity-type modifier) and Modifier Attributes (MA, an attribute-type

71

modifier) by their type. An example of a product entity and a modifier is'CAR' (a product
entity) and 'DESIGNER' (a modifier).

The definition of a product entity isrelative. It depends on the universe of discourse.
'‘CAR' is a product of the automobile industry, but '‘BUILDING' is not. '‘BUILDING' is a
product of the building industry, but 'CAR" is not. 'DESIGNER' is not a product of the
automobile industry, but it provides additional information on a product '‘CAR'. Whether
'DESIGNER' is defined as an attribute of 'CAR' or not, 'DESIGNER" till semantically
qualifiesa product entity 'CAR' and is, therefore, amodifier of '‘CAR'.

The product entities (P) and modifiers (M) are further subcategorized by the three
major abstraction concepts (Eastman 1999; Elmasri and Navathe 2004): i.e, a)
generalization & specialization; b) classification & instantiation; c) aggregation &
decomposition; and d) association. Applying these abstraction concepts, product entities
(P) are further subcategorized into decomposed products (DP) and specialized products
(SP). Decomposed products (DP) represent products in the aggregation relationship. Many
researchers (Codd 1979; Smith and Smith 1977) and modeling language including
EXPRESS, as described earlier, do not distinguish the specialization (supertype - subtype)
relation from the instantiation relationship at a conceptual. Specialized products (SP)
represent products in both the specialization relation and the instantiation relationship.

By the same logic, modifier entities (ME) are further subcategorized into
specialized modifier entities (SME). Figure 4.13 illustrates a hierarchical structure of PIS
information structure in EXPRESS-G. Note that this structure is different from a

constituent structure tree and does not imply any syntactic rules.

72

(ABS)Token

*is_linked_to S[0:?] 1 I
L T

(ABS)Product

modifier S[1:?]—g (ABS)Modifier

A_I_AA_I_A

Decomposed 'Specialized Product|
Product (DP) (SP)

Modifier Attribute
(MA)

[L i I

Modifier Entity (ME)

Entity —attribute S[0:?]— Attribute

T I

Figure4.13. A hierarchical structure of RCM product information in EXPRESS-G

4.6.3 Syntactic rulesfor product information

This section describes syntactic rules for constructing product information by
combining product-information constituents categorized in the previous section. We call a
product information item composed of several tokens an information constructs (IC). Each
information construct (IC) corresponds only to one product information item. Figure 4.14

illustrates two simple ways of composing information constructs.

a) IC b) Ic c) IC d) IC
P M P M M P M
PN
D|P MlA Dlp ME/\MA ME MA MlA
| | I | | | |
building name door producer name schedule start date airplane id
iclploplbuilding]ly [ya[name]l] iclplopldoorl]y [yelproducer]y name]ll o[[, [schedulelya [start date]]] iclp [airplane] [y, [id 1]

Figure 4.14. The basic constituent structures of an information construct

Rule 2: Aninformation construct (IC) ends with amodifier attribute (MA) (because

there cannot be an empty entity).

73

Rule 3: Aninformation construct (IC) must not end with a modifier entity (ME).

Rule 4: Product entities (P) work as main access points to other information types.
If any type of product entity (P, SP, or DP) exists in an information construct,
the information construct (IC) always begins with a product entity. If not, the
information construct (IC) begins with amodifier entity (ME).
Therulesfor Figure 4.14 can be summarized by the CFG notation as follows:
IC>P-M|M
P-> DP
M > MA |ME-MA
(NB: A vertical bar | denotes“OR”.)
As stated earlier in Rule 4, the PIS method defines product information types (i.e.,
P, DP, and SP) as a kind of index for modelers to access other types of product information.
It is because product information is the focus of product modeling (thus, any product
model includes product information) and also because domain experts are generally very
familiar with a hierarchical structure of their product information. In other words, even if
non-product information types were used as an access point to product information, it
would not make much difference in terms of representing a structure of an information
construct. For example, an information item “the delivery date for a column, which is a
kind of product” can be represented in two ways: (a) one starting from product information
and (b) the other starting from the delivery schedule.
(8) product*column+delivery schedule{delivery date}

(b) delivery schedule{delivery date}+product*column

74

They may require dlightly different syntactic rules. But when they are represented

as information constructs, they eventually represent the equivalent structure (Figure 4.15

(& and (b)).
Product ———q Delivery_Schedule Delivery_Schedule —— Product
\ \
delivery_date delivery_date
Column Date Date Column
(a) (b)

Figure 4.15 Product information as an access point to other infor mation types

Yet the PIS method defines product types (i.e., P, DP, and SP) as a kind of index
for modelers to access other types of product information for two reasons. It is because a
product and its components are the main focus of product modeling and also because

domain experts are generally very familiar with a hierarchical structure of their product

information.
a) Ic b) Ic) Ic
P M P M P M
SL, ME/\MA l N N N

‘ DP ME MA DP SP ME MA

SP

sedan material color | . X
V6 engine material color

«clp [splsedan]l],[,dmaterial] , [color]]] V8 engine material color
cbloplsd V6 enginell,, [, [material],,, [color]]] clelop s V8 enginel], [[materiall, [color]]]

Figure 4.16. Abbreviation of specialized products

Figure 4.16 illustrates abbreviation rules for specialized products. The purpose of

abbreviation rules is to remove redundant expressions in an information construct so that

75

the information construct can be expressed in a succinct manner that users of the
information can comprehend quickly and easily.

Rule 5: (abbreviation rules for specialized products) A specialized product (SP)

inherits all the properties of its higher-level entities (i.e.,, supertypes).

Therefore, semantically and logically, a specialized product (SP) aone can

represent a product. As exemplified earlier, ‘car-sedan’ means the same thing

as ‘sedan’. Thus, we can abbreviate ‘ car-sedan’ to ‘sedan’ without diluting its

meaning.

The applied abbreviation rules can be analyzed as follows: ‘car’ can be categorized
as a main product (P) and ‘sedan’ can be categorized as a speciaized product (SP). A
specialized product (SP) can be regarded as a replacement of a decomposed product (DP).
Figure 4.16 a) illustrates the first case. The rule applied here can be defined as follows:

Rule 5.1:

P > SP, iff SPisaspecialized product of P.

The same logic can be applied to the abbreviation of a chain of decomposed and
specialized products in Figure 4.16 b) and c). ‘engine (DP)’ isa part of ‘car (P)’. ‘V6
engine (SP)’ is a type of ‘engine (DP)’. ‘engine-V6 engine’ can be abbreviated to ‘V6
engine’ without losing its meaning. The rules applied here can be analyzed in two ways.
First the abbreviation phenomena can be analyzed as the replacement of DP by SP as
illustrated in Figure 4.16 b). The rules can be described as follows:

Rule 5.2:

P-> DP

DP > SP, iff SPisaspecialized product of DP.

76

Alternatively, the abbreviation phenomena can be analyzed as the replacement of
DP by NULL asillustrated in Figure 4.16 b). The rules can be described as follows:

Rule 5.3:
P-> DP-SP
DP > NULL
SP - V6 engine
Both approaches are logically valid and yield the same result: i.e, P > SP.
However, the second approach leaves the possibility of having a non-abbreviated form of
the information item (e.g., engine-V6engine) while the first approach does not allow any
non-abbreviated form of the information item. Thus, the second approach has been taken.
By the same token, a specialized product (SP’) of a certain specialized product (SP)
can replace its antecedent specialized product (SP) (i.e., supertype). Applying these rules, a
series of specializations can be replaced by the last specialization.
Rule 5.4
SP > SP-SP, iff SP" isa specialized product of SP

SP - NULL, iff SPisfollowed by SP'.

P M
|
op PN
/\ ME MA
DP DP
DP sP DP SP
SP SP
I I

NULL (car) NULL (sedan) hatchback NULL (engine) V6engine material name

cleloploplop [NULL]gplgp[NULL] g [hatehback]]] el o [NULL][VE engine]l]], [yelmaterial], [name]]]

77

Figure 4.17. Concatenation of specialized products (SP) from different decomposed products (DP)

If the order of tokens is changed, the meaning of an information construct differs.
An example is *hatchback — V6 engine — material — name’ and ‘V6 engine — hatchback —
material — name’. The former depicts ‘the material name of a V6 engine in a hatchback-
style car’ while the latter would depict ‘the material name of a hatchback-style V6 engine
if there were such athing. Therefore, we set up arule that says:

Rule 6: In a concatenation of DP — DF, the DP’ should always be a component of

DP.

The rule can be formalized as follows:
DP -> DP-DP, iff DP’ isacomponent of adecomposed product DP
Similarly,
Rule 7.1:
P -> DP-DP, iff DP" is acomponent of a decomposed product DP

By these rules, ‘hatchback — V6 engine’ should always be interpreted as “a V6

engine in/of a hatchback-style car”.
Figure 4.18 shows an example of abbreviation rules for decomposed entities:
Rule 7: (abbreviation rules for decomposed entities) When a series of decomposed

products (DP) are concatenated, the last decomposed product represents the

whole concatenation.

A formal descriptions of the additional ruleis:
DP - NULL, when DPisfollowed by its decomposed product, DP’

In Figure 4.18, since it is apparent that ‘ structure’ belongsto a‘site’ and a‘project,’

‘project — site — structure’ can be replaced by * structure.’

78

P M
DlP ME/\MA
/\
DP DP
T
DP DP

| |

NULL (project) NULL (site) structure load unit

\clplopl ppNULL] o [INULL [structure 111, [e [load] , [unit]]]

Figure 4.18 Abbreviation of decomposed products (DP)

The same logic for abbreviation rules can be applied to specialized modifier entities
(SME). Abbreviation rules for specialized modifier entities are:
Rule 7.1:
SME - SME - SMF, iff SMFE’ is a subtype of SME
SME - NULL, iff SME isfollowed by its subtype SME’.
ME - NULL, iff ME isfollowed by its SME.
For example, if we want to describe the ‘date when a beam was cast,’ it can be

expressed as:
|C[P[DP[piece] SP[SPflexural piece] SP[beam]]]M[M E[ME[production] SM E[cast]]MA[date]]]
Applying the abbreviation rules, the information construct can be simplified as:

IC[P[DP[NUL L] SP[SPINUL L] SP[bearn]]]M[ME[ME[NULL]MAE[cast]|MA[date]]]

= IC[SP[beam]M[MAE[cast]MA[date]]]

The constituent structure tree of the ‘date when a beam was cast’ is illustrated in

Figure 4.19.

79

P M
DP SP ME MA
SP SP ME SME

NULL(flexural piece) NULL (piece) beam NULL (production) cast date

el plopINULLT ¢ [INULL] g IbeamlT) [, ol INULL] g, ¢ [castl] , [ciatel]

Figure4.19. Abbreviation of specialized modifier entities (SME)

Not that, in any case, the abbreviation of information constructs is optional, but not
mandatory. The main purpose of the abbreviation rules is to recognize semantically
equivalent information constructs. Therefore, the use of abbreviation should be minimized.
Otherwise, it can yield other ambiguous cases as in natural language.

In GT PPM, the specialization relation has been distinguished from the association
relation by using a separate concatenation symbol: An asterisk (*) denotes the
specialization relation; A plus sign (+) denotes the association relation. The decomposition
relation has not been distinguished from the association relation because the target
language EXPRESS does not distinguish between them. (See Section 2 for details.)
However, this is an implementation-level decision; if necessary, it is possible to use
different concatenation symbols for different abstractions. An example of the ‘date when a

beam was cast’ in Figure 4.19 can be represented as:

piece*beam+production*cast{date}
= piece*beam+cast{date}

= beam+cast{date}

A full definition of this grammar and its use is being prepared.

80

4.6.4 Stylesof Product Models

Each product model has a style, which is aso caled a modeling philosophy,
intention, or concept. Depending on a modeling style, a different generic structure of a
model (a.k.a. a core representation, a framework, or a skeleton of a model) is created. As
stated earlier, the PIS method aims to support any product model defined in EXPRESS.
Since the PIS method categorizes product information by generic knowledge
representation concepts and by the structure of EXPRESS, the structure of product
information defined by the PIS method should be transferable to a product model defined
in EXPRESS and aso vice versa. However, the PIS method itself only defines the rules to
structure product information, not what the structure of a final product model should be.
The structure of a final product model is defined by how a modeler categories tokens. A
structure and a style of product information specified by a modeler through the PIS method
will be kept through the GTPPM process and will form the core structure'’ of the final
product model. This section shows how various styles of existing product models can be
supported by the PIS method in the early requirements collection phase of product
modeling. The first example is the IFC 2x2 model. It adopted the top-down modeling
approach. As described in Section 2.4, the 1£croot IS at the top of the IFC model. 1£croot

has three Subtyp% i.e., IfcObject, IfcPropertyDefinition, and IfcRelationship.

ENTITY IfcRoot

ABSTRACT SUPERTYPE OF (ONEOF (IfcObject, IfcPropertyDefinition,IfcRelationship)) ;

GloballId : IfcGloballyUniqueId;
OwnerHistory : IfcOwnerHistory;
Name : OPTIONAL IfcLabel;

7 The structure of information constructs may not exactly the same as that of the final product model because, if there are
conflicting definitions (structures) of product information, those have to be resolved. Also through a normalization
process, the structure may vary.

81

Description : OPTIONAL IfcText;
UNIQUE
UR1 : GlobalId;

END_ENTITY;

And r£cproauct IS defined as a subtype of recobject.

ENTITY IfcObject
ABSTRACT SUPERTYPE OF (ONEOF (IfcActor, IfcControl, IfcGroup, IfcProcess, IfcProduct,
IfcProject, IfcResource))

SUBTYPE OF (IfcRoot) ;

ObjectType : OPTIONAL IfcLabel;

INVERSE

IsDefinedBy : SET OF IfcRelDefines FOR RelatedObjects;
HasAssociations : SET OF IfcRelAssociates FOR RelatedObjects;
HasAssignments : SET OF IfcRelAssigns FOR RelatedObjects;
Decomposes : SET [0:1] OF IfcRelDecomposes FOR RelatedObjects;
IsDecomposedBy : SET OF IfcRelDecomposes FOR RelatingObject;
WHERE

WR1 : SIZEOF (QUERY (temp <* IsDefinedBy ‘ ' TFCKERNEL . IFCRELDEFINESBYTYPE' IN
TYPEOF (temp))) <= 1;
END_ENTITY;

In the case of the IFC 2.2x model, 1fcroot, 1fcobject, Ifcproduct, and other
subtypes of receroauct Can be defined as Product Entities (P). And all other entities and
attributes including 1eceropertybefinition, IfcRelationship, IfcActor, IfcControl, IfcGroup,
TfcProcess, IfcProject, aNd Tfcresource Can be defined as Modifiers (M).

The 1£croot @nd 1zcobject entities will be “shared” as supertypes of both Product

entities (P) and Modifiers (M). Semantically, 1fcroot @aNd rfcobject @€ ABSTRACT SUPERTYPES

82

of Product entities (P) and Modifiers (M). Technically rfcroot and r£conject Will be treated

as Product entities (P) and also be an access point to other information types.

The product_category
information unit

product_category O name

5 i ——O descriptio
7r§latmnsh1p 1 The product_definition
elatod, | relating. - information unit
product_ | product_ N _____ descripton __
category | category I | -
’ | N description
I !
name — I
roduct_cat description L | é)
p _category| description _ _ _ _ ! _ & osiRiNG]]
. I‘ identifier

descriptiol

_jooo
r**no,lqu, #8
product_related product_category :

STRING
= i

roducts S[1:?’ |

formation_relationship

related_ | relating_
product_ | product_
id definition_| definition_
I g formation
description | _formation
' 2%

*of_product

© name description I
LT
*id product_definition_ I

name product 1 product_definition_formation
Jati " 'descript‘on id -t
frame_of_reference S[1:?] felating_produc | .
I related product | product_relationship
O — O diSC|pIine7type_- T 3 =
lebel - product_context
o0 t -
7 marketseamentype |Iibrary_oontext| product_deflnltlon_conte<t|

product_concept_context |

1

application_context_element |

frame_of_reference
(INV) context_elements S[1:?]

library_reference

life_cycle_stage|

name

application

application_context

1
|
L)
rel atedicomextl
relating_context I
name application_context_rdationship|» 77777 I 7777777 !

The product_context
information unit

Figure4.20 A partial EXPRESS-G diagram of | SO STEP Part 41

The second example is ISO STEP Part 41 (1SO TC 184/SC 4 2000). It defines the
Generic Product Data Resources (GPDR): i.e., the “information units’ for a product model
and their interrelated relations. An information unit is “a grouping of relating constructs

(entity data types, attributes and relationships) that together represent one of the high level

83

concepts of the STEP data architecture (Fowler 1996)". In Part 41, the product information
is represented as the product and product_context €ntity types at the top level. The proauct
entity type defines a product as being of interest. The product_context IS defined from three
points of views: 1) the classification view: how the product is classified or categorized; 2)
the marketing view: how the product is presented to the market; and 3) the technical view:
how the product is defined at a particular life-cycle phase (Fowler 1996).

Figure 4.20 illustrates a partial EXPRESS-G model of 1SO STEP Part 41 focusing
on the proauct entity type. The product category information unit, the product concept
information unit, and the the product gefinition iNformation unit in Figure 4.20
respectively represent the classification view, the marketing view, and the technical view.

The mapping between the structure of ISO STEP Part 41 and the PIS method is
fairly straightforward. proauct and its subtypes and subsystems can be categorized as
Product entities (P) and the others including product context, product category, and
product_definition Can be categorized as Modifiers (M).

Szykman et a. (Szykman et a. 2001) proposed another generic structure for
product information. The proposed data structure is called the core representation. The
core representation is categorized into prp object and pre relationship a the top level. The
DRP_Objects 1S SpeCialized 8S aritifact, Restricted DRP Object, Behavior, aNd specification
(Figure 4.21). And the restricted prRp_object IS Specialized aS riow, Form, Function, Geometry,
and materia1 by the function, form (structure), and behavior concept (Chandrasekaran
1994). In this structure, the pre_object and ariface entities can be categorized Product
entities (P) and the others as Modifiers (M). However, the entities can be categorized

differently depending on amodeler’ s intention.

(ABS)DRP_Object

]

!

]

]

Avrtifact

(ABS)Restricted_D

RP_Object

Behavior

Specification

I

I

I

I

I

Flow

Form

Function

Geometry

Material

Transfer_Function

Figure 4.21 The DRP_Object structure of the cor e representation

Figure 4.22 provides another example of constructing product information created
by the author as a proposal for a generic product model structure. The main concept is to
structure product information by phase of a product’s life-cycle. Figure 4.22 depicts a
breakdown structure of main product entities. The vertical axis represents the aggregation
relationship and the horizontal axis represents the speciaization and instantiation

relationship. The specialized products in this paper are structured based on the incremental

product design and engineering processes.

As noted earlier, a product (P) can be classified differently depending on its use.

Also the depth of layers and the strata can differ depending on the design intention/scope

of adata model and the characteristics of products.

85

Main Product Entities

D — Generalization — < Classification —
N Instantiation
Specialization (isa kindof) — 5 (is an instance of) —_
Decomposed Product (DP) Specialized Product (SP)
| Product { | Product Designed Detailed Manufactured ||
[1 | Type Product Product Product :
5 § '
£ B Parts ' Part Designed Detailed Manufactured |i
s g ' Type Part Part [| Part !
© =)
2 2
Subparts Subpart Designed Detailed Manufactured |}
Type Subpart Subpart Subpart

Figure 4.22. An example of constructing product information

4.7 RELATIONSBETWEEN INFORMATION CATEGORIESIN GTPPM

In order to understand the LPM process, readers should understand the relations
between GTPPM information typesfirst.

First, a Vernacular Information Item (VII) is semantically equivalent to an
Information Construct (1C). Thisruleis abasisfor mapping between aVIl and an IC.

Second, an aggregation of information items used in a process is a view of a
product model. For example, an IC, prece+MaTERTAL*CONCRETE{strength} MaY |00K like Table
4.2 in afinal product model in EXPRESS:

Third, by definition, entities and attributes in a product model are a subset of tokens
defined in an information menu. An information menu defines tokens, which can be later
translated into entities and attributes of a final product model, and the semantic relations
between them. Tokens, which are not defined in an information menu won’t appear as an

entity or as an attribute in a product model unless a product modeler intentionally add new

86

entities or attributes in a process of refining the final product model. Some tokens in an
information menu may be never used to form information constructs. Nevertheless, a
product model as a whole is not a subset of an information menu because additional
constraints can be added to a product model later.

Forth, some of the semantic relations between tokens defined in an information
menu will be inherited to a product model, but not al. If there are conflicts between the
semantic relations, only the selected ones will remain. Also the relations can be changed
through a normalization process.

Fifth, an aggregation of information constructs used in a process is not a view of an
information menu. Since an information construct is a concatenation of tokens, it is
obvious that an aggregation of ICs is not a subset of an information menu. However, it is
open to further discussion whether an aggregation of 1Cs is a semantic derivation from

tokens or not.

Table 4.2 Information constructs and entitiesin a product model

Information Constructs Entitiesin a Product M odel

PIECE+MATERIAL*CONCRETE{strength} ENTITY piece
material: material;
END ENTITY;
ENTITY material
SUPERTYPE OF (concrete) ;
strength: REAL;
END ENTITY;
ENTITY concrete
SUBTYPE OF (material);

END ENTITY;

87

The structure and the relations between information categories of RCM are
summarized in Figure 4.23.

An information set is a set of information items. Information items are categorized
into two types: information constructs (ICs) and vernacular information items (V1Is). ICs
and VlIs have a mapping relationship. Information constructs is composed of several
tokens. Tokens are categorized by general knowledge representation (KR) concepts and

also by the entity/attribute distinction.

information_items S[1:?]

Information Set
(INV) information_set [0:?]

’—description q STRING I
; | *token_name
— Information . - g STRING I

Construct (IC) *item_name L[1:?] (ABS)Token

(ABS)Information
d|

Item 1 *is_linked_to S[O:’?]—(L

(ABS)Product

modifier S[1:?]—d (ABS)Modifier

Decomposed Specialized Product Modifier Attribute
Product (DP) Modifier Entity (ME)| (MA)

L l | l

Vernacular Entity —attribute S[0:?]—q Attribute
==CInformation Item

i) I,]
e —d_ stene | |

| datatype I d Integer
"?:;1' Number
2D Graphic
. Synonym S[0:7] ,I ?:2|E;:2:ic

example S[0:?] d STRING
reference S[0:?] d STRING

Figure 4.23. Information structure of RCM

Vlls are local terms of a company or a certain group of people. Each IC and VII
should be unique. V1Is can have many synonyms. Examples, references, descriptions, and
data types of VlIs should be provided for later mapping between 1Cs and VlIs. The
following shows an example of aVII “delivered date” and its attributes:

Name: delivered date

Date Type: date

Description: date when a piece is delivered to a site, NB:

It may be different from shipped date.

Synonyms: (empty)

Example: Oct 5, 2001

Reference: Packing slip

4.8 DYNAMIC CONSISTENCY CHECKING

The quality of information generated by domain experts in the requirements
collection phase is an important determinant of the quality of the resulting data model
because RCM is based on process model information. Thus, a rigorous method to validate
amode and its information flows is a key to its success. This section introduces the logic
of consistency checking using information flows, and describes how it helps modelers to
automatically and dynamically validate their modelsin real-time.

Any process-modeling method must rely on semantic validation and syntactic
validation methods. In semantic validation, the only way in which modelers can confirm
the consistency of a model is by considering what information is necessary for an activity
or in what order activities should be laid out. Semantic validation methods are difficult to

automate because the judgment often relies on domain-specific (sometimes case-specific)

89

experience and knowledge, which are difficult to generalize and transform into logic.
Automated syntactic validation is available in most graphical modeling languages
including the UML (Rosenberg and Scott 1999) and Petri-Nets (Eastman 1999). They
check the consistency of a model subject to the syntax of their graphic symbols. What
distinguishes RCM from other methods is that it incorporates the logic of checking the
consistency of information flow, based on the interaction and interdependence of the
activities with regard to the availability or unavailability of information: i.e., information
used by an activity must be provided by its precedent activities, otherwise the activity

cannot be performed and the model is inconsistent.

4.8.1 Notation of Dynamic Information Consistency Check

As described earlier, GT PPM has functions to collect, store, edit, and analyze
information used in each activity in a process. These allow modelers to input information
used for each activity as they build a process model. Among GTPPM symboals, this section
focuses on two types of process semantics at a high level, i.e, the activity and the
information flow (Figure 4.24). The information flow will be simply called a flow in this

section for convenience.

Activity

_ ~
— ~
_ - ~

Source Target
\
\

\

Flow

Figure4.24 A source activity, atarget activity, and a flow

90

The information used in each activity and flow is assumed to be collected and
stored in each activity and each flow. Each flow has a single source activity and a single

target activity (Figure 4.24).

,,,,,,,,,,,,,,,,,,

Upstream Activities of r——
Activity A ITTTTT T T T T T T T Downstream

} } Activities of Activity A
|
| |
1
|
Upstream Activities }

of Activity D2

,,,,,,,,,,,,,,,,,,

Figure 4.25 Upstream and downstream activities

Neighboring activities of an activity can be categorized ad hoc into upstream and
downstream activities (Figure 4.25). A set of activities that provides information to an
activity in a modeler’s current focus is called a set of upstream activities. On the other
hand, a set of activities that are fed with information by an activity in a modeler’s current
focus is called a set of downstream activities. In Figure 4.25, Ul and U2 are upstream
information source of an activity A, and D1 and D2 are downstream activities of an activity
A. Clearly, the definition of upstream and downstream activities is relative. D2 can be

called a downstream of P1 and P2, and P1 and P2 can be called upstream of D2.

4.8.2 Basic Logic of Dynamic Information Consistency Check

The fundamental level of information consistency checking in GT PPM is an act of
selecting and inputting information for a certain activity in a manner similar to the DFD
method. If there is an activity ‘Calculate the strength of atire’, a modeler may easily tell

what information is necessary and what is not. We cal this semantic validation of

91

information consistency. Still, there is no way to guarantee that information collected is
complete or logically valid. Semantic validation is subjective because it is solely based on
modelers knowledge and judgment. For example, if ‘engine volume is an input
information item for an activity ‘Calculate the strength of atire’, a reader can guess that
this is not right, but can only validate it by consulting a tire expert. Also, he/she cannot
check if a critical variable is missing in the collected information. While semantic
validation will always be partly a human responsibility, information consistency and
robustness can be enhanced through logical checking.

The core concept developed here is called validation by information dependency:
i.e., unless certain information is provided, other information cannot be generated. In the
previous tire example (Figure 4.26), if ‘engine volume' is provided as input to ‘Calculate
tire strength’, we can infer that there is a certain dependency between ‘the strength of a
tire and ‘engine volume.” Conversely, if ‘tire materials is provided as output, ‘tire
materials must be either input to or generated by ‘Calculate tire strength.” By using this

concept we can infer what information and Activities are missing.

[Input Information] [Qutput Information]
engine volume tire strength

car weight tire materials

number of passengers reinforcement

Calculate tire
strength

[Processed Information]
engine volume

car weight

number of passengers
tire strength

tire materials
reinforcement

Figure 4.26 An example of " Calculatetire strength”

92

The first set of rules we initially implemented for checking information consistency
was to compare the information set of an activity with the flows that stream into/out of the
activity. The basic logic was that, by definition of information dependency, the information
set of an activity must be an aggregation of information flowing into the Activity from
source activities and the information generated in the activity itself. Therefore, a set of
inflow information (F,) must be a subset of information (1) of an activity (Figure 4.27 (1)).
Conversely, any outflow information (Fg) must be a subset of its source activity (A)

(Figure 4.27 (2)).

_Fu{ 1 }Fd%

M F,nlzg 2 Fcl

Figure4.27 The basic logic

Expanding this logic, several rules are defined as follows (Figure 4.27):
Rule 8: Intersection of information (F,) in any upstream flow that streams into a
target activity and information (1) of the target activity (A) must not be an

empty set:
F,.nl#¢

Rule 9: A set of information (Fg) in any downstream flow that streams out of a

source activity must be a subset of information (1) of the source activity (A):

Fycl

93

Rule 10: By definition of aflow, a new information item (Ig) can only be generated
in an activity (A) but not on any information flow (F). An information flow

simply carries a set of information between activities:
ligllge D Alye)

where |: activity information; Ig: information of aflow

f Information Consistency Check: Passed In Information ﬁ
Information Consistency Rule

A Flow information list must be a subset of an Activity information list, That is. all
the information in 3 Flow must exist in a Activity information list

— [Activity]
Information Flow 14 [Insert Standard Reinforcing
Flow Information List Activity information List
+piece_sel_info +piece_sel_info

plece_set_cast_piece_shape: 9 piece_set_reinforcing reintorch
Check >> | piece_set_reinforcing reinforci
piece_sel_reinforcing reinforch

Close piece_set_reinforcing reinforci
piece_sel_reinforcing reinforch

plece_set_reinforcing reinforch
piece_set_reinforcing reinforci
piece_sel_cast_piece_shape.

I+

Figure4.28 Thefirst interface for checking the information consistency

The logic was initially implemented in GT PPM (Figure 4.28). This version was
used for process modeling by the PCSC, which included 23 precast producers in the USA,
Canada, and Mexico. Fourteen detailed models were collected and analyzed (Sacks et al.,
2002). Even though the logic of this first approach was straightforward to understand, the
information collected showed some inconsistency. It was found that, since it was very

time-consuming and difficult for modelers to identify and report information for both

94

activities and flows, some modelers ssimply copied information from a flow to an activity
without seriously considering the actual use of information. Moreover, since this logic was
defined based on relations between information of an activity and its connected flow,
relations between information in activities, which were our actual interests, could not be
clearly shown. Therefore, | sought more rigorous definitions that could define relations of
information between activities and that could validate information consistency between

activities directly.

4.8.3 Extended Logic of Dynamic Information Consistency Check

The second approach focuses on relations of information within and between
activities. In order to define information and its relationship more specificaly, an
information set of an activity is categorized into information input (l;) and information
output (l,). The Information output is further subcategorized into passed through (without
modification, 1), modified (I), and generated information (lg) (Figure 4.29).

RCM categorizes information types into input and output information and
subcategorizes them into five types. They are defined as:

e Input (Information, I;): Information required by this activity. Input is subdivided
into:
o Remaining Information (Ir), which is purely referenced and is not
transferred to the downstream activities and remainsin an activity.
o Therest of the Input Information:= Input (I;) — Remaining Information
()
e Output (Information, I,): Information available from this activity.
o Information Modified (1), whose values are potentially changed or
modified in this activity.
o Information Passed-Through (I), which is not modified by the activity,

but transferred to the downstream activities as output.

95

o Information Generated (l), i.e. newly generated in this activity.

Remaining

® Passed-Through)
Available L Produced
Modified ﬁ y
Information Input Information
Generated
Input Output

Figure 4.29 Types of activity information

Figure 4.29 illustrates the information types of an activity in RCM. Note that input
information excludes information items returning through feedback flows in consistency
checking. In addition to input and output information, references for checking information
consistency are defined: i.e., unavailable, unused, and not-provided information. The
relationships between information items imply functional dependency: i.e, input
determines output and output is dependent on input. The rules that define the relationships
between information types are:

Rule 11: Activity information set is the union of input information set and output

information set:
=1, ul,

Rule 12: Output is the union of passed through, modified, and generated

information:
Io EU{I pt’lm’lg}

Rule 13: Input is the union of passed through, remaining, and modified

information:

96

Ii EU{Ipt’lr’lm}

Rule 14: The intersection of remaining, passed through, modified, and generated

information is an empty set:
m{Ir1|pt’|m’|g} E¢

Rule 15: By Rule 12 and Rule 13, remaining information is the subtraction of

output information from input:

| o

EU{lpt’lmilr}_U{Ipt’lm’lg}

Rule 16: A set of Activity information is the union of input and generated

information:

I =1, ul, (fromRule 11)
=L u(l,ul,ul,) (by Rulel12)
s =10l (by Rule 13)

Rule 17: Intersection of input (I;) and generated information (Ig) is an empty set:

N{1,. 1 ol 1} =@ (from Rule 14)
I, ul, =¢ (by Rule 13)

Thus far, we defined internal information types of an activity and their relationship.

The relations of information between activities are redefined according to these new

97

information types and in-/out- flow information. The basic assumption is that the input
information can receive information only from upstream activities, and the output
information can provide information only to downstream activities. The relations are
defined as follows (See Figure 4.25 and Figure 4.29 for reference):

Where
dn(A): downstream activities of an activity A,
up(A): upstream activities of an activity A;
output(A, x): output information of an activity A;
input(A, X): input information of an activity A

Rule 18: The input (I;) of an activity (A) must be a subset of the unionized output

(174 16721672 ..., 1,°™ of its upstream activities (U1, U2, U3...Un):

I, 21, where Available Information |,

a

= J{ x| output(up(A), X)}

Rule 19: The output () of an activity (A) must contain the set of unionized input
(1P 1°2, 1,2 .., 1;i°™) of downstream activities (D1, D2, D3...Dn) of A less
the set of aggregated output (1o, 12, lo - ..., lo ") of their upstream activities

(P1, P2, P3 ... Pn), excluding the activity A:

l,21,,, where Required Output Information I,

= x| input(dn(A), x)}

—((y | output(up(dn(A)), y)}

98

These ruless can be used for checking the consistency of information flows in
complete models. However, in order to practically help modelers to build more robust
models, we subcategorized the check results into several additional information sets, which
could support real-time consistency checking as models are composed. These are called

references. The references include (See Figure 4.29 and Figure 4.30):

x|
Available Input Information — | [Activity: Draw a House — Required Output Information —
Ot c Input Information Output Information 1 Browk c
Input: Edtiput | c | || PassedThrough add | Remove | < ouged
ly
Lot
. Iy
|
Modified Info: ~ Add | Remove | ¢
Unused: L] | |
Remaining
I uu I m Not-Provided <

Generated Info; _ Edit New Info] = |

— Unavailable Input Information — Top Ceriok ity

<] [| |
Actor & Application no
Actor: a

Application: Ii

|ua

>Hide References<

Save I Save &Exit l Exit |

Figure 4.30 The second interface for checking the information consistency

Rule 20: A set of information that does not conform to Rule 18 is caled
unavailable information. In other words, input information that does not exist

in available information is unavail able information:

Unavailable Information | , =1, -1,

Rule 21: A set of information that is a subset of available information, but does not

exist in input is unused information:

99

Unused Information |, =1, -1,

Rule 22: Conversely, a set of information that is a subset of available information

and also that of input is used information:

Used Information |, =1, N1,

Rule 23: A set of information that does not conform to .21 , where Available

Information la
= U{ x| output(up(A),)}
Rule 19 is not-provided information I

Not-provided Information | /=1 I

o

Rule 24: A subtraction of not-provided information from required output

information is provided information I,

Provided Information 1) =1 -1,

The logical propositions are implemented in a user interface that automatically and
dynamically checks the consistency of information as modelers edit a required output
information list. Only input, passed through, modified and generated information are saved
— the other categories are dynamically calculated based on these rules. As modelers update
information, all the relations among relevant information sets are automatically rechecked
and the check results are updated. In actual implementation, the derived rules such as Rule

15, Rule 16, and Rule 17 reduced the extent of source codes.

100

4.8.4 Practical Refinement of the Extended Logic

In this section, a practica refinement is introduced. While the extended logic of

checking information consistency is theoretically robust, the interface shown in Figure 7

suffers the following drawbacks:

Selecting information items requires much work. In order to achieve a complete set

of information for an activity, users must carefully and thoroughly think out what

information is needed for four categories; i.e., for input, passed through, modified, and

generated information.

A process model of a medium-size organization usually includes hundreds of
Activities for which information must be selected from a data dictionary (Sacks
et a., 2002). In the case of the PCSC, a data dictionary with over 30,000
possible combinations of information is provided. Selecting the correct
information from them for each Activity is not trivial. Modelers are apt to lose
concentration and that can lead to an imprecise model. Thus, selecting and
editing information from a data dictionary should be reduced as much as
possible

These drawbacks can be reduced by implementing the extended consistency
checking logic as follows:

Passed through, modified, and generated information lists are merged into an
output information list. In the extended logic, the author distinguishes passed
through, modified, and generated information explicitly. However, generated
information does not denote the information item that is first generated in the

whole sequence, but locally generated information within an activity. That is, if

101

a user wants to keep track of the first activity in which an information item is
generated, then information items should be considered in the context of the
whole sequence, not that of an individual activity. An information item that
does not appear in any previous activities is true newly-generated information,
while an item that exists in the previous activities, is true modified or passed
through information.

In al cases, input information is drawn directly from the output of the upstream
activities. Conversely, output information should provide any downstream
information that is not fed by other activities. It would therefore be preferable
to drag the information from that available or required rather than select it from
a large data dictionary. This approach allows users to select and copy
information from available information (I;) and also from required output
information (I;) based on Rule 18 and Rule 19. In this case, the information
copied will be deleted from its source information list based on Rule 20 and
Rule 24. For example, if a user selects information from an unused information
list and add it to an input list, the added information will be removed from the
unused information list automatically.

Output information shares passed through and modified information with input
information (Rule 12 & Rule 13). Therefore, information items in the lists of
input and output information can be copied from/to each other. In this case, the
copied information will remain in both input and output information lists.

The lists of used and provided information are omitted so as to reduce the

complexity of the user interface and to increase the viewing space for the

102

remaining other lists. Available, used, provided, and required output
information types are hidden.

e Unavailable information (l,,) can be derived by Rule 20. Any information that
fals into the unavailable information list must be provided by the upstream
activities. If no activity exists that can provide the unavailable information, a
new activity (or activities) must be added and connected with an information
flow symbol/shape.

¢ Required and not-provided information can be derived by Rule 19 and Rule 23.

e Not-provided information must either be added in the output information list, or

it must be provided to the downstream activities from other activities.

PCSC Activity Information
Available Input Information Activity: Draw a House Required Output Information
M il'opi.e\tel Generic Activity _I Actor: S
Input Information Output Information

ILU Copy | Remove | Add New I c | e | Bl | Add New [¢ |

™~

Unavailable Input Information | np

=]

Remaining

>Hide References<

Save ‘ Save &Exit [Exit |

Figure 4.31 A practical approach to checking the information consistency

Since this new interface allows users to use selected information over and over

through activities, it provides a degree of semantic consistency as well as reducing the

103

effort required of users in selecting information and maintaining the logical consistency

between information collected.

4.8.5 Application & Limitations of the Dynamic Consistency Checking Method

It has been described how the consistency of information flows in a process model
can be checked using logic based on information dependence between activities. A system
can automatically check consistency of information flows according to this logic and can
display inconsistent information items as unavailable- or not-provided-information lists.
Modelers can maintain the consistency of a process model and its information flows by
revising amodel in any or all of three ways:

1) editing theinformation lists of relevant activities

2) adding or removing activities

3) creating, removing, or diverting information flows.

However, modelers should be aware of the limitations of this method as a
consistency checker for process models:

e This consistency checking is not aimed at finding the most efficient form of
information exchange (cf. DFD). Rather it reflects business practices and
policy and, therefore, allows redundancy of information.

e [t can guarantee a certain degree of completeness and robustness, but cannot
guarantee absolute completeness of collected information because of the
nature of modeling efforts. For example, even as a model is compiled,

reguirements may change.

104

4.8.6 Comparing RCM with Other Requirements Collection methods

Requirements of a UoD can be captured in a variety of formalisms. Common
methods include Flowcharts, UML Activity Diagrams, Use Case diagrams, Data flow
Diagrams (DFDs) (Osborne and Nakamura 2000), and IDEFO (NIST 1993) schemas. Both
Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999)
are limited only to capturing sequences of activities and are not able to describe the
information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard
1992), which are a part of the UML methodology, define a set of sequences in which each
sequence represents the interaction of the things outside the system (its actors) with the
system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). They do
not explicitly bring out the “information” hidden in the use-case notation. Data flow
Diagrams (DFDs) (Osborne and Nakamura 2000) represent flows of information in a
system wusing information flow symbols, processes, external entities (ak.a
source/destination, sink), and internal data storages (often files). The whole set of DFDs
consists of several levels of diagrams. The top-level DFD is called a context diagram.
Details of information that is transferred between processes and data storages is described
separately and called a data dictionary. However, DFDs do not show workflows, i.e.,
decisions or sequences of activities. DFDs capture information required for ‘system’
design, but do not describe information flows in a sequence of activities. It is important to
capture information in a context of its use because information is often aggregated and
decomposed in a data model depending on its use-cases (i.e., in what processit’s used and
stored) not on its system configuration (i.e., in what machine it’s used and stored).

IDEFO (Integration Definition of Function Modeling (International Organization

for Standardization 1994)) is a Federal Information Processing Standard (FIPS) supported

105

by 1SO It is based on SADT (Structural Analysis and Design Techniques) and is designed
to define the “functions of a system or subject area with graphics, text and glossary (NIST
1993)”. Asin DFD modeling, IDEFO models have a hierarchical structure and take a top-
down approach. A unique feature of IDEFO isits ICOM codes (Input, Control, Output, and
Mechanism arrows). Input and Output arrows indicate the data and object flows into and
out of a function. Control arrows denote the “required conditions for a function,” and
Mechanism arrows represent the “means of performing afunction”. Arrow types (or flows)
are categorized in terms of use, but individual information items are not carried by the
arrows between functions. Detailed information can be defined separately in IDEF1x (or
IDEF1), but there is no direct link between the two modeling techniques. These modeling
methods are available in commercia tools (e.g., BPR®, Arena®, Rose®, Visio®, and

SmartDraw®).

Table 4.3. RCM and other modeling methods.

RCM Components UML Activity IDEFO Flowchart DFDs
Diagrams

Internal/External Activity or X X x O

Function

Hierarchical Structure X @) X ©)

Information Flow O @) O O (Dataflow)

Feedback Flow X X X X

Material Flow A (Object Flow) X X X

Continue Shape X X X X

Decision Shape (©) X O X

Static Info Source X X O (Storage) @)
(Source/Sink)

Dynamic Info Repository X X O (Storage) O (Files)

Information Menu X X A

(DataDictionary)

O: available; x: not available; A: similar

106

The differences in modeling concepts between the RCM and other modeling
methods with similar purposes are summarized in Table 4.3. (Use-Case diagrams are not
included in Table 4.3 because they do not have conceptual commonality with the RCM
except for the fact that both methods focus on use cases). In Table 4.3, the data dictionary
of DFDs is marked with a triangle because it smply has the form of a collection of word-
cards and does not have any structure or any method to deal with the large number of
information items that can occur in a data model. Object flows in the UML are also marked
with a triangle. They are somewhat similar to material flows in RCM; however they differ
from material flows in that material flows are only restricted to physical materials while
object flows include also non-physical objects and forms such as orders and bills (Booch,
Rumbaugh, and Jacobson 1999).

Some commercial CASE (Computer-Aided Software Engineering) tools for
database design (such as Viso®, AllFusion® (a.k.a ERWin®, BPWin®), and Corporate
Modeler®) are capable of coupling DBMSs mostly only with ARMs (e.g., IDEF1x,
EXPRESS-G, the UML as a modeling package, and ER diagrams) and sometimes with
process models (AAMs). Severa other methods have been researched and developed: e.g.,
PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS (Wilson et al. 2001), GPP
(Wix and katranuschkov 2002), 1STforCE (Wix and Liebich 2000), ATLAS (Tolman and
Poyet 1995), VEGA (Bakkeren et a. 1996), ICCl (Katranuschkov et al. 2002),
PISA(Bakkeren et a. 1996)). Among these, PISA directly interrelates process and product
modeling by assigning additional symbols to each ICOM (Input, Control, Output,
Mechanism) code of IDEFO. Table 4.4 compares PISA and RCM. The others are mostly

focused on workflow management methods. Including PISA, the author is not aware of

107

any formal method that can élicit discrete information items from heterogeneous business
environments step by step, validate collected information items, and integrate them into an

industry-level product model.

Table 4.4. Comparison of PISA and RCM

PISA RCM
Basis for process modeling IDEFO N/A
Basis for product modeling NIAM (graphical) Information Menu
EXPRESS (textual) EXPRESS (final result)
Integration of process and product Yes Yes
modeling

108

CHAPTERS

LOGICAL PRODUCT MODELING (LPM)

5.1 INTRODUCTION

The goal of LPM is to (semi-)automatically derive a product model from collected
information constructs. The LPM is a combinatorial process of integrating and normalizing
(i.e., decomposing and restructuring) information constructs into a formal product model.
The targeted data modeling language, in this thesis, is EXPRESS. This chapter first
discusses the data integration method and then the normalization method in LPM.
Nevertheless, the integration and normalization processes are reciprocal and cannot be
treated separately. The integration and normalization rules are also defined as design
patterns'®. A product model developed through GTPPM is by no means complete. Much of
the information that provides the semantics (i.e., roles, rules, cardinalities, data types) still
has to be added manually and the resultant model should be modified. The limitations are

discussed at the end of this chapter.

5.2 SCHEMASMAPPING, INTEGRATION, DESIGN PATTERNS, AND
NORMALIZATION

Sometimes different work processes use the same set of data. Sometimes two
equivalent processes may use the different sets of data. But different work processes

usualy require (and use) different sets of data. In order to make a product data model

18 See the next section for more information on design patterns.

109

support various work processes, a product model should be an integration of different sets
of data, which are required by different processes. We regard integration to be different
from simple aggregation. While aggregation is a simple consolidation of data, integration
is a semantic union™ of different sets of data. In an integration process, semantic relations
between different sets of data should be defined and mapped. Conflicts® between
information constructs should be resolved.

There are several ways of mapping and integrating (sub-) schemas. A brief and
general introduction to the EXPRESS integration method is available in Section 6.3 of
(Schenk and Wilson 1994). Schenk and Wilson defines integration as a process of
combining Topical Information Models (TIMs), which are domain-specific information
models devel oped by several modeling teams, into a minimally redundant, non-ambiguous
and complete Integrated Information Model (11M). The TIM and the IIM are conceptually
similar to the ARM and the AIM of the STEP method except for the fact that an 1IM does
not have predefined integrated generic resources (IRs). Schenk and Wilson categorize
model integration into six forms:

1) cosmetic integration: modeling and documentation in a consistent style

2) editorial integration: elimination of synonyms and homonyms

3) continuity integration: elimination of redundancies and identification of gaps

4) structural integration: generalization of underlying concepts in TIMs and

interfacing of an 1IM with other 1IMs

5) core-based integration: integration of TIMs into a high-level, abstract, and

generic core information model

1% See Appendix E for aformal definition of the semantic union.

2 see the design patterns in the following sections for examples.

110

6) evolution-based integration: development of an IIM by integrating a TIM and

another TIM until all the TIMs are integrated.

However, these descriptions provide only general guidelines and strategies for
model integration and do not deal with the integration problemsin detail.

Another effort worthy of discussing, is EXPRESS X. EXPRESS X isthe ISO STEP
schema mapping language that provides a formal description method to map two different
schemas and their entities using Rule Declaration and Type Map Declaration (ISO TC
184/SC 4 1999). However, EXPRESS X is a mapping mechanism between two schemas,
not an integration method.

For some reasons, many people misconceive that XML can automatically integrate
two or more different schemas. XML has Include, Import, and Redefine mechanisms to
reuse or to integrate different schemas into a new one (Wyke and Watt 2002). But they are
not very different from the concept of the schema interfacing (or referencing) mechanism
in EXPRESS. Both XML and EXPRESS provide tools for model integration, but the work
still has to be done by humans. There is still no logic to automatically integrate two
schemasin XML and EXPRESS, which the author is aware of.

Another approach to mapping and integrating (sub-) schemas is to use design
patterns in object oriented programming. Design Patterns originated from Christopher
Alexander’ s Pattern Language for buildings and towns (Alexander et al. 1997). The design
pattern for object oriented programming has grown as a new field through years of efforts
by design pattern groups and conferences (e.g., Ward Cunningham and Kent Beck
(Coplien 1999), Erich Gamma and his colleagues (Gamma et al. 1994), Pattern Languages

of Programming conference (PLoP), and Object Oriented Programming conference

111

(OOPSLA), and Object Management Group (OMG)). Each design pattern describes a
particular object-oriented design problem; the core of the solution; and the constraints,
consequences, and trade-offs of its use. Gamma et a. categorized design patterns into
three: Creational, Structural, and Behavioral Patterns in their book (Gamma et al. 1994).
The first two categories dea with instantiation and composition/decomposition of objects.
The last category deals with encapsulation of algorithms.

The design pattern approach can be also applied to normalization of a data model.
Normalization is an activity of using the known semantics of data in the form of
dependencies that may be a cause for potential “update anomalies’ requiring unnecessary
duplicate work as well as causing potential inconsistencies in a database. Normalization of
data was first proposed by Codd (Codd 1972) in the context of the relational model. The
process of normalization can be defined by constraints or conditions that must be satisfied
progressively to achieve a higher “quality” or “goodness’ of design (ElImasri & Navathe,
2004). The process successively decomposes the relations so that, after each
decomposition, a higher normal form is met; yet, the decomposition must be “non-
additive” — in that it does not produce any spurious data after joining the component
relations. The relational normalization theory is well accepted and defines the well-known
first through fifth normal forms considering functional, multi-valued and join dependencies.
However, in practice, the higher normal forms like the fourth and fifth normal forms are
rarely used because their dependencies are hard to detect or for performance reasons, so as
to avoid joins. It is difficult to apply the conventional normalization criteria and
dependencies to several application domains. e.g., the human genome databases (Kogelnik

et al. 1998)).

112

However, in object-oriented data models, redundancy of data is less of a concern
because of their efficiency of representing the specialization relationship and other
relations using "pointers’ compared to the relational data model, which relies on foreign
key - primary key relationships. There have been several efforts to explore and develop
different normal forms for object-oriented data models from relational normal forms (Beeri,
Bernstein, and Goodman 1978; Tari, Stokes, and Spaccapietra 1997). They illustrate that
object-oriented models can be decomposed and integrated relatively freely depending on
the given normalization criteria. However, unlike relational normalization, the goals (or
criteria) of normalization are not clearly set in object-oriented data modeling languages.
For example, (Tari, Stokes, and Spaccapietra 1997) proposed user-interpretation-based
normalization. Three functional dependencies (i.e., path dependency, local dependency,
and global dependency) were provided to support the method. Even though their method
supports normalization (restructuring) of objects by user-defined constraints, the method is
weak in terms of providing a standard or generic normalization method because any user-
defined constraints can be a*“norm.”

The following sections describe a method to integrate collected information
constructs into an Application Requirements Model (ARM) and define design patterns to
resolve conflicts between different information constructs in the collected information

reguirements and to normalize an integrated model.

5.3 INTEGRATION OF COLLECTED INFORMATION IN GTPPM

In GTPPM, there are four possible integration approaches. Figure 5.1 illustrates the
four options. The bold line indicates a point of integration. The double-lined circle

indicates an integrated model or an aggregated model.

113

Process Process
Models Models
Integrated

Process Integrated

Vlis

Aggregated
Vils

Integrated Aggregated

An integrated ICs An integrated
Vils g
Product b Product
@) Model (b) Model
Process Process Product
Models Viis ICs Models Vils ICs Models

a)

b)

An integrated An integrated

Product Product
(©) Model (d) Model

Figure 5.1 Four possibleinformation integration methodsin GTPPM

Integration of process models: Different process models can be integrated into
one process model. Information requirements will be defined based only on a
single unified process model. This is the most common approach that is taken
today by STEP and IFC modeling efforts.

Integration of vernacular information items. Information items required by
each process can be specified in each company’s local terms. Specified
vernacular information items (VIIs) can be aggregated and mapped to
information constructs. Then the semantic conflicts can be resolved in the
normalization process of information constructs (1Cs) into a product model.
Integration of information constructs: Lists of information constructs can be
aggregated into one large list. The aggregated ICs can be normalized into an
integrated product model. The semantic conflicts should be resolved in the

normalization process.

114

d) Integration of data models: A product model can be derived from each RCM
model. And the generated product models can be integrated into afinal product

model.

Among these, this study takes the second and third approaches. In the first
approach, if the process models can be integrated “losslessly”, an integrated product model,
which can support various processes, can be developed from the integrated process model.
It will not be easy to integrate processes without losing any semantics. However, even if
process models can be integrated losslessly, it will be difficult for modelers to specify
information requirements based on an integrated process model because an integrated
process model may not be able to represent the real contexts of information use.

The fourth approach is not very different from general schema integration. Each
product model will have additional constraints (e.g., arities, rules) to the preliminary
product models directly derived from RCM models. And the more detailed and complex
constraints will be, the more difficult to resolve the conflicts between them. Thus, it is
better to integrate information constructs when they are as little structured as possible.

In this regard, the second and third approaches are most feasible among the four
possible integration approaches. The two approaches are interchangeable because a data
structure is not sensitive to the order of aggregation (albeit it may be sensitive to the order

of integration).

54 NORMALIZATIONIN GTPPM

The definition of normalization in GTPPM is not very different from most existing

ones (i.e., decomposition and restructuring of a data structure to a normal form), but the

115

scope and goals are not the same. Unlike traditional relational database normalization
theories, the goal is not to eliminate redundancies or anomalies at an instance level (e.g.,
null value, lossless joint, multi-valued dependencies (ElImasri and Navathe 2004), but at an
entity level. Since GTPPM is a schema generation method, the instance-level
normalization issues are out of its scope. Also it does not deal with optimization issues that
can make database transaction and query more efficient and faster. In any case, traditional
database normalization and optimization methods can be applied when the fina product
model isimplemented as a physical model.

The main goals of normalization in GTPPM are (1) resolving conflicts between
information constructs with different data structures; and (2) eliminating redundant entities

and attributes at a schemalevel.

55 LOGICAL PRODUCT MODELING IN GTPPM

As noted earlier, the integration and normalization processes are separated.
Conflicts occurring in the integration process will be resolved during the normalization
process. The current LPM is composed of eight steps.

Step 1: Union information constructs

Step 2: Decompose information constructs into entities by the association and

decomposition relations.

Step 3: Detect and merge semantically equivalent entities.

Step 4: Detect and merge semantically equivalent attributes within entities.

Step 5: Resolve conflicts between attributes of a supertype and itsinherited

attributes.

116

Step 6: Generadlize the data structure: Extract supertypes and their attributes from
information constructs
Step 7: Resolve conflicts between attributes, supertypes, and subtypes.

Step 8: Refine the automatically derived product model

The LPM process is described in detail according to these eight steps in the
following sections with examples and nine design patterns. The nine design patterns were
defined to resolve the conflicts detected by MS SQL Server 2000° and EDM® through the
evaluation process of three test cases described in Sections 7.3 through 7.5. Syntactically
sound three test case models and an integrated model of the three test case models could be
generated through the nine design patterns. We believe that these patterns are adequate for
the normalization process as described. However, additional design patterns may be

required and defined in the future.

56 STEP 1. UNIONIZING INFORMATION CONSTRUCTS

LPM first collects and unionizes the properties of al the information constructs in
the RCM models. In this process, information constructs are unionized without any
normalization or conflict resolution. Since the tokens of an information menu, on which
information constructs are based, are defined based on the ‘nym’ principles (i.e., no
homonym, no synonym), tokens with the same spelling should be regarded as identical.
For example, if we have two information constructs of PROJECT, A and B, as shown
below,

A: PROJECT ={name, id, site}
B: PROJECT = { name, manager, schedule, client}

the union of A and B will be:

117

A U B: PROJECT = {name, id, site, manager, schedule, client}

The properties can be either a simple attribute or an entity in EXPRESS. This rule
can be generalized as a design pattern. Note that the LPM process assumes that data types
of attributes will be manually defined in the last of step of LPM in order to reduce the
conflicts between attribute types. During the LPM normalization process, the data types of
simple attribute types will be temporarily defined as STRING. And data types of entity-
type attributes will be temporarily defined as the same as their roles (Figure 5.2) until
manual modification. Also in the EXPRESS-G diagrams used for describing design

patterns, roles will be omitted assuming that they are unique or the same as associated

entities unless specified otherwise.

, role
7/

A F B project

site

C

Figure 5.2 Roles of propertiesin GTPPM

In any case, if there are conflicts between data types, those should be resolved in

the normalization process. (See Design Pattern 4 and Design Pattern 5 for examples and

details on thisissue.)

schedule

Example

Design Pattern 1: Unionization of Information Constructs

118

site

schedule

Problem: Different information constructs denote that an entity has different (sets of) attributes

(Figure 5.3) NB: Conflicting entities are in peach (or in grey in black and white print).

(a) (b)

Figure 5.3 Conflicting attributes
Solution: Each relation has a specific meaning in structuring a data model. Thus, the genera

principle of model integration is to preserve semantics of information constructs as much as possible in an

integrated model. Thus, the attributes of an entity should be the union of attributes of the entity defined in

information constructs.

Product 9 Material

Manufacturer

Example

Figure 5.4 Unionization of Information Constructs

Notes: If there is a case that different attributes of an entity are associated with one entity type as

shown in Figure 5.5 (a), there is no conflict in the information construct. An example is when A: schedule;
Role 1: start_date; Role 2: end date; and C: date. On the other hand, this should not occur if tokens are
defined following the ‘nym’ principle, but if one attribute (name) is associated with two entities as shown in
Figure 5.5 (b), one of the Role names should be changed unless there is a mechanism to integrate or merge
the two attributes, namely, C and D in the example. An example is when A: product; Role 1: id; Role 2: id;
C: unique_id; and D: design_model_id. In this case, either Role_1 or Role_2 should be renamed. Role_2 may

be renamed to design_type.

119

Role1 Role1

A —‘ A
Role1

Role2 - D
C

(a) (b)

Figure 5.5 Conflicting attribute (role) names

Design Pattern 1 defines a situation when a property is shared by two “different”
entities. It is also possible that a property is shared by two “different” entities. In such

cases, the property should be regarded as a property of both entities.

Design Pattern 2: A Shared Entity Type

Problem: A property of Entity A (in Figure 5.6) is associated with Entity B. A property of another

entity (Entity C), which is associated with a property of Entity A, isalso associated with Entity B.

]

Figure 5.6 Properties associated with the same entity

Solution: Two different entities can have properties that are pointed to the same

entity. Entities A and C in Figure 5.6 are two different entities. Therefore, there is no conflict in this case.

120

Production

Due_Date

T T

L C L Shipping

Example

Figure5.7 An example of two different properties associated with the same entity

5.7 STEP 2: DECOMPOSITION OF INFORMATION CONSTRUCTS

Information constructs are a concatenation of tokens linked by the decomposition

relation and/or the speciaization relation. Through the LPM process, the collected

information constructs will be broken down either into entities or into attributes. LPM Step

2 is the first step to break down information constructs into smaller chunks by the

association and decomposition relations. The decomposition procedure in Step 2 is as

follows:

a)

b)

As described in Section 4.6.3, the decomposition/association relation is
represented as “+” in GTPPM. If entitiesin an |C are concatenated by “+”, then
decompose ICs into separate entities. For example, an IC
PIECE+GEOMETRY +DIMENSIONS{length} will be decomposed into three
entities PIECE, GEOMETRY, and DIMENSIONS{ Iength} in this process.

If an entity aready exists, do not create a new one, but merge the attributes of
the entity into the existing one following the Design Pattern 1. This is to avoid
redundancy of entities.

If there is a concatenation of “A+B”, the entity B should be added as an

atribute of A. For example, GEOMETRY in the PIECE+GEOMETRY

121

concatenation should be added as an attribute of the PIECE entity. See Table
5.1 for more examples.

d) Step 2 should aso conform to Design Pattern 1 and Design Pattern 2.

Table 5.1 illustrates an example of decomposing ICs in EXPRESS. *: denotes the

specialization relation as described in Section 4.6.3.

Table 5.1 Decomposition of |Cswith the decomposition/association relations

Information Constructs

PIECE+GEOMETRY+DIMENSIONS{length}

PIECE+GEOMETRY*GEOMETRY 3D{volume}

Decomposition in EXPRESS

ENTITY piece
geometry: geometry;
geometry*geometry 3d: geometry*geometry_ 3d;

END ENTITY;

ENTITY geometry
dimensions: dimensions;

END ENTITY;

ENTITY dimensions
length: REAL;

END ENTITY;

ENTITY geometry*geometry 3d
volume: REAL;

END ENTITY;

122

5.8 STEP 3: MERGER OF SEMANTICALLY EQUIVALENT ICS

Some information constructs are in different structures, but semantically represent
the same thing. Step 3 identifies the semantically equivalent information constructs based

on the abbreviation rule defined in Section 4.6.3. Examples are;

STAIRCASE{piece mark, length, height, width}
ASSEMBLY*STAIRCASE{piece mark, component list }
PIECE*ASSEMBLY*STAIRCASE{assm mark, num of steps}

STAIRCASE{piece mark, num of steps, balusters}

PIECE*ASSEMBLY*STAIRCASE
= ASSEMBLY*STAIRCASE

= STAIRCASE (by the abbreviation rule)

asseMBLY*STATRCASE Fepresents the relationship between assevery and sratrcase, but

starrcase done cannot. Thus, the semantically equivalent entities should be merged into an

unabbreviated form to capture as much semantics as possible. In the above example, the

entities and attributes should be merged into rrecE+assemBLY*sTATRCASE.

PIECE*ASSEMBLY*STAIRCASE {piece mark, assm_mark, length, height,

width, component list, num of steps, balusters}

This process can be generalized as Design Pattern 3.

Design Pattern 3 Merger of semantically equivalent entities

Problem: The specialization relation between two entities is represented in an information construct,

but not in other information constructs.

123

G—I—>
(o9)

(os]
S B
(@]

(©)

Oﬂ
(@]

(b)

(a)

Figure 5.8 Semantically equivalent infor mation constructs

Solution: Integrate the information constructs to the most semantically rich hierarchical structure.

T

C

Figure 5.9 Merged entitiesin the specialization relation

A pseudo-code for detecting semantically equivalent ICsis provided in Appendix F.

59 STEP4: RESOLVING CONFLICTSBETWEEN ATTRIBUTE TYPES

There can be a conflict between property (attribute) types. A property of an entity

can be defined as an entity type in one information construct, but as an attribute type in

124

another. It can be also defined as STRING in one information construct and as an
INTEGER in another. Design Pattern 4 and Design Pattern 5 deal with such conflicts
between attribute types. Since the LPM process defines al the data types as STRING in
the beginning, the second case does not occur. However, Design Pattern 5 provides a

solution for such a case.

Design Pattern 4 A conflict between an entity type and an attribute type

Problem: A property may be defined as an entity type by one information construct and as an

attribute type by another.

B B

A E A d STRING I

(a) (b)

Figure5.10 A conflict between an entity type and a simpletype

Solution: An entity carries much richer information than an attribute type. Thus, the property

should be defined as an entity. The order of selection should be;

Entity > User-defined types > Simple (attribute) types

Figure5.11 A resolution for the attribute data type conflict

Design Pattern 5 A conflict between simple attribute types

125

Problem: Different information constructs define the data type of an attribute as different smple

types.

B B

A g INTEGER I A
\—(% STRING

(a) (b)

Figure5.12 A conflict between simple types

Solution: The order of selection of simple types should be dependent on the inclusiveness of data
types. For example, REAL can be expressed by STRING, but REAL cannot express STRING. LOGICAL
can beexpressed as 1, 0, -1 in INTEGER, but LOGICAL cannot express INTEGER. Thus, STRING is more

inclusive than REAL. And INTEGER is more inclusive than LOGICAL. The order of inclusiveness of

simple data types are:
BINARY > STRING > NUMBER > REAL > INTEGER > LOGICAL > BOOLEAN
T

A

E
STRING I

Figure5.13 A resolution for the simple attribute data type conflict

510 STEP5: RESOLVING CONFLICTSBETWEEN ATTRIBUTES OF A SUPERTY PE
AND ITSINHERITED ATTRIBUTES

Design Pattern 6 Conflicts between attributes of a supertype and itsinherited attributes

Problem: Attributes of a supertype are defined as attributes of its subtypes in different information

constructs.

126

®
O
=

Figure5.14 A conflict between attributes of a supertype and inherited attribute

Solution: Since al the attributes of a supertype will be inherited to its subtypes, it is redundant to
define the attributes of a supertype again as attributes of its subtypes. The redundant attributes of subtypes

should be deleted.

I\

Com—

@

L

>

)

o— |

7 N

o

Figure 5.15 Deletion of inherited attributes

511 STEP6: GENERALIZATION/SPECIALIZATION IN GTPPM

The goal of Step 6 is to restructure the entities by the specialization relation. The
specialization relation is denoted as “*” in GTPPM as described in Section 4.6.3. Unlike
tokens in the association/decomposition relation, tokens in the specialization relation
cannot be simply decomposed and added incrementally because of the inheritance

mechanism of the specialization relation. For example, if two subtypes B and C of a

127

supertype A have a common attribute D, the attribute D should be an attribute of the

supertype A and should be removed from the subtypes B and C (Design Pattern 7).

Design Pattern 7: Generalization

NB: Design pattern 6 deals with a conflict between attributes of subtypes and attributes of their
supertype whereas Design Pattern 7 defines a pattern for creating new attributes of a supertype by extracting

least common attributes of its subtypes.

Problem: If subtypes of a supertype have common attribute(s),

Figure 5.16 Common attributes of subtypes

Solution: the common attribute(s) should be deleted from the subtypes and added to the supertype.

I

A

—

Cc

B

Figure5.17 Generalization in GTPPM

128

Based on Design Pattern 7, a supertype can be formally defined as a set of least
common attributes of its subtypes:

Supertype T = { x: attribute; S subtype of T | IxVSx e S}

Step 6 identifies and extracts least common attributes of subtypes from the
collected information constructs and add them to their supertype. The extraction process
must start with the top-level supertype because the top-level supertype is a set of the most
common attributes of all the subtypes. For example, after Step 5, ICs may look like the
examples below. At this point, there should not be any entities in the
decomposition/association relation and any semantically equivalent items, which should

have been resolved in the previous step.

piece*beam{piece_mark, length}
piece*wall{piece mark, length, wythe}
piece*assembly*staircase{piece mark, assm mark, num of steps}

piece*assembly*facade{piece mark, assm mark, window}

First iteration: In the above example, PIECE is the top-level supertype. The most
common attribute ‘piece_mark’ among the subtypes becomes an attribute of PIECE.
PIECE and ‘piece_mark’ will be removed from the list. WALL, BEAM, ASSEMBLY will

be marked as subtypes of PIECE.

pieeextbeam{pieece—mark, length}
pieee*wall {pieece—mark, length, wythe}
pieeerassembly*staircase {pieee—mark, assm mark, num of steps}

pieeetassembly*facade {piece—mark, assm mark, window}

129

The PIECE entity in EXPRESS can be defined as follows:

ENTITY piece
SUPERTYPE OF (beam, wall, assembly*staircase, assembly*facade);
piece_mark: id;

END_ENTITY;

piece

piece_mark
beam
wall
assembly*staircase

assembly*facade
beam wall assembly*staircase assembly*facade
- piece—mark piece—mark
length length assm_mark assm_mark
9 wythe num_of_steps window

Figure5.18. Thefirst iteration of specialization

Second iteration: After removing PIECE from ICs in the first iteration,
ASSEMBLY becomes the top-level supertype of STAIRCASE and FACADE.
‘assm_mark’ is the common attribute between them. A new entity ASSEMBLY s created,

and ASSEMBLY and assm_mark are deleted from the list.

beam{length}
wall{length, wythe}
assembly*staircase{assm—mark, num of steps}

assembly*facade{assm—mark,: window}

130

At this step, PIECE and ASSEMBLY can be described in EXPRESS as follows.
Since ASSEMBLY*STAIRCASE and ASSEMBLY*FACADE have been decomposed,
the two entities should be removed from the subtype list of PIECE. And ASSEMBLY

should be added as a new subtype. Figure 5.19 is an illustration of the second iteration.

piece
piece_mark
beam
wall
assembly*staircase
assembly*facade
assembly
Assembly
assm_mark
staircase
facade
beam wall staircase facade
—| piece—mark piece—mark
- length assm-_mark assm—mark
length i
wythe num_of_steps window

Figure5.19. The second iteration of specialization

ENTITY piece

SUPERTYPE OF (beam, wall, assemblyrstairease, assemblyrfaecade, assembly);

piece_mark: id;

END ENTITY;

ENTITY assembly
SUPERTYPE OF (staircase, facade);
assm_mark: id;

END ENTITY;

131

The generalization processin LPM can be formally defined as a pseudo code and a

design pattern as follows:

DIM

DIM

DIM

DIM

DIM

DIM

DIM

SUB

END

supertype as ENTITY

supertypes as SET_OF_SUPERTYPES
subtype as ENTITY

subtypes as SET OF_SUBTYPES
attr as ATTRIBUTE

attrs as SET_OF_ATTRIBUTES

name as ENTITY NAME

specialization

DO WHILE exists(the least common_attrs)
attrs = get_common_ attr (subtypes)
create_supertype (name)
add_attr (attrs)
add_FK (supertypes)
delete obsolete FK(supertypes)
delete_added_attrs (subtypes) ;

LOOP

SUB

512 STEP7: RESOLVING CONFLICTSBETWEEN ATTRIBUTES, SUPERTYPES,
AND SUBTYPES.

Design Pattern 8 Conflicts between a subtype and a property

Problem: An entity B may be defined as a property of another entity A in one information construct,

but also as a subtype of the entity A in the other information construct.

132

(a)

(b)

Figure5.20 A conflict between an attribute and a subtype

Solution: An entity carries more information when it is defined as a subtype of the other entity than
when it is defined as a property of the same entity because a subtype inherits attributes from its supertype.

Thus, the entity should be defined as a subtype rather than as a property.

~ 4
e 4

Figure5.21 A resolution for the subtype and attribute conflict

If two additional information constructs in the specialization relation are added to
the above example as shown in Figure 5.22, Entity C will be defined as a subtype of both
Entities A and B, but Entity B will be also defined as a subtype of Entity A. Design Pattern

9 deals with such cases.

r r [

Figure5.22 An additional I1C

133

Design Pattern 9 A duplicate subtyperelation

Problem: An entity is defined as a subtype of another entity twice: once directly from its supertype,

the second time indirectly through another supertype.

T o

Figure 5.23 A duplicate subtype relation

Solution: Since al the attributes of a supertype will be inherited to a subtype through a hierarchical
structure, it is redundant to define an inheritance relationship between a supertype and a subtype when the

subtypeis already linked to the supertype through a hierarchical structure.

Representation

] 1 >

B
_|_c C Representation_2D —|_C

Section

Figure5.24 A resolution for a duplicate subtyperelation

513 STEPS8: LIMITATIONSOF GTPPM & REFINEMENT OF A MODEL

Through steps 1 through 7, a syntactically sound EXPRESS model can be derived
from collected information constructs. The following EXPRESS code is an example of

automatically derived definition of exterior pc_column through Steps 1 through 7:

ENTITY exterior pc_column
SUBTYPE OF (

pc_column

134

)i

surface_treatment: surface_treatment;
clearance: string;

hardware_list: hardware_list;

rebar: rebar;

rebar_cage: rebar cage;

pocket: pocket;

corbel: corbel;

geometry 3d: geometry 3d;

foundation drawing: foundation drawing;
elevation_drawing: elevation drawing;
detail drawing: detail drawing;
geometry 2d: geometry 2d;

plan drawing: plan_drawing;

END_ENTITY;

By no means, the automatically derived product model is complete. For example,
the current PI'S system does not define roles and cardinalities defined in the beginning. For
example, let’s assume that the som (bi11 of material) entity in afinal product model has an

attribute piece list, whichisalist of pieces.

ENTITY BOM;
piece_list: LIST [0:?] OF piece;

END_ENTITY;

Such semantics can be captured, but in a limited format using the current Product

Information Specification (PIS) method:

BOM{piece list;}

And the automatically derived definition of som will be:

ENTITY BOM;

piece list: piece list;

135

END_ENTITY;

Thus, the automatically derived definition of som will not include any cardinality
and role information. Such information should be added manually afterwards. In addition
to the cardinality and role definitions, other data modeling semantics that cannot be
captured by GTPPM and should be added after the LPM phase at this point are as follows.
The distinction between mandatory vs. optional relations has not been made. Also the
RULE, WHERE, DERIVE, and UNIQUE clauses have not been added. A product modeler
may even remove or add entities or restructure some of the relationsin. Also, simple (data)
types (e.g., REAL or NUMBER) have to be redefined from the current STRING type.
Other user-defined attribute types may need to be defined.

If aresultant product model is far from the expectation, the product modeler should
re-examine the scope and activities defined in the RCM process models, the structure of

the information menu, and information constructs defined within each activity.

136

CHAPTER 6

IMPLEMENTATION

6.1 ANASSUMED MODELING PROCEDURE AND IMPLEMENTATION

The Requirements Collection & Modeling (RCM) Process

Create a pracess
made!

Check the

Is it c?ns;sterlncy

necessary to Viis or ICs? of info. flow
specify

nformation
sets?

Create an IM
from scratch?

Specify Information Specify
‘ ves V”S{ Sets in VIl tems

From: Specify
Information ltems: in IC
Update
|

To: Specify Information
ltems in IC

Create an Information Update— - — - —

Menu

The Log|

cal Product Modeling (LPM) Process

———>{ Mapwvistolcs }——

Convert existing an
EXPRESS model to an
Information Menu

Refine the product
model

Derive a preliminary
product model from
collected info. items

© - -inconsistent —

it \[Convenvnsm ICs)»

o Specify \

IC.

Collect ICs from
GTPPM madels

\ Setsin IC /

Check the
consistency
of info. flow

Viis

Specify

Items in IC

From: Create an
I

Information Menu _ inconsistent— - 5

i To: Create an

Information menu
Update

GT PPM has been implemented as a MS Visio® add-on. The tool is designed to
support several modeling approaches illustrated in Figure 6.1. This chapter describes the
modeling approaches and GT PPM interfaces to support each step in detail. GTPPM is a
collaborative work process between domain experts and product modeling experts

(mediators). Possible roles of domain experts and product modeling experts in each step

are also described.

Figure 6.1 An assumed GTPPM modeling procedure

137

6.2 THE REQUIREMENTSCOLLECTION AND MODELING (RCM) PROCESS

First, domain experts model a process without information such as examples shown
in Figure 6.2. The GTPPM tool includes severa functions to comply with the syntactic
rules of process components defined in Sections 4.3 though 4.5. It can check disconnected
flows, the direction (in/out) of flows, and the relations between high-level activities and
their subsidiary detailed activities. It automatically generates identifiers for a pair of
continue shapes and hyperlinks between them. Feedback flows in Figure 6.2 create loops

through dynamic information repository (i.e., “Production Facilities’) to other activities

| |
| |
38:Prepare cages &

rebars
re materiall -
Store materials rebars 7>G

| ! ! 40:Fabricate
materials

I cement, aggregate, pigment
I deed

...........

Set master production Qrder long-term purchase items: 4 ‘.

< schedule (Day 15+) cement, pigment, mesh, strand * Manufacture
.

...........
|
|
|
i | 0
| b FBo— Production
Update rFB- = — = — Facilities

- 7Up&ate

|
|
‘ 14:Weld Shop
Set daily schedule (Day Schedule Pieces to .
1-14) Fabrication Areas Post daily schedule
. 8:Prepare Molds
Update 31:Shipping
|

11:Fabricate

Production Schedule shipping (up to
Facilities 100 loads a day) 39:Preparelcages &
rebars
Shipping Request H
.L 44:Finish
...........
2 LS
v Request from site § H
LN !
...........
Order short-term purchase items:

hardware, bricks, conduits..

Figure6.2. A part of a GT PPM model prepared by a precast concrete company

In parallel or in advance, product modeling experts (mediators) prepare an
information menu (IM) in an Excel® file Figure 6.3. An IM includes alist of main products
(PD) and the definitions of entities. Each entity definition specifies its specialized products

(SPs or subtypes), decomposed products (DPs) and modifier entities (MEs), modifier

138

attributes (MA), and synonyms. Since GTPPM aims to derive an EXPRESS model, the
specialization and the instantiation relations and the decomposition and the association
relations are not distinguished. The SUPERTY PE field on the far right side of Figure 6.3
can be automatically filled using an IM (information menu) Macro. There are severa other
IM Macros developed to check the consistency of items defined in an information menu by

checking misspelled entities and dangling entities (entities that are not associated with any

other entities).

c D E F
PIECE A DESIGN of a typical product,
precast piece inthe designed_piece,
current PROJECT piece_mark,
|1 precast_piece
2 |SPECIALIZED PROBUCT (SP) DP & ME MODIFIER ATTR (4} 114 DESCRIPTION SYNONYNMS
ASSEMBLY PRCJECT piece mark A unique identifier; e.g., T101 Piece Design Code; Mark
Numpber, Piece ID
3 Number
[IFLOOR FIECE LOCATION DETAILS mark qualifier A reference to the secondary
geometry of a piece-mark (block outs
from the gross shape)e.g, "a"in
14| T101a
BEAM CONMNECTION product code An identifier of the product type,
30| usually one letter
FRAME JOINT estimating mark Consecutive estimate number. No |Preliminary Estimating
correlation to eventual job number, Marks, Preliminary piece
System name for estimate stage design code
6 model databases
COLUMN SURFACE TREATMENT |assembly control A unigue and sequential number Contral Number, Lecation
number identifying each piece locationinthe |Number
L7 structure
SPANDREL MOLD production serial 4 number allocated as the pieceis |Interchangeability.Block
18] number stripped CutiD
| 9 |WALL GEOMETRY label
STAIR RUN POST-POURED quantity
10 COMPONENT
~ |LanDING STRUCTURAL ANALYSIE product name
11
| 12 |RoOF REBAR CAGE product amount
13 REINFORCEMENT product size
HARDWARE LIST product unit
14 measurement
115 MATERIAL
116 WYTHE
17 BUILDING CODE
18 PRODIUCTION AND
19 SHIFfEHG
4 4 v M/ DOVETAN ANCHOR S1OT /RFGIET / com 100p £10ap / SHIM 7 SI0TTEN NSFRT / RFRAR FROIT £ PIFCF 118T \ PIFCF / FI ANGF CONNFCTION / Flel

Figure 6.3 Entity PIECE defined in an Information Menu (IM)

139

Information Menu e]

Information Selection
Top-Level Class: Type in a keyword for search: ek i ‘
| PIECE | Search PROJECT{ - i
Scheduled Start Date
Information Chain (Navigator): Linked Properties (Entities): Sd’ledt\ed Completion Date
PIECE Production Plan & Schedule
+MOLD Storage Plan & Schedule
+PLANT Shipping Plan & Schedule
3
PIECEL
Piece Mark
Shipping Date
Arrival Date
Erection Date
Concrete Batch Identifier
| PIECE+MOLD{
4 | » D)
Subtypes (is_kind_of): Nondinked Properties (Types): ;mﬁ“c”we List
[B PIECE +MOLD4PLANT{
| Desgiption D
Capadty Capadty
Layout Layout
Work Rate Work Rate
| Piece List Piece List
| Restrictions 3
Deselect
Description:
Layout a.k.a (Map;Plan): A functional plan of the fadiity
< >
Reguest for missing information items Save Save & Exit Exit

Figure6.4. A GT PPM Information Menu Interface (the | C Editor)

Figure 6.4 illustrates the IC Editor. In a large project that includes heterogeneous
business practices and domain experts with various experiences, expert modelers can
create one or two GT PPM models as pilot models by visiting companies and generate an
information menu. Most standard terms of an industry can be captured in this preparation
phase. When an information menu is ready, other domain experts can join a modeling
effort. Domain experts should map all their VIIs to corresponding information constructs
(ICs) (Figure 6.12). GT PPM reads in an information menu from an MS Excel® filein real-
time. Users can select, compose, and add information items (i.e., 1Cs) from the information
menu to each activity. The left window of Figure 6.4 shows a hierarchical structure of
tokens that represents aggregation, specialization, and classification (see Section 4.6). The

right window shows ICs that are composed of tokens available from the left window.

140

While modeling a process, domain experts create a vernacular data dictionary
(vDD). The vernacular data dictionary (VDD) includes information on information sets
(Figure 6.5) and vernacular information items (V11s) (Figure 6.6). It includes VII names,

definitions, data type, examples, references, and synonyms.

A | B

ESTIMATE DET:

ERECTION DRAWING

STRAND SUMMARY

SPECIAL PRODUCTION REQUIREMENTS
DETAILED POUR SCHEDULE

DAILY CONCRETE POUR SCHEDULE
PACKING SLIP

PIECE TAG

BOM FOR HARDWARE

=)
=3kt

IS
AN

26 BOM FOR PIECE
10 SCHEDULE

Estimate Detail w/ Crew Productivity & Manhours
Erection Drawing, E-Drawing

Strand Summary

special productain requirements for bid engineering
Detailed Pour Schedule

daily concrete pour schedule with dates

Packing Slip, a.k.a. Bill of Leading

piece tag

Bill of Materials for hardware

Bill of Materials for piece

contractual project schedule

Cc
Information Set
Index MName Description Information ltems
PROJECT INFORMATION SHEET A sheetthat summarizes project information {;project name;location;report date; purchaser,addre
PIECE DRAWING piece drawing : = e

{;revision date revision by;revision no;drawn date;dr
{;project name;location;job#,estimate no;product nz
{:load condition:floor to floor heightfirepracf require

{;address;city_state_zip;job# truck numbertrailer nu

{:bar code;piece weightpiece mark;}
{;project name job:
{;project name;job#;

oject phase;piece mark;draw
project phase;piece mark,draw

{,Contract Date;engieering date;review by architect;

717’01'11 PROJECT REVIEW CRITERIA project review criteria # z 5 C
JLUZ J0B COST REPORT job cost per product by man-hour cost {;project name;lacation;project type job# estimate n
Jiu? TAKEOFF LIST takeoff list i i i i
192 PRCJECT DIRECTORY contact infermation for 3 speicific project, {;contractor type.firm name; address;city_state_zip,c
g]_LB SITE LOCATICN site location information {;address;city_state_zip;jobsite phaone jobsite fax}
211 FINANCIAL INFORMATION financial information i . i
225 ENGINEERING/DRAFTING REQUIREMENTE contractual requirements for engineering, drafting {fire rating;load designer;sealed calculations;seale
236 JOB SUMMARY SHEET job summary, take-off F e 4 i r
24 7 MATERIALS REQUIREMENTS contractual requirements for materials {;Hardware/reinforcing included;Hardwareireinforcir
250 MIXFINISHISAMPLE INFORMATION contractual requirements for mixfinish/sample {;architectural mix/color ;structural mix'calor,sample
AB_ 9 FIELD RELATED SERVICES contractual requirements for field related services {field related senvices included;field related service
27

Figure 6.5 Information Setsdefined in a Vernacular Data Dictionary (VDD)

Figure 6.8 illustrates the VI1/VDD editor. A VDD is stored in a separate Excel®
file?! from an IM file. The VII name should be unique. If domain experts add a new item
with the same name as an existing VII, it aerts users. The list of VIIs can get very long
after a while. Domain experts can search for a term they defined by typing in part of the
term. For example, if a domain expert types an unfinished word, e.g., “proj”, and executes
“Search”, the VII editor search through VII names and synonyms and returns any terms
with “proj” in their name and homonyms (Figure 6.8). Another core function of the VII

editor is that, if domain experts want to update a term for some reasons (e.g., typos, a

ZL\/DDsand an IM are stored in separate Excel® files because a VDD is only of interest of a certain modeler (team), but

not of interest of the whole modeler teams. Only the IM will be shared by different modelers (or teams) and VDDs will
be kept by each modeler (team).

141

conflicting name), it updates not only the term in the VDD, but also al the terms with the

same name in the model (Figure 6.7).

A

MO i

23

B [ra
o[

26 |
127 |
128 |
128 |

@ (o0

Ed

Information Set ltems
Name

of pours

of strands

address

affidavits for stored materials
anchor bolt

architectural mix/color

area code

average piece length
average piece weight

bar code

batch finigh time

batch start time

bent bar

bent bar layout

bent bar maximum spacing

Description
number of pours

numeer of strands

street address

affidavits for stered materials
anchor bolt

requirements for architectural mi</co|tan
810

{project) area code

average poured piece length

ht

average poured pie

bar code for a piece
batch end time
batch start time
bent bar

10:30 PM
10:30 PM

bent bar layout
bent bar maximum spacing

bidding timeframe va. estimating sched! bidding timeframe va. eatimating achg

billing forms reguired
block out

bom checked by

bom created by

bond

certificate of ingurance
certified payrolls required
check result

chord connection location
chord plate design

chord reinf design

chord reinf location

billing forms reguired AlA form regq'd
block outUnistrs
BON checker

BOM creator

oLc
oLC
included tond infermation Not included
requirements for the certificate of ins not required
certified payrolls required no

check result

cherd connection location: is reguired Typically located |

chord plate design: is reguired to res

chord reinfercement design: is requir

chord Reinforcement location: is requ Typically located | Unistress

must be included

Corp Double Tee [6O0T-01: Double:

References Synonyms

Wapped tem
PIECE+PRODUCTION AND +

Strand Summary
Strand Summary

Project Inferamtion Sheet Page 1

Project Information Sheet Page 2 {;contract details;

PIECE*COLUMH*EXTERIOR
PIECE-PRODUCTION AND +
PROJECT-SME{;address;}

PIECE-GEOMETRY+CONST
PIECE+GEOMETRY +CONST
PIECE:

Project Information Sheet Page 3
Take Off List

Detailed Pour Schedule

Detailed Pour Schedule

Piece Tag

Daily Concrete Pour Schedule PIECE+PRODUCTION AND F
Daily Concrete Pour Schedule PIECE+PRODUCTION AND F
Unistre: PIECE*COLUMN=EXTERIOR
Unistre: PIECE*COLUMN*EXTERIOR
Unistress COLUMHEXTERIOR
anawers from David Bosch PROJECT+ESTIMATION{;

Project Information Sheet Page 2 contract details;

PIECE+BLOCKOUT+30 GEC
PROJECT-DOCUMENTATIO
OCUMENTATIO

contract details:

Unistress Corp Double Tee Design Gu
Bill of Materials
Bill of Materials

Project Information Sheet Page 2

Project Information Sheet Page 2 fcontract detalle

Project Inforamtion S strest address

contract details:
PIECE*FLOOR PIECE*D'
PIECE*FLOOR PIECE*DT.
Unistress Corp Double Tee Design Gu chord plate type PIECE*FLOOR PIECE*DT+
orp Double Tee Design Gu chord reinfercement typt PIECE*FLOOR PECE*DT+CC
PIECE*FLOOR PIECE*DT+CC

=t Page 1

Unigtre: orner Columns

Unistre:

p Double Tee Dezign Gu

Unistres

Corp Double Tee Design Gu

Figure 6.6 Vernacular information items (V11s) defined in a VDD

GT PPM

You can perform either one of the following three actions:

~ Add as a new item: You can add ' fireproofing' as & new

information item.

‘Update the existing item: You can update detailed information of " §

Information Item to Replace

' Cancel: If you don't want to update or overwrite the existing item,

then select this option,

Ok

fireproof

Figure 6.7 The VIl Updater

142

Information Item Editor

detailed project requirements

distance between the project site and Eeszreins (Reri=i)

Information Set Information Items
Info Set Mame:
T oeL fame - Ttem Mame (Required) Clear | ? |
Installation Scope Review j b=
L tion:
AT Exsiting Information Items Data Type (Regquired) Length:
Installation Scope Review | e J| 50
-
Add New Update |

2

[v Modify Info Set Mame and Description

job num job identifier number
Induded Information Items: TjobE 1
jobz location
ob=
i)roject name ST R project accountant
location project estimator
. project manager
= Remave from List project manager email
project name

project phase
project phases Examples

2l

project size
project type 01-028
sold a5

References

2

Turnover checklist

Synonyms

Hiigh project information sheet 10/08/01
page 1, Job Summary Page 1, CTI

ikl

Remove Ttem |

Keyword in Item Name or Synonyms:

'Drojeci Search

Save ‘ Save & Exit | Exit |

jobid, project id, job no, project no

Figure 6.8 The Vernacular Information Item (VII) (or VDD) editor

S
Production
Facilities

Set daily schedule (Day Schedule Pieces to 3
1-14) Fabrication Areas

8:Prepare Molds
31:Shipping
Update ,{smppwe SCHEDULE]

11:Fabricate

39:Prepa3 cages &

rebars

[DAILY SCHEDULE]
°
" 14:Weld Shop

Post daily schedule

Production

Schedule shipping {up to
100 loads a day)

Facilities

Shipping Reguest

.L 44:Finish

yemmee- P

3 Y

' Request from site ;(
. ’

Figure6.9. A part of aGT PPM model with information sets

Domain experts can define and add information sets and subsumed VIls where they
are necessary prior to defining information items required by each activity. DAILY
SCHEDULE and SHIPPING SCHEDULE in Figure 6.11 are examples of information sets.

Specific descriptions of new VIIs must be added to a vernacular data dictionary (VDD).

143

Information sets can be specified using the Information Set Editor (Figure 6.10). Users can

add, remove, and update information items of information sets. Tags, which show a list of

information sets in a flow, automatically appear when information sets are defined. Once

information sets are defined, they can be used over and over.

After adding information sets, domain experts fill in input and output information

of each activity, checking the consistency of a model using information sets as targets for

information generation using the Activity Information Editor (Figure 6.11). The Activity

Information Editor lists input and output information of an activity (see Section 4.8 for

details). Inconsistent information items appear highlighted in the unused-, unavailable- or

the not-provided-information lists.

Information Set Editor

Qutput of Schedule Engineering Staff

Information Sets of the Current Flow

TURNOVERPROJECTCHECKLISTL
caulking in scope

electric power for welding

perimeter edge plates-cutout required
traffic control permite barricades
pockets in concrete construction

deck cut-outs and repairs required
traffic control personnel

temporary bracing provided by erector
pre-weld lateral tie hardware required
pre-weld bearing hunches required
adjustment for bowing

erector provides saftey site persnonnel
installation during normal working shift
access reguired for panels under structure
special rigging or frames required

special handling requirements
[l
Ink Y s mmi o

Ll

Available Information Sets

BOM FOR PIECE

Sort by Alphabet

Show Al

|

Bill of Materials for piece

piece gty

piece finish
revision no
revision date
bom checked by
bom created by
report date
note

<<Add
Included Information Items
BOM FOR PIECE{ -
Remove>> piece description —

Add Mew Information Set |

Edit Information Set

Save | Save & Exit | Exit

Figure 6.10 The Information Set Editor

144

Activity Information e
PROJECT[:production plan & schedule:]
Activity: Schedule Pieces to Fabrication Areas

Information Construct (IC) Mode
Available Input Information

(et | Top-Level Generic Activity: Actor: Dirstion: Cost Required Output Information
Z | acqume ProsecT ~|[schecuter ~][ahe (1day) =] - Not-Provided Input 3
= e = PIECE{
Input Information Output Information chstdate
Transfer ‘ Remove | AddNew | ¢ Transfer | Remove | AddNew | ¢ ¥
PROJECT{ - PROJECT{ -
scheduled start date il scheduled start date = |
scheduled completion date | scheduled completion date
production plan & schedule {..productior schedule|
storage plan & schedule storage plan & schedule
shipping plan & schedule ;h-pping plan & schedule
PIECE{ PIECE{
piece mark piece mark
mark number shipping date
control number arrival date
cast date erection date
mold used concrete batch identifier
shipping date }
Unavaiable Input Information arrival date PIECE+MOLD{ 4| »
= | erection date id
concrete batch identifier product type list
PROJECT{ - } Not-Provided Info Set Items <
scheduled start date PIECE+MOLD{ 1] PIECE-+HMOLD +PLANT{ hdl|
scheduled completion date 4 9| Ld ‘ »
production plan & schedule = = — =
z:ﬁ;:f;;; 233‘11‘:‘2 Remaining/Referenced Input < Newly Generated Information
3 PIECE{ PIECE+MOLD{
PIECE{ mark number product type list
piece mark control number 1
mark number = cast date
control number mold used
cast date 3
mold used
shipping date : 5
arrival date < 4 4 | 3
erection date
concrete batchidentifier ~
|) 4] >Hide References< Save Save &Exit Exit

Figure6.11. The GT PPM Activity Information Editor

If a project is simple in terms of the size of information and domain experts are
comfortable with using information constructs (ICs), the VII modeling process can be
skipped and information items can be specified using I1Cs from the beginning. However, if
information items are defined in VlIs, the VIIs should be mapped to corresponding ICs
using the Information Item Mapper illustrated in Figure 6.12. Currently one VIl can be
mapped to one or to many ICs. Sometimes one vernacular information item includes
several pieces of information. But, in a non-computerized format, the subsidiary
information items are not explicitly defined as individual information items. In such cases,
the V11 with several pieces of information can be mapped to severa 1Cs. Or the VII can be
decomposed into severa Vlls. And each VII can be mapped to one IC. Conversely several

VllIs should be mapped to one IC when VlIs are synonyms.

145

The structure and the contents of an information menu should be revised if ICs,

which are meant to correspond with V1Is, cannot be composed from the information menu.

The upper right corner window of the Information Item Mapper (Figure 6.12) shows

mapped pairs of information items. The mapped VIls can be automatically replaced by ICs.

If there are any Vs that are not mapped to ICs, a system automatically checks and lists

them as ‘unmapped information items’ in the replacement procedure.

The Activity Information Editor (Figure 6.11) has the VII mode and the IC mode.

Domain experts can switch freely from one information item mode to another. The

consistency checking module works in both the VII mode and the IC mode. Domain

experts fill in missing information or revise a model using the three methods described in

Section 4.8.5 until amodel becomes consistent.

Information Item Mapper

Information Selection
Top-Level Class:

Typein a keyword for search:

Information Chain (Navigator):

[erosECT |

search

Linked Properties (Attributes):

PROJECT

ol | »

Subtypes (is_kind_of):

DESIGN REQUIREMENTS
SIE

LIBRARIES

ESTIMATION
DOCUMENTATION

ERECTION

Add | el |

Mapped Information
Sort Search Add Remove

sealed drawings PROJEC[+DOCUFVIEI‘JTATION"DRA\".JII‘IA
secondary strand waste REINFORCEMENT [maste;}
section drawings from dients PIECE+DOCUMENTATIONDRAWING =2
shipped date PIECE+SHIPPING +SCHEDULE{;actual s
shortest piece length PIECE+EEQOMETRY 20 GEOMETRY +C0
sald as PROJECT:contract details;}
spacing between grid lines ASSEMBLY +GRID{;spacing; }; ASSEMBLY

spandrel bottom PIECE*SPAMDREL +GEOMETRY 3D GEC
spandrel to column connection block-pul PIECE-+HCONMECTIOM*CORBEL +BLOCK
spandrel to column connection design PIECE+CONNECTION®POCKET+GEOME_|
spandrel to column connection erection PIECE-+CONMECTION+ERECTION SLEE
spandrel to column connection light pole PIECE +CONMECTION -+ IGHT POLE +GE
sTandl el to column connection location PIECE-+CONMECTION*CORBEL HOCAT ¥
1 3

Description:

Mon-inked Properties {Attributes):

Add Del

Description:

name
job number
awner details
JGonwactdetale
scheduled start date
scheduled completion date
production plan & schedule
storage plan & schedule
shipping plan & schedule
erection details
project manager
Jjob manager
sales representative
contact information
contractor list j

Add | Del |

scheduled start date:

spacing between grid lines

Data Type:

[REAL NUMEER

Examples:

References:

Synonyms:

Information Construct:

ASSEMBLY +GRID ;spacing; }; ASSEMBLY +GRID {;x axis spacing;}; ASSEMBLY +GRID
Gy axis spacing;}

Save | Save & Exit | Exit

Figure6.12. The GT PPM Information Mapper

146

GT PPM will automatically trandlate information items from one mode to another
based on the mapping relations defined in the Information Item Mapper (Figure 6.12). The
mapping rules are:

e From VlIsto ICs: If there are any newly defined VlIs, they will be trandlated as

unmapped user-defined items. The unmapped V1Is can be mapped to ICs at this
stage or at the next stage using the Information Mapper (Figure 6.12).

e Mediators collect GT PPM models from each domain expert. If there are still
any unmapped Vlls, they should be mapped ICs at this stage by mediators in
cooperation with domain experts.

e From ICsto VlIs: If there are no corresponding VIIsto ICs in a mapping table
(Figure 6.12), the VIIs will be automatically named using corresponding ICs.

Users can modify the VI names later.

6.3 THELOGICAL PRODUCT MODELING (LPM) PROCESS

When the RCM process is completed, mediators extract 1Cs from collected RCM
models. GT PPM automatically exports ICs of each activity to a new Excel® file (Figure

6.13). The extracted data can be further analyzed for various analyses.

147

A

File Name

GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2vér1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2vér1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2vér1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd
GTPPM a2v8r1.vsd

SWwONO OB WN

PRRNNRNRN 2 s aaaaa
BN 2cODm~NOEDD

]
o

Even though the targeted data modeling language is EXPRESS, since many
commercial database management systems (DBMYS) are relational database management
systems, the GTPPM tool also supports automated SQL code generation. SQL code can be
generated by first creating EXPRESS code and then converting the EXPRRESS code to an
SQL code using the GT EXPRESS2SQL (Figure 6.15) built on top of the CIS2SQL®

schema converter. The CIS2SQL® schema converter is developed by Seok-Joon You at

B

c D

Page Name Activity ID | Activity Name

Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling
Scheduling

Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas
Internal Detail Schedule Pieces to Fabrication Areas

E

Actor

Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler
Scheduler

Information ltem

PROJECT{scheduled start date}
PROJECT{Scheduled Completion Date}
PROJECT{production plan & schedule}
PROJECT{storage plan & schedule}
PROJECT{shipping plan & schedule}
PIECE{Piece Mark}

PIECE{mark number}

PIECE{control number}

PIECE{Cast Date}

PIECE{mold used}

PIECE{shipping date}

PIECE{arrival date}

PIECE{erection date}

PIECE{concrete batch identifier}
PIECE+MOLD{ID}
PIECE+MOLD+PLANT{id}
PIECE+MOLD+PLANT{capacity}
PIECE+MOLD+PLANT{layout}
PIECE+MOLD+PLANT{work rate}
PIECE+MOLD+PLANT{piece list}
PROJECT{scheduled start date}
PROJECT{Scheduled Completion Date}
PROJECT{production plan & schedule}

Figure 6.13. Exported Information Items

Georgia Tech (You, Yang, and Eastman 2004).

In EXPRESS, the specialization relation can be either ONEOF or ANDOR.
Currently GTPPM is not allowing the ANDOR relation in order to reduce the complexity

of a model. Each number on the command button in the EXPRESS Code Generator

corresponds to each step of LPM (Figure 6.14).

148

EXPRESS Code Generator

E

1; Information Collection

EXPRESS Code Generation: Step 1

EXPRESS Code Generation: Step 2

Unistress_DraftingModel_v6_IC_GTPPMaz2v11r9.vsd
CT1_Biz_v3_IC_GTPPMa2v1iir7,ved
HighCon_v5r2_withIC_BusinessModel(GTPPMa2v 11r6).vsd

PIECE+DOCUMENTATIOMN DRAWING{
callout

ASSEMELY +GRID{
X &xis spacing
y axis spading

PIECE*FLOOR PIECE*DT+IOINT +DIMENSIONS{
width

¥
PIECE*COLUMM™EXTERIOR COLUMN-+DOCUMENTATIC
id

L
PIECE*FLOCR PIECE*DT+GEQOMETRY +DIMENSIONS{

cast length

width

Y —

Input & Cutput Information

1. Add New 1.5 Unionize

2: Decompose Entties

EMTITY grid;
y_axis_spadng: string;
X_axis_spadng: string;
END_ENTITY;

ENTITY dt
SUBTYPE OF (
floor_piece

qc_check: gc_chedk;

mesh: mesh;

end: end;

flange: flange;

surface_treatment: surface_treatment;
recess: recess;

material: material;

chord: chord;

dap: dap;

|

| EXPRESS Code Generation: Step 3

Unistress_DraftingModel_ve_IC_GTPPMa2v 11r3.vsd
{Input & Output Information) has been added.

ENTITY piece;

piece_mark: string;

connectiontie-back: connection*tie-back;
connection*pocket: connection®pocket;
connection*corbel: connection*corbel;
reinforcement: reinforcement;

blockout: blackout;

hardware_list: hardware_list;

connection: connection;
documentation*drawing*section_drawing: documentati
location_details: location_details;
production_and_handiing: production_and_handling;
documentation*drawing: documentation*drawing;
END_ENTITY;

ENTITY documentation™drawing;

3: Detect Equiv Subtypes

o

4: Detect Equiv Aftributes

5: Detect Inheritance Conflicts:

o

&: Crzate Superclazses '?: Detect Sup

Sub. Attr. Conf. §

ENTITY documentation
SUPERTYPE OF (CNEOF{
drawing)

END_ENTITY;

ENTITY piece
SUPERTYPE OF (CNEOF({
spandrel,

column,

floor_piece)

piece_mark: string;

reinforcement: reinforcement;
4

| I Step 3 w| 5 Saveas Text

Figure 6.14 The EXPRESS Code Gener ator

GT_EXPRESS250L

CIS25QL
2002-2003 (T)
c ISfZ GT Georgia Institute of Technology
EXPRESS Files SQL Files
Uni_v4.exp stepl.sgl
High_v5.exp Uni_v4.sgl
Uni_vé.exp High_Biz_v6.sql
UniModelv1.exp Uni_SQL_v1.sql
|_Uni_v3.exp
EXPRESS250L Cancel |

Figure 6.15 GT EXPRESS2SQL

149

CHAPTER 7

APPLICATION & EVALUATION

7.1 OVERVIEW

This chapter reports on the results of application and evaluation of GTPPM. The
GTPPM has been deployed in the Precast Concrete Software Consortium (PCSC) project
for several times for the last three years, and modified based on the results. The PCSC is a
consortium of major precast concrete producers in Canada and the US* formed in 2001.
The goals are to fully automate and integrate engineering, production, and construction
operations, to gain productivity, and ultimately to increase the market share. As the means
to achieve the goals, the PCSC chose to develop an intelligent 3D parametric CAD system
and a Precast Concrete Product Model (PCPM) to enable data exchange between diverse
systems used during the sales, design, engineering, production, and construction operations
Processes.

The following sections describe several GTPPM efforts. The PCSC member

companies modeled their own management and engineering processes using GTPPM. Asa

2nitial ly ITISA, aMexican precast producer, was also amember of the PCSC. However, some of members have
withdrawn and new members have joined the PCSC. The initia 23 member companies were Blakeslee Prestress,
Cheyenne Concrete Co., Concrete Impression of Florida, Inc., Concrete Technology Inc., Con-Force Structures Ltd.,
Coredlab International Inc., Finfrock, High Concrete Structures, ITISA, IPC Inc., Lafarge Canada Inc., Meridian
Precast & Granite, Metromont Prestress Company, New Enterprise Stone & Lime Co, Inc., Oldcaste Precast Inc., Pre-
Con Inc., Rinker Precast, Rocky Mountain Prestress, Strescon Ltd., the Shockey Precast Group, the Spancrete Group
Inc., Unistress Corp., and Wells Concrete Products Company. The current 15 member companies (as of March 29,
2004) are Blakeslee Prestress, Concrete Technology Inc., Con-Force Structures Ltd., Coreslab International Inc., High
Concrete Structures Inc., IPC Inc., Lafarge Canada/Precon, Metromont Prestress Company, New Enterprise Stone &
Lime Co. Inc., the Shockey Precast Group, Strescon Ltd., Tindall Corp., Unistress Corp., and Wells Concrete Products
Company. The Georgia Tech team led by Prof. Charles Eastman and consisting of Rafael Sacks and Ghang Lee are
technical advisors of the PCSC.

150

result, fourteen GTPPM models were developed. Among the fourteen GTPPM models,
three models were elaborated based on on-site interviews. Information constructs collected
from the three elaborated models were integrated and normalized into a single integrated
product model. The integrated product model was compared to the PCC-IFC model, the
IFC model extension for precast concrete (Karstila et al. 2002; Karstila and Suikka 2001;

VTT 2004).

7.2 PROCESSMODEL PERSPECTIVESON MANAGEMENT AND ENGINEERING
PROCEDURES®

JUSINY .
{ Plant Scheduling

\,(-r- -anl
Prepare Projecty

) Schedule
Labor Cost
Database

grmmmemes . P T
WJIroor ot ‘.- Flanning _/

Move to Yard
Check Quality
Assurance

.—% i Do Detail Desig)* (Fabricate)

\\:

Prepare Molds
Prepare Reinf. &
Hardware

4 4
I Deliver to Site 7—>4 Erect Struclure\l%(o
" ! '\ >}

Check Quality l

No.2

complete
project

¢ Schedule Engrs

NS S
Material Cost|
Database

....... N I
N repare/track bi 1 Prepare Batc
4 Prepareftrack by " Prepare Batch\
ok |
\._of Material ./ '\ _Ingtructions_ Jf

abandon
project

Figure 7.1 Generic top-level process model

From June 2001 to November 2001, GTPPM was deployed by fourteen PCSC
members in analyzing the sales, design, engineering, and production processes of the
precast concrete industry five years in the future. The goal was to understand and capture

requirements for a next-generation precast concrete CAD system. The results were

2 This section is a summary/excerpt from (Sacks, Eastman, and Lee 2004) with modification.

151

incorporated into a Request for Proposal (RFP) to CAD vendors. Typica processes began
with a standard contract bid followed by the full range of precast concrete activities: cost
estimating, bidding, contract award, assembly layout design, structural analysis, detailed
piece design, production, handling, shipping, erection, scheduling and project control. The
modelers' view was that of precast designers and producers, which defines the scope of the
models. Client activities such as conceptual programming, overall project costing, and life
cycleissues such as design for demolition and recycling, do not appear in any of them.

The collected models were categorized into three types. design build models,
subcontract models, and design only models. Three models described a design-build
process, and so covered the conceptual design phase in greater detail than the more
traditional bidding process models. Two models were prepared by precast design
consultants and so cover the design phase alone. Each model underwent a number of
cycles of review by the research team and improvement by their authors before being
approved for inclusion in the analysis and further development work. One model was
rejected due to lack of detail, leaving thirteen models to work with.

All of the models use the generic top-level model as their starting point. Although
modelers added additional intermediate layers of aggregate activities, every detailed
activity can be traced to one common top-level activity. Using this as a starting point for
analysis across companies, a list of middle-level activity groups was compiled for each
top-level activity.

The degree of information dependence between activities was determined by the
ratio of the number of information flow (ng) to the number of detailed activities (na). Table

7.1 shows the degree of information dependence between activities by three model types.

152

The analysis results indicated that the degree of dependence between activities was
relatively unvarying by model type. But, since the number of samples was small, we were

reluctant to generalize the finding.

Table 7.1 The degree of infor mation dependence between activities by model type

Model Type Feature* Average Largest
©) 2 ©) 4
Design Build Models Na 269 323
Ne 476 572
Ne/ Na 177 177
Subcontract Models Na 154 275
Ne 232 520
N/ Np 1.50 1.89
Design Only Na 57 81
Ng 89 130
N:/ Na 1.56 1.60

*: np = number of activities; and ng = number of information flows

While analyzing the collected information constructs, inconsistency in information
flows was found. This motivated the development of a more rigorous method to validate

the consistency of information flow as described in Section 4.8.2.

7.3 PRODUCT MODELSFOR MANAGING ESTIMATION, SCHEDULING, AND
SHIPPING INFORMATION

In December 2002, GTPPM was deployed for the second time in a project to
capture the current management processes (i.e.,, estimation, bidding, production, and
shipping) of two precast producers, High Concrete (Denver, PA) and CTI (Springboro,
OH) after mgjor modification. Unlike the first attempt, the models were generated by the
author based on the interviews with the manager-level personnel of each company (Figure

7.2).

153

Figure 7.2 A round table discussion at High Concr ete befor e one-on-one interviews

Later, the generated models were reviewed again by domain experts. The two
companies were chosen because they were two of a few companies, which had a database
management system for managing estimation, production, and shipping information. The
goas were to capture their current processes and information flow as they were, and to
compare automatically generated (preliminary) data models and their actual database

schemeas.

Project DB

i Material Cost Shipping Cost
M’::::rce‘“(,rl\‘rys/ Database Database
unit) (annually (annually
updated) updated0

Apply Costs to
Takeoff

ENGINEERING/DRAFTING REQUIREMENTS
FINANCIAL INFORMATION
MATERIALS REQUIREMENTS

MIXFINISH/SAMPLE INFORMATION

FIELD RELATED SERVICES Overhead Cost

SCHEDULE
PROJECT INFORMATION SHEET
)

Sales Interview With "\ |
Customer ;

Determine Labor L]

Productivity

[mgorp LT Generate Estimate

[esrusrecerse
STRAND SUMMARY [
L]

Abandon project |

TAKEOFF LIST
STRAND SUMMARY
[
[wmsmg\nswcwam] o . ST ®
Client
Review Bid Prospects TAKEOFF LIST
Create Takeoff STRAND SUMMARY [‘°E a4 SHEET]
L4 e 2:Do Detail Design
Y # 32:Prepare Project Confirm Eng &
os - S;hf:r“'e Production Capacity Win?
Bid Engingering 33:Prepare Project
Fr——t—_——_—— | —— Schedule
{spzam PRODUCTION mumwws} :
. Lose project

Consider special
requirements { (Configure Assembly)

Z_(erection drawings) |

Building Codes

Figure 7.3 Acquire Project

154

First, process models were generated with domain experts at each department.
Figure 7.3 illustrates a process of “Acquire Project” with information sets required by a
project acquisition process. During this process, takeoff (i.e., the quantity of products and
subcomponents), rough estimation and production schedule, and bidding information were
generated.

Then, information sets were defined based on standard company reports required
by the end of certain activities (e.g., job summary sheet, turnover meeting check list, piece
tag, and packet dlip). The information sets were defined with vernacular information items

(V1ls). Examples of specified information sets and their items are as follows:

PROJECT INFORMATION SHEET {;project name;location;report
date;purchaser;address;city state_ zip;project size;job#;contract

value;taxes;status;type;sold as;detailed project requirements;Sales Rep;estimator;}

PIECE DRAWING {;piece mark;piece gty;piece volume;piece weight;hardware/reinforcing
item;hardware/reinforcing quantity;mix #;revision date;revision by;revision
no;drawn date;drawn by;dwg ckd;eng chk;dwg ckd date;eng ckd date;project
name;drawing nbr;job#;dimension;piece shape;material pattern;note;received

date;issued date;concrete strength;dwg destroy date;rebar schedule;}

PACKING SLIP {;address;city_state_zip;job#;truck number;trailer number;truck
driver;payment method;po#;piece mark;piece gty;piece description;comments;contents
packaged by;contents checked by;contents received by;delivered date;}

PIECE TAG {;bar code;piece weight;piece mark;}

BOM FOR PIECE {;project name;job#;project phase;piece mark;drawing nbr;note;report
date;bom created by;bom checked by;revision date;revision no;piece finish;piece

gty;piece description;}

SCHEDULE(; Contract Date;engieering date;review by architect;production end

date;erection start date;erection end date;}

155

JOB COST REPORT {;project name;location;project type;job#;estimate no;product type
id;product element id;operation;product size;product u/m;product gty;operation

cost;total operation cost;}

TAKEOFF LIST {;project name;location;job#;product type id;product element
id;product name;product gty;product size;product u/m;estimator;estimate no;area
code;distance between the project site and the plant;piece mark;piece depth;piece
width;piece unit length;piece weight;load name;total loads;total # of pieces;piece

qty;}

JOB SUMMARY SHEET {;project name;location;estimate no;rev no;job#;product
name;product type id;product gty;product size;product u/m;product $/unit;product
amount ; total production cost;total yard costs;total shipping cost;total erection
cost;taxes;total markup;gross margin without markup;gross margin;total bid

price;scope of work;}

Some other examples of information sets without detailed items include:

PROJECT DIRECTORY

SITE LOCATION

FINANCIAL INFORMATION
ENGINEERING/DRAFTING REQUIREMENTS
MATERIALS REQUIREMENTS
MIX/FINISH/SAMPLE INFORMATION
FIELD RELATED SERVICES

BOM FOR HARDWARE

PROJECT REVIEW CRITERIA
ESTIMATE DETAIL

ERECTION DRAWING

STRAND SUMMARY

SPECIAL PRODUCTION REQUIREMENTS
DETAILED POUR SCHEDULE

DAILY CONCRETE POUR SCHEDULE

TURNOVER MEETING CHECK LIST

156

DAILY PRODUCTION SCHEDULE
4 WEEK SCHEDULE
PRODUCTION SCHEDULE

FORM DRAWING SCHEDULE

PRE-TENSION REPORT

The specified VIIs were mapped to 1Cs using the Information Item Mapper (Figure
7.4). VlIs and ICs were generally mapped one to one. However, several Vllsand ICs were
mapped many to many. Some VIIs, which were synonyms, were mapped to an IC. Some
Vs, which were defined as one information item, but actually included several pieces of
information, were mapped to several ICs. An example of the latter iS gaivanized embed order
status. |N order to keep track of the order status of a product or a part in terms of a data
management, we need to specificaly know which item has been ordered, what is the
purchase order identifier, and so on. However, when such information is maintained in a
paper format, it is recorded informally and freely as one long note. Based on the data
recorded iN gailvanized embed order status, the galvanized embed order status Was mapped to

several |Csasfollows:

PIECE+MATERIAL*HARDWARE(; type; };
PIECE+MATERIAL*HARDWARE({ ;id; };
PIECE+MATERIAL*HARDWARE+PURCHASE ORDER{;status;};

PIECE+MATERIAL*HARDWARE+PURCHASE_ORDER{;id;}

Some VllIs had a different meaning than what they seemed to mean. A VII rebar
schedule 1S@Q00d example. rebar schedule IS NOt atype of regular time-based schedule, but
is a common term in AEC that denotes a 2D abstract representation of bent rebar. In the

mapping process, some of ambiguous VIIs such as rebar scheduie Were mapped to ICs

157

based on the definitions, data types, examples, references, and synonyms of the VllIs (the

right side of Figure 7.4).

The specified VIIs in information sets were automatically converted to ICs

according to the mapped relations between Vlls and ICs. Input and output information of

activities were specified using information sets as a target of information production. The

consistency of information flow was checked. As aresult of these two modeling processes,

135 and 231 distinctive information constructs were collected respectively from the High

and the CTIl models.

Information Item Mapper

Information Selection
Top-Level Class:

Type in a keyword for search:

| REIMNFORCEMENT

=

Information Chain (Navigator):

| Search

Linked Properties {Attributes):

REINFORCEMENT
“REBAR

4 13

Subtypes {s_kind_of):

BUILDING CODE

IC CHECK
LOCATIOM DETAILS
DESIGN REQUIREMEMTS
DIMENSIONS
CONSTRAINTS
STRUCTURAL AMALYSIS

Mapped Information

ot m— e Remove

bidding timeframe vs. estimating sched. PROJECT+ESTIMATIOM{;SCHEDULE; }
production scheduled time PIECE-+PRODUCTION AND HANDLING+5CH
rebar scheduls REINFORCEMEMT*REBAR{;bend geometry

LONGITUDINAL

add | pel |

young's moduius
special treatments
qguantity

waste

type

spading

diameter

Description:

Add | Del |

| ol
add | Del | Description:
MNon-inked Properties (Attributes): rebar pattern, detall, schedule ‘
id
steel grade Data Type:
bend geometry [20 crapHIC |
cross-sectional area
averlap Examples:
length reduction rate
vield stress | ‘
ultimate stress References:

| piece drawing

Synonyms:

Information Construct:

REINFORCEMENT*REBAR{;bend geometry;}

Save | Save & Exit ‘ Exit

Figure 7.4 Mapping ambiguous terms based on the descriptions

In the beginning, there were some concerns about the possibility of the GTPPM

modeling process being too tedious and time-consuming because it requires very detailed

process and information flow modeling. It was important to measure the modeling hours

158

because GTPPM would not be an appropriate substitute for the current modeling method

and process if it takes relatively too much time.

Table 7.2 The statistics of the High model

Modeling Hours

Statistics

Process modeling

3 days (24 hours)
11/25-27, 2002

Internal Detail: 98

External Detail: 13

Internal Highlevel: 9
External Highlevel: 13
Information Flow: 210
Feedback Flow: 14

Materia Flow: 70

Dynamic Repository: 10
Static Information Source: 6
Continue: 84

Vlls modeling 12.5 hours Information Sets: 24
VDDs: 192 (non-distinctive)
Mapping Vllsto ICs, Revision of an IM 7.5 hours ICs: 135 (distinctive)
Total | 44 hours

Table 7.3 The statistics of the CT| model

Modeling Hours

Statistics

Process modeling

3 days (24 hours)
12/18-20, 2002

Internal Detail: 96

Externa Detail: 29

Internal Highlevel: 7
External Highlevel: 29
Information Flow: 179
Feedback Flow: 9

Material Flow: 64

Dynamic Repository: 14
Static Information Source: 10
Continue: 42

VIls modeling 3 hours Information Sets. 6
VDDs: 186 (non-distinctive)
Mapping Vllsto ICs 2 hours ICs: 231 (distinctive)
Total | 29 hours

The modeling hours for the High and CTl models were recorded. Table 7.2 and
Table 7.3 show statistical data of the High and the CTI models. The whole RCM modeling
process took about 37 hoursin average. 97 internal detail activities, 195 information flows,

and 15 information sets were defined in average. There was no significant difference

159

between two models in terms of the number of process components or the number of
information constructs. 37-hour work is about 5-day (a week) work. It seemed pretty
reasonable if one could develop a product model within a week or even a month
considering some preparation and revision time before and after GTPPM modeling.

The automatically collected High's and CTI's information constructs were
normalized into two separate preliminary product models in EXPRESS. In order to
compare the results with the data structures of High's current database management system,
the information constructs collected from High’s model were also normalized into a SQL
schema. In this process, a new SQL generation module was developed and used to show
referential relationships between TABLEs because the EXPRESS2SQL module does not

generate referential relations between TABLEs.

BOM

BIDDING _DOCUN
PRESTRESSING HARDWARE_LIS|

PIECE

DOCUMENTATIC

ESTIMATION |=——

HARDWARE

[PROJECT ea—ed SITE]
~{DESIGN-EQUH

ERECTION_DRA “| SURFACE_TREA)

MOLD

ENGINEERING |o{QC_CHECK | SHCENE [MATERIAL __ ~[CONCRETE |

PRODUCTION_Al=[FOUR |

D
{ [LoADS | | [BATEH /
CONSTRANTS |
- SCHEDULE EQUIPMENT

—[ERECTION
T GEOMETRY |

PIECE_LIST
L—{GEOMETRY_30 |

GEOMETRY_20

IMENSIONS |

ASSEMBLY

Figure 7.5 A SQL table structure of the High model with referential relations

Figure 7.5 graphicaly shows a SQL table structure of the High model with

referential relations. This diagram was sent to the information system (IS) manager of

160

High with SQL code for review. The author visited High for the second time to interview
High’s IS manager.

Currently High's ERP system is a federated database management system, which is
composed of several commercial and custom-built database management systems. High
was using an MS Access®-based estimation system, two Oracle®-based production
scheduling, shipping, inventory, purchase management systems, a legacy
accounting/costing system, an engineering/drawing management system, and a human
resource/payroll system. However, only limited sets of information can be exchanged
between different database management systems today. Currently High is developing a
central database that can integrate the dispersed databases and also that can acquire
geometric information and bills of materials (BOMs) directly from an advanced 3D CAD
system.

A one-to-one comparison between the automatically generated data model and
High's data schemas was not possible for several reasons. First, the automatically
generated model was designed as one large schema, but High's system was a federated
databases. Second, the automatically generated data model was based on an object-oriented
modeling approach (i.e., EXPRESS) whereas High's systems were relational databases
using SQL. Conceptually SQL TABLEs are correspondent to Entities in EXPRESS.
However, because of lack of the inheritance mechanism in relational database and several
practical implementational reasons, data modelersin field (i.e., IT managers) tend to put as
many number of attributes in one TABLE as possible rather than to break down an entity
into an atomic level (i.e, a semanticaly indecomposable level). It is to achieve the

efficiency in table management and also to reduce the complexity of the JOIN operation in

161

query. Third, the terms used to define TABLEs and attributes in High's systems were
different from those used to define entities and attributes in the automatically generated
schema. Thus, it was very difficult to automatically or quantitatively compare the two
schemas. The evaluation had to rely on qualitative and subjective evaluation of the author
and the IS manager at High.

The automatically generated SQL model included thirty-nine TABLEs. Each
TABLE and its attributes were reviewed. After reviewing the TABLEs, High’s IS manager
and the author categorized TABLES into three groups:

1) Over-defined: TABLES that include more information than High's current data

models
2) Adequate: TABLES that define information about the same level as the current
High's data models

3) Under-defined: TABLEs that lack necessary information

In overal, the automatically generated product model included more information
than what was maintained by the current database management systems. Currently only
little geometry, shipping, loading, constraints, and engineering information is managed by
database management systems. Also (concrete) mold information is not maintained
because mold design varies project by project and they thought that it was unnecessary to
keep track of mold information. The automatically generated model included quite a few
“over-defined” information items because the initial process model was developed based
on an assumption that High would adopt a new advanced 3D modeling system, which

would be equipped with many automated engineering and constraint checking functions.

162

Table 7.4 Evaluation of the High M odéel

Over -defined Adeguate Under -defined
ASSEMBLY DESIGN REQUIREMENTS BATCH (mix recipe)
BIDDING DOCUMENTAION CONCRETE (mix recipe)
BOM DRAWING
BUILDING_CODE ERECTION_DRAWING
CONSTRAINTS ESTIMATION
DIMENSTIONS HARDWARE
ENGINEERING HARDWARE_LIST
EQUIPMENT LABOR
ERECTION MATERIAL
GEOMETRY (2D, 3D) PIECE
MOLD PIECE_DRAWING
QC_CHECK PIECE_LIST
SHIPPING PRODUCTION_AND_HANDLING
SURFACE_TREATMENT POUR
TRUCK_LOADS PRESTRESSING
PROJECT
REINFORCEMENT
SCHEDULE
SITE

On the other hand, the automatically generated model lacked the batch and concrete
information, especially the concrete mix design (ak.a “mix recipe’) information. In the
actual ERP system, the concrete mix design information was managed through a couple of
large TABLEs while the automatically generated model defined concrete mix information

S. mply ASmix specification.

ENTITY concrete
SUBTYPE OF (
material
)i
mix specification: string;
strength: string;

END_ENTITY;

It is because the mix design information is inputted directly from the field (i.e,, a

batch plant) and the domain expert and the author, who modeled the process and

163

information flow, had not had a chance to interview anybody related to the concrete mix
design. As aresult, the concrete mix design information was only captured as a simplistic
form. This reconfirmed the fact that GTPPM can derive a product model only from the
specified scope and information requirements.

High's IS manager evaluated that the automatically generated product model
generally reflected High's information requirements well. According to the comparison
results, the RCM models and the LPM process have been modified. Currently GTPPM can
selectively collect information items that are actually stored and managed by a database

management system by using the Dynamic Repository shape.

7.4 PRODUCT MODELSFOR DESIGNING/DRAFTING

GTPPM was deployed for the third time to capture a precast concrete
“designing/drafting” process. Engineering and designing/drafting processes are not easy to
capture because of the domain expertise included in them and also because of the
complexity of the processes. Even for domain experts with more than 10 years of
experience, it is still not easy to describe engineering and modeling processes in a
systematic way unless they sit down and spend some time on thinking about them.
Fortunately, Unistress, a precast producer in Pittsfield, MA, provided detailed guidelines
for designing precast concrete pieces. Based on the guidelines, the designing/drafting
processes for double tees (Figure 7.6) and exterior columns were modeled.

Unlike the previous modeling processes, information items of each activity were
directly defined without using information sets. They were first defined as vernacular

information items (V11s) and then mapped to information constructs (ICs) later.

164

Figure 7.6 A stack of doubletees

The maor difference between a business management process and a
designing/drafting process in terms of information flow is that information flow in the
designing/drafting process is accumulative: i.e.,, a model of a precast concrete structure
behaves as a data repository. As soon as a designer adds one shape or texts to a precast
concrete model or to a drawing, they represent certain information. But such design
information does not only affect only the next activities, but also many other activities that
appear later in the process. Thus, amodel of a precast concrete piece in this case study was

represented as a dynamic repository as shown in Figure 7.7.

DT model

16:Model Pieces

Determine the overall
DT length

Establish the Mark
End

DT model

Determine flange
connection spacing

Determine flange
connection type

7:Cheek-g
between two dr

—
DT model

Check dimensions
between two drawings

8:Check dimengions
between two dr

Determine DT width

Determine top and
directon of pour finiish
Determine washes and

recesses

Drawings
from Clients

[frm— e — e — = “FBr -
------------------------------------ . . 1
i/ Plan production Y ' . I_egs fall at .
kS schedule i | joint or edge |
T d :I/ \Vi of piece — [.
Determine DT stem Check if legs fall at A X
(apesiig Mim TR pieceHYese‘»._ Notify Project Drafter
Estimation -—/,\

Figure7.7 A part of a double tee modeling process

165

Even though “Drawings from Clients’ cannot be changed by precast concrete
designers, they are also represented as a dynamic repository in Figure 7.7 because they can
updated by clients many times during a project. Figure 7.8 illustrates a process of

receiving drawings from clients.

Drawings
from Clients

Yes
Preparation [

Review project with No l\]{lraak"e“r?oplels oflmost L:jp—to—date
‘—— project drafter g, e evatlgn and section
drawings
Most up-to-
date
drawings?

Prepare drawing
templates

Figure 7.8 Drawings from clients

Table 7.5 Thedifferencein the PIECE definitions

The High model The Unistress model

ENTITY piece; ENTITY piece
estimation: estimation; SUPERTYPE OF (ONEOF (
piece_drawing: piece_drawing; spandrel,
material: material; pc_column,
mold: mold; floor_piece)
reinforcement: reinforcement;)i
geometry: geometry; piece mark: string;
piece mark: string; reinforcement: reinforcement;
product_unit_measurement: string; blockout: blockout;
product_size: string; hardware_list: hardware_ list;
product_amount: string; connection: connection;
product_name: string; location_details: location_details;
product_code: string; production_and handling:
label: string; drawing: drawing;
surface_treatment: END_ENTITY;

hardware_list: hardware_ list;
production_and_handling:
shipping: shipping;

END_ ENTITY;

Another difference between the previous High and CTl models and the Unistress
model is that the Unistress model includes specific types of products. For example, Table

7.5 shows the definitions of the piece entity, a main product of the precast concrete

166

industry, in the High and the Unistress models. Since the High model focuses on the
management process, types of pieces are defined by generic information such as proauct
name Of piece mark Whereas, in the Unistress designing/drafting model, types of pieces are
defined specifically as spandre1, pc_column, OF 8S f1cor piece. It iShecause, in order to design
apiece, designers need to know specifically which type of piece is connected to which type
of piece. By the same reason, even though we only focused on the processes of
designing/drafting double tees, the definitions of adjacent pieces and connections, whose
information is required to design a double tee, were also captured in the derived product
model. (See Figure 7.11 in the next section for an EXPRESS-G diagram of the expanded

piece @Nd connection definitions.)

Table 7.6 The statistics of the Unistress model

Modeling Hours Statistics
Processand VIlsmodeling | 6 hours Internal Detail: 55
for a double tee modeling External Detail: 7
process Internal Highlevel: 4

External Highlevel: 7
Information Flow: 160
Feedback Flow: 3

Material Flow: O

Dynamic Repository: 21
Static Information Source: 2

Continue: 18
Processand VIlsmodeling | 2 hours Information Set: 0
for acolumn modeling
process
Mapping Vllsto ICs 2 hours IC: 85 (distinctive)

Total | 10 hours

The Unistress model was about half size of previous models in terms of both the
number of process components and the number of distinctive information items because it

only dealt with a small portion of the design and engineering process. It took 10 hours to

167

model the Unistress model. The Unistress model included 73 activities, 163 flows, and 85

information constructs. The automatically generated product model included 58 entities.

75 THEINTEGRATION AND EVALUATION OF AUTOMATICALLY GENERATED
PRODUCT MODELS

Information constructs collected from three models were integrated as one model
through the LPM process. The integrated model included 129 entities and modeling of the
three companies processes took 73 hoursin total. For readers’ reference, CIS/2 LPM 6 has
731 entities and PCC-IFC Version 0.9 has 413 entities. The automatically generated
integrated models are provided in Appendix G.

The syntax of automatically generated integrated product models has been
validated using the syntax checkers embedded in a commercial tool EXPRESS Data
Management (EDM®) Supervisor Version 4.5 (Figure 7.9) and a shareware Expresso
Version 3.1.4. The automatically generated schemas could be successfully implemented as
physical data models both on MS SQL Server 2000° and EDM® as they were without
further refinement and modification.

In the integrated model, we could observe severa problems. Figure 7.10 is a
hierarchy (called, an entity graph in Expresso) of warzr1ar generated by the Expresso Entity
Grapher. The entity graph shows a specialization hierarchy of entities. Even though we
were extremely careful to avoid the ‘nym’ issues, we can observe from Figure 7.10 that
reinforcement 1N the Model was used in two meaning: reinforcement as an activity and also
as amaterial (object). It is because the information menu was initially defined violating the

‘nym’ principle. This problem was fixed later.

168

-
. N 0 " [o]
B EXPRESS Data Manager Supervisor - Licensed to Georgia Institute of Technology g@
Connection Schemats Data User Adm. Server System Adm. Aux Database Exit Help
[A
Compilation result of schema: UNIHIGHCTI_04152004 3
0 WARNINGS detected.
0 ERRORES detected.
[
<] i | [)]
Ready Ln 1, Call
; P ®
Figure 7.9 EXPRESS code validation by EDM
Bl Entity Grapher - unihighcti_04152004 ==
Options
ADHESIVE EROVIERE]
ISTONE HARDWARE_LIST P
VELecTae TEMS INSTALLATION_SCHEDULE
BACK TORMING INTERFERENCE_CHECK
| e OINT
i _ LAEOR
N REINFORCEMENT# <<— REBAR®—— BENT_BAR LIFTING
y FRESTRESSING LIGHT_FOLE
i CONCRETE LOCATION_DETAILS
LIFTING INATERIAL
CAST_IN_BOX {“}E(SH
CURTAINWALL_INSERT OLD
SHIPPING_FRAME NOMFRECAST_ELEMENT
GROUT FFSITE_STAGING
HANDLING_BOLT FACK
R BOLT PC_AGGREGATE
R LRI HANDLING_INSERT FC_COLUMN
HANDLING_LEG Eg—%EPING
TEMPORARY_BRACING FEE
MATERIAL® ANCHOR PIECE_DRAWING
ERECTION_ANCHOR PIECE_LIST
PLATE FIGMENT
CUSTOM_ITEM EIE*-%DRFI‘"'“NG
RETARTOER kT
I OFFSITE_STAGING ol
Bl ADMIXTURE PRESTRESSING
P ERECTION_HANDLING _FRAME PRETENSION_GUN E
fiiriGmeEnT PRODUCTION_AND_HANDLING
W\PC_AGGREGATE PROJECT
e, FURCHASE_ORDER
fiGUTTER_SYSTEM [2C_CHECK
i == REELA
FORM_PANELIZATION REBAR_CAGE
STF!ONGB K RECESS
WFORM_HANDLING REINFORCEMENT
IFORM_LINER REPAIR
IRIGGING EE}T&EEDER
ANDLNG FOOF DEcK
A SAFETY_CABLE
SAMPLE [v]

Figure7.10 A hierarchy of maTerIAL generated by the Expresso Entity Grapher

On the other hand, the level of detail of the automatically derived model is
generally satisfactory. The model defined information at the level of detail that is required

for the targeted purposes: i.e.,, managing and designing pieces. Figure 7.11 illustrates an

169

EXPRESS-G model of the integrated piece and connection definitions from the High, CTI,
and Unistress models. at in the model represents the double tee entity. The direct
association relations between ac and two connection types qap and chora in Figure 7.11 can

be refined by the WHERE clauses in the manual modification process.

STRING I product_amount
product_name 3 SI'RING
STRING I product_size H
product_code
I product_unit_measurement o STRING
i label
5 piece_mark . O STRING I
STRING] | » piece 4-“]
connection I mobilization SI'RING
1
XX_type & & &
sTRING| [0 _
spacing floor_piece spandrel pc_column
strRING[o X type
requirement l _typ! I\ !
strinG[o / e
. dt exterior_pc_column
connection
clearance
— bee | - fsrne]]
Q STRING
dap stem_spacing pocket -I
chord Lg ket
—J chord ee
id
O
corbel
—0 corbd o STRING] |
. id
—C] ticback dstriNG]]
==C) Cip_haunch

Figure 7.11 Automatically generated PIECE and CONNECTION definitions

Figure 7.12 shows several other examples of entity hierarchies in the integrated

model.

170

BOM
BIDDING_DOCUMENTS
DOCUMENTATION®
DRAWING® 7

FLOOR_PIECE®$——DT
PEECE~<SF£HEF’.EL e e
PC_COLUMN®——EXTERIOR_PC_COLUMN s e
EQUIPMENT® &~ pRETENSION_GLN
CRANE
BOM
BIDDING_DOCUMENTS
DOCUMENTATION Al . BATCH
VA PRODUCTION_AN :=_HAuwrlso<f?E“L'E,l i
DRAWING® UNDA WELDING

REPAIR
SECTION_| REPAIR
PIECE

PLAN_DRA

GEOMETRY_2D#
GEOMETRY_2D

GEOMETRYO< CROSSSECTION

Figure 7.12 Several entity graphs of entitiesin the integrated model

A good benchmark of the integrated model might be the PCC-1FC model, a precast
concrete extension to an existing IFC model. As described earlier, IFC models are built
based on a conceptually modeling approach. As aresult, they have aweak connection with
real use cases and are defined at arelatively high level. For example, Figure 7.13 shows an
entity graph of trc suilaing Elements. The IFC entities that are corresponding to spandrels,
columns, and double tees in the integrated model (Figure 7.11) are ifcbeam, ifccolumn, and

ifcsiab iN (Figure 7.13).

41/, IFCBUILDINGELEMENTPROXY
IFCWALL®—— IFCWALLSTANDARDCASE
IFCCURTAINWALL

FCBUILDINGELEMENT#€

IFCBUILDINGELEMENTASSEMBLY
IFCSLAB
IFCWINDOW

Figure 7.13 An entity graph of |FC Building Elements

171

Figure 7.14 is a partiadl EXPRESS-G model of these three IFC building el ements.
As shown in Figure 7.14 and the following EXPRESS code, the PCC-IFC model only
defines the object names and do not have any attribute. It assumes that all the attributes

will be inherited from supertypes.

(ABS)
ifcbuildi r]gel ement

! P

*ifcslab ifcheam ifccolumn
predefinedtype om0 -
——CQ ifcdabtypeenum 1

,,,,,,,,, s

Figure 7.14 A partial EXPRES-G model of | FC Building Elements

ENTITY IfcBuildingElement
ABSTRACT SUPERTYPE OF (ONEOF (
IfcBuildingElementProxy
, IfcBeam
, IfcColumn
, IfcCovering
, IfcCurtainWall
, IfcDoor
,IfcRailing
, IfcRamp
, IfcRampFlight
, IfcRoof
,IfcSlab
,IfcStair
,IfcStairFlight

,IfcWwall

172

, IfcWindow
-- Additional subtypes defined by ST-3
,IfcBuildingElementAssembly
, IfcFooting
,IfcPile
))
SUBTYPE OF (IfcElement) ;
INVERSE
ProvidesBoundaries : SET OF IfcRelSpaceBoundary FOR RelatedBuildingElement;
HasOpenings : SET OF IfcRelVoidsElement FOR RelatingBuildingElement;
FillsVoids : SET [0:1] OF IfcRelFillsElement FOR
RelatedBuildingElement;

END_ENTITY;

ENTITY IfcColumn
SUBTYPE OF (IfcBuildingElement) ;

END_ENTITY;

ENTITY IfcBeam
SUBTYPE OF (IfcBuildingElement) ;

END_ENTITY;

ENTITY IfcSlab
SUBTYPE OF (IfcBuildingElement) ;
PredefinedType : IfcSlabTypeEnum;
WHERE
WR2 : (PredefinedType <> IfcSlabTypeEnum.USERDEFINED) OR
((PredefinedType = IfcSlabTypeEnum.USERDEFINED) AND
EXISTS (SELF\IfcObject.ObjectType)) ;

END_ENTITY;

TYPE IfcSlabTypeEnum = ENUMERATION OF
(FLOOR,
ROOF,
LANDING,

USERDEFINED,

173

NOTDEFINED) ;

END_TYPE;

Since the IFC model is still growing, it will not be valid to argue the goodness or
the badness of the model based on its level of details. And the intention of the comparison
is not to judge the goodness of the model. This comparison shows the level of details that
GTPPM can capture and the possibility of GTPPM to capture a more practical and redlistic

set of data, which is sensitive to its use cases.

174

CHAPTER 8

Conclusion

Product modeling is not art that depends only on intuition and subjectivity, but
science that depends on logical thinking and explicit procedures with clear objectives that
can be tested and improved upon. However, existing requirements collection methods of
product modeling rely solely on human review and suffer from alogical gap between their
Application Activity Model (AAM) and Application Requirement Model (ARM). The
existing methods have more significant problems when applied to large and heterogeneous
business environments. Any review process will get slower and collected information will
get more difficult to check because the number of information items will grow large. There
have been several research and development efforts to overcome these drawbacks, but
none provides any formal method and procedure to elicit and validate information items of
a domain and to (semi-)automatically derive a product model from collected information
requirements.

The author proposed a formal Requirements Collection and Modeling method
(RCM) and Logical Product Modeling (LPM). RCM enables modeling and domain experts
to capture the contents, scope, granularity, and semantics of information used in the
activities of a process. LPM provides the logic of integrating and normalizing information

constructs collected from RCM modelsinto a preliminary product model.

175

. © (O C)

Initial State Final State Internal Highlevel Activity Internal Detail Activity External Highlevel Activity Internal Detail Activity

Static Information Source Dynamic Information Source Continue Information Flow Material Flow Feedback Flow

Figure 8.1. RCM Notation

The characteristics of RCM are that it 1) is information-specific so that it can
capture the information items used in the activities making up the process; 2) guarantees
the completeness of the product model data in relation to the process models defining the
UoD; 3) provides rigorous syntax and checking methods that can help modelers maintain
consistency (i.e., logical coherence) in their models, 4) allows modelers to express
heter ogeneous business environments how each company deploys and uses information in
its business process. (The goa of the requirements collection method is to collect and
integrate information items within an industry-wide product model. However, this does not
necessarily require the definition of a unified process model); and 5) supports a step-by-
step modeling procedure that can guide domain and modeling experts to elicit
requirements and information and to transform them into a process and information-flow
model in a step-by-step manner. More generally, by making the process explicit, the
results from each step can be analyzed and criteria for success of each of the steps
developed, alowing a science of process-to-product modeling to be devel oped.

By allowing modelers to specify information in a process (in the context of its use)
step-by-step and providing a logical and dynamic consistency checking method, RCM

helps modelers to capture complete and realistic information.

176

LPM defines nine design patterns to automatically integrate and normalize
information constructs. It decomposes, generalizes, and restructures a set of information
constructs into a preliminary product data model. We expect that the number of these
design patterns will grow in the future similar to the normal forms in database.

However, the GTPPM method is by no means complete. An automatically
generated product model will not include roles, data type, cardinality, and the WHERE,
DERIVE, and RULE clauses. Those should be added and modified manually. In the future,
the logic of further automating those processes can be provided. For example, it might be
possible to define the DERIVE relations between attributes using the functional
dependencies between input and output information defined in an RCM model.

GTPPM has been experimented with the precast concrete producers in the North
America. Through the application and evaluation of GTPPM, several drawbacks as well as
advantages are identified. GTPPM has been modified based on the findings. However,
some of those were |€eft as the topics of future work.

By using GTPPM, a complete set of information items required for product
modeling for a medium or a large industry can be collected without generalizing each
company’ s unique process into one unified high-level model. However, the use of GTPPM
isnot limited to product modeling. It can be deployed in several other areas including:

e workflow management system (Jablonski and Bussler 1996; P. Lawrence (Ed.)

1997; WFMC 1999) or MIS (Management Information System) development:
Information required for processing an activity, passed to succeeding activities,
and returned back to previous activities for feedback can be defined. (See

Appendix H for details on workflow management systems.)

177

o software specification development: A detailed definition of engineering
functions and processes can be developed, which will alow further
development of software in the engineering and design aress.

e business process re-engineering: A process model with specific information
items can be used for reengineering of an organization like other process
models.

Also any form of adata model defined in EXPRESS can be read into GTPPM as an
information menu. Using this function, GTPPM can be used to update or validate an
existing product model by reading in an existing product model as an information menu. It
can be also used to develop conformance classes (i.e., valid subset models) of an existing
model.

GT PPM has been implemented as a Microsoft Visio® Add-on. The tool has been
applied to fourteen companies of the North American Precast Concrete Software
Consortium (PCSC) and is being applied to three IT-related research projects at Purdue,
Carnegie Méllon, and Teeside University (UK). Experience to date indicates that GT PPM
holds the potential to improve and expedite product model devel opment.

The author believes that a newly proposed process to product modeling method and
its supporting procedures provide the logic and a promising means to (semi-)automatically

derive a product model from collected process information.

178

APPENDIX A
EARLY STANDARD PRODUCT MODELING EFFORTS

This appendix summarizes early standard product modeling efforts (Goldstein,

Kemmerer, and Parks 1998) (Bloor and Owen 1995):

Table 8.1 Chronology of development in product data

STEP ' ' ' ' STEP> ! ' ' ' DPI ! Inifial ! ' ' CoNM31 0 niial
MM lboo o __ropats v ______ @pproved ! release
us | | | | PDDI | + PDES + PDES | | | | |
_______________ |________|______|______|_________|_______:__|_niji§ﬁ_oﬂ__|_______:__|QC_9___|_______|______|_______|_______|________|________

IGES ~ IGES IGES T IGES 30 " TIGES IGES | "IGES IGES 5.2
___________ L S S NN SO NN CUUUF S NN SO AN SR
Subsets , MIL- MIL-D
' D- 28000A
___ L8000 v .
Germany T H i v v H TTVDA T
i 1S1.0 | 20
! ! ! | VDAFS | | DN VoA ! ! ! ! ! !
-- P S0 0 . S
France ' ' ' + SET141 afnor ' ' afnor ' ' | |
1980 | 1981 | 1982 | 1983 | 1984 . 1985 . 1986 . 1987 . 1988 . 1989 ., 1990 . 1991 | 1992 i 1993 . 1994
Europe i i i ESPRIT> 1 | | | ESPRIT | | | | ESPRIT
___ A SR NN SN | G SN N IR SN NN | 1= SN S
Testing Autofact CTS=> | NAVFAC CTS-
B . S AU A (U SRR S SU 2 AU SR S VA N SR
___NeDo .] NEDOT__\ L NEDOZ i Moo
Graphics CKS CGM 1 GKS PHIGS CGl 1 PHIGS
i 3D PLUS
___ o d i i 1 CGRM_ 4 a .
EDIF EDIF | EDIF EDIF 300
_______________ S L S S N SO A Y S SN S
Modeling " TIDEFO- ! NIAM ! v " IDEF1X ! ' v ' v v ' " IDEF3-
o2 ' ' ' ' ' ' ' ' ' [

(Source: (Bloor and Owen 1995))

e the ANSI/X3/SPARC methodology: The X3/SPARC Committee of the American
National Standards Institute (ANSI) developed the three-layer (conceptual, internal,
external layers) architecture of information modeling.

e ANSI Y14.26 (Digital Representation for Communication of Product Definition
Data, 1970-1981): isan ANSI committee for standardization of a product model.

e CAM-I (1973-1984): the Computer-Aided Manufacturing — International Inc.
(CAM-I) organization significantly contributed to the formal description of

Boundary Representation (BRep).

179

IGES (1979-1981): IGES (Initial Graphics Exchange Specification) provided the
first practical solution for CAD data exchange with an exchange file format.

the ICAM Program: The Integrated Computer Aided Manufacturing (ICAM)
program, funded by the U.S. Air Force, developed the IDEF method for process
and information modeling.

AECMA Report of geometry data exchange study group: The European
Association of Aerospace Industries (AECMA) developed a standard data format
for exchanging surface geometry.

the VDA in 1982: Flachenschnittstelle Des Verbandes Der Deutschen
Automobilindustrie (VDA-FS and VDA-IS) is German efforts to develop a
standard data model for exchanging drawing information, two- and three-
dimensional geometry, analytic and free form surfaces/curves required for the
automotive industry.

the SET project in 1983: Pure geometric data models such as IGES has been
criticized for not being able to describe the full lifecycle of a product. The French
Standard d Echange et de Transfert (SET) project has been continued by
Association GOSET, which became contributors to 1SO 10303 and STEP
conformance testing services.

the Product Definition Data Interface (PDDI, 1982-1987): The PDDI was a
research projected funded by the ICAM program to develop a method to exchange
and share geometric data among computer applications without human intervention
based on an thorough evaluation of IGES (ANSI: Product Definition Data Interface

1983).

180

NBS: National Bureau of Standards (NBS, currently NIST), sponsored by the U.S.
Department of Defense Computer-Aided Acquisition and Lifecycle Support
(CALS) program, led the development of IGES subsets. STEP's concept of
application protocols (APs) and Conformance Classes grew from this and other
early work.

ISO TC 184/SC4 Meeting (1984): International Organization for Standardization
(1SO) STEP (STandard for Exchanging Product (data) model) began in 1984.

CTS (since 1985): The Conformance Test Suite (CTS) project is a project to
develop conformance-testing methods and to establish testing services ((Bloor and
Owen 1995) p.141).

the Product Data Exchange Specification (PDES, 1984-1985): In 1984, the PDES
has been proposed as the next generation of IGES and as a response to the PDDI
and other European standardization efforts to support the full lifecycle of products
and more complex products and software environment.

MIL-D specifications (1987): the subsets developed by the US Department of
Defense (DoD)

ESPRIT: the EU information technologies program
(http://mww.cordis.lu/esprit/home.html)

US Harmonization of Product Data Standards Organization (1989): NIST was the
leader of the Harmonization of Product Data Standards (HPS) organization under
the Industrial Automation Planning Panel (IAPP) of ANSI. The intent of HPS was
to derive a harmonized Application Reference Model (ARM) from several U.S.

standards (e.g., IPC, IGES/PDES, |EEE, EIA) and to integrate them with STEP.

181

APPENDIX B
THE FORMAL DEFINITION OF THE SEMANTIC UNION

A semantic union is different from a simple aggregation of data sets or a general

union. It can be formally defined as:
Au*B =(A+B)-[(An" B)-(An*B)]
W* : semantic union

+.

N aset (or aggregation) of semantically equivalent entities

M * : semantic intersection

where A and B are respectively a set of data required by an application or a work

process.
If we use the same example from Section 3.1,
A ={project_name, load, driver}
B = {strucutre_name, load, frame}

A+ B ={project_name, structure_name, load, load, driver, frame}

An B ={load}

Au B ={project_name, load, driver, structure_name, frame}

Let project_namein Set A be a synonym of structure_namein Set B

load (truck load) in Set A is ahomonym of load (structural load) in Set B

In such a case, the results of the semantic set operations of these two setswill be:

182

A+ B ={project_name, structure_name, load, load, driver, frame}
AN B={project_name, structure_name}
An*B={ Fg(project_name, structure_name)}

where F4(X, y): returns an semantic intersection of elementsx and y

Let fs(project_name, structure_name) = project_name
An*B={ project_name}
(AN B) - (An*B)={structure_name}

- Au*B={project_name, load, load, driver, frame}

The definition of the semantic union can be ssmplified by introducing complement

intersection N°. The complement intersection N° can be defined as the subtraction of
semantic intersection from a set of semantically equivalent entities similar to the

complement set:

AN B=(An"B)-(An*B) or An° B={x|xe An" B,x¢ An*B}

Using the complement intersection, the semantic union can be redefined as a
subtraction of a complement intersection of semantic intersection of different native data
models from an aggregation of the data sets, similar to the definition of a general union®.

AU*B = (A+B)— (AN B)

2 Complement Set of C, C° ={x|xe S,x¢ C,Cc S}
% Unionset AUB=(A+B)-(ANB)

183

Since it is not possible that a software application can automatically recognize
homonyms or synonyms without any additional information, it is obvious that two
instances of ‘load’ in the above example should be replaced by distinguishable termsin a
practical model. For example,

D ={project_name, truck_load, structural _load, driver, frame}

184

APPENDIX C
RESOURCES FOR PROCESSMODELING METHODS

A.10VERVIEW

This appendix summarizes resources for major process modeling techniques today.

A.2 A BRIEF HISTORY OF PROCESSMODELING

Even though some literatures claims that process management has existed since
prehistoric times, it is a general view to regard Frederick Taylor (1919) as a father of the
modern process management (Eastman and Shirley 1994; Osborne and Nakamura 2000).
The historic evolution of process modeling methods -from early Gantt charts (1955) and
PERT/CPM to modern structured anaysis by Tome DeMacro (the 1980s) - are well
reviewed by Osborne (Osborne and Nakamura 2000, Ch 2). In the early 1990s, data-
centered, scenario-based, structural methods were synthesized into one modeling language,

which became the current United Modeling Language (UML).

A.3 RESOURCESFOR MODELING METHODSAND EXCERPTSFROM THEM

This section lists electronic resources for major process modeling methods and

provides a short excerpt on the modeling method from the webpage. Excerptsarein italic.

e |DEFZ:
http://www.|DEF.com

IDEF@ is a method designed to model the decisions, actions, and activities of an
organization or system. IDEF@ was derived from a well-established graphical language,
the Structured Analysis and Design Technique (SADT). The United States Air Force

commissioned the developers of SADT to develop a function modeling method for

185

analyzing and communicating the functional perspective of a system. Effective IDEFQ@
models help to organize the analysis of a system and to promote good communication
between the analyst and the customer. IDEF@ is useful in establishing the scope of an
analysis, especially for a functional analysis. As a communication tool, IDEF@ enhances
domain expert involvement and consensus decision-making through simplified graphical
devices. As an analysis tool, IDEF@ assists the modeler in identifying what functions are
performed, what is needed to perform those functions, what the current system does right,
and what the current system does wrong. Thus, IDEF@ models are often created as one of
the first tasks of a system development effort.

In December 1993, the Computer Systems Laboratory of the National Institute of
Sandards and Technology (NIST) released IDEF@ as a standard for Function Modeling

in FIPS Publication 183.

e Petri Net
o Tutorid: http://worldserver.oleane.com/adv/el stech/petrinet.htm

o Petri Net World: http://www.dai mi.au.dk/PetriNets/

o Tools: http://www.dai mi.au.dk/PetriNets/tool §/quick.html

o CPN: http://www.dai mi.au.dk/CPnets/

o Dr. Carl Adam Petri:

http://www.informatik.uni-hamburg.de/TGl/mitarbeiter/profs/petri eng.html

(Excerpt from http://worldserver .ol eane.com/adv/el stech/petrinet.htm)

Petri nets were introduced by C.A.Petri in the early 1960s as a mathematical tool
for modeling distributed systems and, in particular, notions of concurrency, non-

determinism, communication and synchronization. Their further development was

186

facilitated by the fact that Petri Nets easy model process synchronization, asynchronous
events, concurrent operations, and conflicts or resource sharing. Petri Nets have been
successfully used for concurrent and parallel systems modeling and analysis,

communication protocols, performance evaluation and fault-tolerant systems.

e DFD

(ak.aYourdon)
o http://spot.colorado.edu/~kozar/DFD.html

o http://www.doc.mmu.ac.uk/online/SAD/T04/dfds.htm

o http://lwww.aisintl.com/case/drd.html

(Excerpts from http://spot.colorado.edu/~kozar/DFD.html)

Data flow diagrams are a network representation of a system. They are the
cornerstone for structured systems analysis and design. The diagrams use four symbols to
represent any system at any level of detail. The four entities that must be represented are:

o data flows- movement of data in the system

o data stores - data repositories for data that is not moving

o processes - transforms of incoming data flow(s) to outgoing data flow(s)

o external entities - sources or destinations outside the specified system boundary

Data flow diagrams do not show decisions or timing of events. Their function is to
illustrate data sources, destinations, flows, stores, and transformations. The capabilities of
data flow diagramming align directly with general definitions of systems. Data flow
diagrams are an implementation of a method for representing systems concepts including

boundaries, input/outputs, processes/subprocesses, etc.

187

The data flow diagram is analogous to a road map. It is a network model of all
possibilities with different detail shown on different hierarchical levels. The process of
representing different detail levelsis called "leveling" or "partitioning” by some data flow

diagram advocates.

e SSADM (Structured Systems Analysis and Design Methodology) Diagrams

http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html
SSADM (in common with other structured methodologies) adopts a prescriptive

approach to information systems development in that it specifies in advance the modules,
stages and tasks which have to be carried out, the deliverables to be produced and
furthermore the techniques used to produce the deliverables. SSADM adopts the Waterfall
model of systems development, where each phase has to be completed and signed off
befor e subsequent phases can begin.

e STRADIS: (Structured Analysis, Design and Implementation of Information Systems)
http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html
A methodology developed by Gane and Sarson (1979). The methodology is based

on the philosophy of top down functional decomposition and relies on the use of Data Flow

Diagrams.

e Y SM: (Yourdon Systems Method,Y ourdon, 1993)
http://www.comp.glam.ac.uk/pages/staff/tdhutchi ngs/chapter4.html

YSM is similar to STRADIS in its use of functional decomposition, however a
middle-out approach is dopted and slightly more emphasis is placed on the importance of

data structures.

188

e MERISE: (Quang and Chartier-Kastler, 1991)
http://www.comp.glam.ac.uk/pages/staff/tdhutchi ngs/chapter4.html

The methodology iswidely used in ISE in France, Spain and Switzerland. MERISE
consists of three ‘cycles, the decision cycle, the life cycle and the abstraction cycle. The
abstraction cycle is the key, in this cycle both data and processes are viewed firstly at the
conceptual level, then the logical or organizational level and finally at the physical or

operational level.

¢ EUROMETHOD: (CCTA, 1994)
http://www.comp.glam.ac.uk/pages/staff/tdhutchi ngs/chapter4.html

Euromethod could be described as a framework for the integration of existing
european methodologies rather than as a methodology in its own right.

e TheUML (Unified Modeling Language)

http://www.rational.com (or http://www-306.ibm.com/software/rational/)
http://www.omg.org/UML
http://uml.shl.com

(Excerpt from http://www.omg.org/UML)

The OMG's Unified Modeling Language™ (UML®) helps you specify, visualize,
and document models of software systems, including their structure and design, in a way
that meets all of these requirements. (You can use UML for business modeling and
modeling of other non-software systems too.) Using any one of the large number of UML-
based tools on the market, you can analyze your future application's requirements and
design a solution that meets them, representing the results using UML's twelve standard

diagram types.

A.4RELATIONSBETWEEN PROCESSMODELING METHODS

189

e SADT (Structural Analysis and Design Techniques)

IDEFJ was derived from SADT.

e SSADM (Structured Systems Analysis and Design Methodology)

SSADM and SADT are not the same. (http://www.csci.csusb.edu/dick/methods.html)

e UML (Unified Modeling Languaage)
The UML was built on three major streams of modeling methods (Rosenberg and Scott

1999, Ch 1).

Table8.2. Three major streamsof the UML

Data-Centered Method

Scenario-Based M ethods

Structural Methods

SADT

Shlaer/Mellor
Martin/Odell
Rumbaough’sOMT
ERDs

DFDs

State-Transition diagrams

Jascobson’s OOSE, Use-case
driven approach
ParcPlace — OBA

Alger/Goldstein — Scenario
based Method

OO Programming
Booch Method
Wirfs-Brock’s CRC Cards

The UML are composed of twelve standard diagrams (Booch, Rumbaugh, and

Jacobson 1999).

Table 8.3. Twelve standard UML Diagrams

Diagram Type | Diagram Definition
Structural Class Diagram shows a set of classes, interfaces, and collaborations
Diagrams and their relationships.

Object Diagram shows a set of objects and their relationships.

Component Diagram shows the organizations and dependencies among a set

of components.

Deployment Diagram | shows the configuration of run-time processing nodes

and the components that live on them.

190

Table 8.3 Twelve standard UML Diagrams (continued)

Diagram Type

Diagram

Definition

Behavior
Diagrams

Use Case Diagram

shows a set of use cases and actors and their
relationship.

State Diagram
(Statechart Diagram)

shows a state machine, consisting of states, transitions,
events, and activities.

Activity Diagram

shows the flow from activity to activity within a
system. An activity shows a set of activities, the
sequential or branching flow from activity to activity,
and objects that act and are acted upon.

Sequence Diagram

is an interaction diagram that emphasizes the time
ordering of messages

Collaboration Diagram

is an interaction diagram that emphasizes the structural
organization of the objects that send and receive
messages. A collaboration diagram shows a set of
objects, links among those objects, and messages sent
and received by those objects.

Model
Management

Diagrams

Package

A general-purpose mechanism for organizing elements
into groups

Subsystem

A grouping of elements of which some constitute of a
specification of the behavior offered by the other
contained elements

Model

A simplification of reality, created in order to better
understand the system being created; a semantically
closed abstraction of a system

The Unified Modeling Language (UML) literally includes most of major modeling

languages today and is still evolving. (http://www.omg.org)

e Petri Net

Colored Petri Net (CPN) is variation of the traditional Petri Net.

e Flowchart

The Flowchart method is an ANSI standard (ANSI-IEEE standard 5807-1985

(ANSI 1991; Osborne and Nakamura 2000, Ch 6)).

A.5 PROCESSMODELING TOOLSIN THE MARKET

Table 8.4 shows some of commercia process modeling tools available today and their

developers.

191

Table 8.4. Process modeling tools

Name ak.a Company/Developer

4K eeps 4K eeps, Inc (Former A.D. Experts)

ActiveModeler Kaisha-tec

AlO Win60 KBS

AllFusion (Process BPWin Computer Associates (Former Plantinum)

Modeler)

ARIS Toolset IDS Scheer

Enterprise Modeller Business I ntegration Technologies

Hyperformix Workbench | SES/workbench Hyperformix

iGrafx 2000 Micrografx

MooD Morphix

ProcessWise Workbench Fujitsu Teamware

SmartDraw SmartDraw.com

Arena Rockwell Software (Systems Modeling
Corporation)

BPD Lifecycle Manager Quadiware

Corporate Modeler Casewise

CRISP-DM CRISP 1.0 SPSS

iThink Cognitus

Metify ABM Armstrong Laing Group

Oracle Designer Oracle

ProcessModel http://www.processmodel.com/ | ProcessModel

ProSim6.0 KBS

SmartER KBS

Visio Microsoft

WorkFlow Modeler Meta Software

A.6 ORGANIZATIONSRELATED TO PROCESSMODELING

Several non-profitable organizations exist to develop standards and integrate

process modeling efforts. The organizations and their self-introductions are as follows:

o Work flow Management Coalition (WfMC)

http://www.wfmc.org/

192

The WEMC has over 300 member organizations worldwide, representing all facets of

workflow, from vendors to users, and from academics to consultants.

Subgroup: e-Workflow, http://www.e-workflow.org/

Workflow and Reengineering International Association (WARIA)

http://www.waria.com/

The charter of the Workflow And Reengineering International Association (WARIA) is
to identify and clarify issues that are common to users of workflow, electronic
commer ce and those who are in the process of reengineering their organizations. The
association facilitates opportunities for members to discuss and share their
experiences freely. Established in 1992, WARIA's mission is to make sense of what's
happening at the inter section of Business Process Management, Wor kflow, Knowledge
Management and Electronic Commerce and reach clarity through sharing experiences,
product evaluations, networking between users and vendors, education and training.
The Business Process Modeling Language (BPMI)

http://www.bpmi.org/

BPMI.org (the Business Process Management Initiative) is a non-profit corporation
that empowers companies of all sizes, across all industries, to develop and operate
business processes that span multiple applications and business partners, behind the
firewall and over the Internet. The Initiative's mission is to promote and develop the
use of Business Process Management (BPM) through the establishment of standards

for process design, deployment, execution, maintenance, and optimization. BPMI.org

193

devel ops open specifications, assists I T vendors for marketing their implementations,
and supports businesses for using Business Process Management technologies.
The Association for Information and Image Management (AlIM)

http://www.alim.orq

A lot has changed since AlIM (The Association for Information and Image
Management) was founded in 1943 as the National Microfilm Association. But one
thing has remained remarkably consistent. Despite countless revolutionsin
technologies, our core focus has remained the same -- helping users connect with
suppliers who can help them apply document and content technol ogies to improve their
internal processes. AlIM International isthe industry’ s leading global organization.
We believe that at the center of an effective business infrastructure in the digital age is
the ability to capture, create, customize, deliver, and manage enter prise content to
support business processes. The requisite technologies to establish thisinfrastructure
are an extension of AllM's core document and content technologies. These Enterprise
Content Management (ECM) technologies are key enablers of e-Business and include:
Content/Document Management, Business Process Management, Enterprise Portals,
Knowledge Management, | mage Management, Data Warehousing, and Data Mining.
Our focus over the next 3-5 yearswill be helping our members - both users and

suppliers — make this e-Business transition.

BizTalk

http://www.biztalk.org/

194

The goal of BizTalk.org isto provide resources for learning about and using Extensible
Markup Language (XML) for Enterprise Application Integration (EAI) and business-
to-business (B2B) document exchange, both within the enterprise and over the Internet.
On BizTalk.org you can learn how to use XML messages to integrate software
applications and build new solutions. The design emphasisis to use XML to integrate
your existing data models, solutions, and application infrastructure, and adapt them
for electronic commerce. You can also learn about the BizZTalk Framework, a set of
guidelines for implementing an XML schema and a set of XML tags used in messages
sent between applications.

o ebXML

http://www.ebxml.org

To provide an open XML-based infrastructure enabling the global use of electronic
business information in an interoperable, secure and consistent manner by all parties.
e Object Management Group (OMG)®

http://www.omg.org/

The Object Management Group (OMG) is an open member ship, not-for-profit
consortium that produces and maintains computer industry specifications for
interoperable enter prise applications. Our member ship roster, about 800 strong,
includes virtually every large company in the computer industry, and hundreds of
smaller ones. Most of the companies that shape enterprise and Internet computing
today are represented on our Board of Directors. Our flagship specification isthe

multi-platform Model Driven Architecture (MDA), recently underway but already well

% The OMG is the official group which maintains the UML.

195

known in the industry. It is based on the modeling specifications the MOF, the UML,
XMI, and CWM. OMG's own middleware platformis CORBA, which includes the
Interface Definition Language OMG IDL, and protocol I10P. The Object Management
Architecture (OMA) defines standard services that will carry over into MDA work
shortly. OMG Task Forces standardize Domain Facilitiesin industries such as

healthcare, manufacturing, telecommunications, and others.

A.7OTHER RESOURCES FOR PROCESS MODELING

e SODAN: http://www.sodan.co.uk/main.html ?s=modeling

SODAN sells an overview of workflow and process modeling tool products and
suppliers (E375/each).

e Bart-Jan Hommes: http://is.twi.tudelft.nl/~hommes/tool sub.html

e A Glossary of Software Development Methods:

http://www.csci.csush.edu/dick/methods.html

Dick Botting provides short definitions of over 100 software development methods
and terms.
e Evauation of Systems Analysis Methodologies in a Workflow Context

http://computing.unn.ac.uk/staff/cgnr1/badensoft.htm

Fahad Al-Humaidan and B. Nick Rossiter compare OPM, SSADM, UML, Unified

Process, SSM, and WfMS in fourteen categories.

196

APPENDIX D
REQUIREMENTSCOLLECTION METHODS

Requirements collection activities rely on a variety of formalisms including
Flowcharts, UML Activity Diagrams, the Use Case diagrams, Data Flow Diagrams
(DFDs) (Osborne and Nakamura 2000), and IDEFO (NIST 1993) schemas. Both
Flowcharts (ANSI 1991) and Activity Diagrams (Booch, Rumbaugh, and Jacobson 1999)
are limited only to capturing sequences of activities and are not able to describe the
information used in a process. Use Case diagrams (Jacobson, Jonsson, and Overgaard
1992) which are a part of the UML methodology, define a set of sequences in which each
sequence represents the interaction of the things outside the system (its actors) with the
system itself (and its key abstractions) (Booch, Rumbaugh, and Jacobson 1999). Data flow
Diagrams (DFDs) (Osborne and Nakamura 2000) consists of severa levels of diagrams.
The top-level DFD is called a context diagram. Details of information that is transferred
between processes and data storages is separately described and called a data dictionary.
However, DFDs do not show workflows, i.e., decisions or sequences of activities. DFDs
capture information required for ‘system’ design, but do not describe information flowsin
a sequence of activities.

IDEFO (Integration Definition of Function Modeling is a Federal Information
Processing Standard (FIPS) supported by 1SO and is designed to define the “functions of a
system or subject area with graphics, text and glossary (NIST 1993).” Asin DFD modeling,
IDEFO models have a hierarchical structure and take a top-down approach. A unique
feature of IDEFO is its ICOM codes (Input, Control, Output, and Mechanism arrows).

Although arrow types are categorized in detail, IDEFO tracks information in chunks, but

197

not in terms of individua information items. Detailed information can be defined
separately in IDEF1x (or IDEF1), but there is no direct link between the two modeling
techniques.

The above modeling methods are incorporated into a set of commercial tools (e.g.,
BPR®, Arena®, Rose®, and SmartDraw®). They have been further researched and enhanced
in severa systems: (e.g., PetriNet (Benwell, Firns, and Sallis 1991; Petri 1962), OSMOS
(Wilson et a. 2001), GPP (Wix and katranuschkov 2002), 1STforCE (Wix and Liebich
2000), ATLAS (Tolman and Poyet 1995), and ICCl (Katranuschkov et al. 2002)) have
been developed, to enhance or integrate existing modeling methods. Some commercial
CASE (Computer-Aided Software Engineering) tools for database design (such as Visio®,
AllFusion® (ak.a ERWIn®, BPWin®, ModelMart®)), and Corporate Modeler®) are
capable of coupling DBMSs mostly with ARMs (e.g., IDEF1x, EXPRESS-G, and ER
diagrams) and sometimes with process models (AAMS). However, they do not provide any
formal method to dicit information from heterogeneous business environments and to
integrate the collected information into an industry-level product model.

Appendix C provides additiona information and resources on process modeling

methods.

198

APPENDIX E
NOTATION OF A CONTEXT-FREE GRAMMAR (CFG)

The context-free grammar (CFG) is a formal system to define how any lega
statement of alanguage can be derived by a set of axioms. The axioms are the rewrite rules
of alanguage. A syntax of the CFG is a duplex <B, R>, where B is the union of terminals
and non-terminals and R is the set of axioms or rules. For example, ‘W = %’ denotes a
syntactic rule ‘W can be replaced by x.” The arrow (=) is called the rewrite arrow and
reads‘is-a’ Notethat W - y isdifferent fromy = W. ‘W’ must always be a non-terminal
symbol and y is astring of either atermina or a non-terminal symbol. A terminal symbol
isalexical item that cannot be split into smaller constituents of a language. Examples are
{a black, cat, ran} in Figure 8.2. A non-termina symbol is a non-lexical symbol that
represents a class of terminal symbols. Examples include {S (subject), NP (noun phrase),
VP (verb phrase), N (noun), V (verb), Det (determiner), Adj (adjective)} in Figure 8.2. *-’

denotes concatenation of symbols.

S
NP VP
Det Adj N \
I I I I
a black cat ran

slnplpel@laq (Plack]y(cat]l,[[ran]]]

Figure 8.2. A linguistic example of a constituent structuretree

199

The context-free grammar can be depicted as a breakdown structure. The structure
is caled a constituent structure tree. The vertical breakdown denotes the is-a
categorization like the arrow () and the horizontal enumeration represents grammatical
relations of terminals and non-terminals such as subject-of, object-of, and modifier. Figure
8.2 isan example of a constituent structure tree of a sentence “A black cat ran.”

The given rewriterulesfor ‘A black cat ran” are asfollows:

S-> NP-VP

NP-> Det—Adj—N

VP>V

Det > a

Adj = black

N > cat

V = ran

A > B|CdenotesA > BorA > C.

In a context free grammar, the left side of are-write rule is limited to a single non-
terminal. The right side can be replaced by a null value in order to accommodate
abbreviation or replacement phenomena.

W - NULL

For example, in English imperative, the subject “you” can be omitted:
S-> NP-VP
NP -> NULL

VP - go away

200

APPENDIX F

A PSEUDO CODE?*' FOR DETECTING SEMANTICALLY EQUIVALENT

INFORMATION CONSTRUCTS

FUNCTION Is_Semantically Equivalent ICs
DIM x as information construct
DIM y as information construct
DIM UnabbreviatedIC as information construct

DIM AbbreviatedIC as information construct

IF len(x) = len(y) THEN
IF x = y THEN
Is_Semantically Equivalent ICs = TRUE
Merge_the attributes of x and y into x
ELSE
Is_Semantically Equivalent ICs = FALSE
END IF
ELSE
IF len(x) > len(y) THEN

UnabbreviatedIC

X
AbbreviatedIC = y

ELSE
UnabbreviatedIC = y;
AbbreviatedIC = x;

END IF

IF left (UnabbreviatedIC, len(AbbreviatedIC)+1) = “*” +
Is_Semantically Equivalent ICs = TRUE
Merge the attributes of x and y into UnabbreviatedIC
Delete AbbreviatedIC_and its attributes

ELSE
Is_Semantically Equivalent ICs = FALSE

END IF

END IF

% The pseudo code follows the Visual Basic grammar.

201

AbbreviatedIC

END FUNCTION

SUB Merge_ the attributes of x and y into x

END SUB

SUB Merge the attributes of x and y into_ UnabbreviatedIC

END SUB

SUB Delete_ AbbreviatedIC_and its_attributes

END SUB

202

APPENDIX G

AUTOMATICALLY GENERATED PRELIMINARY PRODUCT MODELSIN
EXPRESS

SCHEMA unihighcti_ 042704;

ENTITY documentation
SUPERTYPE OF (ONEOF (
drawing,
bom,
bidding documents)

)i

gc_check: gc_check;
report_date: string;
to_be_sent_to: string;
revision no: string;
revised date: string;
report_time: string;
revised by: string;
received date: string;
requirements: string;
id: string;

END_ENTITY;

ENTITY piece
SUPERTYPE OF (ONEOF (
floor_piece,
spandrel,
pc_column)
)i
pack: pack;
windows: windows;
bowing: bowing;
design requirements: design requirements;

wythe: wythe;

203

sample: sample;

estimation: estimation;

material: material;

mold: mold;

geometry: geometry;
surface_treatment: surface_treatment;
shipping: shipping;

piece mark: string;
product_unit_measurement: string;
product_size: string;
product_amount: string;
product_name: string;

product_code: string;

label: string;

mobilization: string;

blockout: blockout;

hardware_list: hardware_ list;
connection: connection;
location_details: location_details;
production_and handling: production_and handling;
drawing: drawing;

END_ENTITY;

ENTITY floor piece
SUPERTYPE OF (ONEOF (

dt)

SUBTYPE OF (
piece
)

END_ENTITY;

ENTITY pc_column
SUPERTYPE OF (ONEOF (
exterior pc_column)

)

204

SUBTYPE OF (
piece
)i

END_ENTITY;

ENTITY drawing
SUPERTYPE OF (ONEOF (
piece drawing,
erection_drawing,
section drawing,
plan_drawing,
detail drawing,
elevation_drawing,
foundation drawing)
)
SUBTYPE OF (
documentation
)i
sealed: string;
created_date: string;
created_by: string;
destroyed date: string;
engineering: engineering;
callout: string;
due date: string;

END_ENTITY;

ENTITY assembly
SUPERTYPE OF (ONEOF (
floor_ assembly)
)i
dimensions: dimensions;
piece list: piece list;
grid: grid;

END_ENTITY;

205

ENTITY connection
SUPERTYPE OF (ONEOF (
cip_haunch,
tieback,
corbel,
pocket,
dap,
chord)
)i
requirement: string;
material: material;
light pole: light pole;
erection_sleeve: erection_sleeve;
reinforcement: reinforcement;
spacing: string;
xx_type: string;
piece_list: piece list;

END_ENTITY;

ENTITY geometry
SUPERTYPE OF (ONEOF (
geometry 2d,
geometry 3d)
)i
id: string;
constraints: constraints;
geometry 3d: geometry 3d;
dimensions: dimensions;

END ENTITY;

ENTITY hardware
SUPERTYPE OF (ONEOF (
grout,
tieback,
handling bolt,

bolt,

206

handling insert,
handling_leg,
erection_anchor,
custom_item,
cast_in box,
curtainwall_insert,
shipping frame,
temporary bracing,
anchor,

plate,

lifting)

)

SUBTYPE OF (
material

)
surface_treatment: surface_treatment;

END_ENTITY;

ENTITY reinforcement
SUPERTYPE OF (ONEOF (
prestressing,
rebar,

mesh)

SUBTYPE OF (

material

)i

youngs_modulus: string;

waste: string;

bpc_end geometry: string;
crosssectional area: string;
gc_check: gc_check;

location details: location details;

END_ENTITY;

ENTITY gc_check

207

SUPERTYPE OF (ONEOF (
interference_check)

)i

inspector_id: string;

id: string;

requirements: string;
inspector: string;

inspection dates: string;
building code: building code;
results: string;

END_ENTITY;

ENTITY rebar
SUPERTYPE OF (ONEOF (
bent_bar)
)
SUBTYPE OF (
reinforcement
)i
temperature: string;
diameter: string;

END_ENTITY;

ENTITY material
SUPERTYPE OF (ONEOF (
hardware,
caulk,
rigging,
handling,
offsite_staging,
erection_handling_ frame,
gutter_system,
strongback,
brick,
stone,

electric_items,

208

reinforcement,
retarder,
admixture,

pigment,
pc_aggregate,

form panelization,
form_handling,

form liner,
adhesive,

back forming,
concrete)

)i

purchase_order: purchase_order;
unit_price: string;
pattern: string;
id: string;
Xx_type: string;
quantity: string;

END_ENTITY;

ENTITY production_and_handling
SUPERTYPE OF (ONEOF (
welding,
repair,
batch,
pour)

)i

pour: pour;

equipment: equipment;
operation_details: string;
operation cost: string;
cost: string;

production cost: string;
production per hour: string;
weather: string;

yard_cost: string;

209

electric_power_req: string;

manager: string;
concrete: concrete;
labor: labor;
schedule: schedule;

END_ ENTITY;

ENTITY schedule
SUPERTYPE OF (ONEOF (
erection_schedule)
)i
piece_list: piece_list;
approved_date: string;

schedule date: string;

actual_start_date: string;
actual pc_end date: string;
required_duration: string;
planned duration: string;

planned_start_date: string;

planned pc_end date: string;

END_ENTITY;

ENTITY erection_schedule
SUPERTYPE OF (ONEOF (
installation_schedule,
foundation_ schedule)

)

SUBTYPE OF (
schedule

)i

END_ENTITY;

ENTITY equipment
SUPERTYPE OF (ONEOF (
pretension gun,

crane,

210

roof_deck,

safety cable)

)i

unit_cost: string;

END_ENTITY;

ENTITY geometry 2d
SUPERTYPE OF (ONEOF (

crosssection)

SUBTYPE OF (
geometry

)i

base_point: string;

END_ENTITY;

ENTITY grid;
y_axis spacing: string;
X_axis_spacing: string;

END_ENTITY;

ENTITY dt
SUBTYPE OF (
floor piece
)i
gc_check: gc_check;
mesh: mesh;
pc_end: pc_end;
flange: flange;
recess: recess;
chord: chord;
dap: dap;
structural analysis: structural analysis;
stem: stem;
stem spacing: string;

joint: joint;

211

END_ENTITY;

ENTITY joint;
dimensions: dimensions;

END_ENTITY;

ENTITY dimensions;
depth: string;
total_length: string;
total poured length: string;
id: string;
floor to floor height: string;
thickness: string;
xx_length: string;
height: string;
cast_length: string;
width: string;

END_ENTITY;

ENTITY exterior pc_column
SUBTYPE OF (
pc_column
)i
clearance: string;
rebar: rebar;
rebar_cage: rebar_cage;
pocket: pocket;
corbel: corbel;
geometry 3d: geometry 3d;
foundation drawing: foundation drawing;
elevation drawing: elevation drawing;
detail drawing: detail_ drawing;
geometry 2d: geometry 2d;
plan _drawing: plan drawing;

END_ENTITY;

212

ENTITY plan_drawing
SUBTYPE OF (
drawing
)i

END_ENTITY;

ENTITY project;
site: site;
documentation: documentation;
shipping: shipping;
sales_representative: string;
phase: string;
job_number: string;
size: string;
owner details: string;
name: string;
project_manager: string;
contact_information: string;
contractor_type: string;
contractor_ list: string;
xxX_type: string;
contract_details: string;
subctract_unit_cost: string;
job_manager: string;
approved date: string;
accountant: string;
engineering coorinator: string;
design requirements: design requirements;
estimation: estimation;

END_ENTITY;

ENTITY estimation;
total_bid prodice: string;
unit_cost: string;
item code: string;

item description: string;

213

item_quantity: string;
id: string;
unit_measurement: string;
estimator: string;

taxes: string;

total loads: string;
schedule: string;
gross_margin: string;
total markup: string;

END_ ENTITY;

ENTITY location details;
orientation: string;
base_point: string;

END_ENTITY;

ENTITY stem;
geometry: geometry;
mesh: mesh;
spacing: string;

END_ENTITY;

ENTITY section_drawing
SUBTYPE OF (
drawing
)i

END_ ENTITY;

ENTITY floor assembly
SUBTYPE OF (
assembly
)i
wash: wash;
pc_topping: pc_topping;

END_ENTITY;

214

ENTITY pc_topping;
XX _type: string;

END_ENTITY;

ENTITY piece list;
piece: piece;
xx_list: string;
quantity: string;
id: string;

END_ ENTITY;

ENTITY structural analysis;
start_date: string;
results: string;

END_ENTITY;

ENTITY dap
SUBTYPE OF (
connection
)i
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY geometry 3d
SUBTYPE OF (
geometry
)i
reinforcement: reinforcement;
weight: string;
volume: string;
bottom: string;
pc_top: string;
xx_type: string;
design: string;

END_ENTITY;

215

ENTITY hardware_ list;
hardware: hardware;
id: string;

END_ENTITY;

ENTITY lifting
SUBTYPE OF (
hardware
)i
standard details: string;
location_details: location_details;

END_ENTITY;

ENTITY chord
SUBTYPE OF (
connection
)
location_details: location details;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY detail_ drawing
SUBTYPE OF (
drawing
)i

END_ENTITY;

ENTITY elevation_ drawing
SUBTYPE OF (
drawing
)i

END_ENTITY;

ENTITY foundation drawing

SUBTYPE OF (

drawing

216

)i

END_ENTITY;

ENTITY corbel
SUBTYPE OF (
connection
)i
blockout: blockout;
geometry 3d: geometry 3d;
rebar: rebar;
location_details: location_details;

END_ENTITY;

ENTITY spandrel
SUBTYPE OF (
piece
)
geometry 3d: geometry 3d;
XX _type: string;

END_ENTITY;

ENTITY recess;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY wash;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY surface_treatment;
id: string;
cleaning: string;
details: string;

END_ENTITY;

ENTITY flange;

217

geometry: geometry;
connection: connection;

END_ENTITY;

ENTITY pc_end;
connection: connection;

END_ENTITY;

ENTITY mesh
SUBTYPE OF (
reinforcement
)i
dimensions: dimensions;

END_ENTITY;

ENTITY blockout;
location_details: location_details;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY interference_check
SUBTYPE OF (
gc_check
)i

END_ ENTITY;

ENTITY pocket
SUBTYPE OF (
connection
)
id: string;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY erection sleeve;

geometry 3d: geometry 3d;

218

END_ENTITY;

ENTITY light pole;
geometry 3d: geometry 3d;

END_ENTITY;

ENTITY tieback
SUBTYPE OF (
hardware,
connection
)i

END_ENTITY;

ENTITY bent bar
SUBTYPE OF (
rebar
)
spacing: string;

END_ENTITY;

ENTITY rebar cage;
rebar: rebar;

END_ENTITY;

ENTITY plate
SUBTYPE OF (
hardware
)i

END ENTITY;

ENTITY nonprecast element;

geometry 3d: geometry 3d;

END_ENTITY;

ENTITY anchor

SUBTYPE OF (

219

hardware
) ;
anchor details: string;

END_ENTITY;

ENTITY design_requirements;
id: string;
fire rating requirements: string;
access_requirements: string;

END_ ENTITY;

ENTITY shipping;
project: project;
shipping frame: shipping frame;
schedule: schedule;
gc_check: gc_check;
truck number: string;
packer: string;
truck_driver: string;
trailer number: string;
cost: string;
traffic_control: string;
traffic_control_ permit: string;
traffic_control personnel: string;
crew: string;
orientation: string;
permits: string;
special_reqg: string;
instruction: string;
receiver: string;
notes: string;
truck_load: truck_load;

END_ENTITY;

ENTITY truck load;

constraints: constraints;

220

designer: string;
purchase_order_num: string;
gty: string;

id: string;

END_ENTITY;

ENTITY engineering;
gc_check: gc_check;
eng_date: string;
sealed: string;

END_ENTITY;

ENTITY building_code;
provision_reference: string;

END_ENTITY;

ENTITY erection_drawing
SUBTYPE OF (
drawing
)i

END_ENTITY;

ENTITY labor;
xx_type: string;
rate: string;
hours: string;

END_ ENTITY;

ENTITY site;
address: string;
map: string;

END_ENTITY;

ENTITY concrete

SUBTYPE OF (

material

221

)i

temperature: string;
strength: string;

mix: mix;

mix_ specification: string;

END_ ENTITY;

ENTITY erection;
safety cable: safety cable;
roof_deck: roof_deck;
hardware_list: hardware_ list;
tolerance: string;
control_ lines: string;
hoistbay location: string;
crane: crane;
gc_check: gc_check;
cost: string;
schedule: schedule;

END_ENTITY;

ENTITY constraints;
min_length: string;
max_length: string;
average_length: string;
average_weight: string;
id: string;

END_ ENTITY;

ENTITY pour
SUBTYPE OF (
production_and_handling
)i
constraints: constraints;
bed: bed;
quantity: string;

status: string;

222

area: string;

END_ENTITY;

ENTITY mold;
purchase order: purchase order;
back forming: back forming;
description: string;
xx_type: string;
id: string;
name: string;
adhesive: adhesive;
form liner: form liner;
form _handling: form_handling;
form panelization: form panelization;
schedule: schedule;
dimensions: dimensions;

END_ENTITY;

ENTITY bidding;
estimation: estimation;
bidders: string;
review: string;
XX _type: string;

END_ENTITY;

ENTITY bidding documents
SUBTYPE OF (
documentation
)i

END_ENTITY;

ENTITY bom
SUBTYPE OF (
documentation
)i

created_by: string;

223

END_ENTITY;

ENTITY batch
SUBTYPE OF (
production_and handling
)i

END_ENTITY;

ENTITY prestressing
SUBTYPE OF (
reinforcement
)i
tolerance: string;
actual_elongation: string;
guage_pressure: string;
net_pull: string;
splice_chuck: string;
temperature_over pull: string;
temp_adjustment: string;
dead_pc_end_seating: string;
live_pc_end_seating: string;
theo_elongation: string;
design_data: string;
xx_length: string;
temp diff btw conc_strand: string;
yield_stress: string;
pretension gun: pretension gun;
tension: string;

END ENTITY;

ENTITY piece drawing
SUBTYPE OF (
drawing
)i
issued date: string;

END_ENTITY;

224

ENTITY foundation_schedule
SUBTYPE OF (
erection_schedule
)i

END_ ENTITY;

ENTITY sample;
id: string;
req: string;
range: string;
size: string;
schedule: schedule;

END_ENTITY;

ENTITY structure;
erection: erection;
structural analysis: structural analysis;

END_ENTITY;

ENTITY installation_schedule
SUBTYPE OF (
erection_schedule
)i

END_ ENTITY;

ENTITY mix;
gc_check: gc_check;
material: material;
stregnth: string;
sheet: string;
sample: sample;

END_ENTITY;

ENTITY pc_aggregate

SUBTYPE OF (

225

material
) ;

END_ENTITY;

ENTITY purchase_order;
status: string;
id: string;

END_ENTITY;

ENTITY pigment
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY admixture
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY retarder
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY form panelization
SUBTYPE OF (
material
)i
requirement: string;

END_ENTITY;

ENTITY form handling

SUBTYPE OF (

226

material

) ;

requirement: string;

END_ENTITY;

ENTITY form liner
SUBTYPE OF (
material

)

requirement: string;

END_ENTITY;

ENTITY adhesive
SUBTYPE OF (
material

)i

requirement: string;

END_ENTITY;

ENTITY back_ forming
SUBTYPE OF (
material

) ;

requirement: string;

END_ ENTITY;

ENTITY curtainwall insert

SUBTYPE OF (
hardware
)

END_ENTITY;

ENTITY cast_in box
SUBTYPE OF (
hardware

)

227

END_ENTITY;

ENTITY electric_items
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY stone
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY brick
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY custom item
SUBTYPE OF (
hardware
)i

END_ ENTITY;

ENTITY erection_ anchor
SUBTYPE OF (
hardware
)i
requirement: string;

END_ENTITY;

ENTITY wythe;

strongback: strongback;

END_ENTITY;

228

ENTITY strongback
SUBTYPE OF (
material
)i

END_ ENTITY;

ENTITY gutter system
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY shipping frame
SUBTYPE OF (
hardware
)

END_ENTITY;

ENTITY handling leg
SUBTYPE OF (
hardware
)i
requirement: string;

END_ ENTITY;

ENTITY handling insert
SUBTYPE OF (
hardware
)i
requirement: string;

END_ENTITY;

ENTITY bolt
SUBTYPE OF (

hardware

229

)i
requirement: string;

END_ENTITY;

ENTITY handling bolt
SUBTYPE OF (
hardware
)i
requirement: string;

END_ ENTITY;

ENTITY erection_handling frame
SUBTYPE OF (
material
)

END_ENTITY;

ENTITY offsite_staging
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY crane
SUBTYPE OF (
equipment
)i
load: string;
location diagram: string;
name: string;
location: string;
tower crane fillin: string;
hoist _bay fillin: string;
mat_req: string;
communication system: string;

hoist_req: string;

230

END_ENTITY;

ENTITY handling
SUBTYPE OF (
material
)i
requirement: string;

END_ENTITY;

ENTITY rigging
SUBTYPE OF (
material
)i
requirement: string;

END_ENTITY;

ENTITY bowing;
adjustment: string;

END_ENTITY;

ENTITY temporary bracing
SUBTYPE OF (
hardware
)i

END_ ENTITY;

ENTITY repair

SUBTYPE OF (

production and handling

)

END_ENTITY;

ENTITY welding

SUBTYPE OF (

production_and_handling

) ;

231

END_ENTITY;

ENTITY caulk
SUBTYPE OF (
material
)i

END_ENTITY;

ENTITY cip_haunch
SUBTYPE OF (
connection
)i

END_ENTITY;

ENTITY grout
SUBTYPE OF (
hardware
)i
requirement: string;

END_ENTITY;

ENTITY roof deck
SUBTYPE OF (
equipment
)i
req: string;

END_ ENTITY;

ENTITY safety cable
SUBTYPE OF (
equipment
)
req: string;
quantity: string;

END_ENTITY;

232

ENTITY windows;
id: string;

END_ENTITY;

ENTITY curtainwall;
id: string;

END_ENTITY;

ENTITY bed;
id: string;
movement: string;

END_ENTITY;

ENTITY pretension_gun
SUBTYPE OF (
equipment
)

id: string;

END_ENTITY;

ENTITY pack;
num: string;

END_ENTITY;

ENTITY crosssection
SUBTYPE OF (
geometry 2d
)i
polyline: string;

END_ENTITY;

END_SCHEMA; (* end of unihighcti 042704%*)

233

APPENDIX H
WORKFLOW MANAGEMENT

Workflow management is “the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedura rules (WFMC 1999).” It differs from pure
process modeling in that it includes ‘execution’ and ‘management’ of business processes
aswell astheir ‘ specification’ (Jablonski and Bussler 1996; Lawrence 1997; WFMC 1999).
Workflow management systems control data flows (more often, documents flows) and
specifies who is supposed to execute what action when. Examples include MQ Series
Workflow® (IBM), BizFlow® (HandySoft), Workflow® (W4), i-Flow® (Fujitsu
Software), and Staffware Process Suite® (Staffware). They are typically performed in
heterogeneous and distributed work environments. Thus, some of directly relevant research
areas naturally include distributed and mobile computing and data mining (such as OLAP
(On-Line Analytical Processing) and data warehousing) that can enable users to inquire
and view data from different points of view. Even though workflow management systems
are similar to our work in that they combine processes and information flows, we regard
workflow management as a separate vast area that deals with management and application
of business processes and information and will not coincide with the focus of this project.
We will, however, consider the forma workflow models that are mainly derived from
transaction management in databases (Chakravarthy et al. 1990; Rusinkiewicz and Sheth

1995; Weikum 1991)

234

REFERENCES

Adachi, Y. (2002). Overview of IFC model server framework. ECPPM 2002, 367-372.

AISC. (2002). CIMSted Integration Standards Release 2 (C1S/2). Available:
http://www.cis2.org/.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel.
(1997). A Pattern Language: Towns, Buildings, Construction.New Y ork: Oxford

University Press.
Amor, R. (2001). Misconceptions about integrated project databases. 1 Tcon, 6, 57-68.

ANSI. (1991). American National Standards for Information Processing - Documentation
Symbols and Conventions for Data, Program and System Flowcharts, Program
Network Charts and System Resources Charts.New Y ork: American National
Standards I nstitute.

ANSI: Product Definition Data Interface. (1983). Teak-I: Evaluation and Verification of
ANS Y14.26M:Booz-Allen and Hamilton, Inc.

Augenbroe, F. (2002, November 9-11). Integration direction (Keynote). Paper presented at
the European Conference for Process and Product Modeling (ECPPM), Slovenia.

Augenbroe, G. L. M. (1993). Combine: Final Report.Delft, Netherlands: Delft University
of Technology.

Augenbroe, G. L. M. (1995). Combine 2: Final Report.Delft, Netherlands. Delft

University of Technology.

Bakkeren, W., A. Zarli, P. Debras, K. Schulz, and S. Korsveien. (1996). D103a - A Model
of Workflow: Specification of a Model for the Definition of Workflows in Virtual
LSE Enterprises (ESPRIT 20408 - VEGA).

235

Banerjee, J., W. Kim, H. Kim, and H. Korth. (1987). Semantics and implementation of
schema evolution in object-oriented databases. Paper presented at the Proceeding
of ACM SIGMOD Annual Conference, 311-322.

Beeri, C., P. A. Bernstein, and N. Goodman. (1978). A sophisticate's introduction to
database normalization theory. Paper presented at the International Conference on
Very Large Data Bases, West Berlin, Germany, 113-124.

Benwell, G. L., P. G. Firns, and P. J. Sallis. (1991). Deriving semantic data models from
structured process descriptions of reality. Journal of Information Technology, 6(1),
15-25.

Berners-Lee, T. (1994). W3C: World Wide Web Consortium. Available:
http://www.w3.org/ [2004, Feb 23].

Bernstein, P. A., S. Pal, and D. Shutt. (2000). Context-based prefetch an optimization for
implementing objects on relations. VLDB Journal, 9(3), 177-189.

Bjork, B.-C. (1989). Basic structure of a proposed building product model. Computer-
Aided Design, 21(2), 71-78.

Bloor, M. S., and J. Owen. (1995). Product Data Exchange:UCL Press.

Booch, G., J. Rumbaugh, and I. Jacobson. (1999). The Unified Modeling Language User
Guide.Reading, MA: Addison Wesley Longman, Inc.

Chakravarthy, S., S. Navathe, K. Karlapalem, and A. Tanaka. (1990). Meeting the
cooperative problem solving challenge: A database-centered approach. In S. M.
Deen (Ed.), Cooperating Knowledge Based Systems: Springer-Verlag.

Chandrasekaran, B. (1994). Functional representations: A brief historical perspective.
Applied Artificial Intelligence, 8, 173-197.

Chen, P. (1976). The entity relationship mode - Toward a unified view of data. TODS, 1(1,
March).

236

Chomsky, N. (1965). Aspects of the Theory of Syntax.Cambridge, MA: MIT Press.

Christiansson, P., and H. Karlsson. (1988). CIB W74 + W78 1988 Proceeding. Paper
presented at the CIB W74 + W78, Lund, Sweden, 165-178.

CIM Stedl Integration Standards Release 2. (2002). http://www.cis2.org/.

Codd, E. F. (1970). A relational model of datafor large shared data banks. CACM, 13(6),
377-387.

Codd, E. F. (1972). Further normalization of the data base relational model. In R. Rustin
(Ed.), Data Base System (Vol. 6, pp. 33-64). Englewood Cliffs, N. J.: Prentice-Hall.

Codd, E. F. (1979). Extending the data base relational model to capture more meaning.
ACM Transactions on Database Systems (TODYS), 4(4), 397-434.

Coplien, J. (1999). History of Patterns http://c2.convcgi-bin/wiki?HistoryOfPatter ns [2003,
September 23].

Cover, R. (1999). XML.org. OASIS (Organization for the Advancement of Structured
Information Systems). Available: http://www.xml.org [2004, Feb 24].

Crowley, A. (1998). The Development & Implementation of a Product Model for
Constructional Steelwork. University of Leeds, Leeds.

Crowley, A. (1998). The development and I mplementation of a product model for
constructional steelwork. Unpublished Doctoral, University of Leeds.

Crowley, A. (2000, Jan 27, 2000). The Logical Product Model (LPM) 5 EXPRESS Schema.
Available: http://www.cis2.org/downl oad/lpm500.exp.

Crowley, A. J,, and M. A. Ward. (1999). CIS2 (AP230) IDEF0:SCI.

CSTB. (2004). The European Research Projects (http://cic.cstb.fr/ILC/html/ecprj.htm).

Danner, W. F. (1997). Developing Application Protocols (APs) using the architecture and
methods of STEP (STandard for the Exchange of Product data): Fundamentals of

237

the STEP methodology (NISTIR 5972). Gaithersburg, MD: National Institute of
Standards and TEchnology.

Dereli, T., and H. Filiz. (2002). A note on the use of STEP for interfacing design to process
planning. Computer-Aided Design, 34, 1075-1085.

Eastman, C., and N. Fereshetian. (1994). Information models for product design: a
comparison. Computer-Aided Design, 26(7), 551-572.

Eastman, C. M. (1996). Managing integrity in design information flows. Computer-Aided
Design, 28(6-7), 551-565.

Eastman, C. M. (1999). Building Product Models: Computer Environments Supporting
Design and Construction.Boca Raton, FL: CRC Press.

Eastman, C. M. (1999). Ch 5. ISO-STEP, Building Product Models: Computer
Environments Supporting Design and Construction.Boca Raton, FL: CRC Press.

Eastman, C. M. (1999). Ch 8. Building Framework Models, Building Product Models:
Computer Environments Supporting Design and Construction.Boca Raton, FL :
CRC Press.

Eastman, C. M. (1999). Ch 11. Modeling language Issues, Building Product Models:
Computer Environments Supporting Design and Construction.Boca Raton, FL :
CRC Press.

Eastman, C. M., S. Chase, and H. Assal. (1993). System architecture for computer
integration of design and construction knowledge. Automation in Construction,
2(2), 95-108.

Eastman, C. M., and T. S. Jeng. (1999). A database supporing evolutionary product model
development for design. Automation in Construction, 8(3), 305-323.

238

Eastman, C. M., G. Lee, and R. Sacks. (2002). Deriving a product model from process
models. Paper presented at the | SPE/CE2002 Conference, Cranfield University,
United Kingdom.

Eastman, C. M., G. Lee, and R. Sacks. (2002, June 12-14). A new formal and analytical
approach to modeling engineering project information processes. Paper presented
at the CIB W78, Aarhus, Denmark, 125-132.

Eastman, C. M., and G. V. Shirley. (1994). Management of Design Information,

Management of Design.

Eckholm, A., and S. Fridquist. (1996). Modeling of user organizations, buildings and
spaces for the design process. Paper presented at the Construction on the
Information Highway: Proceedings of the CIB W78 Workshop, Bled, Slovenia.

Ekholm, A. (1996). A Conceptual Framework for Classification of Construction Work.
I Tcon http: //www.itcon.org/1996/2, 1, 25-50.

Ekholm, A., and S. Fridquist. (1996). Modeling of user organizations, buildings and
spaces for the design process. Paper presented at the Construction on the
Information Highway: Proceedings of the CIB W78 Workshop, Bled, Slovenia.

El-Mehalawi, M., and R. A. Miller. (2001). A database system of mechanical components
based on geometric and topological similarity: Part 1. representation, and Part 2:
Indexing, retrieval, matching and similarity assessment. Computer-Aided Design,
83-94 and 95-105.

Elmasri, R., and S. Navathe. (2000). Ch.2 Database system concepts and architecture,
Fundamentals of Database Systems (Third ed.). Reading, MA: Addison Wesley

Longman, Inc.

Elmasri, R., and S. Navathe. (2000). Fundamentals of Database Systems (Third ed.).
Reading, MA: Addison Wesley Longman, Inc.

239

Elmasri, R., and S. Navathe. (2004). Fundamental s of Database Systems (Fourth ed.).
Reading, MA: Addison Wesley Longman, Inc.

EUREKA. (1987-1997). EUREKA E!130-CIMSteel (Computer-Integrated Manufacturing
For Constructional Seelwork). Available: http://www.eureka.be/ifs/files/ifs/jsp-
bin/eurekalifs/jsps/projectForm.jsp?enumber=130 [2003.

Feng, S. C., and E. Y. Song. (2000, November). Information modeling of conceptual
design: integrated with process planning. Paper presented at the Symposia on
Design For Manufacturability, International Mechanical Engineering Congress and
Exposition 2000, Orlando, Florida.

Fenves, S. L. (2001). A Core Product Model for Representing Design Information, NIST
Internal Report 6736:National Institute of Standards and Technology.

Fischer, M., and C. Kam. (2002). PM4D Final Report (143): CIFE, Stanford University.

Fowler, J. (1996, September 16-20, 1996). Information units and views in STEP. Paper
presented at the the Interpretation Guidelines workshop, SCRA, Charleston SC.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. (1994). Design Patterns. Elements of
Reusable Object-Oriented Software:Addison Wesley.

Garg, P. K., and M. Jazayeri. (1996). Process-Centered Software Engineering
Environments.Los Alamitos, CA: IEEE Computer Society Press.

Giannini, F., M. Monti, D. Biondi, F. Bonfatti, and P. Monari. (2002). A modelling tool for
the management of product data in a co-design environment. Computer-Aided
Design, 34, 1063-1073.

Gielingh, W. (1988). General AEC Reference Model (1SO TC184/SC4/WG1 doc 3.2.2.1,
TNO report BI-88-150).

Gielingh, W. (1988). General AEC Reference Model (GARM). Paper presented at the CIB
W74 + W78, Lund, Sweden, 165-178.

240

Goldstein, B. L. M., S. J. Kemmerer, and C. H. Parks. (1998). A Brief History of Early
Product Data Exchange Standards (NISTIR 6221 WERB). Gaithersburg, MD:
National Institute of Standards and Technology (NIST).

Hammer, M., and D. McLeod. (1981). Database Description with SDM: A Semantic
Database Model. ACM Transactions on Database Systems, 6(3), 351-386.

Hardwick, M., K. C. Morris, D. L. Spooner, T. Randoc, and P. Denno. (2000). Lessons
learned devel oping protocols for the industrial virtual enterprise. Computer-Aided
Design, 32, 159-166.

IAl.The EXPRESS Definition Language for IFC Development. Available: http://www.iai-
international .org/iai_international/Technical Documents/documentation/The EXP
RESS Definition_Language for IFC_Development.pdf [2004.

[ALIAI North American Members. Available: http://www.iai-

na.org/membership/members.php.

IAL. International Alliance for Interoperability. http://mwww.iai-
international.org/iai_international/.

[Al. (2000). Industry Foundation Classes Release 2x: IFC Technical Guide:International

Alliance for Interoperability.

[Al. (2003). Industry Foundation Classes IFC2x Edition 2. Available: http://www.iai-
international.org/iai_international/Technical _Documents/R2x2_final/index.html.

[Al. (2004). A Short History of the IAl and the IFC Information Model. Available:

http://www.iai-international .org/iai _international/lnformation/History.html.

International Organization for Standardization. (1994). |SO 10303-11:1994, Part 11:
Description methods. The EXPRESS |language reference manual.

241

SO JTC 1/SC 32. (2003). 1SO/IEC 9075-1:2003 Information technology - Database
languages - SQL - Part 1. Framework (SQL/Framework) (1SO/IEC 9075-1:2003):
SO.

ISO TC 184/SC 4. (1994). 10 10303-1:1994 Industrial automation systems and
integration - Product data representation and exchange - Part 1. Overview and

fundamental principles:International Organization for Standardization.

ISO TC 184/SC 4. (1994). 10 10303-11:1994 Industrial automation systems and
integration - Product data representation and exchange - Part 11: Description
methods: The EXPRESS language reference manual : I nternational Organization for
Standardization.

ISO TC 184/SC 4. (1996). 10/DI1S 10303-213:1996 Industrial automation systems and
integration - Product data representation and exchange - Part 213: Application
protocol: Control Process Plans For Machined Parts.1rue de Varambe, Case
Postale 56, CH-1211 Geneva, Switzerland: International Organization for

Standardization.

ISO TC 184/SC 4. (1998). ISO/CDC 10303-217 Industrial automation systems and
integration - Product data representation and exchange - Part 217: Application
protocol: Sheet piping.1lrue de Varambe, Case Postale 56, CH-1211 Geneva,

Switzerland: International Organization for Standardization.

SO TC 184/SC 4. (1999). 1SO 10303-14: EXPRESS-X Language Reference Manual
(Working Draft):International Organization for Standardization.

ISO TC 184/SC 4. (1999). S0 10303-207:1999 Industrial automation systems and
integration - Product data representation and exchange - Part 207: Application
protocol: Sheet metal die planning and design.1rue de Varambe, Case Postale 56,
CH-1211 Geneva, Switzerland: International Organization for Standardization.

SO TC 184/SC 4. (1999). IS0 10303-225:1999 Industrial automation systems and
integration - Product data representation and exchange - Part 225: Building

242

elements using explicit shape representation.1rue de Varambe, Case Postale 56,
CH-1211 Geneva, Switzerland: International Organization for Standardization.

SO TC 184/SC 4. (2000). 1SO 10303-41: 2000, Integrated generic resource:
Fundamentals of product description and support:International Organization for

Standardization.

SO TC 184/SC 4. (2001). S0 10303-210:2001 Industrial automation systems and
integration - Product data representation and exchange - Part 210: Application
protocol: Electronic assembly, interconnection, and packaging design.1rue de
Varambe, Case Postale 56, CH-1211 Geneva, Switzerland: International

Organization for Standardization.

ISO TC 184/SC 4. (2001). SO 10303-227:2001 Industrial automation systems and
integration - Product data representation and exchange - Part 227: Application
protocol: Plant spatial configuration.lrue de Varambe, Case Postale 56, CH-1211

Geneva, Switzerland: International Organization for Standardization.

SO TC 184/SC 4. (2004). About SC4 Standards. Available: http://www.tc184-
sc4.org/About_TC184-SC4/About_SC4 Standards/.

Jablonski, S., and C. Bussler. (1996). Wor kflow Management: Modeling, Concepts,

Architecture and I mplementation:International Thomson Computer Press.

Jacobson, |., M. P. Jonsson, and G. Overgaard. (1992). Object oriented software

engineering: A use case driven approach:Addison-Wesley.

Jurafsky, D., and J. H. Martin. (2000). Context-free grammar for English. In D. Jurafsky &
J. H. Martin (Eds.), Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition (pp.
323-256). Uppper Saddle River, NJ: Prentice-Hall.

Jurrens, K. (1991). Test Plan for Validating a Context Driven Integrated Model (CDIM)
for Sheet Metal Die Design.Gaithersburg, MD: National Institute of Standards and
Technology.

243

Kahn, H., N. Filer, A. Williams, and N. Whitaker. (2001). A generic framework for
transforming EXPRESS information models. Computer-Aided Design, 33, 501-510.

Karstila, K. (2001). Precast Concrete Constructions IFC-project (PCC-IFC) Version
1.0:unpublished working document, EuroSTEP/RTT.

Karstila, K., A. Laitakari, M. Nyholm, P. Jalonen, V. Artoma, T. Hemio, and K. Seren.
(2002). Ifc2x PCC v09 Schema in EXPRESS PCC-IFC project team, 1Al Forum

Finland.

Karstila, K., and A. Suikka. (2001). Precast Concrete Constructions IFC - Project (PCC-
IFC): Project Summary Version 1.1:EuroSTEP/RTT.

Katranuschkov, P., J. Wix, T. Liebich, and A. Gehre. (2002). Collected end user
scenarios:Deliverable D11, EU Project I ST-2001-33022 ICCI "Innovation co-
ordination, transfer and deployment through networked Co-operation in the

Construction Industry".

Kogelnik, A., M. Lott, M. Brown, S. Navathe, and D. Wallace. (1998). MITOMAP: A
human mitochondrial genome database. Nucleic Acids Research, 26(1).

Lawrence, P. (1997). Workflow Handbook.New Y ork: Wiley.

McKay, A., A. de Pennington, and J. Baxter. (2001). McKay, A., de Pennington A, and J.
Baxter [2001], Requirements management: a representation scheme for product
specifications, Computer-Aided Design, (33, June 2001), pp. 511-520. Computer -
Aided Design, 33, 511-520.

Nijssen, G. M., and T. A. Halpin. (1989). Conceptual Schema and Relational Database
Design: A Fact Oriented Approach.New Y ork: Prentice Hall.

NIST. (1993). FIPS Publication 183: Integration Definition of Function Modeling
(IDEFO0):National Institute of Standards and Technology.

244

NIST. (1993). FIPS Publication 184: Integration Definition of Information Modeling
(IDEF1X):National Institute of Standards and Technology.

NIST. (2002). What is STEP. http://cic.nist.gov/plantstep/stepinfo/step _def.htm.

OMG. (2003). Object Management Group (OMG) http://www.omg.org [2003, September
23].

Osborne, L. N., and M. Nakamura. (2000). Systems Analysis for Librarians and
Information Professionals (2nd ed.). Englewood, Colorado: Libraries Unlimited,
Inc.

P. Lawrence (Ed.). (1997). Workflow Handbook.New Y ork: Wiley.

Pahl, G., and W. Bietz. (1998). Engineering Design: A Systematic Approach: Springer-
Verlag.

Palmer, M. E., and K. Reed. (1990). 3D Piping IGES Application Protocol version
1.0:National Institute of Standards and Technology, Interagency Report 4420.

Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow. Paper
presented at the |FIP Congress, North Holland, 386-390.

Renssen, I. A. v. (1997). 1SO CD 10303 Guide on STEPIlib: Guide for the creation and
maintenance of Sandard Data for Process Plants (Ver. 1.8) (SO
TC184/SCA/WG3/N424). The Hague, The Netherlands: Shell International Oil
Products B.V.

Ronneblad, A. (2003). Product models for concrete structures. standards, applications
and implementations. Unpublished Licentiate Thesis, Lulea University of
Technology, Sweden.

Rosenberg, D., and K. Scott. (1999). Robustness Analysis, Use Case Driven Object
Modeling with UML: A Practical Approach (pp. 61-79). Reading, MA: Addison
Wesely Longman, Inc.

245

Rosenberg, D., and K. Scott. (1999). Use Case Driven Object Modeling with UML: A
Practical Approach.Reading, MA: Addison Wesely Longman, Inc.

Rusinkiewicz, M., and A. Sheth. (1995). Specification and execution of transactional
workflows. In W. Kim (Ed.), Modern Database Systems:. the Object Model,
Interoperability, and Beyond (pp. 592-620): ACM Press.

Sacks, R., C. M. Eastman, and G. Lee. (2004). Process model perspectives on management
and engineering procedures in the North American Precast/Prestressed Concrete
Industry. the ASCE Journal of Construction Engineering and Management, 130(2),
206-215.

Schenk, D. A., and P. R. Wilson. (1994). Information Modeling the EXPRESS
Way.NY :Oxford U. Press.

Shipman, D. W. (1981). The functional data model and the data languages DAPLEX.
ACM Transactions on Database Systems (TODS), 6(1), 140-173.

Smith, G. L. (2002). Utilization of STEP AP 210 at the Boeing Company. Computer-Aided
Design, 34(14), 1055-1062.

Smith, J. M., and D. C. P. Smith. (1977). Database abstractions. aggregation and
generalization. ACM Transactions on Database Systems (TODYS), 2(2), 105-133.

Smith, J. M., and D. C. P. Smith. (1997). Database abstractions: aggregation.
Communications of the ACM, 20(6), 405-413.

Smith, N., and D. Wilson. (1979). Modern linguistics: The results of Chomsky's

revolution:Penguin.

Spooner, D. L., and M. Hardwick. (1997). Using views for product data exchange. IEEE
Computer Graphics and Applications, 17, 58-65.

Stouffs, R., R. Krishnamurti, and C. M. Eastman. (1996, 16-18 September 1996). A formal

structure for non-equivalent solid representations. Paper presented at the

246

International Federation for Information Processing (IFIP) WG 5.2 Workshop on
Knowledge Intensive CAD I, Pittsburgh, Pa, 269-289.

Szykman, S., S. Fenves, W. Keirouz, and S. Shooter. (2001). A foundation for
interoperability in next-generation product development systems. Computer-Aided
Design, 33, 545-559.

Tari, Z., J. Stokes, and S. Spaccapietra. (1997). Object normal forms and dependency
constraints for object oriented schemata. ACM Transactions on Database Systems,
22(4), 513-569.

Tolman, F. P., and P. Poyet. (1995). The ATLAS models. Paper presented at the Product
and Process Modelling in the Building Industry, Rotterdam.

Turner, J. A. (1988). AEC Building Systems Model (1SO TC184/SC4/WGL1 doc 3.2.2.4).

Turner, J. A. (1988). A systems approach to the conceptual modeling of buildings. Paper
presented at the CIB W74 + W78, Lund, Sweden, 179-194.

VTT. (2004). Extension Projects for IFC (http://ce.vtt.fi/iail FCprojects).

VTT Building and Transport. (2002). Construction I T Glossaries.
http://cic.vtt.fi/links/glossary.html.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Transaction on Database Systems, 16(1), 132-180.

WFMC. (1999). Workflow Management Coalition Terminology & Glossary (WFMC-TC-
1011). Hampshire, UK: WFMC.

Wilson, 1., S. Harvey, R. Vankeisbelck, and A. S. Kazi. (2001). Enabling the construction
virtual enterprise: The OSMOS apprach. 1 Tcon, 6(Information and Communication

technology advances in the European construction industry), 83-110.

Wilson, 1., S. Harvey, R. Vankeisbelck, and A. S. Kazi. (2001). Enabling the construction
virtual enterprise: The OSMOS apprach. 1 Tcon, 6, 83-110.

247

Wix, J., and P. katranuschkov. (2002, June). Defining the matrix of communication
processes in the AEC/FM industry: Current developments and gap analysis. Paper
presented at the CIB w78 Conference, Aahus School of Architecture, Denmark.

Wix, J., and T. Liebich. (2000). Information flow scenario:Deliverable D4, EU Project
IST-1999-11508 ISTforCE, "Intelligent Services and Tools for Concurrent

Engineering”.

Wix, J., and T. Liebich. (2000). Information flow scenario: Deliverable D4, EU Project
| ST-1999-11508 | ST-for CE(Intelligent Services and Tools for Concurrent

Engineering).

Wyke, R. A., and A. Watt. (2002). Ch. 10 Bringing the Parts Together, XML Schema
Essentials (pp. 305-346). New York, NY: Jony Wiley & Sons, Inc.

Yang, D., S. You, F. Wang, C. M. Eastman, and J. Lee.C1S2 @ Georgia Tech. Available:
http://www.arch.gatech.edu/~aisc/.

You, S.-J. (2003). File merging for avoiding import-time dataloss in a file-based STEP
implementation. Qualifying paper (unpublished), College of Architecture, Georgia
Institute of Technology, Atlanta GA, USA.

You, S.--J,, D. Yang, and C. M. Eastman. (2004, May 2-7, 2004). Relational DB
Implementation of STEP based product model. Paper presented at the CIB World
Building Congress 2004, Toronto, Ontario, Canada.

248

VITA

Ghang Lee received a bachelor’ s degree in architectural engineering and a master’s
degree in architectural design both from Korea University respectively in 1993 and 1995.
After graduation, he worked at Kumho, a large-scale construction company in Korea, for
about five and a half years as an architectural designer, researcher, software developer, and
later as an assistant manager. While working at Kumho, he and his team received a Medal
of Merit from the President of Korea in quality management of apartment complex design
and construction for research-oriented apartment complex design.

He began his Ph.D. study at Georgia Tech in 2000. During his stay at Georgia Tech,
he was involved in various advanced CAD system development projects and data
modeling (e.g., ISO-STEP, IFC, CIS/2) projects and taught a graduate-level course on
parametric modeling. Through the various research projects, he worked with a wide range
of organizations and companies such as the North American Precast Concrete Software
Consortium (PCSC), Teka Oy, the Sustainable Facilities & Infrastructure (SFI) group at
Georgia Tech Research Institute (GTRI), the Design in the Classroom (DITC) group at
College of Computing, and the Southern Staircase.

He has published twenty refereed journal and conference papers and ten project
reports since 1996. One of them was a keynote at the European Conference on Process and
Product Modeling (ECPPM) in 2002. He has served as a session chair at international
conferences such as CIBw78 and ECPPM and as a conference organizer (“BFCO05: the first
conference on the Future of the AEC Industry”). He developed two licensed software

applications and several interactive websites.

249

