8,576 research outputs found

    Applying mean shift and motion detection approaches to hand tracking in sign language

    Get PDF
    Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several solutions such as the particle filter, kalman filter and dynamic programming tracking have been used, but they are complicated, time consuming and so expensive. The proposed method is so easy, fast, efficient and low cost. In the first step, the motion detection algorithm subtracts the previous frame from the current frame to obtain the changes between two images and white pixels (motion level) are detected by using the threshold level. Then the mean shift algorithm is applied for tracking the hand motion. Simulation results show this method is faster than two times to compared with the old common algorithm

    Objects detection and tracking using fast principle component purist and kalman filter

    Get PDF
    The detection and tracking of moving objects attracted a lot of concern because of the vast computer vision applications. This paper proposes a new algorithm based on several methods for identifying, detecting, and tracking an object in order to develop an effective and efficient system in several applications. This algorithm has three main parts: the first part for background modeling and foreground extraction, the second part for smoothing, filtering and detecting moving objects within the video frame and the last part includes tracking and prediction of detected objects. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then we used an optimal filter that performs well to reduce noise through the median filter. The Fast Region-convolution neural networks (Fast-RCNN) is used to add smoothness to the spatial identification of objects and their areas. Then the detected object is tracked by Kalman Filter. Experimental results show that our algorithm adapts to different situations and outperforms many existing algorithms

    Hierarchical fuzzy logic based approach for object tracking

    Get PDF
    In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy, reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both kinematic and non-kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model the object's motion pattern, the non-kinematic fuzzy sets model the object's appearance. The tracking task is performed through the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence degree and a hierarchical implementation is performed based on that confidence degree.info:eu-repo/semantics/publishedVersio

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Evaluation of trackers for Pan-Tilt-Zoom Scenarios

    Full text link
    Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in computer vision for many years. Compared to tracking with a still camera, the images captured with a PTZ camera are highly dynamic in nature because the camera can perform large motion resulting in quickly changing capture conditions. Furthermore, tracking with a PTZ camera involves camera control to position the camera on the target. For successful tracking and camera control, the tracker must be fast enough, or has to be able to predict accurately the next position of the target. Therefore, standard benchmarks do not allow to assess properly the quality of a tracker for the PTZ scenario. In this work, we use a virtual PTZ framework to evaluate different tracking algorithms and compare their performances. We also extend the framework to add target position prediction for the next frame, accounting for camera motion and processing delays. By doing this, we can assess if predicting can make long-term tracking more robust as it may help slower algorithms for keeping the target in the field of view of the camera. Results confirm that both speed and robustness are required for tracking under the PTZ scenario.Comment: 6 pages, 2 figures, International Conference on Pattern Recognition and Artificial Intelligence 201
    • ā€¦
    corecore