38 research outputs found

    Finnish Remote Sensing Days 2012 : Book of abstracts

    Get PDF
    Peer reviewe

    Finnish Remote Sensing Days 2012 : book of abstracts

    Get PDF

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Contract Change Notice 2012-2013: Final Report

    Get PDF
    This document is the final report of the Intercalibration of ground-based spectrometers and Lidars - Extension 2012-2013. It summarizes the activities performed in the period from November 2012 until December 2013 and the main results obtained

    Data flow of spectral UV measurements at Sodankylä and Jokioinen

    Get PDF
    The data flow involved in a long-term continuous solar spectral UV irradiance monitoring program is investigated and structured to provide an overall view on the multiphase process from data acquisition to the final products. The program employing Brewer spectrophotometers as measuring instruments is maintained by the Finnish Meteorological Institute (FMI) ever since the 1990s at two sites in Finland: Sodankyla (67 degrees N) and Jokioinen (61 degrees N). It is built upon rigorous operation routines, processing procedures, and tools for quality control (QC) and quality analysis (QA) under continuous development and evaluation. Three distinct levels of data emerge, each after certain phase in the data flow: Level 0 denoting raw data, Level 1 meaning calibrated data processed in near-real time, and Level 2 comprising of postprocessed data corrected for all distinguishable errors and known inaccuracies. The final products disseminated to the users are demonstrated to result from a process with a multitude of separate steps, each required in the production of high-quality data on solar UV radiation at the Earth's surface.Peer reviewe

    The Ozone Monitoring Instrument: Overview of 14 years in space

    Get PDF
    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain

    EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds

    Get PDF
    The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS, i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from ground-based networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https://sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.Peer ReviewedArticle escrit per 46 autors/es: Hugues Brenot Nicolas Theys Lieven Clarisse Jeroen van Gent Daniel Hurtmans Sophie Vandenbussche Nikolaos Papagiannopoulos Lucia Mona Timo Virtanen Andreas Uppstu Mikhail Sofiev Luca Bugliaro Margarita Vázquez-Navarro Pascal Hedelt Michelle Maree Parks Sara Barsotti Mauro Coltelli William Moreland Simona Scollo Giuseppe Salerno Delia Arnold-Arias Marcus Hirtl Tuomas Peltonen Juhani Lahtinen Klaus Sievers Florian Lipok Rolf Rüfenacht Alexander Haefele Maxime Hervo Saskia Wagenaar Wim Som de Cerff Jos de Laat Arnoud Apituley Piet Stammes Quentin Laffineur Andy Delcloo Robertson Lennart Carl-Herbert Rokitansky Arturo Vargas Markus Kerschbaum Christian Resch Raimund Zopp Matthieu Plu 1 Vincent-Henri Peuch Michel van Roozendael Gerhard WotawaPostprint (author's final draft

    Data flow of spectral UV measurements at Sodankylä and Jokioinen

    Get PDF

    Izaña Atmospheric Research Center. Activity Report 2015-2016

    Get PDF
    This report is a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues

    13 th International Workshop on Greenhouse Gas Measurements from Space : Book of Abstracts

    Get PDF
    The 13th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS) will be held on 6-8 June, 2017, at the University of Helsinki in Helsinki, Finland. The workshop is organised by the Finnish Meteorological Institute with support from the University of Helsinki. The workshop gathers together more than 160 scientists from the EU, USA, Japan, China, Australia, Canada, and Russia. This report is the official abstract book of the workshop. Background. Success in space-based global measurement of greenhouse gases, such as carbon dioxide and methane, is critical for advancing the understanding of carbon cycle. The recent developments in observations and in interpreting the data are very promising. Space-based greenhouse gas measurement, however, poses a wide array of challenges, many of which are complex and thus demand close international cooperation. The goal of the workshop is to review the state of the art in remote sensing of CO 2 , CH 4 , and other greenhouse gases from space including the current satellite missions, missions to be launched in the near future, emission hot spots on regional and global scales, process studies and interactions of carbon cycle and climate, pre-flight and on-orbit instrument calibration techniques, retrieval algorithms and uncertainty quantification, validation methods and instrumentation, related ground-based, shipboard, and airborne measurements, and flux inversion from space based measurements. The workshop is part of the programme for the centenary of Finland's independence in 2017. The workshop is also one of the activities arranged by the Finnish Meteorological Institute to support Finland's chairmanship of the Arctic Council, 2017 - 2019. The workshop is sponsored by the Finnish Meteorological Institute, the University of Helsinki, the European Space Agency, the City of Helsinki, the Federation of Finnish Learned Societies, and ABB Inc
    corecore